1
|
Wang Y, Ruf S, Wang L, Heimerl T, Bange G, Groeger S. The Dual Roles of Lamin A/C in Macrophage Mechanotransduction. Cell Prolif 2025; 58:e13794. [PMID: 39710429 PMCID: PMC12099221 DOI: 10.1111/cpr.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Cellular mechanotransduction is a complex physiological process that integrates alterations in the external environment with cellular behaviours. In recent years, the role of the nucleus in mechanotransduction has gathered increased attention. Our research investigated the involvement of lamin A/C, a component of the nuclear envelope, in the mechanotransduction of macrophages under compressive force. We discovered that hydrostatic compressive force induces heterochromatin formation, decreases SUN1/SUN2 levels, and transiently downregulates lamin A/C. Notably, downregulated lamin A/C increased nuclear permeability to yes-associated protein 1 (YAP1), thereby amplifying certain effects of force, such as inflammation induction and proliferation inhibition. Additionally, lamin A/C deficiency detached the linker of nucleoskeleton and cytoskeleton (LINC) complex from nuclear envelope, consequently reducing force-induced DNA damage and IRF4 expression. In summary, lamin A/C exerted dual effects on macrophage responses to mechanical compression, promoting certain outcomes while inhibiting others. It operated through two distinct mechanisms: enhancing nuclear permeability and impairing intracellular mechanotransmission. The results of this study support the understanding of the mechanisms of intracellular mechanotransduction and may assist in identifying potential therapeutic targets for mechanotransduction-related diseases.
Collapse
Affiliation(s)
- Yao Wang
- Department of Orthodontics, Faculty of MedicineJustus Liebig UniversityGiessenGermany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of MedicineJustus Liebig UniversityGiessenGermany
| | - Lei Wang
- Department of Orthodontics, Faculty of MedicineJustus Liebig UniversityGiessenGermany
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouP. R. China
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Sabine Groeger
- Department of Orthodontics, Faculty of MedicineJustus Liebig UniversityGiessenGermany
| |
Collapse
|
2
|
Li A, Xu D. Integrative Bioinformatic Analysis of Cellular Senescence Genes in Ovarian Cancer: Molecular Subtyping, Prognostic Risk Stratification, and Chemoresistance Prediction. Biomedicines 2025; 13:877. [PMID: 40299498 PMCID: PMC12025183 DOI: 10.3390/biomedicines13040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/23/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Ovarian cancer (OC) is a heterogeneous malignancy associated with a poor prognosis, necessitating robust biomarkers for risk stratification and therapy optimization. Cellular senescence-related genes (CSGs) are emerging as pivotal regulators of tumorigenesis and immune modulation, yet their prognostic and therapeutic implications in OC remain underexplored. Methods: We integrated RNA-sequencing data from TCGA-OV (n = 376), GTEx (n = 88), and GSE26712 (n = 185) to identify differentially expressed CSGs (DE-CSGs). Consensus clustering, Cox regression, LASSO-penalized modeling, and immune infiltration analyses were employed to define molecular subtypes, construct a prognostic risk score, and characterize tumor microenvironment (TME) dynamics. Drug sensitivity was evaluated using the Genomics of Drug Sensitivity in Cancer (GDSC)-derived chemotherapeutic response profiles. Results: Among 265 DE-CSGs, 31 were prognostic in OC, with frequent copy number variations (CNVs) in genes such as STAT1, FOXO1, and CCND1. Consensus clustering revealed two subtypes (C1/C2): C2 exhibited immune-rich TME, elevated checkpoint expression (PD-L1, CTLA4), and poorer survival. A 19-gene risk model stratified patients into high-/low-risk groups, validated in GSE26712 (AUC: 0.586-0.713). High-risk patients showed lower tumor mutation burden (TMB), immune dysfunction, and resistance to Docetaxel/Olaparib. Six hub genes (HMGB3, MITF, CKAP2, ME1, CTSD, STAT1) were independently predictive of survival. Conclusions: This study establishes CSGs as critical determinants of OC prognosis and immune evasion. The molecular subtypes and risk model provide actionable insights for personalized therapy, while identified therapeutic vulnerabilities highlight opportunities to overcome chemoresistance through senescence-targeted strategies.
Collapse
Affiliation(s)
| | - Dianbo Xu
- Department of Gynecology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211199, China
| |
Collapse
|
3
|
King E, Struck R, Piskareva O. The triad in current neuroblastoma challenges: Targeting antigens, enhancing effective cytotoxicity and accurate 3D in vitro modelling. Transl Oncol 2025; 51:102176. [PMID: 39489087 PMCID: PMC11565549 DOI: 10.1016/j.tranon.2024.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Neuroblastoma is an embryonic tumour originating from neural crest cells and accounts for nearly 15 % of all childhood cancer deaths. Despite the implementation of intense multimodal therapy for neuroblastoma, half of the high-risk cohort will relapse with metastatic foci resistant to conventional therapies. There is an urgent need for novel precision medicine approaches to improve patient survival and ensure healthy post-treatment lives for these children. Immunotherapy holds promise for such therapeutics; however, developing effective options has been disappointing despite decades of research. The immunosuppressive tumour-immune microenvironment presents a significant challenge amplified with low mutational burden in neuroblastoma, even with the new discovered tumour antigens. Innovative, practical, and comprehensive approaches are crucial for designing and testing immunotherapies capable of passing clinical trials. Replacing animal models with physiologically relevant in vitro systems will expedite this process and provide new insights into exploitable tumour-immune cell interactions. This review examines this three-pronged approach in neuroblastoma immunotherapy: tumour antigen discovery, immunomodulation, and 3D in vitro tumour models, and discusses current and emerging insights into these strategies to address neuroblastoma immunotherapy challenges.
Collapse
Affiliation(s)
- Ellen King
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ronja Struck
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Olga Piskareva
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Zhang X, Al‐Danakh A, Zhu X, Feng D, Yang L, Wu H, Li Y, Wang S, Chen Q, Yang D. Insights into the mechanisms, regulation, and therapeutic implications of extracellular matrix stiffness in cancer. Bioeng Transl Med 2025; 10:e10698. [PMID: 39801760 PMCID: PMC11711218 DOI: 10.1002/btm2.10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 01/03/2025] Open
Abstract
The tumor microenvironment (TME) is critical for cancer initiation, growth, metastasis, and therapeutic resistance. The extracellular matrix (ECM) is a significant tumor component that serves various functions, including mechanical support, TME regulation, and signal molecule generation. The quantity and cross-linking status of ECM components are crucial factors in tumor development, as they determine tissue stiffness and the interaction between stiff TME and cancer cells, resulting in aberrant mechanotransduction, proliferation, migration, invasion, angiogenesis, immune evasion, and treatment resistance. Therefore, broad knowledge of ECM dysregulation in the TME might aid in developing innovative cancer therapies. This review summarized the available information on major ECM components, their functions, factors that increase and decrease matrix stiffness, and related signaling pathways that interplay between cancer cells and the ECM in TME. Moreover, mechanotransduction alters during tumorogenesis, and current drug therapy based on ECM as targets, as well as future efforts in ECM and cancer, are also discussed.
Collapse
Affiliation(s)
- Ximo Zhang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Abdullah Al‐Danakh
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Xinqing Zhu
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Dan Feng
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Linlin Yang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Haotian Wu
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yingying Li
- Department of Discipline ConstructionDalian Medical UniversityDalianChina
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of GlycobiologyDalian Medical UniversityDalianChina
| | - Qiwei Chen
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Zhongda Hospital, Medical School Advanced Institute Life HealthSoutheast UniversityNanjingChina
| | - Deyong Yang
- Department of UrologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of SurgeryHealinghands ClinicDalianChina
| |
Collapse
|
5
|
Chen Z, Wang J, Kankala RK, Jiang M, Long L, Li W, Zou L, Chen A, Liu Y. Decellularized extracellular matrix-based disease models for drug screening. Mater Today Bio 2024; 29:101280. [PMID: 39399243 PMCID: PMC11470555 DOI: 10.1016/j.mtbio.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
In vitro drug screening endeavors to replicate cellular states closely resembling those encountered in vivo, thereby maximizing the fidelity of drug effects and responses within the body. Decellularized extracellular matrix (dECM)-based materials offer a more authentic milieu for crafting disease models, faithfully emulating the extracellular components and structural complexities encountered by cells in vivo. This review discusses recent advancements in leveraging dECM-based materials as biomaterials for crafting cell models tailored for drug screening. Initially, we delineate the biological functionalities of diverse ECM components, shedding light on their potential influences on disease model construction. Further, we elucidate the decellularization techniques and methodologies for fabricating cell models utilizing dECM substrates. Then, the article delves into the research strides made in employing dECM-based models for drug screening across a spectrum of ailments, including tumors, as well as heart, liver, lung, and bone diseases. Finally, the review summarizes the bottlenecks, hurdles, and promising research trajectories associated with the dECM materials for drug screening, alongside their prospective applications in personalized medicine. Together, by encapsulating the contemporary research landscape surrounding dECM materials in cell model construction and drug screening, this review underscores the vast potential of dECM materials in drug assessment and personalized therapy.
Collapse
Affiliation(s)
- Zhoujiang Chen
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ji Wang
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Mingli Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Lianlin Long
- School of Pharmacy, Zunyi Medical University, Zunyi, 563099, Guizhou, PR China
| | - Wei Li
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Liang Zou
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, Fujian, PR China
| | - Ya Liu
- Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu University, Chengdu, 610106, Sichuan, PR China
| |
Collapse
|
6
|
Co IL, Fomina A, Nurse M, McGuigan AP. Applications and evolution of 3D cancer-immune cell models. Trends Biotechnol 2024; 42:1615-1627. [PMID: 39025680 DOI: 10.1016/j.tibtech.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
Understanding the highly complex tumor-immune landscape is an important goal for developing novel immune therapies for solid cancers. To this end, 3D cancer-immune models have emerged as patient-relevant in vitro tools for modeling the tumor-immune landscape and the cellular interactions within it. In this review, we provide an overview of the components and applications of 3D cancer-immune models and discuss their evolution from 2015 to 2023. Specifically, we observe trends in primary cell-sourced, T cell-based complex models used for therapy evaluation and biological discovery. Finally, we describe the challenges of implementing 3D cancer-immune models and the opportunities for maximizing their potential for deciphering the complex tumor-immune microenvironment and identifying novel, clinically relevant drug targets.
Collapse
Affiliation(s)
- Ileana L Co
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Aleksandra Fomina
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada
| | - Michelle Nurse
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada
| | - Alison P McGuigan
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
7
|
Wang J, Alhaskawi A, Dong Y, Tian T, Abdalbary SA, Lu H. Advances in spatial multi-omics in tumors. TUMORI JOURNAL 2024; 110:327-339. [PMID: 39185632 DOI: 10.1177/03008916241271458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Single-cell techniques have convincingly demonstrated that tumor tissue usually contains multiple genetically defined cell subclones with different gene mutation sets as well as various transcriptional profiles, but the spatial heterogeneity of the microenvironment and the macrobiological characteristics of the tumor ecosystem have not been described. For the past few years, spatial multi-omics technologies have revealed the cellular interactions, microenvironment, and even systemic tumor-host interactions in the tumor ecosystem at the spatial level, which can not only improve classical therapies such as surgery, radiotherapy, and chemotherapy but also promote the development of emerging targeted therapies in immunotherapy. Here, we review some emerging spatial omics techniques in cancer research and therapeutic applications and propose prospects for their future development.
Collapse
Affiliation(s)
- Junyan Wang
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Tu Tian
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sahar Ahmed Abdalbary
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Orthopedic Physical Therapy, Faculty of Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Hong J, Yu J, Buratto D, Chen W, Zhou R, Ling S, Xu X. Unveiling the Role of Mechanical Microenvironment in Hepatocellular Carcinoma: Molecular Mechanisms and Implications for Therapeutic Strategies. Int J Biol Sci 2024; 20:5239-5253. [PMID: 39430235 PMCID: PMC11489173 DOI: 10.7150/ijbs.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer deaths globally. More than 80% of HCC patients have a background of fibrosis or cirrhosis, which leads to changes in physical factors in tumor microenvironment (TME), such as increased stiffness, solid stress, fluid stresses and structural alterations in the extracellular matrix (ECM). In the past, the focus of cancer research has predominantly been on genetic and biochemical factors in the TME, and the critical role of physical factors has often been overlooked. Recent discoveries suggest these unique physical signals are converted into biochemical signals through a mechanotransduction process that influences the biological behavior of tumor cells and stromal cells. This process facilitates the occurrence and progression of tumors. This review delves into the alterations in the mechanical microenvironment during the progression of liver fibrosis to HCC, the signaling pathways activated by physical signals, and the effects on both tumor and mesenchymal stromal cells. Furthermore, this paper summarizes and discusses the therapeutic options for targeting the mechanical aspects of the TME, offering valuable insights for future research into novel therapeutic avenues against HCC and other solid tumors.
Collapse
Affiliation(s)
- Jiachen Hong
- Hangzhou Normal University, Hangzhou, 311121, China
| | - Jiongjie Yu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Damiano Buratto
- Institute of Quantitative Biology, and College of Life Sciences, Zhejiang University, 310027, Hangzhou, China
| | - Wei Chen
- Department of Cell Biology, Zhejiang University School of Medicine, and Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, and College of Life Sciences, Zhejiang University, 310027, Hangzhou, China
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Sunbin Ling
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 314408, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 314408, China
- The Second Clinical College of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
9
|
Shen Z, Liu Z, Li M, Han L, Wang J, Wu X, Sang S. Effects of TET2-mediated methylation reconstruction on A2058 melanoma cell sensitivity to matrix stiffness in a 3D culture system. Exp Cell Res 2024; 442:114224. [PMID: 39187151 DOI: 10.1016/j.yexcr.2024.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Matrix stiffness is a crucial factor in the tumor microenvironment, impacting tumor progression and development. TET2 is vital for epigenetic regulation in melanoma and is significantly reduced in advanced melanomas compared with nevi and thin melanomas. However, it is unclear how TET2 mediates the effect of matrix stiffness on melanoma cells. This study utilized A2058 cell lines and prepared different stiffness collagen hydrogels to evaluate TET2 overexpression (TET2OE) and mutant (TET2M) melanoma cells' activity, proliferation, and invasion. A2058 melanoma cells' viability and invasion decreased with increased matrix stiffness, with TET2OE cells experiencing a more significant impact than TET2M cells. Methylation analysis revealed that TET2 determines gene methylation levels, influencing cell-ECM interactions. Transcriptome analysis confirmed that TET2 promotes matrix stiffness's effect on melanoma cell fate. This research provides promising directions and opportunities for melanoma treatment.
Collapse
Affiliation(s)
- Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Lu Han
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Jianming Wang
- General Hospital of TISCO, North Street, Xinghualing District, Taiyuan, 030809, China
| | - Xunwei Wu
- Engineering Laboratory for Biomaterials and Tissue Regeneration, Ningbo Stomatology Hospital, Savaid Stomatology School, Hangzhou Medical College, Ningbo, China; Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China; Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
10
|
Skirzynska A, Xue C, Shoichet MS. Engineering Biomaterials to Model Immune-Tumor Interactions In Vitro. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310637. [PMID: 38349174 DOI: 10.1002/adma.202310637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Engineered biomaterial scaffolds are becoming more prominent in research laboratories to study drug efficacy for oncological applications in vitro, but do they have a place in pharmaceutical drug screening pipelines? The low efficacy of cancer drugs in phase II/III clinical trials suggests that there are critical mechanisms not properly accounted for in the pre-clinical evaluation of drug candidates. Immune cells associated with the tumor may account for some of these failures given recent successes with cancer immunotherapies; however, there are few representative platforms to study immune cells in the context of cancer as traditional 2D culture is typically monocultures and humanized animal models have a weakened immune composition. Biomaterials that replicate tumor microenvironmental cues may provide a more relevant model with greater in vitro complexity. In this review, the authors explore the pertinent microenvironmental cues that drive tumor progression in the context of the immune system, discuss how these cues can be incorporated into hydrogel design to culture immune cells, and describe progress toward precision oncological drug screening with engineered tissues.
Collapse
Affiliation(s)
- Arianna Skirzynska
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Chang Xue
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Molly S Shoichet
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Institute for Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
- Department of Chemistry, University of Toronto, 80 College Street, Toronto, ON, M5S 3H4, Canada
| |
Collapse
|
11
|
Mai Z, Lin Y, Lin P, Zhao X, Cui L. Modulating extracellular matrix stiffness: a strategic approach to boost cancer immunotherapy. Cell Death Dis 2024; 15:307. [PMID: 38693104 PMCID: PMC11063215 DOI: 10.1038/s41419-024-06697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
The interplay between extracellular matrix (ECM) stiffness and the tumor microenvironment is increasingly recognized as a critical factor in cancer progression and the efficacy of immunotherapy. This review comprehensively discusses the key factors regulating ECM remodeling, including the activation of cancer-associated fibroblasts and the accumulation and crosslinking of ECM proteins. Furthermore, it provides a detailed exploration of how ECM stiffness influences the behaviors of both tumor and immune cells. Significantly, the impact of ECM stiffness on the response to various immunotherapy strategies, such as immune checkpoint blockade, adoptive cell therapy, oncolytic virus therapy, and therapeutic cancer vaccines, is thoroughly examined. The review also addresses the challenges in translating research findings into clinical practice, highlighting the need for more precise biomaterials that accurately mimic the ECM and the development of novel therapeutic strategies. The insights offered aim to guide future research, with the potential to enhance the effectiveness of cancer immunotherapy modalities.
Collapse
Affiliation(s)
- Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
12
|
Quoniou R, Moreau E, Cachin F, Miot-Noirault E, Chautard E, Peyrode C. 3D Coculture between Cancer Cells and Macrophages: From Conception to Experimentation. ACS Biomater Sci Eng 2024; 10:313-325. [PMID: 38110331 DOI: 10.1021/acsbiomaterials.3c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A tumor is a complex cluster with many types of cells in the microenvironment that help it grow. Macrophages, immune cells whose main role is to maintain body homeostasis, represent in the majority of cancers the most important cell population. In this context, they are called tumor-associated macrophages (TAMs) because of their phenotype, which contributes to tumor growth. In order to limit the use of animals, there is a real demand for the creation of in vitro models able to represent more specifically the complexity of the tumor microenvironment (TME) in order to characterize it and evaluate new treatments. However, the two-dimensional (2D) culture, which has been used for a long time, has shown many limitations, especially in terms of tumor representation. The three-dimensional (3D) models, developed over the last 20 years, have made it possible to get closer to what happens in vivo in terms of phenotypic and functional characteristics. Due to their architectural similarity to in vivo tissues, they provide a more physiologically relevant in vitro system. Most recently, it is the development of 3D coculture models in which two or three cell lines are cultured together that has allowed a better representation of TME with cell-cell interactions. Unfortunately, there is no clear direction for the design of these models at this time. In this Review on the coculture between cancer cells and TAMs, an in-depth analysis is performed to answer multiple questions on the conception of these models: Which models to use, and with which material and cancer lineage? Which monocyte or macrophage lines should be added to the coculture? And how can these models be exploited?
Collapse
Affiliation(s)
- Rohan Quoniou
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| | - Emmanuel Moreau
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| | - Florent Cachin
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
- Service de Médecine Nucléaire, Centre Jean Perrin, 63000 Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| | - Emmanuel Chautard
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
- Service de Pathologie, Centre Jean Perrin, 63000 Clermont-Ferrand, France
| | - Caroline Peyrode
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| |
Collapse
|
13
|
Sumitomo R, Menju T, Shimazu Y, Toyazaki T, Chiba N, Miyamoto H, Hirayama Y, Nishikawa S, Tanaka S, Yutaka Y, Yamada Y, Nakajima D, Ohsumi A, Hamaji M, Sato A, Yoshizawa A, Huang C, Haga H, Date H. M2-like tumor-associated macrophages promote epithelial-mesenchymal transition through the transforming growth factor β/Smad/zinc finger e-box binding homeobox pathway with increased metastatic potential and tumor cell proliferation in lung squamous cell carcinoma. Cancer Sci 2023; 114:4521-4534. [PMID: 37806311 PMCID: PMC10728010 DOI: 10.1111/cas.15987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/18/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) promotes primary tumor progression toward a metastatic state. The role of tumor-associated macrophages (TAMs) in inducing EMT in lung squamous cell carcinoma (LUSC) remains unclear. We aimed to clarify the significance of TAMs in relation to EMT in LUSC. We collected 221 LUSC specimens from patients who had undergone surgery. Immunohistochemistry was performed to evaluate M1-like and M2-like TAM distribution and EMT by E-cadherin and vimentin staining. Human LUSC cell lines (H226 and EBC-1) and a human monocyte cell line (THP-1) were used for in vitro experiments. M2-like polarization of TAMs and EMT marker expression in LUSC cells were evaluated by western blotting. The biological behavior of LUSC cells was evaluated by migration, invasion, and cell proliferation assays. Immunohistochemical analysis showed that 166 (75.1%) tumors were E-cadherin-positive and 44 (19.9%) were vimentin-positive. M2-like TAM density in the tumor stroma was significantly associated with vimentin positivity and worse overall survival. Western blotting demonstrated higher levels of CD163, CD206, vascular endothelial growth factor, and transforming growth factor beta 1 (TGF-β1) in TAMs versus unstimulated macrophages. Furthermore, increased TGF-β1 secretion from TAMs was confirmed by ELISA. TAM-co-cultured H226 and EBC-1 cells exhibited EMT (decreased E-cadherin, increased vimentin). Regarding EMT-activating transcriptional factors, phosphorylated Smad3 and ZEB-family proteins were higher in TAM-co-cultured LUSC cells than in parental cells. TAM-co-cultured H226 and EBC-1 cells demonstrated enhanced migration and invasion capabilities and improved proliferation. Overall, the present study suggests that TAMs can induce EMT with increased metastatic potential and tumor cell proliferation in LUSC.
Collapse
Affiliation(s)
- Ryota Sumitomo
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Thoracic SurgeryTazuke Kofukai Medical Research Institute, Kitano HospitalOsakaJapan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yumeta Shimazu
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Toshiya Toyazaki
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Naohisa Chiba
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hideaki Miyamoto
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yutaka Hirayama
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Shigeto Nishikawa
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Satona Tanaka
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yojiro Yutaka
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yoshito Yamada
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Daisuke Nakajima
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Akihiro Ohsumi
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masatsugu Hamaji
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Akihiko Yoshizawa
- Department of Diagnostic PathologyKyoto University HospitalKyotoJapan
| | - Cheng‐Long Huang
- Department of Thoracic SurgeryTazuke Kofukai Medical Research Institute, Kitano HospitalOsakaJapan
| | - Hironori Haga
- Department of Diagnostic PathologyKyoto University HospitalKyotoJapan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
14
|
Liu L, Chen G, Gong S, Huang R, Fan C. Targeting tumor-associated macrophage: an adjuvant strategy for lung cancer therapy. Front Immunol 2023; 14:1274547. [PMID: 38022518 PMCID: PMC10679371 DOI: 10.3389/fimmu.2023.1274547] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The emergence of immunotherapy has revolutionized the treatment landscape for various types of cancer. Nevertheless, lung cancer remains one of the leading causes of cancer-related mortality worldwide due to the development of resistance in most patients. As one of the most abundant groups of immune cells in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play crucial and complex roles in the development of lung cancer, including the regulation of immunosuppressive TME remodeling, metabolic reprogramming, neoangiogenesis, metastasis, and promotion of tumoral neurogenesis. Hence, relevant strategies for lung cancer therapy, such as inhibition of macrophage recruitment, TAM reprograming, depletion of TAMs, and engineering of TAMs for drug delivery, have been developed. Based on the satisfactory treatment effect of TAM-targeted therapy, recent studies also investigated its synergistic effect with current therapies for lung cancer, including immunotherapy, radiotherapy, chemotherapy, anti-epidermal growth factor receptor (anti-EGFR) treatment, or photodynamic therapy. Thus, in this article, we summarized the key mechanisms of TAMs contributing to lung cancer progression and elaborated on the novel therapeutic strategies against TAMs. We also discussed the therapeutic potential of TAM targeting as adjuvant therapy in the current treatment of lung cancer, particularly highlighting the TAM-centered strategies for improving the efficacy of anti-programmed cell death-1/programmed cell death-ligand 1 (anti-PD-1/PD-L1) treatment.
Collapse
Affiliation(s)
| | | | | | | | - Chunmei Fan
- *Correspondence: Chunmei Fan, ; Rongfu Huang,
| |
Collapse
|
15
|
Xin Y, Li K, Huang M, Liang C, Siemann D, Wu L, Tan Y, Tang X. Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine. Oncogene 2023; 42:3457-3490. [PMID: 37864030 PMCID: PMC10656290 DOI: 10.1038/s41388-023-02844-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Evidence from physical sciences in oncology increasingly suggests that the interplay between the biophysical tumor microenvironment and genetic regulation has significant impact on tumor progression. Especially, tumor cells and the associated stromal cells not only alter their own cytoskeleton and physical properties but also remodel the microenvironment with anomalous physical properties. Together, these altered mechano-omics of tumor tissues and their constituents fundamentally shift the mechanotransduction paradigms in tumorous and stromal cells and activate oncogenic signaling within the neoplastic niche to facilitate tumor progression. However, current findings on tumor biophysics are limited, scattered, and often contradictory in multiple contexts. Systematic understanding of how biophysical cues influence tumor pathophysiology is still lacking. This review discusses recent different schools of findings in tumor biophysics that have arisen from multi-scale mechanobiology and the cutting-edge technologies. These findings range from the molecular and cellular to the whole tissue level and feature functional crosstalk between mechanotransduction and oncogenic signaling. We highlight the potential of these anomalous physical alterations as new therapeutic targets for cancer mechanomedicine. This framework reconciles opposing opinions in the field, proposes new directions for future cancer research, and conceptualizes novel mechanomedicine landscape to overcome the inherent shortcomings of conventional cancer diagnosis and therapies.
Collapse
Grants
- R35 GM150812 NIGMS NIH HHS
- This work was financially supported by National Natural Science Foundation of China (Project no. 11972316, Y.T.), Shenzhen Science and Technology Innovation Commission (Project no. JCYJ20200109142001798, SGDX2020110309520303, and JCYJ20220531091002006, Y.T.), General Research Fund of Hong Kong Research Grant Council (PolyU 15214320, Y. T.), Health and Medical Research Fund (HMRF18191421, Y.T.), Hong Kong Polytechnic University (1-CD75, 1-ZE2M, and 1-ZVY1, Y.T.), the Cancer Pilot Research Award from UF Health Cancer Center (X. T.), the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM150812 (X. T.), the National Science Foundation under grant number 2308574 (X. T.), the Air Force Office of Scientific Research under award number FA9550-23-1-0393 (X. T.), the University Scholar Program (X. T.), UF Research Opportunity Seed Fund (X. T.), the Gatorade Award (X. T.), and the National Science Foundation REU Site at UF: Engineering for Healthcare (Douglas Spearot and Malisa Sarntinoranont). We are deeply grateful for the insightful discussions with and generous support from all members of Tang (UF)’s and Tan (PolyU)’s laboratories and all staff members of the MAE/BME/ECE/Health Cancer Center at UF and BME at PolyU.
- National Natural Science Foundation of China (National Science Foundation of China)
- Shenzhen Science and Technology Innovation Commission
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Chenyu Liang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Dietmar Siemann
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Lizi Wu
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
- Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Turan Sorhun D, Kuşoğlu A, Öztürk E. Developing Bovine Brain-Derived Extracellular Matrix Hydrogels: a Screen of Decellularization Methods for Their Impact on Biochemical and Mechanical Properties. ACS OMEGA 2023; 8:36933-36947. [PMID: 37841171 PMCID: PMC10569007 DOI: 10.1021/acsomega.3c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Tissue models that recapitulate the key biochemical and physical aspects of the brain have been highly pursued in neural tissue engineering. Decellularization of native organs offers the advantage of preserving the composition of native extracellular matrix (ECM). Brain ECM has distinct features which play a major role in neural cell behavior. Cell instructive ligands and mechanical properties take part in the regulation of cellular processes in homeostasis and diseases. One of the main challenges in decellularization is maintaining mechanical integrity in reconstituted hydrogels and achieving physiologically relevant stiffness. The effect of the decellularization process on different mechanical aspects, particularly the viscoelasticity of brain-derived hydrogels, has not been addressed. In this study, we developed bovine brain-derived hydrogels for the first time. We pursued seven protocols for decellularization and screened their effect on biochemical content, hydrogel formation, and mechanical characteristics. We show that bovine brain offers an easily accessible alternative for in vitro brain tissue modeling. Our data demonstrate that the choice of decellularization method strongly alters gelation as well as the stiffness and viscoelasticity of the resulting hydrogels. Lastly, we investigated the cytocompatibility of brain ECM hydrogels and the effect of modulated mechanical properties on the growth and morphological features of neuroblastoma cells.
Collapse
Affiliation(s)
- Duygu Turan Sorhun
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Alican Kuşoğlu
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ece Öztürk
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Department
of Medical Biology, School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
17
|
Lee S, Ki CS. Proteolytically degradable PEG hydrogel matrix mimicking tumor immune microenvironment for 3D co-culture of lung adenocarcinoma cells and macrophages. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1981-1999. [PMID: 37071065 DOI: 10.1080/09205063.2023.2204778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 04/19/2023]
Abstract
Tumor-associated macrophages and monocytes are the major stromal cell types found in the tumor immune microenvironment (TIME), which modulates tumor progression, invasion, and chemoresistance. To address the need for an in vitro three-dimensional tumor model for understanding the complex cellular interactions within the TIME, we propose a TIME-mimetic co-culture matrix composed of photo-crosslinked poly(ethylene glycol) hydrogels mimicking the characteristics of the tumor and stroma. Desmoplasia-mimetic microgels encapsulating lung adenocarcinoma cells (A549) were embedded with monocyte- or macrophage-type U937 cells in normal stroma-mimetic hydrogel, increasing the proximity between the two cell types. By modulating the proteolytic degradability of the hydrogels, we could separate different cell types with high purities for use in orthogonal assays. In addition, we demonstrated that U937 cells had distinct influences on A549 cell death depending on their activation states (i.e. monocyte, M0, or M1 phenotype). M1 macrophages suppressed tumor growth and increased the susceptibility of A549 cells to cisplatin. In contrast, monocytes upregulated cancer stem cell markers (OCT4, SOX2, and SHH) of A549 cells, showing M2-like features, such as downregulated expression of proinflammatory markers (IL6 and TNFα). These findings suggest that this co-culture system is potentially used for investigation of heterotypic cellular interactions in the TIME.
Collapse
Affiliation(s)
- Sora Lee
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Department of Medical Device Evaluation, National Institute of Food and Drug Safety Evaluation, Cheongju, Republic of Korea
| | - Chang Seok Ki
- Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Moon SY, de Campos PS, Matte BF, Placone JK, Zanella VG, Martins MD, Lamers ML, Engler AJ. Cell contractility drives mechanical memory of oral squamous cell carcinoma. Mol Biol Cell 2023; 34:ar89. [PMID: 37342880 PMCID: PMC10398896 DOI: 10.1091/mbc.e22-07-0266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023] Open
Abstract
Matrix stiffening is ubiquitous in solid tumors and can direct epithelial-mesenchymal transition (EMT) and cancer cell migration. Stiffened niche can even cause poorly invasive oral squamous cell carcinoma (OSCC) cell lines to acquire a less adherent, more migratory phenotype, but mechanisms and durability of this acquired "mechanical memory" are unclear. Here, we observed that contractility and its downstream signals could underlie memory acquisition; invasive SSC25 cells overexpress myosin II (vs. noninvasive Cal27 cells) consistent with OSCC. However, prolonged exposure of Cal27 cells to a stiff niche or contractile agonists up-regulated myosin and EMT markers and enabled them to migrate as fast as SCC25 cells, which persisted even when the niche softened and indicated "memory" of their prior niche. Stiffness-mediated mesenchymal phenotype acquisition required AKT signaling and was also observed in patient samples, whereas phenotype recall on soft substrates required focal adhesion kinase (FAK) activity. Phenotype durability was further observed in transcriptomic differences between preconditioned Cal27 cells cultured without or with FAK or AKT antagonists, and such transcriptional differences corresponded to discrepant patient outcomes. These data suggest that mechanical memory, mediated by contractility via distinct kinase signaling, may be necessary for OSCC to disseminate.
Collapse
Affiliation(s)
- So Youn Moon
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | | | | | - Jesse K. Placone
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
- Department of Physics and Engineering, West Chester University of Pennsylvania, West Chester, PA 19383
| | - Virgı´lio G. Zanella
- Department of Oral Pathology, Federal University of Rio Grande do Sul
- Department of Head and Neck Surgery, Santa Rita Hospital, Santa Casa de Misericórdia de Porto, Alegre
| | | | - Marcelo Lazzaron Lamers
- Department of Oral Pathology, Federal University of Rio Grande do Sul
- Deparment of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90035, Brazil
| | - Adam J. Engler
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
19
|
Kutluk H, Bastounis EE, Constantinou I. Integration of Extracellular Matrices into Organ-on-Chip Systems. Adv Healthc Mater 2023; 12:e2203256. [PMID: 37018430 PMCID: PMC11468608 DOI: 10.1002/adhm.202203256] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Indexed: 04/07/2023]
Abstract
The extracellular matrix (ECM) is a complex, dynamic network present within all tissues and organs that not only acts as a mechanical support and anchorage point but can also direct fundamental cell behavior, function, and characteristics. Although the importance of the ECM is well established, the integration of well-controlled ECMs into Organ-on-Chip (OoC) platforms remains challenging and the methods to modulate and assess ECM properties on OoCs remain underdeveloped. In this review, current state-of-the-art design and assessment of in vitro ECM environments is discussed with a focus on their integration into OoCs. Among other things, synthetic and natural hydrogels, as well as polydimethylsiloxane (PDMS) used as substrates, coatings, or cell culture membranes are reviewed in terms of their ability to mimic the native ECM and their accessibility for characterization. The intricate interplay among materials, OoC architecture, and ECM characterization is critically discussed as it significantly complicates the design of ECM-related studies, comparability between works, and reproducibility that can be achieved across research laboratories. Improving the biomimetic nature of OoCs by integrating properly considered ECMs would contribute to their further adoption as replacements for animal models, and precisely tailored ECM properties would promote the use of OoCs in mechanobiology.
Collapse
Affiliation(s)
- Hazal Kutluk
- Institute of Microtechnology (IMT)Technical University of BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technical University of BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| | - Effie E. Bastounis
- Institute of Microbiology and Infection Medicine (IMIT)Eberhard Karls University of TübingenAuf der Morgenstelle 28, E872076TübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections” EXC 2124Eberhard Karls University of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Iordania Constantinou
- Institute of Microtechnology (IMT)Technical University of BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technical University of BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| |
Collapse
|
20
|
Zhu Z, Li X, Liu D, Li Z. A novel signature of aging-related genes associated with lymphatic metastasis for survival prediction in patients with bladder cancer. Front Oncol 2023; 13:1140891. [PMID: 37441420 PMCID: PMC10335803 DOI: 10.3389/fonc.2023.1140891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Background The predominant and most prevalent form of metastatic bladder cancer (BCa) is lymphatic metastasis, which is associated with a highly dismal prognosis for patients. Aging-related genes (ARGs) are believed to contribute significantly to tumor development. However, the effect of ARGs on lymphatic metastasis of BCa is unclear. This research sought to establish a prognosis model based on ARGs associated with lymphatic metastasis in BCa. Methods We downloaded BCa data from the TCGA and GEO databases and ARGs from the Aging Atlas database. The least absolute shrinkage and selection operator (LASSO) approach was applied to obtain the characteristic ARGs of risk signature in the TCGA cohort. Verification was done using the GSE13507 dataset. The R package 'ConsensusClusterPlus' was employed to identify the molecular subtypes based on the characteristic ARGs. Protein-Protein interaction network, MCODE analysis, enrichment analysis (KEGG, GO, GSEA), and immune infiltration analysis were performed to investigate underlying mechanisms. EdU, migration and invasion assays, wound healing assays, immunofluorescence staining, and quantitative polymerase chain reaction were conducted to evaluate the impact of ELN on the proliferative, migratory, and invasive capacities of BCa cells. Results We identified 20 differently expressed ARGs. A four ARGs risk signature (EFEMP1, UCHL1, TP63, ELN) was constructed in the TCGA cohort. The high-risk group (category) recorded a reduced overall survival (OS) rate relative to the low-risk category (hazard ratio, 2.15; P <0.001). The risk score could predict lymphatic metastasis in TCGA cohort (AUC=0.67). The GSE13507 dataset was employed to verify the validity of this risk score. Based on the four ARGs, two distinct aging profiles (Cluster 1 and Cluster 2) were discovered utilizing the ConsensusClusterPlus, and Cluster 2 possessed a favorable OS in contrast with Cluster 1 (hazard ratio, 0.69; P =0.02). Classical tumor signaling pathways, ECM-associated signaling pathways, and immune-related signaling pathways participate in BCa progression. ELN recombinant protein affected the expression of collagen and increased migration and invasiveness in BCa cells. Conclusion We constructed a four-ARG risk signature and identified two aging molecular subtypes. This signature could serve as an effective survival predictor for patients with BCa.
Collapse
Affiliation(s)
- Zhiguo Zhu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Medical Research Center, Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jining, China
- The Seventh Affiliated Hospital (Shenzhen), Sun Yet-sen University, Shenzhen, China
| | - Xiaoli Li
- The Seventh Affiliated Hospital (Shenzhen), Sun Yet-sen University, Shenzhen, China
| | - Deqian Liu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zhonghai Li
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
21
|
Carrasco-Mantis A, Alarcón T, Sanz-Herrera JA. An in silico study on the influence of extracellular matrix mechanics on vasculogenesis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 231:107369. [PMID: 36738607 DOI: 10.1016/j.cmpb.2023.107369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Blood vessels form a network of capillaries throughout the body that perform essential functions for life. Vasculogenesis, i.e. the formation of new blood vessels, is regulated by many factors, biochemical ones being among the most important. However, others such as the biomechanical influence on shape, organization and structure of vessel networks require further investigation. In this paper, we develop a 3D agent-based mechanobiological model of vasculogenesis with the aim of analyzing how the mechanics of the extracellular matrix (ECM) affects vasculogenesis. METHODS For this purpose, we consider a growing domain composed of different cells: tip cells, which are the driving cells located at the end of the vessels and stalk cells, which are found in the interior of the vascular network. ECM is considered as particles (agents) that surround the growth of the vascular network. Depending on the cell type, different sets of forces are considered, such as chemotactic, mechanical, random and viscoelastic forces among others. RESULTS The growth of the network is iteratively analyzed and updated at each time step based on a mechanically-driven proliferation rule. The influence of different biomechanical factors, such as ECM stiffness or viscoelasticity are explored through in silico simulations. A number of indicators are defined along the algorithm, like number of cells, branches, tortuosity and anisotropy, in order to compare topological differences of the vascular network during vasculogenesis under different ECM conditions. The obtained results are qualitatively compared with other related works in the literature. CONCLUSIONS The present study sheds some light and partially explain, from an in silico perspective, the role of ECM mechanics on vasculogenesis. The main conclusions of this work are: (i) increased stiffness increases proliferation, (ii) the network tends to migrate towards stiffer areas, and (iii) increased viscoelasticity decreases proliferation.
Collapse
Affiliation(s)
- A Carrasco-Mantis
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain
| | - T Alarcón
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Centre de Recerca Matemàtica, Barcelona, Spain
| | - J A Sanz-Herrera
- Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain.
| |
Collapse
|
22
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 321] [Impact Index Per Article: 160.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
23
|
Extracellular matrix physical properties govern the diffusion of nanoparticles in tumor microenvironment. Proc Natl Acad Sci U S A 2023; 120:e2209260120. [PMID: 36574668 PMCID: PMC9910605 DOI: 10.1073/pnas.2209260120] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nanoparticles (NPs) are confronted with limited and disappointing delivery efficiency in tumors clinically. The tumor extracellular matrix (ECM), whose physical traits have recently been recognized as new hallmarks of cancer, forms a main steric obstacle for NP diffusion, yet the role of tumor ECM physical traits in NP diffusion remains largely unexplored. Here, we characterized the physical properties of clinical gastric tumor samples and observed limited distribution of NPs in decellularized tumor tissues. We also performed molecular dynamics simulations and in vitro hydrogel experiments through single-particle tracking to investigate the diffusion mechanism of NPs and understand the influence of tumor ECM physical properties on NP diffusion both individually and collectively. Furthermore, we developed an estimation matrix model with evaluation scores of NP diffusion efficiency through comprehensive analyses of the data. Thus, beyond finding that loose and soft ECM with aligned structure contribute to efficient diffusion, we now have a systemic model to predict NP diffusion efficiency based on ECM physical traits and provide critical guidance for personalized tumor diagnosis and treatment.
Collapse
|
24
|
Lee M, Du H, Winer DA, Clemente-Casares X, Tsai S. Mechanosensing in macrophages and dendritic cells in steady-state and disease. Front Cell Dev Biol 2022; 10:1044729. [PMID: 36467420 PMCID: PMC9712790 DOI: 10.3389/fcell.2022.1044729] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Macrophages and dendritic cells are myeloid cells that play critical roles in immune responses. Macrophages help to maintain homeostasis through tissue regeneration and the clearance of dead cells, but also mediate inflammatory processes against invading pathogens. As the most potent antigen-presenting cells, dendritic cells are important in connecting innate to adaptive immune responses via activation of T cells, and inducing tolerance under physiological conditions. While it is known that macrophages and dendritic cells respond to biochemical cues in the microenvironment, the role of extracellular mechanical stimuli is becoming increasingly apparent. Immune cell mechanotransduction is an emerging field, where accumulating evidence suggests a role for extracellular physical cues coming from tissue stiffness in promoting immune cell recruitment, activation, metabolism and inflammatory function. Additionally, many diseases such as pulmonary fibrosis, cardiovascular disease, cancer, and cirrhosis are associated with changes to the tissue biophysical environment. This review will discuss current knowledge about the effects of biophysical cues including matrix stiffness, topography, and mechanical forces on macrophage and dendritic cell behavior under steady-state and pathophysiological conditions. In addition, we will also provide insight on molecular mediators and signaling pathways important in macrophage and dendritic cell mechanotransduction.
Collapse
Affiliation(s)
- Megan Lee
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Huixun Du
- Buck Institute for Research on Aging, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Daniel A. Winer
- Division of Cellular and Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Buck Institute for Research on Aging, Novato, CA, United States
| | - Xavier Clemente-Casares
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Sue Tsai
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Wang S, Chen L, Liu W. Matrix stiffness-dependent STEAP3 coordinated with PD-L2 identify tumor responding to sorafenib treatment in hepatocellular carcinoma. Cancer Cell Int 2022; 22:318. [PMID: 36229881 PMCID: PMC9563531 DOI: 10.1186/s12935-022-02634-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ferroptosis have been implicated in tumorigenesis, tumor progression, and chemo- and immuno-therapy in cirrhotic hepatocellular carcinoma (HCC), indicating its association with matrix stiffness and clinical benefit of targeting drugs or immune checkpoint inhibitor. Here, we postulated that increased matrix stiffness reduces ferroptosis and impairs tumor immunity by regulating the expression of ferroptosis- and immune-related genes in HCC, which might be a robust predictor of therapeutic efficacy. METHODS Using publicly available tissue microarray datasets, liver cancer rat model, and clinical specimen, ferroptosis-related differential genes in HCV-infected cirrhotic HCC and its mechanical heterogeneous pattern of expression were screened and identified. Further investigation on the underlying mechanism of matrix stiffness-regulated ferroptosis and the expression of immune mediator were performed. Finally, threshold analysis of HCC cases with sorafenib treatment revealed the value of clinical applications of these potential predictors. RESULTS STEAP3 was identified as the ferroptosis-related differential genes in HCV-infected cirrhotic HCC. Stiffer matrix decreased STEAP3 in the invasive front area of HCC and the liver cirrhotic tissue. Contrarily, softer matrix induced STEAP3 in the central area of HCC and the normal liver tissue. Immunological correlation of STEAP3 in cirrhotic HCC showed that STEAP3-mediated immune infiltration of CD4+ T and CD8+ T cells, macrophages, neutrophils, and dendritic cells and HCC prognosis, predicting to regulate immune infiltration. Overexpression of STEAP3 induced ferroptosis and inhibited the expression of immune mediator of PD-L2 on a stiff matrix. Especially, the ferroptosis- and immune-related gene predictive biomarker (FIGPB), including STEAP3 and PD-L2, predicts better clinical benefit of sorafenib in HCC patients. CONCLUSIONS This finding identifies matrix stiffness impairs ferroptosis and anti-tumor immunity by mediating STEAP3 and PD-L2. More importantly, coordinated with PD-L2, matrix stiffness-dependent STEAP3 could be applied as the independent predictors to favorable sorafenib response, and thus targeting it could be a potential diagnosis and treatment strategy for HCC.
Collapse
Affiliation(s)
- Shunxi Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Long Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China. .,Bioengineering Institute of Chongqing University, 174 Shazheng Street, Chongqing, 400000, China.
| |
Collapse
|
26
|
Luo M, Chen X, Gao H, Yang F, Chen J, Qiao Y. Bacteria-mediated cancer therapy: A versatile bio-sapper with translational potential. Front Oncol 2022; 12:980111. [PMID: 36276157 PMCID: PMC9585267 DOI: 10.3389/fonc.2022.980111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria are important symbionts for humans, which sustain substantial influences on our health. Interestingly, some bastrains have been identified to have therapeutic applications, notably for antitumor activity. Thereby, oncologists have developed various therapeutic models and investigated the potential antitumor mechanisms for bacteria-mediated cancer therapy (BCT). Even though BCT has a long history and exhibits remarkable therapeutic efficacy in pre-clinical animal models, its clinical translation still lags and requires further breakthroughs. This review aims to focus on the established strains of therapeutic bacteria and their antitumor mechanisms, including the stimulation of host immune responses, direct cytotoxicity, the interference on cellular signal transduction, extracellular matrix remodeling, neoangiogenesis, and metabolism, as well as vehicles for drug delivery and gene therapy. Moreover, a brief discussion is proposed regarding the important future directions for this fantastic research field of BCT at the end of this review.
Collapse
Affiliation(s)
- Miao Luo
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyu Chen
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Haojin Gao
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Fan Yang
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jianxiang Chen
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| | - Yiting Qiao
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| |
Collapse
|
27
|
Yi B, Xu Q, Liu W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioact Mater 2022; 15:82-102. [PMID: 35386347 PMCID: PMC8940767 DOI: 10.1016/j.bioactmat.2021.12.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023] Open
Abstract
Cell-matrix interactions play a critical role in tissue repair and regeneration. With gradual uncovering of substrate mechanical characteristics that can affect cell-matrix interactions, much progress has been made to unravel substrate stiffness-mediated cellular response as well as its underlying mechanisms. Yet, as a part of cell-matrix interaction biology, this field remains in its infancy, and the detailed molecular mechanisms are still elusive regarding scaffold-modulated tissue regeneration. This review provides an overview of recent progress in the area of the substrate stiffness-mediated cellular responses, including 1) the physical determination of substrate stiffness on cell fate and tissue development; 2) the current exploited approaches to manipulate the stiffness of scaffolds; 3) the progress of recent researches to reveal the role of substrate stiffness in cellular responses in some representative tissue-engineered regeneration varying from stiff tissue to soft tissue. This article aims to provide an up-to-date overview of cell mechanobiology research in substrate stiffness mediated cellular response and tissue regeneration with insightful information to facilitate interdisciplinary knowledge transfer and enable the establishment of prognostic markers for the design of suitable biomaterials. Substrate stiffness physically determines cell fate and tissue development. Rational design of scaffolds requires the understanding of cell-matrix interactions. Substrate stiffness depends on scaffold molecular-constituent-structure interaction. Substrate stiffness-mediated cellular responses vary in different tissues.
Collapse
|
28
|
Huang C, Liang Y, Dong Y, Huang L, Li A, Du R, Huang H. Novel prognostic matrisome-related gene signature of head and neck squamous cell carcinoma. Front Cell Dev Biol 2022; 10:884590. [PMID: 36081907 PMCID: PMC9445128 DOI: 10.3389/fcell.2022.884590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/21/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a common malignancy of the mucosal epithelium of the oral cavity, pharynx, and larynx. Laryngeal squamous cell carcinoma (LSCC) and oral squamous cell carcinoma are common HNSCC subtypes. Patients with metastatic HNSCC have a poor prognosis. Therefore, identifying molecular markers for the development and progression of HNSCC is essential for improving early diagnosis and predicting patient outcomes. Methods: Gene expression RNA-Seq data and patient clinical traits were obtained from The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma (TCGA-HNSC) and Gene Expression Omnibus databases. Differentially expressed gene (DEG) screening was performed using the TCGA-HNSC dataset. Intersection analysis between the DEGs and a list of core matrisome genes obtained from the Matrisome Project was used to identify differentially expressed matrisome genes. A prognostic model was established using univariate and multivariate Cox regression analyses, least absolute shrinkage, and selection operator (LASSO) regression analysis. Immune landscape analysis was performed based on the single-sample gene set enrichment analysis algorithm, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, prognostic value, receiver operating characteristic curve analysis, and gene mutation analyses. Immunohistochemical results regarding prognostic protein levels were obtained from the Human Protein Atlas. Single-gene RNA-sequencing data were obtained from GSE150321 and GSE172577 datasets. CCK-8 and Transwell assays were used to confirm cell proliferation and migration. Results: A total of 1,779 DEGs, including 939 upregulated and 840 downregulated genes, between tumor and normal samples were identified using the TCGA-HNSC microarray data. Intersection analysis revealed 52 differentially expressed matrisome-related genes. After performing univariate and multivariate Cox regression and LASSO analyses, a novel prognostic model based on six matrisome genes (FN1, LAMB4, LAMB3, DMP1, CHAD, and MMRN1) for HNSCC was established. This risk model can successfully predict HNSCC survival. The high-risk group had worse prognoses and higher enrichment of pathways related to cancer development than the low-risk group. Silencing LAMB4 in HNSCC cell lines promoted cell proliferation and migration. Conclusion: This study provides a novel prognostic model for HNSCC. Thus, FN1, LAMB4, LAMB3, DMP1, CHAD, and MMRN1 may be the promising biomarkers for clinical practice.
Collapse
Affiliation(s)
- Chao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun Liang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Yi Dong
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Li Huang
- Department of Otolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Anlei Li
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Ran Du
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Hao Huang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hao Huang,
| |
Collapse
|
29
|
Wang C, Yang J. Mechanical forces: The missing link between idiopathic pulmonary fibrosis and lung cancer. Eur J Cell Biol 2022; 101:151234. [DOI: 10.1016/j.ejcb.2022.151234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
|
30
|
Wei J, Yao J, Yan M, Xie Y, Liu P, Mao Y, Li X. The role of matrix stiffness in cancer stromal cell fate and targeting therapeutic strategies. Acta Biomater 2022; 150:34-47. [DOI: 10.1016/j.actbio.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
|
31
|
Increased Stiffness Downregulates Focal Adhesion Kinase Expression in Pancreatic Cancer Cells Cultured in 3D Self-Assembling Peptide Scaffolds. Biomedicines 2022; 10:biomedicines10081835. [PMID: 36009384 PMCID: PMC9405295 DOI: 10.3390/biomedicines10081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/18/2023] Open
Abstract
The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that participates in integrin-mediated signal transduction and contributes to different biological processes, such as cell migration, survival, proliferation and angiogenesis. Moreover, FAK can be activated by autophosphorylation at position Y397 and trigger different signaling pathways in response to increased extracellular matrix stiffness. In addition, FAK is overexpressed and/or hyperactivated in many epithelial cancers, and its expression correlates with tumor malignancy and invasion potential. One of the characteristics of solid tumors is an over deposition of ECM components, which generates a stiff microenvironment that promotes, among other features, sustained cell proliferation and survival. Researchers are, therefore, increasingly developing cell culture models to mimic the increased stiffness associated with these kinds of tumors. In the present work, we have developed a new 3D in vitro model to study the effect of matrix stiffness in pancreatic ductal adenocarcinoma (PDAC) cells as this kind of tumor is characterized by a desmoplastic stroma and an increased stiffness compared to its normal counterpart. For that, we have used a synthetic self-assembling peptide nanofiber matrix, RAD16-I, which does not suffer a significant degradation in vitro, thus allowing to maintain the same local stiffness along culture time. We show that increased matrix stiffness in synthetic 3D RAD16-I gels, but not in collagen type I scaffolds, promotes FAK downregulation at a protein level in all the cell lines analyzed. Moreover, even though it has classically been described that stiff 3D matrices promote an increase in pFAKY397/FAK proteins, we found that this ratio in soft and stiff RAD16-I gels is cell-type-dependent. This study highlights how cell response to increased matrix stiffness greatly depends on the nature of the matrix used for 3D culture.
Collapse
|
32
|
Vieira S, Silva-Correia J, Reis RL, Oliveira JM. Engineering Hydrogels for Modulation of Material-Cell Interactions. Macromol Biosci 2022; 22:e2200091. [PMID: 35853666 DOI: 10.1002/mabi.202200091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/29/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels are a recurrent platform for Tissue Engineering (TE) strategies. Their versatility and the variety of available methods for tuning their properties highly contribute to hydrogels' success. As a result, the design of advanced hydrogels has been thoroughly studied, in the quest for better solutions not only for drugs- and cell-based therapies but also for more fundamental studies. The wide variety of sources, crosslinking strategies, and functionalization methods, and mostly the resemblance of hydrogels to the natural extracellular matrix, make this 3D hydrated structures an excellent tool for TE approaches. The state-of-the-art information regarding hydrogel design, processing methods, and the influence of different hydrogel formulations on the final cell-biomaterial interactions are overviewed herein. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
33
|
Habbit NL, Anbiah B, Anderson L, Suresh J, Hassani I, Eggert M, Brannen A, Davis J, Tian Y, Prabhakarpandian B, Panizzi P, Arnold RD, Lipke EA. Tunable three-dimensional engineered prostate cancer tissues for in vitro recapitulation of heterogeneous in vivo prostate tumor stiffness. Acta Biomater 2022; 147:73-90. [PMID: 35551999 DOI: 10.1016/j.actbio.2022.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
In this manuscript we report the establishment and characterization of a three-dimensional in vitro, coculture engineered prostate cancer tissue (EPCaT) disease model based upon and informed by our characterization of in vivo prostate cancer (PCa) xenograft tumor stiffness. In prostate cancer, tissue stiffness is known to impact changes in gene and protein expression, alter therapeutic response, and be positively correlated with an aggressive clinical presentation. To inform an appropriate stiffness range for our in vitro model, PC-3 prostate tumor xenografts were established. Tissue stiffness ranged from 95 to 6,750 Pa. Notably, xenograft cell seeding density significantly impacted tumor stiffness; a two-fold increase in the number of seeded cells not only widened the tissue stiffness range throughout the tumor but also resulted in significant spatial heterogeneity. To fabricate our in vitro EPCaT model, PC-3 castration-resistant prostate cancer cells were co-encapsulated with BJ-5ta fibroblasts within a poly(ethylene glycol)-fibrinogen matrix augmented with excess poly(ethylene glycol)-diacrylate to modulate the matrix mechanical properties. Encapsulated cells temporally remodeled their in vitro microenvironment and enrichment of gene sets associated with tumorigenic progression was observed in response to increased matrix stiffness. Through variation of matrix composition and culture duration, EPCaTs were tuned to mimic the wide range of biomechanical cues provided to PCa cells in vivo; collectively, a range of 50 to 10,000 Pa was achievable. Markedly, this also encompasses published clinical PCa stiffness data. Overall, this study serves to introduce our bioinspired, tunable EPCaT model and provide the foundation for future PCa progression and drug development studies. STATEMENT OF SIGNIFICANCE: The development of cancer models that mimic the native tumor microenvironment (TME) complexities is critical to not only develop effective drugs but also enhance our understanding of disease progression. Here we establish and characterize our 3D in vitro engineered prostate cancer tissue model with tunable matrix stiffness, that is inspired by this study's spatial characterization of in vivo prostate tumor xenograft stiffness. Notably, our model's mimicry of the TME is further augmented by the inclusion of matrix remodeling fibroblasts to introduce cancer-stromal cell-cell interactions. This study addresses a critical unmet need in the field by elucidating the prostate tumor xenograft stiffness range and establishing a foundation for recapitulating the biomechanics of site-of-origin and soft tissue metastatic prostate tumors in vitro.
Collapse
Affiliation(s)
- Nicole L Habbit
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA
| | - Benjamin Anbiah
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA
| | - Luke Anderson
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA
| | - Joshita Suresh
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA
| | - Iman Hassani
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA
| | - Matthew Eggert
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 362 Thach Concourse, Auburn, AL 36849, USA
| | - Andrew Brannen
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 362 Thach Concourse, Auburn, AL 36849, USA
| | - Joshua Davis
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 362 Thach Concourse, Auburn, AL 36849, USA
| | - Yuan Tian
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA
| | | | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 362 Thach Concourse, Auburn, AL 36849, USA
| | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 362 Thach Concourse, Auburn, AL 36849, USA
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA.
| |
Collapse
|
34
|
Tian H, Shi H, Yu J, Ge S, Ruan J. Biophysics Role and Biomimetic Culture Systems of ECM Stiffness in Cancer EMT. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100094. [PMID: 35712024 PMCID: PMC9189138 DOI: 10.1002/gch2.202100094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Oncological diseases have become the second leading cause of death from noncommunicable diseases worldwide and a major threat to human health. With the continuous progress in cancer research, the mechanical cues from the tumor microenvironment environment (TME) have been found to play an irreplaceable role in the progression of many cancers. As the main extracellular mechanical signal carrier, extracellular matrix (ECM) stiffness may influence cancer progression through biomechanical transduction to modify downstream gene expression, promote epithelial-mesenchymal transition (EMT), and regulate the stemness of cancer cells. EMT is an important mechanism that induces cancer cell metastasis and is closely influenced by ECM stiffness, either independently or in conjunction with other molecules. In this review, the unique role of ECM stiffness in EMT in different kinds of cancers is first summarized. By continually examining the significance of ECM stiffness in cancer progression, a biomimetic culture system based on 3D manufacturing and novel material technologies is developed to mimic ECM stiffness. The authors then look back on the novel development of the ECM stiffness biomimetic culture systems and finally provide new insights into ECM stiffness in cancer progression which can broaden the fields' horizons with a view toward developing new cancer diagnosis methods and therapies.
Collapse
Affiliation(s)
- Hao Tian
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Hanhan Shi
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jie Yu
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Shengfang Ge
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jing Ruan
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| |
Collapse
|
35
|
Antunes N, Kundu B, Kundu SC, Reis RL, Correlo V. In Vitro Cancer Models: A Closer Look at Limitations on Translation. Bioengineering (Basel) 2022; 9:166. [PMID: 35447726 PMCID: PMC9029854 DOI: 10.3390/bioengineering9040166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 12/18/2022] Open
Abstract
In vitro cancer models are envisioned as high-throughput screening platforms for potential new therapeutic discovery and/or validation. They also serve as tools to achieve personalized treatment strategies or real-time monitoring of disease propagation, providing effective treatments to patients. To battle the fatality of metastatic cancers, the development and commercialization of predictive and robust preclinical in vitro cancer models are of urgent need. In the past decades, the translation of cancer research from 2D to 3D platforms and the development of diverse in vitro cancer models have been well elaborated in an enormous number of reviews. However, the meagre clinical success rate of cancer therapeutics urges the critical introspection of currently available preclinical platforms, including patents, to hasten the development of precision medicine and commercialization of in vitro cancer models. Hence, the present article critically reflects the difficulty of translating cancer therapeutics from discovery to adoption and commercialization in the light of in vitro cancer models as predictive tools. The state of the art of in vitro cancer models is discussed first, followed by identifying the limitations of bench-to-bedside transition. This review tries to establish compatibility between the current findings and obstacles and indicates future directions to accelerate the market penetration, considering the niche market.
Collapse
Affiliation(s)
- Nina Antunes
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (N.A.); (B.K.); (S.C.K.); (R.L.R.)
- ICVS/3 B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Banani Kundu
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (N.A.); (B.K.); (S.C.K.); (R.L.R.)
- ICVS/3 B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Subhas C. Kundu
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (N.A.); (B.K.); (S.C.K.); (R.L.R.)
- ICVS/3 B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Rui L. Reis
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (N.A.); (B.K.); (S.C.K.); (R.L.R.)
- ICVS/3 B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Vítor Correlo
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (N.A.); (B.K.); (S.C.K.); (R.L.R.)
- ICVS/3 B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
36
|
The Molecular Interaction of Collagen with Cell Receptors for Biological Function. Polymers (Basel) 2022; 14:polym14050876. [PMID: 35267698 PMCID: PMC8912536 DOI: 10.3390/polym14050876] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
Collagen, an extracellular protein, covers the entire human body and has several important biological functions in normal physiology. Recently, collagen from non-human sources has attracted attention for therapeutic management and biomedical applications. In this regard, both land-based animals such as cow, pig, chicken, camel, and sheep, and marine-based resources such as fish, octopus, starfish, sea-cucumber, and jellyfish are widely used for collagen extraction. The extracted collagen is transformed into collagen peptides, hydrolysates, films, hydrogels, scaffolds, sponges and 3D matrix for food and biomedical applications. In addition, many strategic ideas are continuously emerging to develop innovative advanced collagen biomaterials. For this purpose, it is important to understand the fundamental perception of how collagen communicates with receptors of biological cells to trigger cell signaling pathways. Therefore, this review discloses the molecular interaction of collagen with cell receptor molecules to carry out cellular signaling in biological pathways. By understanding the actual mechanism, this review opens up several new concepts to carry out next level research in collagen biomaterials.
Collapse
|
37
|
Wieleba I, Wojas-Krawczyk K, Krawczyk P, Milanowski J. Clinical Application Perspectives of Lung Cancers 3D Tumor Microenvironment Models for In Vitro Cultures. Int J Mol Sci 2022; 23:ijms23042261. [PMID: 35216378 PMCID: PMC8876687 DOI: 10.3390/ijms23042261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Despite the enormous progress and development of modern therapies, lung cancer remains one of the most common causes of death among men and women. The key element in the development of new anti-cancer drugs is proper planning of the preclinical research phase. The most adequate basic research exemplary for cancer study are 3D tumor microenvironment in vitro models, which allow us to avoid the use of animal models and ensure replicable culture condition. However, the question tormenting the scientist is how to choose the best tool for tumor microenvironment research, especially for extremely heterogenous lung cancer cases. In the presented review we are focused to explain the key factors of lung cancer biology, its microenvironment, and clinical gaps related to different therapies. The review summarized the most important strategies for in vitro culture models mimicking the tumor–tumor microenvironmental interaction, as well as all advantages and disadvantages were depicted. This knowledge could facilitate the right decision to designate proper pre-clinical in vitro study, based on available analytical tools and technical capabilities, to obtain more reliable and personalized results for faster introduction them into the future clinical trials.
Collapse
|
38
|
Wang C, Jiang X, Huang B, Zhou W, Cui X, Zheng C, Liu F, Bi J, Zhang Y, Luo H, Yuan L, Yang J, Yu Y. Inhibition of matrix stiffness relating integrin β1 signaling pathway inhibits tumor growth in vitro and in hepatocellular cancer xenografts. BMC Cancer 2021; 21:1276. [PMID: 34823500 PMCID: PMC8620230 DOI: 10.1186/s12885-021-08982-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer development is strictly correlated to composition and physical properties of the extracellular matrix. Particularly, a higher matrix stiffness has been demonstrated to promote tumor sustained growth. Our purpose was to explore the role of matrix stiffness in liver cancer development. Methods The matrix stiffness of tumor tissues was determined by atomic force microscopy (AFM) analysis. In vitro, we used a tunable Polyacrylamide (PA) hydrogels culture system for liver cancer cells culture. The expression level of integrin β1, phosphorylated FAK, ERK1/2, and NF-κB in SMMC-7721 cells was measured by western blotting analysis. We performed MTT, colony formation and transwell assay to examine the tumorigenic and metastatic potential of SMMC-7721 cells cultured on the tunable PA hydrogels. SMMC-7721 cancer xenografts were established to explore the anticancer effects of integrin inhibitors. Results Our study provided evidence that liver tumor tissues from metastatic patients possessed a higher matrix stiffness, when compared to the non-metastatic group. Liver cancer cells cultured on high stiffness PA hydrogels displayed enhanced tumorigenic potential and migrative properties. Mechanistically, activation of integrin β1/FAK/ ERK1/2/NF-κB signaling pathway was observed in SMMC-7721 cells cultured on high stiffness PA hydrogels. Inhibition of ERK1/2, FAK, and NF-κB signaling suppressed the pro-tumor effects induced by matrix stiffness. Combination of chemotherapy and integrin β1 inhibitor suppressed the tumor growth and prolonged survival time in hepatocellular cancer xenografts. Conclusion A higher matrix stiffness equipped tumor cells with enhanced stemness and proliferative characteristics, which was dependent on the activation of integrin β1/FAK/ERK1/2/NF-κB signaling pathway. Blockade of integrin signals efficiently improved the outcome of chemotherapy, which described an innovative approach for liver cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08982-3.
Collapse
Affiliation(s)
- Changsong Wang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Xiaozhong Jiang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Bin Huang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Wenhao Zhou
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Xiao Cui
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Chenghong Zheng
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Fenghao Liu
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Jieling Bi
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Yi Zhang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Hong Luo
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Lin Yuan
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Jianyong Yang
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China
| | - Yu Yu
- Department of Hepatopancreatobiliary Surgery, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China. .,Center for Diagnosis and Treatment of Digestive Diseases, the Second People' s Hospital of Yibin, Yibin, Sichuan, 644000, P.R. China.
| |
Collapse
|
39
|
Wang K, Chen X. Autophagic tumor-associated macrophages promote the endothelial mesenchymal transition in lung adenocarcinomas through the FUT4/p-ezrin pathway. J Thorac Dis 2021; 13:5973-5985. [PMID: 34795945 PMCID: PMC8575842 DOI: 10.21037/jtd-21-1519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022]
Abstract
Background Lung adenocarcinoma is one of the most common malignant tumors with high morbidity and mortality, but the effect of Tumor-associated macrophages (TAMs) on lung adenocarcinoma has not been studied clearly now. Methods In this study, TAMs were stably transfected with Atg5 silence or overexpression lentiviral vectors to inhibit or induce autophagy of TAMs. In addition, the expression of fucosyltransferase IV (FUT4) or Ezrin were interfered in TAMs with autophagy. The above treated TAMs were then co-cultured with A549 or H1299 cells. The expressions of genes were detected by qPCR, western blotting, cell immunofluorescence, and enzyme-linked immunosorbent assay. Meanwhile, cell migration and invasion were analyzed by Transwell assay and wound healing assay. Furthermore, the effects of TAMs with autophagy were explored in lung adenocarcinoma xenograft model of mice. Results The results showed that overexpression of autophagy-related gene 5 (ATG5) induced autophagy in TAMs, which increased the expression of FUT4, TGF-β1, and p-ezrin, and promoted epithelial-mesenchymal transition (EMT) in lung adenocarcinoma cells. However, FUT4 silencing partially reversed the effects of TAM autophagy, specifically, the expression of TGF-β1 and p-ezrin was inhibited and EMT in lung adenocarcinoma cells was suppressed. Notably, ezrin deletion in autophagic TAMs induced by rapamycin reduced TGF-β1 expression and suppressed EMT in lung adenocarcinoma cells. Consistently, in vivo experiments also revealed that autophagic TAMs increased the expression of FUT4, TGF-β1, and p-ezrin, and promoted EMT in lung adenocarcinomas. Similarly, FUT4 silencing partially reversed the effects of autophagic TAMs on EMT in lung adenocarcinomas. Conclusions In conclusion, autophagic TAMs promoted TGF-β1 secretion through the FUT4/p-ezrin pathway and induced EMT in co-cultured lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Kangwu Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiao Chen
- Department of Geriatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
40
|
Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics 2021; 13:pharmaceutics13111879. [PMID: 34834295 PMCID: PMC8619417 DOI: 10.3390/pharmaceutics13111879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023] Open
Abstract
Designing optimal (neo)adjuvant therapy is a crucial aspect of the treatment of non-small-cell lung carcinoma (NSCLC). Standard methods of chemotherapy, radiotherapy, and immunotherapy represent effective strategies for treatment. However, in some cases with high metastatic activity and high levels of circulating tumour cells (CTCs), the efficacy of standard treatment methods is insufficient and results in treatment failure and reduced patient survival. CTCs are seen not only as an isolated phenomenon but also a key inherent part of the formation of metastasis and a key factor in cancer death. This review discusses the impact of NSCLC therapy strategies based on a meta-analysis of clinical studies. In addition, possible therapeutic strategies for repression when standard methods fail, such as the administration of low-toxicity natural anticancer agents targeting these phenomena (curcumin and flavonoids), are also discussed. These strategies are presented in the context of key mechanisms of tumour biology with a strong influence on CTC spread and metastasis (mechanisms related to tumour-associated and -infiltrating cells, epithelial–mesenchymal transition, and migration of cancer cells).
Collapse
|
41
|
Labat B, Buchbinder N, Morin-Grognet S, Ladam G, Atmani H, Vannier JP. Biomimetic matrix for the study of neuroblastoma cells: A promising combination of stiffness and retinoic acid. Acta Biomater 2021; 135:383-392. [PMID: 34407473 DOI: 10.1016/j.actbio.2021.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Neuroblastoma is the third most common pediatric cancer composed of malignant immature cells that are usually treated pharmacologically by all trans-retinoic acid (ATRA) but sometimes, they can spontaneously differentiate into benign forms. In that context, biomimetic cell culture models are warranted tools as they can recapitulate many of the biochemical and biophysical cues of normal or pathological microenvironments. Inspired by that challenge, we developed a neuroblastoma culture system based on biomimetic LbL films of physiological biochemical composition and mechanical properties. For that, we used chondroitin sulfate A (CSA) and poly-L-lysine (PLL) that were assembled and mechanically tuned by crosslinking with genipin (GnP), a natural biocompatible crosslinker, in a relevant range of stiffness (30-160 kPa). We then assessed the adhesion, survival, motility, and differentiation of LAN-1 neuroblastoma cells. Remarkably, increasing the stiffness of the LbL films induced neuritogenesis that was strengthened by the combination with ATRA. These results highlight the crucial role of the mechanical cues of the neuroblastoma microenvironment since it can dramatically modulate the effect of pharmacologic drugs. In conclusion, our biomimetic platform offers a promising tool to help fundamental understanding and pharmacological screening of neuroblastoma differentiation and may assist the design of translational biomaterials to support neuronal regeneration. STATEMENT OF SIGNIFICANCE: Neuroblastoma is one of the most common pediatric tumor commonly treated by the administration of all-trans-retinoic acid (ATRA). Unfortunately, advanced neuroblastoma often develop ATRA resistance. Accordingly, in the field of pharmacological investigations on neuroblastoma, there is a tremendous need of physiologically relevant cell culture systems that can mimic normal or pathological extracellular matrices. In that context, we developed a promising matrix-like cell culture model that provides new insights on the crucial role of mechanical properties of the microenvironment upon the success of ATRA treatment on the neuroblastoma maturation. We were able to control adhesion, survival, motility, and differentiation of neuroblastoma cells. More broadly, we believe that our system will help the design of in vitro pharmacological screening strategy.
Collapse
Affiliation(s)
- Beatrice Labat
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 55 rue Saint-Germain, 27000 Évreux, France.
| | | | - Sandrine Morin-Grognet
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 55 rue Saint-Germain, 27000 Évreux, France
| | - Guy Ladam
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 55 rue Saint-Germain, 27000 Évreux, France
| | - Hassan Atmani
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS UMR 6270, 55 rue Saint-Germain, 27000 Évreux, France
| | - Jean-Pierre Vannier
- Normandie Univ, UNIROUEN, PANTHER - INSERM 1234 - UFR de Médecine et de Pharmacie de Rouen 22, boulevard Gambetta 76000 Rouen, France
| |
Collapse
|
42
|
Zhou B, Gao Z, Liu W, Wu X, Wang W. Important role of mechanical microenvironment on macrophage dysfunction during keloid pathogenesis. Exp Dermatol 2021; 31:375-380. [PMID: 34665886 DOI: 10.1111/exd.14473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/27/2021] [Accepted: 10/17/2021] [Indexed: 12/17/2022]
Abstract
Keloid is considered as a tumor-like skin disease with multiple aetiologies including immunological factors and mechanical microenvironment. Macrophages are plastic and diverse immune cells that play a critical role in maintaining tissue homeostasis by removing dead cells, debris, pathogens and repairing tissues after inflammation. The imbalance of M1/M2 macrophages and disturbances in macrophage functions can steer the progression of chronic inflammation and lead to the development of pathological fibrosis in keloid disease. Recently, it has been shown that macrophages are sensitive to mechanical signals, especially stretching tension and tissue stiffness, which can determine macrophage polarization and functions. Higher stretching tension is known to be an important pathogenic factor of keloid, and the formation of keloid will lead to an increase in tissue stiffness. As little is known about the underlying reasons of macrophages dysfunction in keloid, an understanding of how the mechanical microenvironment interacting with macrophages and affecting their behaviours may help provide mechanism insights into keloid pathogenesis. We thus hypothesize that the synergistic effect of stretching tension and matrix stiffness may contribute to the major pathophysiological niche attributes of macrophages' in vivo mechanical microenvironment in keloids. These mechanism insights of how macrophages sense and respond to their mechanical microenvironment would propel the development of novel strategies for keloid treatment.
Collapse
Affiliation(s)
- Boya Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Xiaoli Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, China
| |
Collapse
|
43
|
Amer M, Shi L, Wolfenson H. The 'Yin and Yang' of Cancer Cell Growth and Mechanosensing. Cancers (Basel) 2021; 13:4754. [PMID: 34638240 PMCID: PMC8507527 DOI: 10.3390/cancers13194754] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 01/06/2023] Open
Abstract
In cancer, two unique and seemingly contradictory behaviors are evident: on the one hand, tumors are typically stiffer than the tissues in which they grow, and this high stiffness promotes their malignant progression; on the other hand, cancer cells are anchorage-independent-namely, they can survive and grow in soft environments that do not support cell attachment. How can these two features be consolidated? Recent findings on the mechanisms by which cells test the mechanical properties of their environment provide insight into the role of aberrant mechanosensing in cancer progression. In this review article, we focus on the role of high stiffness on cancer progression, with particular emphasis on tumor growth; we discuss the mechanisms of mechanosensing and mechanotransduction, and their dysregulation in cancerous cells; and we propose that a 'yin and yang' type phenomenon exists in the mechanobiology of cancer, whereby a switch in the type of interaction with the extracellular matrix dictates the outcome of the cancer cells.
Collapse
Affiliation(s)
- Malak Amer
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lidan Shi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
44
|
Martinez-Vidal L, Murdica V, Venegoni C, Pederzoli F, Bandini M, Necchi A, Salonia A, Alfano M. Causal contributors to tissue stiffness and clinical relevance in urology. Commun Biol 2021; 4:1011. [PMID: 34446834 PMCID: PMC8390675 DOI: 10.1038/s42003-021-02539-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanomedicine is an emerging field focused on characterizing mechanical changes in cells and tissues coupled with a specific disease. Understanding the mechanical cues that drive disease progression, and whether tissue stiffening can precede disease development, is crucial in order to define new mechanical biomarkers to improve and develop diagnostic and prognostic tools. Classically known stromal regulators, such as fibroblasts, and more recently acknowledged factors such as the microbiome and extracellular vesicles, play a crucial role in modifications to the stroma and extracellular matrix (ECM). These modifications ultimately lead to an alteration of the mechanical properties (stiffness) of the tissue, contributing to disease onset and progression. We describe here classic and emerging mediators of ECM remodeling, and discuss state-of-the-art studies characterizing mechanical fingerprints of urological diseases, showing a general trend between increased tissue stiffness and severity of disease. Finally, we point to the clinical potential of tissue stiffness as a diagnostic and prognostic factor in the urological field, as well as a possible target for new innovative drugs.
Collapse
Affiliation(s)
- Laura Martinez-Vidal
- Vita-Salute San Raffaele University, Milan, Italy.
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy.
| | - Valentina Murdica
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Chiara Venegoni
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Filippo Pederzoli
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Marco Bandini
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Andrea Salonia
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
45
|
Zhou HC, Xin-Yan Yan, Yu WW, Liang XQ, Du XY, Liu ZC, Long JP, Zhao GH, Liu HB. Lactic acid in macrophage polarization: The significant role in inflammation and cancer. Int Rev Immunol 2021; 41:4-18. [PMID: 34304685 DOI: 10.1080/08830185.2021.1955876] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabolite lactic acid has always been regarded as a metabolic by-product rather than a bioactive molecule. Recently, this view has changed since it was discovered that lactic acid can be used as a signal molecule and has novel signal transduction functions both intracellular and extracellular, which can regulate key functions in the immune system. In recent years, more and more evidence has shown that lactic acid is closely related to the metabolism and polarization of macrophages. During inflammation, lactic acid is a regulator of macrophage metabolism, and it can prevent excessive inflammatory responses; In malignant tumors, lactic acid produced by tumor tissues promotes the polarization of tumor-associated macrophages, which in turn promotes tumor progression. In this review, we examined the relationship between lactic acid and macrophage metabolism. We further discussed how lactic acid plays a role in maintaining the homeostasis of macrophages, as well as the biology of macrophage polarization and the M1/M2 imbalance in human diseases. Potential methods to target lactic acid in the treatment of inflammation and cancer will also be discussed so as to provide new strategies for the treatment of diseases.
Collapse
Affiliation(s)
- Hai-Cun Zhou
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, P. R. China.,Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| | - Xin-Yan Yan
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, P. R. China
| | - Wen-Wen Yu
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| | - Xiao-Qin Liang
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| | - Xiao-Yan Du
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, P. R. China
| | - Zhi-Chang Liu
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| | - Jian-Ping Long
- Department of Breast Surgery, Gansu Maternal and Child Health Care Hospital, Lanzhou, Gansu Province, P. R. China
| | - Guang-Hui Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Hong-Bin Liu
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, P.R. China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, P.R.China
| |
Collapse
|
46
|
Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ, Shao ZM. Spatial architecture of the immune microenvironment orchestrates tumor immunity and therapeutic response. J Hematol Oncol 2021; 14:98. [PMID: 34172088 PMCID: PMC8234625 DOI: 10.1186/s13045-021-01103-4] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023] Open
Abstract
Tumors are not only aggregates of malignant cells but also well-organized complex ecosystems. The immunological components within tumors, termed the tumor immune microenvironment (TIME), have long been shown to be strongly related to tumor development, recurrence and metastasis. However, conventional studies that underestimate the potential value of the spatial architecture of the TIME are unable to completely elucidate its complexity. As innovative high-flux and high-dimensional technologies emerge, researchers can more feasibly and accurately detect and depict the spatial architecture of the TIME. These findings have improved our understanding of the complexity and role of the TIME in tumor biology. In this review, we first epitomized some representative emerging technologies in the study of the spatial architecture of the TIME and categorized the description methods used to characterize these structures. Then, we determined the functions of the spatial architecture of the TIME in tumor biology and the effects of the gradient of extracellular nonspecific chemicals (ENSCs) on the TIME. We also discussed the potential clinical value of our understanding of the spatial architectures of the TIME, as well as current limitations and future prospects in this novel field. This review will bring spatial architectures of the TIME, an emerging dimension of tumor ecosystem research, to the attention of more researchers and promote its application in tumor research and clinical practice.
Collapse
Affiliation(s)
- Tong Fu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei-Jie Dai
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Song-Yang Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ding Ma
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Key Laboratory of Breast Cancer in Shanghai, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
47
|
Micalet A, Moeendarbary E, Cheema U. 3D In Vitro Models for Investigating the Role of Stiffness in Cancer Invasion. ACS Biomater Sci Eng 2021. [PMID: 34081437 DOI: 10.1021/acsbiomaterials.0c01530] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Tumorigenesis is attributed to the interactions of cancer cells with the tumor microenvironment through both biochemical cues and physical stimuli. Increased matrix deposition and realignment of the collagen fibers are detected by cancer cells, inducing epithelial-to-mesenchymal transition, which in turn stimulates cell motility and invasiveness. METHODS This review provides an overview of current research on the role of the physical microenvironment in cancer invasion. This was achieved by using a systematic approach and providing meta-analyses. Particular focus was placed on in vitro three-dimensional models of epithelial cancers. We investigated questions such as the effect of matrix stiffening, activation of stromal cells, and identified potential advances in mechano-based therapies. RESULTS Meta-analysis revealed that 64% of studies report cancer invasion promotion as stiffness increases, while 36% report the opposite. Experimental approaches and data interpretations were varied, each affecting the invasion of cancer differently. Examples are the experimental timeframes used (24 h to 21 days), the type of polymer used (24 types), and choice of cell line (33 cell lines). The stiffness of the 3D matrices varied from 0.5 to 300 kPa and 19% of these matrices' stiffness were outside commonly accepted physiological range. 100% of the studies outside biological stiffness range (above 20 kPa) report that stiffness does not promote cancer invasion. CONCLUSIONS Taking this analysis into account, we inform on the type of experimental approaches that could be the most relevant and provide what would be a standardized protocol and reporting strategy.
Collapse
Affiliation(s)
- Auxtine Micalet
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London, U.K. WC1E 6BT.,Division of Surgery and Interventional Sciences, UCL Centre for 3D Models of Health and Disease, University College London (UCL), Charles Bell House, London, U.K. W1W 7TS
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London (UCL), Torrington Place, London, U.K. WC1E 6BT.,Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Umber Cheema
- Division of Surgery and Interventional Sciences, UCL Centre for 3D Models of Health and Disease, University College London (UCL), Charles Bell House, London, U.K. W1W 7TS
| |
Collapse
|
48
|
Belfiore L, Aghaei B, Law AMK, Dobrowolski JC, Raftery LJ, Tjandra AD, Yee C, Piloni A, Volkerling A, Ferris CJ, Engel M. Generation and analysis of 3D cell culture models for drug discovery. Eur J Pharm Sci 2021; 163:105876. [PMID: 33989755 DOI: 10.1016/j.ejps.2021.105876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Successful preclinical drug testing relies in part on data generated using in vitro cell culture models that recapitulate the structure and function of tumours and other tissues in vivo. The growing evidence that 3D cell models can more accurately predict the efficacy of drug responses compared to traditionally utilised 2D cell culture systems has led to continuous scientific and technological advances that enable better physiologically representative in vitro modelling of in vivo tissues. This review will provide an overview of the utility of current 3D cell models from a drug screening perspective and explore the future of 3D cell models for drug discovery applications.
Collapse
Affiliation(s)
- Lisa Belfiore
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia.
| | - Behnaz Aghaei
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Andrew M K Law
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | | | - Lyndon J Raftery
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | - Angie D Tjandra
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | - Christine Yee
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Alberto Piloni
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | | | - Cameron J Ferris
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | - Martin Engel
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| |
Collapse
|
49
|
Pogoda K, Cieśluk M, Deptuła P, Tokajuk G, Piktel E, Król G, Reszeć J, Bucki R. Inhomogeneity of stiffness and density of the extracellular matrix within the leukoplakia of human oral mucosa as potential physicochemical factors leading to carcinogenesis. Transl Oncol 2021; 14:101105. [PMID: 33946032 PMCID: PMC8111093 DOI: 10.1016/j.tranon.2021.101105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Oral leukoplakia is a clinical term relating to various morphological lesions, including squamous cell hyperplasia, dysplasia and carcinoma. Leukoplakia morphologically manifested as hyperplasia with epithelial dysplasia is clinically treated as precancerous condition. Nevertheless, there is a lack of good markers indicating the transformation of premalignancies towards cancer. A better understanding of the mechanical environment within the tissues where tumors grow might be beneficial for the development of prevention, diagnostic, and treatment methods in cancer management. Atomic force microscopy (AFM) and immunohistology techniques were used to assess changes in the stiffness and morphology of oral mucosa and leukoplakia samples at different stages of their progression towards cancer. The Young's moduli of the tested leukoplakia samples were significantly higher than those of the surrounding mucus. Robust inhomogeneity of stiffness within leukoplakia samples, reflecting an increase in regeneration and collagen accumulation (increasing density) in the extracellular matrix (ECM), was observed. Within the histologically confirmed cancer samples, Young's moduli were significantly lower than those within the precancerous ones. Inhomogeneous stiffness within leukoplakia might act as "a mechanoagonist" that promotes oncogenesis. In contrast, cancer growth might require the reorganization of tissue structure to create a microenvironment with lower and homogenous stiffness. The immunohistology data collected here indicates that changes in tissue stiffness are achieved by increasing cell/ECM density. The recognition of new markers of premalignancy will aid in the development of new therapies and will expand the diagnostic methods.
Collapse
Affiliation(s)
- Katarzyna Pogoda
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, PL-15222 Bialystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, PL-15222 Bialystok, Poland
| | - Grażyna Tokajuk
- Department of Integrated Dentistry, Medical University of Bialystok, PL-15269 Bialystok, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, PL-15222 Bialystok, Poland
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Bialystok, PL-15269 Bialystok, Poland
| | - Robert Bucki
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, PL-25317 Kielce, Poland.
| |
Collapse
|
50
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6:153. [PMID: 33888679 PMCID: PMC8062524 DOI: 10.1038/s41392-021-00544-0] [Citation(s) in RCA: 441] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|