1
|
Zhang Y, Fu Q, Sun W, Yue Q, He P, Niu D, Zhang M. Mechanical forces in the tumor microenvironment: roles, pathways, and therapeutic approaches. J Transl Med 2025; 23:313. [PMID: 40075523 PMCID: PMC11899831 DOI: 10.1186/s12967-025-06306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Tumors often exhibit greater stiffness compared to normal tissues, primarily due to increased deposition within the tumor stroma. Collagen, proteoglycans, laminin, and fibronectin are key components of the extracellular matrix (ECM), interacting to facilitate ECM assembly. Enhanced fiber density and cross-linking within the ECM result in elevated matrix stiffness and interstitial fluid pressure, subjecting tumors to significant physical stress during growth. This mechanical stress is transduced intracellularly via integrins, the Rho signaling pathway, and the Hippo signaling pathway, thereby promoting tumor invasion. Additionally, mechanical pressure fosters glycolysis in tumor cells, boosting energy production to support metastasis. Mechanical cues also regulate macrophage polarization, maintaining an inflammatory microenvironment conducive to tumor survival. In summary, mechanical signals within tumors play a crucial role in tumor growth and invasion. Understanding these signals and their involvement in tumor progression is essential for advancing our knowledge of tumor biology and enhancing therapeutic approaches.
Collapse
Affiliation(s)
- Yanli Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China.
| | - Qi Fu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Wenyue Sun
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Qiujuan Yue
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Ping He
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China
| | - Dong Niu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Min Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, 712082, Shaanxi Province, China.
| |
Collapse
|
2
|
Zhu L, Ahn BC. Natural Killer Cell-Derived Exosome Mimetics as Natural Nanocarriers for In Vitro Delivery of Chemotherapeutics to Thyroid Cancer Cells. Exp Oncol 2025; 46:358-367. [PMID: 39985349 DOI: 10.15407/exp-oncology.2024.04.358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Exosomes have become a potential field of nanotechnology for the treatment and identification of many disorders. However, the generation of exosomes is a difficult, time-consuming, and low-yielding procedure. At the same time, exosome mimetics (EM) resemble exosomes in their characteristics but have higher production yields. The aim of this study was to produce natural killer (NK) cell-derived EM (NKEM) loaded with sorafenib and test their killing ability against thyroid cancer cell lines. MATERIALS AND METHODS Sorafenib was loaded into NKEM by mixing sorafenib with NK cells during NKEM production (NKEM-S). Then, these two types of nanoparticles were characterized with nanoparticle tracking analysis (NTA) to measure their sizes. In addition, the cellular uptake and in vitro killing effect of NKEM-S on thyroid cancer cell lines were investigated using confocal laser microscopy and bioluminescence imaging (BLI) techniques. RESULTS The uptake of NKEM and NKEM-S by the thyroid cancer cells was observed. Moreover, BLI confirmed the killing and anti-proliferation effect of NKEM-S on two thyroid cancer cell lines. Especially important, the NKEM-S demonstrated a desirable killing effect even for anaplastic thyroid cancer (ATC) cells. CONCLUSION Sorafenib-loaded NKEM showed the ability to kill thyroid cancer cells in vitro, even against ATC. This provides a new opportunity for drug delivery systems and thyroid cancer treatment.
Collapse
Affiliation(s)
- L Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
| | - B-C Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
3
|
Salatin S, Azarfarin M, Farjami A, Hamidi S. The simultaneous use of nanovesicles and magnetic nanoparticles for cancer targeting and imaging. Ther Deliv 2025; 16:167-181. [PMID: 39564978 PMCID: PMC11849928 DOI: 10.1080/20415990.2024.2426447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Cancer is increasingly being recognized as a global health issue with considerable unmet medical need. Despite the rapid progression of anticancer pharmaceuticals, there are still significant challenges for the effective management of cancer. In many circumstances, cancer cells are difficult to detect and treat. Combination of nanovesicles (NVs) and magnetic nanoparticles (MNPs), referred as magnetic nanovesicles (MNVs), is now well recognized as a potential theranostic option for improving cancer treatment outcomes and reducing adverse effects. MNVs can be used for monitoring the long-term fate and functional benefits of cancer therapy. Moreover, MNV-mediated hyperthermia mechanism has been explored as a potential technique for triggering cancer cell death, and/or controlled release of laden cargo. In this review, we focus on the unique characteristics of MNVs as a promising avenue for targeted drug delivery, diagnosis, and treatments of cancer or tumor. Moreover, we discuss critical considerations related to the issues raised in this area, which will guide future research toward better anti-cancer therapeutics for clinical applications.
Collapse
Affiliation(s)
- Sara Salatin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Azarfarin
- School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Hamidi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Lin JN, Kuan CY, Chang CT, Chen ZY, Kuo WT, Lin J, Lin YY, Yang IH, Lin FH. High-throughput proliferation and activation of NK-92MI cell spheroids via a homemade one-step closed bioreactor in pseudostatic cultures for immunocellular therapy. J Biol Eng 2024; 18:65. [PMID: 39533411 PMCID: PMC11555828 DOI: 10.1186/s13036-024-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The NK-92MI cell line has displayed significant promise in clinical trials for cancer treatment. However, challenges persist in obtaining sufficient cell quantities and achieving optimal cytotoxicity. The proliferation of natural killer (NK) cells involves the formation of cell aggregates, but excessively large aggregates can impede nutrient and waste transport, leading to reduced cell survival rates. In this study, a custom bioreactor was designed to mimic pseudostatic culture conditions by integrating brief mechanical rotation during a 6-h static culture period. This method aimed to achieve an optimal aggregate size while improving cell viability. The findings revealed a 144-fold expansion of 3D NK-92MI cell aggregates, reaching an ideal size of 80-150 µm, significantly increasing both cell proliferation and survival rates. After 14 days of culture, the NK-92MI cells maintained their phenotype during the subsequent phase of cell activation. Moreover, these cells presented elevated levels of IFN-γ expression after IL-18 activation, resulting in enhanced NK cell-mediated cytotoxicity against K562 cells. This innovative strategy, which uses a closed suspension-based culture system, presents a promising approach for improving cell expansion and activation techniques in immunocellular therapy.
Collapse
Affiliation(s)
- Jhih-Ni Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli, 35053, Taiwan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan
| | - Che-Yung Kuan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli, 35053, Taiwan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan
| | - Chia-Ting Chang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli, 35053, Taiwan
- National Chung Hsing University, Taichung, Taiwan
| | - Zhi-Yu Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli, 35053, Taiwan
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan
| | - Wei-Ting Kuo
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan
| | - Jason Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan
| | - Yu-Ying Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli, 35053, Taiwan
- National Chung Hsing University, Taichung, Taiwan
| | - I-Hsuan Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli, 35053, Taiwan.
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan.
| | - Feng-Huei Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli, 35053, Taiwan.
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 49, Fanglan Rd, Taipei, 10672, Taiwan.
| |
Collapse
|
5
|
Thouvenot E, Charnay L, Burshtein N, Guigner JM, Dec L, Loew D, Silva AKA, Lindner A, Wilhelm C. High-Yield Bioproduction of Extracellular Vesicles from Stem Cell Spheroids via Millifluidic Vortex Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412498. [PMID: 39530646 DOI: 10.1002/adma.202412498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs) are emerging as novel therapeutics, particularly in cancer and degenerative diseases. Nevertheless, from both market and clinical viewpoints, high-yield production methods using minimal cell materials are still needed. Herein, a millifluidic cross-slot chip is proposed to induce high-yield release of biologically active EVs from less than three million cells. Depending on the flow rate, a single vortex forms in the outlet channels, exposing transported cellular material to high viscous stresses. Importantly, the chip accommodates producer cells within their physiological environment, such as human mesenchymal stem cells (hMSCs) spheroids, while facilitating their visualization and individual tracking within the vortex. This precise control of viscous stresses at the spheroid level allows for the release of up to 30000 EVs per cell at a Reynolds number of ≈400, without compromising cellular integrity. Additionally, it reveals a threshold initiating EV production, providing evidence for a stress-dependent mechanism governing vesicle secretion. EVs mass-produced at high Reynolds displayed pro-angiogenic and wound healing capabilities, as confirmed by proteomic and cytometric analysis of their cargo. These distinct molecular signatures of these EVs, compared to those derived from monolayers, underscore the critical roles of the production method and the 3D cellular environment in EV generation.
Collapse
Affiliation(s)
- Elliot Thouvenot
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, Paris, 75005, France
| | - Laura Charnay
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, Paris, 75005, France
| | - Noa Burshtein
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, PMMH, CNRS UMR7636, ESPCI Paris, PSL Research University, Sorbonne Université, Université Paris Cité, Paris, 75005, France
| | - Jean-Michel Guigner
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR CNRS 7590, MNHN, IRD UR 206, Campus Jussieu, Sorbonne Université, Case courrier 115, 4 Place Jussieu, 75252, Paris, Cedex 05, France
| | - Léonie Dec
- Institut Curie, CurieCoreTech Mass Spectrometry Proteomics, PSL Research University, Paris, France
| | - Damarys Loew
- Institut Curie, CurieCoreTech Mass Spectrometry Proteomics, PSL Research University, Paris, France
| | - Amanda K A Silva
- Laboratoire Matière et Systèmes Complexes, MSC, CNRS UMR7057, Université Paris Cité, Paris, 75006, France
| | - Anke Lindner
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes, PMMH, CNRS UMR7636, ESPCI Paris, PSL Research University, Sorbonne Université, Université Paris Cité, Paris, 75005, France
| | - Claire Wilhelm
- Laboratoire Physique des Cellules et Cancer, PCC, CNRS UMR168, Institut Curie, Sorbonne Université, PSL Research University, Paris, 75005, France
| |
Collapse
|
6
|
Chen YW, Lin YH, Ho CC, Chen CY, Yu MH, Lee AKX, Chiu SC, Cho DY, Shie MY. High-yield extracellular vesicle production from HEK293T cells encapsulated in 3D auxetic scaffolds with cyclic mechanical stimulation for effective drug carrier systems. Biofabrication 2024; 16:045035. [PMID: 39173665 DOI: 10.1088/1758-5090/ad728b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Extracellular vesicles (EVs) show promise in drug loading and delivery for medical applications. However, the lack of scalable manufacturing processes hinders the generation of clinically suitable quantities, thereby impeding the translation of EV-based therapies. Current EV production relies heavily on non-physiological two-dimensional (2D) cell culture or bioreactors, requiring significant resources. Additionally, EV-derived ribonucleic acid cargo in three-dimensional (3D) and 2D culture environments remains largely unknown. In this study, we optimized the biofabrication of 3D auxetic scaffolds encapsulated with human embryonic kidney 293 T (HEK293 T) cells, focusing on enhancing the mechanical properties of the scaffolds to significantly boost EV production through tensile stimulation in bioreactors. The proposed platform increased EV yields approximately 115-fold compared to conventional 2D culture, possessing properties that inhibit tumor progression. Further mechanistic examinations revealed that this effect was mediated by the mechanosensitivity of YAP/TAZ. EVs derived from tensile-stimulated HEK293 T cells on 3D auxetic scaffolds demonstrated superior capability for loading doxorubicin compared to their 2D counterparts for cancer therapy. Our results underscore the potential of this strategy for scaling up EV production and optimizing functional performance for clinical translation.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital, Taichung 404332, Taiwan
| | - Yen-Hong Lin
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Biomedical Engineering, China Medical University, Taichung 406040, Taiwan
| | - Chia-Che Ho
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- High Performance Materials Institute for x-Dimensional Printing, Asia University, Taichung 41354, Taiwan
| | - Cheng-Yu Chen
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital, Taichung 404332, Taiwan
| | - Min-Hua Yu
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 406040, Taiwan
| | - Alvin Kai-Xing Lee
- Department of Orthopedics, China Medical University Hospital, Taichung 404332, Taiwan
| | - Shao-Chih Chiu
- Translational Cell Therapy Center, China Medical University Hospital, Taichung 404332, Taiwan
| | - Der-Yang Cho
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital, Taichung 404332, Taiwan
- Translational Cell Therapy Center, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung 404332, Taiwan
| | - Ming-You Shie
- Research & Development Center for x-Dimensional Extracellular Vesicles, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Biomedical Engineering, China Medical University, Taichung 406040, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
7
|
Kalli M, Stylianopoulos T. Toward innovative approaches for exploring the mechanically regulated tumor-immune microenvironment. APL Bioeng 2024; 8:011501. [PMID: 38390314 PMCID: PMC10883717 DOI: 10.1063/5.0183302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Within the complex tumor microenvironment, cells experience mechanical cues-such as extracellular matrix stiffening and elevation of solid stress, interstitial fluid pressure, and fluid shear stress-that significantly impact cancer cell behavior and immune responses. Recognizing the significance of these mechanical cues not only sheds light on cancer progression but also holds promise for identifying potential biomarkers that would predict therapeutic outcomes. However, standardizing methods for studying how mechanical cues affect tumor progression is challenging. This challenge stems from the limitations of traditional in vitro cell culture systems, which fail to encompass the critical contextual cues present in vivo. To address this, 3D tumor spheroids have been established as a preferred model, more closely mimicking cancer progression, but they usually lack reproduction of the mechanical microenvironment encountered in actual solid tumors. Here, we review the role of mechanical forces in modulating tumor- and immune-cell responses and discuss how grasping the importance of these mechanical cues could revolutionize in vitro tumor tissue engineering. The creation of more physiologically relevant environments that better replicate in vivo conditions will eventually increase the efficacy of currently available treatments, including immunotherapies.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
8
|
He S, Su L, Hu H, Liu H, Xiong J, Gong X, Chi H, Wu Q, Yang G. Immunoregulatory functions and therapeutic potential of natural killer cell-derived extracellular vesicles in chronic diseases. Front Immunol 2024; 14:1328094. [PMID: 38239346 PMCID: PMC10795180 DOI: 10.3389/fimmu.2023.1328094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Extracellular vesicles (EVs) have been proven to play a significant immunoregulatory role in many chronic diseases, such as cancer and immune disorders. Among them, EVs derived from NK cells are an essential component of the immune cell functions. These EVs have been demonstrated to carry a variety of toxic proteins and nucleic acids derived from NK cells and play a therapeutic role in diseases like malignancies, liver fibrosis, and lung injury. However, natural NK-derived EVs (NKEVs) have certain limitations in disease treatment, such as low yield and poor targeting. Concurrently, NK cells exhibit characteristics of memory-like NK cells, which have stronger proliferative capacity, increased IFN-γ production, and enhanced cytotoxicity, making them more advantageous for disease treatment. Recent research has shifted its focus towards engineered extracellular vesicles and their potential to improve the efficiency, specificity, and safety of disease treatments. In this review, we will discuss the characteristics of NK-derived EVs and the latest advancements in disease therapy. Specifically, we will compare different cellular sources of NKEVs and explore the current status and prospects of memory-like NK cell-derived EVs and engineered NKEVs.
Collapse
Affiliation(s)
- Shuang He
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Lanqian Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Haiyang Hu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Haiqi Liu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jingwen Xiong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Xiangjin Gong
- Department of Sports Rehabilitation, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Qibiao Wu
- Faculty of Chinese Medicine, and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| |
Collapse
|
9
|
Lei Z, Jiang H, Liu J, Liu Y, Wu D, Sun C, Du Q, Wang L, Wu G, Wang S, Zhang X. Audible Acoustic Wave Promotes EV Formation and Secretion from Adherent Cancer Cells via Mechanical Stimulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53859-53870. [PMID: 37909306 DOI: 10.1021/acsami.3c13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer-derived extracellular vesicles (EVs) have shown great potential in the field of cancer metastasis research. However, inefficient EV biofabrication has become a barrier to large-scale research on cancer-derived EVs. Here, we presented a novel method to enhance the biofabrication of cancer-derived EVs via audible acoustic wave (AAW), which yielded mechanical stimuli, including surface acoustic pressure and surface stress. Compared to EV yield in conventional static culture, AAW increased the number of cancer-derived EVs by up to 2.5-folds within 3 days. Furthermore, cancer-derived EVs under AAW stimulation exhibited morphology, size, and zeta potential comparable to EVs generated in conventional static culture, and more importantly, they showed the capability to promote cancer cell migration and invasion under both 2D and 3D culture conditions. Additionally, the elevation in EV biofabrication correlated with the activation of the ESCRT pathway and upregulation of membrane fusion-associated proteins (RAB family, SNARE family, RHO family) in response to AAW stimulation. We believe that AAW represents an attractive approach to achieving high-quantity and high-quality production of EVs and that it has the potential to enhance EV biofabrication from other cell types, thereby facilitating EV-based scientific and translational research.
Collapse
Affiliation(s)
- Zhuoyue Lei
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Hongwei Jiang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jie Liu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yuping Liu
- Fuyang Tumor Hospital, Yingzhou District146 Hebin East Rd, Fuyang 236048, China
| | - Di Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Chenwei Sun
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Qijun Du
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Liangwen Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guohua Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Shuqi Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Xingdong Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Li Y, Wu J, He C, He H, Xie M, Yao K, He J, Duan Y, Zhaung L, Wang P, He Y. 3D Prestress Bioprinting of Directed Tissues. Adv Healthc Mater 2023; 12:e2301487. [PMID: 37249520 DOI: 10.1002/adhm.202301487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Many mammalian tissues adopt a specific cellular arrangement under stress stimulus that enables their unique function. However, conventional 3D encapsulation often fails to recapitulate the complexities of these arrangements, thus motivating the need for advanced cellular arrangement approaches. Here, an original 3D prestress bioprinting approach of directed tissues under the synergistic effect of static sustained tensile stress and molecular chain orientation, with an aid of slow crosslinking in bioink, is developed. The semi-crosslinking state of the designed bioink exhibits excellent elasticity for applying stress on the cells during the sewing-like process. After bioprinting, the bioink gradually forms complete crosslinking and keeps the applied stress force to induce cell-orientated growth. More importantly, multiple cell types can be arranged directionally by this approach, while the internal stress of the hydrogel filament is also adjustable. In addition, compared with conventional bioprinted skin, the 3D prestress bioprinted skin results in a better wound healing effect due to promoting the angiogenesis of granulation tissue. This study provides a prospective strategy to engineer skeletal muscles, as well as tendons, ligaments, vascular networks, or combinations thereof in the future.
Collapse
Affiliation(s)
- Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianguo Wu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chuanjiang He
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Honghui He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mingjun Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ke Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Duan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liujing Zhaung
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
11
|
Wu D, Wu J, Liu H, Shi S, Wang L, Huang Y, Yu X, Lei Z, Ouyang T, Shen J, Wu G, Wang S. A biomimetic renal fibrosis progression model on-chip evaluates anti-fibrotic effects longitudinally in a dynamic fibrogenic niche. LAB ON A CHIP 2023; 23:4708-4725. [PMID: 37840380 DOI: 10.1039/d3lc00393k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Although renal fibrosis can advance chronic kidney disease and progressively lead to end-stage renal failure, no effective anti-fibrotic drugs have been clinically approved. To aid drug development, we developed a biomimetic renal fibrosis progression model on-chip to evaluate anti-fibrotic effects of natural killer cell-derived extracellular vesicles and pirfenidone (PFD) across different fibrotic stages. First, the dynamic interplay between fibroblasts and kidney-derived extracellular matrix (ECM) resembling the fibrogenic niche on-chip demonstrated that myofibroblasts induced by stiff ECM in 3 days were reversed to fibroblasts by switching to soft ECM, which was within 2, but not 7 days. Second, PFD significantly down-regulated the expression of α-SMA in NRK-49F in medium ECM, as opposed to stiff ECM. Third, a study in rats showed that early administration of PFD significantly inhibited renal fibrosis in terms of the expression levels of α-SMA and YAP. Taken together, both on-chip and animal models indicate the importance of early anti-fibrotic intervention for checking the progression of renal fibrosis. Therefore, this renal fibrosis progression on-chip with a feature of recapitulating dynamic biochemical and biophysical cues can be readily used to assess anti-fibrotic candidates and to explore the tipping point when the fibrotic fate can be rescued for better medical intervention.
Collapse
Affiliation(s)
- Di Wu
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Jianguo Wu
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Hui Liu
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Shengyu Shi
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Liangwen Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yixiao Huang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xiaorui Yu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Zhuoyue Lei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Tanliang Ouyang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jia Shen
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Guohua Wu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Shuqi Wang
- Institute for Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| |
Collapse
|
12
|
Thompson W, Papoutsakis ET. The role of biomechanical stress in extracellular vesicle formation, composition and activity. Biotechnol Adv 2023; 66:108158. [PMID: 37105240 DOI: 10.1016/j.biotechadv.2023.108158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Extracellular vesicles (EVs) are cornerstones of intercellular communication with exciting fundamental, clinical, and more broadly biotechnological applications. However, variability in EV composition, which results from the culture conditions used to generate the EVs, poses significant fundamental and applied challenges and a hurdle for scalable bioprocessing. Thus, an understanding of the relationship between EV production (and for clinical applications, manufacturing) and EV composition is increasingly recognized as important and necessary. While chemical stimulation and culture conditions such as cell density are known to influence EV biology, the impact of biomechanical forces on the generation, properties, and biological activity of EVs remains poorly understood. Given the omnipresence of these forces in EV preparation and in biomanufacturing, expanding the understanding of their impact on EV composition-and thus, activity-is vital. Although several publications have examined EV preparation and bioprocessing and briefly discussed biomechanical stresses as variables of interest, this review represents the first comprehensive evaluation of the impact of such stresses on EV production, composition and biological activity. We review how EV biogenesis, cargo, efficacy, and uptake are uniquely affected by various types, magnitudes, and durations of biomechanical forces, identifying trends that emerge both generically and for individual cell types. We also describe implications for scalable bioprocessing, evaluating processes inherent in common EV production and isolation methods, and propose a path forward for rigorous EV quality control.
Collapse
Affiliation(s)
- Will Thompson
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Eleftherios Terry Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|
13
|
Kronstadt SM, Van Heyningen LH, Aranda A, Jay SM. Assessment of anti-inflammatory bioactivity of extracellular vesicles is susceptible to error via media component contamination. Cytotherapy 2023; 25:387-396. [PMID: 36599771 PMCID: PMC10006399 DOI: 10.1016/j.jcyt.2022.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023]
Abstract
Extracellular vesicles (EVs) are widely implicated as novel diagnostic and therapeutic modalities for a wide range of diseases. Thus, optimization of EV biomanufacturing is of high interest. In the course of developing parameters for a human embryonic kidney cells (HEK293T) EV production platform, we examined the combinatorial effects of cell culture conditions (i.e., static versus dynamic) and isolation techniques (i.e., ultracentrifugation versus tangential flow filtration versus size-exclusion chromatography) on functional characteristics of HEK293T EVs, including anti-inflammatory bioactivity using a well-established lipopolysaccharide-stimulated mouse macrophage model. We unexpectedly found that, depending on culture condition and isolation strategy, HEK293T EVs appeared to significantly suppress the secretion of pro-inflammatory cytokines (i.e., interleukin-6, RANTES [regulated upon activation, normal T cell expressed and secreted]) in the stimulated mouse macrophages. Further examination revealed that these results were most likely due to non-EV fetal bovine serum components in HEK293T EV preparations. Thus, future research assessing the anti-inflammatory effects of EVs should be designed to account for this phenomenon.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | | | - Amaya Aranda
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA; Program in Molecular and Cell Biology, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
14
|
Kim SY, Ha SM, Kim DU, Park J, Park S, Hyun KA, Jung HI. Modularized dynamic cell culture platform for efficient production of extracellular vesicles and sequential analysis. LAB ON A CHIP 2023; 23:1852-1864. [PMID: 36825402 DOI: 10.1039/d2lc01129h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extracellular vesicles (EVs) are nanometer-sized particles naturally secreted by cells for intercellular communication that encapsulate bioactive cargo, such as proteins and RNA, with a lipid bilayer. Tumor cell-derived EVs (tdEVs) are particularly promising biomarkers for cancer research because their contents reflect the cell of origin. In most studies, tdEVs have been obtained from cancer cells cultured under static conditions, thus lacking the ability to recapitulate the microenvironment of cells in vivo. Recent developments in perfusable cell culture systems have allowed oxygen and a nutrient gradient to mimic the physiological and cellular microenvironment. However, as these systems are perfused by circulating the culture medium within the unified structure, independently harvesting cells and EVs at each time point for analysis presents a limitation. In this study, a modularized cell culture system is designed for the perfusion and real-time collection of EVs. The system consists of three detachable chambers, one each for fresh medium, cell culture, and EV collection. The fresh medium flows from the medium chamber to the culture chamber at a flow rate controlled by the hydraulic pressure injected with a syringe pump. When the culture medium containing EVs exceeds a certain volume within the chamber, it overflows into the collection chamber to harvest EVs. The compact and modularized chambers are highly interoperable with conventional cell culture modalities used in the laboratory, thus enabling various EV-based assays.
Collapse
Affiliation(s)
- Seo Yeon Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Seong Min Ha
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Dong-Uk Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Junhyun Park
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Sunyoung Park
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
- The DABOM Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Kyung-A Hyun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.
- The DABOM Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| |
Collapse
|
15
|
Lu X, Li Y, Li Y, Zhang X, Shi J, Feng H, Gao Y, Yu Z. Advances of multi-omics applications in hepatic precancerous lesions and hepatocellular carcinoma: The role of extracellular vesicles. Front Mol Biosci 2023; 10:1114594. [PMID: 37006626 PMCID: PMC10060991 DOI: 10.3389/fmolb.2023.1114594] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Due to the lack of distinct early symptoms and specific biomarkers, most patients with hepatocellular carcinoma (HCC) are usually diagnosed at advanced stages, rendering the treatment ineffective and useless. Therefore, recognition of the malady at precancerous lesions and early stages is particularly important for improving patient outcomes. The interest in extracellular vesicles (EVs) has been growing in recent years with the accumulating knowledge of their multiple cargoes and related multipotent roles in the modulation of immune response and tumor progression. By virtue of the rapid advancement of high-throughput techniques, multiple omics, including genomics/transcriptomics, proteomics, and metabolomics/lipidomics, have been widely integrated to analyze the role of EVs. Comprehensive analysis of multi-omics data will provide useful insights for discovery of new biomarkers and identification of therapeutic targets. Here, we review the attainment of multi-omics analysis to the finding of the potential role of EVs in early diagnosis and the immunotherapy in HCC.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuyao Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Shi
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hai Feng, ; Yueqiu Gao, ; Zhuo Yu,
| |
Collapse
|
16
|
Hao R, Hu S, Zhang H, Chen X, Yu Z, Ren J, Guo H, Yang H. Mechanical stimulation on a microfluidic device to highly enhance small extracellular vesicle secretion of mesenchymal stem cells. Mater Today Bio 2023; 18:100527. [PMID: 36619203 PMCID: PMC9816961 DOI: 10.1016/j.mtbio.2022.100527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/26/2022] Open
Abstract
Small extracellular vesicles (sEVs) are recognized as promising detection biomarkers and attractive delivery vehicles, showing great potential in diagnosis and treatment of diseases. However, the applications of sEVs are usually restricted by their poor secretion amount from donor cells under routine cell culture conditions, which is especially true for mesenchymal stem cells (MSCs) due to their limited expansion and early senescence. Here, a microfluidic device is proposed for boosting sEV secretion from MSCs derived from human fetal bone marrow (BM-MSCs). As the cells rapidly pass through a microfluidic channel with a series of narrow squeezing ridges, mechanical stimulation permeabilizes the cell membrane, thus promoting them to secrete more sEVs into extracellular space. In this study, the microfluidic device demonstrates that mechanical-squeezing effect could increase the secretion amount of sEVs from the BM-MSCs by approximately 4-fold, while maintaining cellular growth state of the stem cells. Further, the secreted sEVs are efficiently taken up by immortalized human corneal epithelial cells and accelerate corneal epithelial wound healing in vitro, indicating that this technique wound not affect the functionality of sEVs and demonstrating the application potentials of this technique.
Collapse
Affiliation(s)
- Rui Hao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Shi Hu
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huitao Zhang
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xi Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zitong Yu
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingyi Ren
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hang Guo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Hui Yang
- Laboratory of Biomedical Microsystems and Nano Devices, Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
17
|
Bryant P, Sikavitsas VI. Cancer Exosomes: An Overview and the Applications of Flow. FLUIDS 2022; 8:7. [DOI: 10.3390/fluids8010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cancer is one of the most prevalent and disruptive diseases affecting the population, and as such, is the subject of major research efforts. Recently, these efforts have been put towards understanding the role that exosomes can play in the progression of cancer. Exosomes are small extracellular vesicles ranging from 40–150 nm in size that carry bioactive molecules like proteins, DNA, RNA, miRNA, and surface receptors. One of the most important features of exosomes is their ability to easily travel throughout the body, extending the reach of parent cell’s signaling capabilities. Cancer derived exosomes (CDEs) carry dangerous cargo that can aid in the metastasis, and disease progression through angiogenesis, promoting epithelial to mesenchymal transition, and immune suppression. Exosomes can transport these molecules to cells in the tumor environment as well as distant premetastatic locations making them an extremely versatile tool in the toolbelt of cancer. This review aims to compile the present knowledge and understanding of the involvement of exosomes in the progression of cancer as well as current production, isolation, and purification methods, with particular interest on flow perfusion bioreactor and microfluidics systems, which allow for accurate modeling and production of exosomes.
Collapse
Affiliation(s)
- Parker Bryant
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Vassilios I. Sikavitsas
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|