1
|
Wang Y, Zhang Y, Zhong H, Guo M, Chen X, Lu Y. Construction of a non-toxic interpenetrating network hydrogel drug carrier supported by carbon microspheres and nanocellulose. Carbohydr Polym 2025; 350:123035. [PMID: 39647942 DOI: 10.1016/j.carbpol.2024.123035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 12/10/2024]
Abstract
To develop a stable hydrogel drug carrier with excellent biocompatibility, biodegradability and low toxicity, a green biomass-based hydrogel was prepared as a methylene blue (MB) drug carrier model using cellulose and sodium alginate (SA) polysaccharide. The addition of nanocellulose (CNF) and hydrothermally prepared carbon microspheres to the hydrogel network formed by SA undergoing chelation with Ca2+ enhanced the multifaceted properties of the drug carrier. Additionally, the prepared SA-CNFgelCS0.1 could withstand a pressure of 8.64 N and showed good compressive and elastic properties. Meanwhile, its encapsulation rate and drug loading capacity could reach 95.5 % and 19.36 mg/g, respectively. The drug release rate reached 43.4 % at 100 h in PBS solution simulating the pH value of the gastric environment, indicating good pH-responsiveness and long-lasting release ability during the drug-carrying release process. The release mechanism of the drug carrier to MB was investigated by different release kinetic models, which was in accordance with the first-order kinetic model. SA-CNFgelCS0.1 at high concentration also did not affect the number of pancreatic cell survival and showed a high degree of biocompatibility. In addition to that, SA-CNFgelCS0.1 can reach 100 % degradation rate in 18 days, which has no burden on the environment during use. The present study offers a novel approach to the synthesis of a biomass drug-carrying model with enhanced performance. Furthermore, this drug carrier provides a promising foundation for the development of oral MB as a potential treatment for gastrointestinal diseases and other chronic condition.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Hao Zhong
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Minghui Guo
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Xueqi Chen
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Yanan Lu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010000, China.
| |
Collapse
|
2
|
Mangas-Florencio L, Herrero-Gómez A, Eills J, Azagra M, Batlló-Rius M, Marco-Rius I. A DIY Bioreactor for in Situ Metabolic Tracking in 3D Cell Models via Hyperpolarized 13C NMR Spectroscopy. Anal Chem 2025; 97:1594-1602. [PMID: 39813686 PMCID: PMC11780569 DOI: 10.1021/acs.analchem.4c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a valuable diagnostic tool limited by low sensitivity due to low nuclear spin polarization. Hyperpolarization techniques, such as dissolution dynamic nuclear polarization, significantly enhance sensitivity, enabling real-time tracking of cellular metabolism. However, traditional high-field NMR systems and bioreactor platforms pose challenges, including the need for specialized equipment and fixed sample volumes. This study introduces a scalable, 3D-printed bioreactor platform compatible with low-field NMR spectrometers, designed to accommodate bioengineered 3D cell models. The bioreactor is fabricated using biocompatible materials and features a microfluidic system for media recirculation, ensuring optimal culture conditions during NMR acquisition and cell maintenance. We characterized the NMR compatibility of the bioreactor components and confirmed minimal signal distortion. The bioreactor's efficacy was validated using HeLa and HepG2 cells, demonstrating prolonged cell viability and enhanced metabolic activity in 3D cultures compared to 2D cultures. Hyperpolarized [1-13C] pyruvate experiments revealed distinct metabolic profiles for the two cell types, highlighting the bioreactor's ability to discern metabolic profiles among samples. Our results indicate that the bioreactor platform supports the maintenance and analysis of 3D cell models in NMR studies, offering a versatile and accessible tool for metabolic and biochemical research in tissue engineering. This platform bridges the gap between advanced cellular models and NMR spectroscopy, providing a robust framework for future applications in nonspecialized laboratories. The design files for the 3D printed components are shared within the text for easy download and customization, promoting their use and adaptation for further applications.
Collapse
Affiliation(s)
- Lluís Mangas-Florencio
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Vitala
Technologies, S.L., 08028 Barcelona, Spain
- University
of Barcelona, 08028 Barcelona, Spain
| | - Alba Herrero-Gómez
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- University
of Barcelona, 08028 Barcelona, Spain
| | - James Eills
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Marc Azagra
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | | | - Irene Marco-Rius
- Institute
for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| |
Collapse
|
3
|
Svozilova H, Vojtova L, Matulova J, Bruknerova J, Polakova V, Radova L, Doubek M, Plevova K, Pospisilova S. In vitro culture of leukemic cells in collagen scaffolds and carboxymethyl cellulose-polyethylene glycol gel. PeerJ 2024; 12:e18637. [PMID: 39655330 PMCID: PMC11627079 DOI: 10.7717/peerj.18637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Background Chronic lymphocytic leukemia (CLL) is a common adult leukemia characterized by the accumulation of neoplastic mature B cells in blood, bone marrow, lymph nodes, and spleen. The disease biology remains unresolved in many aspects, including the processes underlying the disease progression and relapses. However, studying CLL in vitro poses a considerable challenge due to its complexity and dependency on the microenvironment. Several approaches are utilized to overcome this issue, such as co-culture of CLL cells with other cell types, supplementing culture media with growth factors, or setting up a three-dimensional (3D) culture. Previous studies have shown that 3D cultures, compared to conventional ones, can lead to enhanced cell survival and altered gene expression. 3D cultures can also give valuable information while testing treatment response in vitro since they mimic the cell spatial organization more accurately than conventional culture. Methods In our study, we investigated the behavior of CLL cells in two types of material: (i) solid porous collagen scaffolds and (ii) gel composed of carboxymethyl cellulose and polyethylene glycol (CMC-PEG). We studied CLL cells' distribution, morphology, and viability in these materials by a transmitted-light and confocal microscopy. We also measured the metabolic activity of cultured cells. Additionally, the expression levels of MYC, VCAM1, MCL1, CXCR4, and CCL4 genes in CLL cells were studied by qPCR to observe whether our novel culture approaches lead to increased adhesion, lower apoptotic rates, or activation of cell signaling in relation to the enhanced contact with co-cultured cells. Results Both materials were biocompatible, translucent, and permeable, as assessed by metabolic assays, cell staining, and microscopy. While collagen scaffolds featured easy manipulation, washability, transferability, and biodegradability, CMC-PEG was advantageous for its easy preparation process and low variability in the number of accommodated cells. Both materials promoted cell-to-cell and cell-to-matrix interactions due to the scaffold structure and generation of cell aggregates. The metabolic activity of CLL cells cultured in CMC-PEG gel was similar to or higher than in conventional culture. Compared to the conventional culture, there was (i) a lower expression of VCAM1 in both materials, (ii) a higher expression of CCL4 in collagen scaffolds, and (iii) a lower expression of CXCR4 and MCL1 (transcript variant 2) in collagen scaffolds, while it was higher in a CMC-PEG gel. Hence, culture in the material can suppress the expression of a pro-apoptotic gene (MCL1 in collagen scaffolds) or replicate certain gene expression patterns attributed to CLL cells in lymphoid organs (low CXCR4, high CCL4 in collagen scaffolds) or blood (high CXCR4 in CMC-PEG).
Collapse
Affiliation(s)
- Hana Svozilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lucy Vojtova
- Advanced Biomaterials, Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jana Matulova
- Advanced Biomaterials, Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Jana Bruknerova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Veronika Polakova
- Advanced Biomaterials, Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Lenka Radova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karla Plevova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
4
|
Yao X, Gong Z, Yin W, Li H, Douroumis D, Huang L, Li H. Islet cell spheroids produced by a thermally sensitive scaffold: a new diabetes treatment. J Nanobiotechnology 2024; 22:657. [PMID: 39456025 PMCID: PMC11515210 DOI: 10.1186/s12951-024-02891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The primary issues in treating type 1 diabetes mellitus (T1DM) through the transplantation of healthy islets or islet β-cells are graft rejection and a lack of available donors. Currently, the majority of approaches use cell encapsulation technology and transplant replacement cells that can release insulin to address transplant rejection and donor shortages. However, existing encapsulation materials merely serve as carriers for islet cell growth. A new treatment approach for T1DM could be developed by creating a smart responsive material that encourages the formation of islet cell spheroids to replicate their 3D connections in vivo and controls the release of insulin aggregates. In this study, we used microfluidics to create thermally sensitive porous scaffolds made of poly(N-isopropyl acrylamide)/graphene oxide (PNIPAM/GO). The material was carefully shrunk under near-infrared light, enriched with mouse insulinoma pancreatic β cells (β-TC-6 cells), encapsulated, and cultivated to form 3D cell spheroids. The controlled contraction of the thermally responsive porous scaffold regulated insulin release from the spheroids, demonstrated using the glucose-stimulated insulin release assay (GSIS), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence assay. Eventually, implantation of the spheroids into C57BL/6 N diabetic mice enhanced the therapeutic effect, potentially offering a novel approach to the management of T1DM.
Collapse
Affiliation(s)
- Xueting Yao
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315700, P. R. China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang, 325000, P. R. China
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, P. R. China
| | - Zehua Gong
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellent in Nanoscience, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hanbing Li
- Department of Pharmaceutical Sciences, Institute of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China.
| | - Dennis Douroumis
- Centre for Research Innovation, CRI, University of Greenwich, Kent, ME4 4TB, UK
| | - Lijiang Huang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315700, P. R. China.
| | - Huaqiong Li
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang, 315700, P. R. China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Science, Wenzhou, Zhejiang, 325000, P. R. China.
| |
Collapse
|
5
|
Rowland S, Aghakhani A, Whalley RD, Ferreira AM, Kotov N, Gentile P. Layer-by-Layer Nanoparticle Assembly for Biomedicine: Mechanisms, Technologies, and Advancement via Acoustofluidics. ACS APPLIED NANO MATERIALS 2024; 7:15874-15902. [PMID: 39086513 PMCID: PMC11287493 DOI: 10.1021/acsanm.4c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
The deposition of thin films plays a crucial role in surface engineering, tailoring structural modifications, and functionalization across diverse applications. Layer-by-layer self-assembly, a prominent thin-film deposition method, has witnessed substantial growth since its mid-20th-century inception, driven by the discovery of eligible materials and innovative assembly technologies. Of these materials, micro- and nanoscopic substrates have received far less interest than their macroscopic counterparts; however, this is changing. The catalogue of eligible materials, including nanoparticles, quantum dots, polymers, proteins, cells and liposomes, along with some well-established layer-by-layer technologies, have combined to unlock impactful applications in biomedicine, as well as other areas like food fortification, and water remediation. To access these fields, several well-established technologies have been used, including tangential flow filtration, fluidized bed, atomization, electrophoretic assembly, and dielectrophoresis. Despite the invention of these technologies, the field of particle layer-by-layer still requires further technological development to achieve a high-yield, automatable, and industrially ready process, a requirement for the diverse, reactionary field of biomedicine and high-throughput pharmaceutical industry. This review provides a background on layer-by-layer, focusing on how its constituent building blocks and bonding mechanisms enable unmatched versatility. The discussion then extends to established and recent technologies employed for coating micro- and nanoscopic matter, evaluating their drawbacks and advantages, and highlighting promising areas in microfluidic approaches, where one distinctly auspicious technology emerges, acoustofluidics. The review also explores the potential and demonstrated application of acoustofluidics in layer-by-layer technology, as well as analyzing existing acoustofluidic technologies beyond LbL coating in areas such as cell trapping, cell sorting, and multidimensional particle manipulation. Finally, the review concludes with future perspectives on layer-by-layer nanoparticle coating and the potential impact of integrating acoustofluidic methods.
Collapse
Affiliation(s)
- Seth Rowland
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| | - Amirreza Aghakhani
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
- Institute
for Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
| | - Richard D. Whalley
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| | - Ana Marina Ferreira
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| | - Nicholas Kotov
- Department
of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Piergiorgio Gentile
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| |
Collapse
|
6
|
Kumarasinghe U, Hasturk O, Wang B, Rudolph S, Chen Y, Kaplan DL, Staii C. Impact of Silk-Ionomer Encapsulation on Immune Cell Mechanical Properties and Viability. ACS Biomater Sci Eng 2024; 10:4311-4322. [PMID: 38718147 DOI: 10.1021/acsbiomaterials.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Encapsulation of single cells is a powerful technique used in various fields, such as regenerative medicine, drug delivery, tissue regeneration, cell-based therapies, and biotechnology. It offers a method to protect cells by providing cytocompatible coatings to strengthen cells against mechanical and environmental perturbations. Silk fibroin, derived from the silkworm Bombyx mori, is a promising protein biomaterial for cell encapsulation due to the cytocompatibility and capacity to maintain cell functionality. Here, THP-1 cells, a human leukemia monocytic cell line, were encapsulated with chemically modified silk polyelectrolytes through electrostatic layer-by-layer deposition. The effectiveness of the silk nanocoating was assessed using scanning electron microscopy (SEM) and confocal microscopy and on cell viability and proliferation by Alamar Blue assay and live/dead staining. An analysis of the mechanical properties of the encapsulated cells was conducted using atomic force microscopy nanoindentation to measure elasticity maps and cellular stiffness. After the cells were encapsulated in silk, an increase in their stiffness was observed. Based on this observation, we developed a mechanical predictive model to estimate the variations in stiffness in relation to the thickness of the coating. By tuning the cellular assembly and biomechanics, these encapsulations promote systems that protect cells during biomaterial deposition or processing in general.
Collapse
Affiliation(s)
- Udathari Kumarasinghe
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, United States
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Brook Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Sara Rudolph
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
7
|
Yang J, Yan Y, Yin X, Liu X, Reshetov IV, Karalkin PA, Li Q, Huang RL. Bioengineering and vascularization strategies for islet organoids: advancing toward diabetes therapy. Metabolism 2024; 152:155786. [PMID: 38211697 DOI: 10.1016/j.metabol.2024.155786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Diabetes presents a pressing healthcare crisis, necessitating innovative solutions. Organoid technologies have rapidly advanced, leading to the emergence of bioengineering islet organoids as an unlimited source of insulin-producing cells for treating insulin-dependent diabetes. This advancement surpasses the need for cadaveric islet transplantation. However, clinical translation of this approach faces two major limitations: immature endocrine function and the absence of a perfusable vasculature compared to primary human islets. In this review, we summarize the latest developments in bioengineering functional islet organoids in vitro and promoting vascularization of organoid grafts before and after transplantation. We highlight the crucial roles of the vasculature in ensuring long-term survival, maturation, and functionality of islet organoids. Additionally, we discuss key considerations that must be addressed before clinical translation of islet organoid-based therapy, including functional immaturity, undesired heterogeneity, and potential tumorigenic risks.
Collapse
Affiliation(s)
- Jing Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Xiya Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China; Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, China
| | - Xiangqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Igor V Reshetov
- Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 127473 Moscow, Russia
| | - Pavel A Karalkin
- Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 127473 Moscow, Russia
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China.
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Bioengineering of functional cardiac tissue composed of primary cardiomyocytes has great potential for myocardial regeneration and in vitro tissue modeling. 3D bioprinting was developed to create cardiac tissue in hydrogels that can mimic the structural, physiological, and functional features of native myocardium. Through a detailed review of the 3D printing technologies and bioink materials used in the creation of a heart tissue, this article discusses the potential of engineered heart tissues in biomedical applications. RECENT FINDINGS In this review, we discussed the recent progress in 3D bioprinting strategies for cardiac tissue engineering, including bioink and 3D bioprinting methods as well as examples of engineered cardiac tissue such as in vitro cardiac models and vascular channels. 3D printing is a powerful tool for creating in vitro cardiac tissues that are structurally and functionally similar to real tissues. The use of human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) enables the generation of patient-specific tissues. These tissues have the potential to be used for regenerative therapies, disease modeling, and drug testing.
Collapse
Affiliation(s)
- Ting-Yu Lu
- Materials Science and Engineering Program, University of California, 9500 Gilman Dr. San Diego, 92093 La Jolla, CA USA
| | - Yi Xiang
- Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, 92093 La Jolla, CA USA
| | - Min Tang
- Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, 92093 La Jolla, CA USA
| | - Shaochen Chen
- Materials Science and Engineering Program, University of California, 9500 Gilman Dr. San Diego, 92093 La Jolla, CA USA
- Department of NanoEngineering, University of California, 9500 Gilman Dr. San Diego, 92093 La Jolla, CA USA
- Department of Bioengineering, University of California, 9500 Gilman Dr. San Diego, 92093 La Jolla, CA USA
| |
Collapse
|
9
|
Reys LL, Silva SS, Soares da Costa D, Reis RL, Silva TH. Fucoidan-based hydrogels particles as versatile carriers for diabetes treatment strategies. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1939-1954. [PMID: 35699411 DOI: 10.1080/09205063.2022.2088533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is a current lack of fully efficient therapies for diabetes mellitus, a chronic disease where the metabolism of blood glucose is severely hindered by a deficit in insulin or cell resistance to this hormone. Therefore, it is crucial to develop new therapeutic strategies to treat this disease, including devices for the controlled delivery of insulin or encapsulation of insulin-producing cells. In this work, fucoidan (Fu) - a marine sulfated polysaccharide exhibiting relevant properties on reducing blood glucose and antioxidant and anti-inflammatory effects - was used for the development of versatile carriers envisaging diabetes advanced therapies. Fu was functionalized by methacrylation (MFu) using 8% and 12% (v/v) of methacrylic anhydride and further photocrosslinked using visible light in the presence of triethanolamine and eosin-y to produce hydrogel particles. Degree of methacrylation varied between 2.78 and 6.50, as determined by 1HNMR, and the produced particles have an average diameter ranging from 0.63 to 1.3 mm (dry state). Insulin (5%) was added to MFu solution to produce drug-loaded particles and the release profile was assessed in phosphate buffer solution (PBS) and simulated intestinal fluid (SIF) for 24 h. Insulin was released in a sustained manner during the initial 8 h, reaching then a plateau, higher in PBS than in SIF, indicating that lower pH favors drug liberation. Moreover, the ability of MFu particles to serve as templates for the culture of human pancreatic cells was assessed using 1.1B4 cell line during up to 7 days. During the culture period studied, pancreatic beta cells were proliferating, with a global viability over 80% and tend to form pseudo-islets, thus suggesting that the proposed biomaterial could be a good candidate as versatile carrier for diabetes treatment as they sustain the release of insulin and support pancreatic beta cells viability.
Collapse
Affiliation(s)
- Lara L Reys
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Simone S Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
10
|
Mehwish N, Chen Y, Zaeem M, Wang Y, Lee BH, Deng H. Novel biohybrid spongy scaffolds for fabrication of suturable intraoral graft substitutes. Int J Biol Macromol 2022; 214:617-631. [PMID: 35753514 DOI: 10.1016/j.ijbiomac.2022.06.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
Despite the fact that classic autograft is the gold standard material for periodontal plastic surgery, it has some drawbacks, including the need for a second surgical site and the scarcity of palatal donor tissue. However, only a few research works on the manufacturing of bioengineered intraoral connective tissue grafts have been conducted. In this work, porous bovine serum albumin methacryloyl/gelatin methacryloyl (BG) biohybrid scaffolds were developed for super-elasticity, shape recovery, suturability for persistent stability, sufficient scaffolding function, and convenient manipulating characteristics to fabricate an intraoral graft substitute with superb stability to resist frequent dynamic forces caused by functional movement (speaking, masticating, and swallowing). Furthermore, in a 3D cell culture assay, BG scaffolds demonstrated excellent cell adhesion and proliferation of L929 cells. In addition, the BG scaffolds were able to release Ibuprofen in a controlled manner for postoperative recovery. The use of a low-cost, optimized cryogelation technique for functional biomacromolecules offers up new possibilities to develop promising scaffolds for dental clinical settings.
Collapse
Affiliation(s)
- Nabila Mehwish
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China
| | - Yuan Chen
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China; Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Muhammad Zaeem
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Department of Orthodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Bae Hoon Lee
- Wenzhou Institute, University of CAS, Wenzhou, Zhejiang 325011, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| | - Hui Deng
- Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
11
|
Herrero-Gómez A, Azagra M, Marco-Rius I. A cryopreservation method for bioengineered 3D cell culture models. Biomed Mater 2022; 17. [PMID: 35675803 DOI: 10.1088/1748-605x/ac76fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022]
Abstract
Technologies to cryogenically preserve (a.k.a. cryopreserve) living tissue, cell lines and primary cells have matured greatly for both clinicians and researchers since their first demonstration in the 1950s and are widely used in storage and transport applications. Currently, however, there remains an absence of viable cryopreservation and thawing methods for bioengineered, three-dimensional (3D) cell models, including patients' samples. As a first step towards addressing this gap, we demonstrate a viable protocol for spheroid cryopreservation and survival based on a 3D carboxymethyl cellulose scaffold and precise conditions for freezing and thawing. The protocol is tested using hepatocytes, for which the scaffold provides both the 3D structure for cells to self-arrange into spheroids and to support cells during freezing for optimal post-thaw viability. Cell viability after thawing is improved compared to conventional pellet models where cells settle under gravity to form a pseudo-tissue before freezing. The technique may advance cryobiology and other applications that demand high-integrity transport of pre-assembled 3D models (from cell lines and in future cells from patients) between facilities, for example between medical practice, research and testing facilities.
Collapse
Affiliation(s)
- Alba Herrero-Gómez
- Institute for Bioengineering of Catalonia, Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Marc Azagra
- Institute for Bioengineering of Catalonia, Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Irene Marco-Rius
- Institute for Bioengineering of Catalonia, Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
13
|
Growth of MIN-6 Cells on Salmon Fibrinogen Scaffold Improves Insulin Secretion. Pharmaceutics 2022; 14:pharmaceutics14050941. [PMID: 35631527 PMCID: PMC9144899 DOI: 10.3390/pharmaceutics14050941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
The incidence of type I diabetes has been increasing worldwide at an annual rate of approximately 3%. One of the strategies to treat type I diabetes is islet transplantation, in which damaged β-cells are replaced with new islets. To improve β-cells’ expansion and pseudoislet formation, studies are focusing on using extracellular-matrix-resembling substrates. We evaluated the potential of salmon fibrinogen and chitosan electrospun scaffold as cell substrate for cultivating MIN-6 cells. The morphology of cells, insulin secretion and gene expression was evaluated and compared with other substrates (nanofibrous scaffold, microporous scaffold and tissue culture polystyrene). We found that all tested 3D conditions favored the pseudoislet formation of MIN-6 cells. The insulin secretion of MIN-6 cells after stimulation with high-glucose media shows approximately a 9-fold increase compared to the control group when a fibrinogen/chitosan-based electrospun scaffold was used for cultivation. The differences in insulin secretion were corroborated by differences in gene expression. The differences in insulin secretion could probably be attributed to the differences in the mechanical and/or chemical nature of the tested substrates.
Collapse
|
14
|
Rodríguez-Comas J, Ramón-Azcón J. Islet-on-a-chip for the study of pancreatic β-cell function. IN VITRO MODELS 2022; 1:41-57. [PMID: 39872972 PMCID: PMC11749753 DOI: 10.1007/s44164-021-00005-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 01/30/2025]
Abstract
Diabetes mellitus is a significant public health problem worldwide. It encompasses a group of chronic disorders characterized by hyperglycemia, resulting from pancreatic islet dysfunction or as a consequence of insulin-producing β-cell death. Organ-on-a-chip platforms have emerged as technological systems combining cell biology, engineering, and biomaterial technological advances with microfluidics to recapitulate a specific organ's physiological or pathophysiological environment. These devices offer a novel model for the screening of pharmaceutical agents and to study a particular disease. In the field of diabetes, a variety of microfluidic devices have been introduced to recreate native islet microenvironments and to understand pancreatic β-cell kinetics in vitro. This kind of platforms has been shown fundamental for the study of the islet function and to assess the quality of these islets for subsequent in vivo transplantation. However, islet physiological systems are still limited compared to other organs and tissues, evidencing the difficulty to study this "organ" and the need for further technological advances. In this review, we summarize the current state of islet-on-a-chip platforms that have been developed so far. We recapitulate the most relevant studies involving pancreatic islets and microfluidics, focusing on the molecular and cellular-scale activities that underlie pancreatic β-cell function.
Collapse
Affiliation(s)
- Júlia Rodríguez-Comas
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
15
|
Li W, Lei X, Feng H, Li B, Kong J, Xing M. Layer-by-Layer Cell Encapsulation for Drug Delivery: The History, Technique Basis, and Applications. Pharmaceutics 2022; 14:pharmaceutics14020297. [PMID: 35214030 PMCID: PMC8874529 DOI: 10.3390/pharmaceutics14020297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
The encapsulation of cells with various polyelectrolytes through layer-by-layer (LbL) has become a popular strategy in cellular function engineering. The technique sprang up in 1990s and obtained tremendous advances in multi-functionalized encapsulation of cells in recent years. This review comprehensively summarized the basis and applications in drug delivery by means of LbL cell encapsulation. To begin with, the concept and brief history of LbL and LbL cell encapsulation were introduced. Next, diverse types of materials, including naturally extracted and chemically synthesized, were exhibited, followed by a complicated basis of LbL assembly, such as interactions within multilayers, charge distribution, and films morphology. Furthermore, the review focused on the protective effects against adverse factors, and bioactive payloads incorporation could be realized via LbL cell encapsulation. Additionally, the payload delivery from cell encapsulation system could be adjusted by environment, redox, biological processes, and functional linkers to release payloads in controlled manners. In short, drug delivery via LbL cell encapsulation, which takes advantage of both cell grafts and drug activities, will be of great importance in basic research of cell science and biotherapy for various diseases.
Collapse
Affiliation(s)
- Wenyan Li
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Xuejiao Lei
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Hua Feng
- Department of Neurosurgery, First Affiliated Hospital, Army Medical University, 30 Gaotanyan Street, Chongqing 400038, China; (W.L.); (X.L.); (H.F.)
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
- Correspondence: (J.K.); (M.X.)
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, 75 Chancellors Circle, Winnipeg, MB R3T 5V6, Canada
- Correspondence: (J.K.); (M.X.)
| |
Collapse
|
16
|
Lopez-Muñoz GA, Mughal S, Ramón-Azcón J. Sensors and Biosensors in Organs-on-a-Chip Platforms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:55-80. [DOI: 10.1007/978-3-031-04039-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Ortega MA, Rodríguez-Comas J, Yavas O, Velasco-Mallorquí F, Balaguer-Trias J, Parra V, Novials A, Servitja JM, Quidant R, Ramón-Azcón J. In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip. BIOSENSORS-BASEL 2021; 11:bios11050138. [PMID: 33924867 PMCID: PMC8144989 DOI: 10.3390/bios11050138] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 01/10/2023]
Abstract
Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling and drug discovery by providing biologically relevant models of tissues and organs in vitro with a high degree of control over experimental variables for high-content screening applications. Yet, to fully exploit the potential of these platforms, there is a need to interface them with integrated non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a powerful tool to enable the in situ response study of microtissues to external stimuli for applications such as a drug-screening platform for human models, bypassing animal testing.
Collapse
Affiliation(s)
- María A. Ortega
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Júlia Rodríguez-Comas
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Ozlem Yavas
- Plasmon Nano-Optics Group, ICFO-Institute for Photonics Sciences, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; (O.Y.); (R.Q.)
| | - Ferran Velasco-Mallorquí
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Jordina Balaguer-Trias
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Victor Parra
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.N.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Joan M. Servitja
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.N.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Romain Quidant
- Plasmon Nano-Optics Group, ICFO-Institute for Photonics Sciences, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; (O.Y.); (R.Q.)
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|