1
|
Liu Y, Zhu Z, Wang P, Deng Z, Niu J, Sawada Y, Saito N. Platinum nanoparticles wrapped in carbon-dot-films as oxygen reduction reaction catalysts prepared by solution plasma sputtering. NANOSCALE ADVANCES 2025; 7:1048-1060. [PMID: 39723234 PMCID: PMC11667578 DOI: 10.1039/d4na00818a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
Fuel cells have become increasingly important in recent years because of their high energy efficiency and low environmental impact. However, key challenges remain in the widespread adoption of fuel-cell vehicles, including reducing Pt usage in catalysts and improving their durability. In this study, a high-performance Pt@carbon-dot-film core-shell catalyst was successfully synthesized using a nonequilibrium reaction field, i.e., solution plasma (SP) process, by adjusting the electrolyte pH. Four pH solutions (pH = 4.4, 7, 8, and 11) were employed as the discharge liquid environment for the SP process. The catalyst synthesized in the pH = 8 solution exhibited a mass activity of approximately 500 mA mg-1, which was twice as high as that of the commercial Pt/C catalyst (256 mA mg-1) with the same loading amount. The onset and half-wave potentials were 0.99 and 0.89 V, respectively, both of which exceeded those of commercial Pt/C catalysts (0.95 and 0.86 V, respectively). Furthermore, the enhanced catalytic performance corresponded to the Pt/C bonding between Pt and the carbon shell generated during the SP process.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Zhunda Zhu
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Pengfei Wang
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Zhuoya Deng
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Jiangqi Niu
- Institute of Innovation for Future Society, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Yasuyuki Sawada
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Institute of Innovation for Future Society, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Nagahiro Saito
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Institute of Innovation for Future Society, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Department of International Collaborative Program in Sustainable Materials and Technology for Industries Between Nagoya University and Chulalongkorn University, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
- Conjoint Research Laboratory in Nagoya University, Shinshu University Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
2
|
Phan QP, Tran TCL, Tran TT, La TTH, Cao XV, Luu TA, Luong TQA. Synthesis of highly activated polybenzene-grafted carbon nanoparticles for supercapacitors assisted by solution plasma. RSC Adv 2024; 14:36610-36621. [PMID: 39553269 PMCID: PMC11566725 DOI: 10.1039/d4ra06534d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024] Open
Abstract
The growing demand for electronic storage devices with faster charging rates, higher energy capacities, and longer cycle lives has led to significant advancements in supercapacitor technology. These devices typically utilize high-surface-area carbon-based materials as electrodes, which provide excellent power densities and cycling stability. However, challenges such as inadequate electrolyte interaction, hydrophobicity that impedes ion transport, and high manufacturing costs restrict their effectiveness. This study aims to enhance carbon-based materials by grafting polymer chains onto their surfaces for supercapacitor applications. A simple solution plasma process (SPP), followed by heating, prepared the polymer-grafted carbon materials. Carbon nanoparticles were synthesized from benzene through plasma discharge in liquid under ambient conditions, forming free radical sites on the carbon surface. Subsequently, benzene molecules were grafted onto the surface via radical polymerization during heating. We investigated the structural and morphological properties of the synthesized materials using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and Raman spectroscopy. Additionally, N2 absorption-desorption isotherms were measured, pore structure was analyzed with the Dubinin-Astakhov (DA) average pore size model, and specific surface area was determined using the Brunauer-Emmett-Teller (BET) equation for all synthesized samples. The results indicated that the grafting process was influenced by heating time and drying temperature. Furthermore, the electrical properties of the samples were evaluated using cyclic voltammetry (CV), which demonstrated enhancements in both areal capacitance and cycling stability for the polybenzene-grafted carbon compared to the non-grafted variant. This research illustrates that polymer grafting can effectively improve the performance and stability of carbon-based materials for supercapacitor applications. Future work will aim to optimize these materials for broader applications.
Collapse
Affiliation(s)
- Quoc Phu Phan
- Department of Polymer Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam Vietnam
| | - Thi Cam Linh Tran
- Department of Polymer Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam Vietnam
| | - Thanh Tung Tran
- Department of Polymer Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam Vietnam
| | - Thi Thai Ha La
- Department of Polymer Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam Vietnam
| | - Xuan Viet Cao
- Department of Polymer Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam Vietnam
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam Vietnam
| | - Tuan Anh Luu
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam Vietnam
- Department of Energy Materials and Applications, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam Vietnam
| | - Thi Quynh Anh Luong
- Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam Vietnam
- Department of Metallurgy and Alloy Materials, Faculty of Materials Technology, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam Vietnam
| |
Collapse
|
3
|
Ukai J, Kim K, Matsuhara S, Yang L, Saito N. Nitrogen-Doped Carbon Nanothin Film as a Buffer Layer between Anodic Graphite and Solid Electrolyte Interphase for Lithium-Ion Batteries. ACS OMEGA 2024; 9:24372-24378. [PMID: 38882070 PMCID: PMC11170689 DOI: 10.1021/acsomega.3c10502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 06/18/2024]
Abstract
Lithium-ion batteries are essential batteries for electric vehicle drive systems. Such batteries must provide stable performance over a long period of time. Therefore, the degradation or aging of the battery capacity must be improved. In the case of the current graphite anodes, graphite coated with an amorphous layer is used. It is known that the amorphous layer can reduce the irreversible capacity loss caused by the solid electrolyte interphase (SEI) layer. The amorphous carbon layers reduce the initial capacity due to higher electrical resistance. In this study, we aim to develop a buffer layer using nitrogen-containing graphene that would prevent the increase in electrical resistance while maintaining the amorphous structure. Coatings with different film thicknesses were prepared by using the solution plasma method. The thinnest sample was oven sintered to optimize the structure, especially the surface and interface of the layer. The battery capacity from charge-discharge experiments and the resistance change of each part from electrochemical impedance measurements were evaluated. The results showed that the coating layer increased the electrical resistance of the graphite anode. On the other hand, the resistance of the SEI layer was reduced by the coating layer. It can be predicted that the addition of the coating layer will increase the total charge transfer resistance (R ct) of the cell but will also improve the period average capacity in the long run. To be used as a practical material, the film thickness would need to be further reduced, and the balance between the loss of charge transfer resistance and the gain of SEI layer resistance would need to be further optimized.
Collapse
Affiliation(s)
- Junzo Ukai
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kyusung Kim
- Institute of Material Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
| | | | - Li Yang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Nagahiro Saito
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Material Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan
- Department of International Collaborative Program in Sustainable Materials and Technology for Industries Between Nagoya University and Chulalongkorn University, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Conjoint Research Laboratory in Nagoya University, Shinshu University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
4
|
Bartkowski M, Zhou Y, Nabil Amin Mustafa M, Eustace AJ, Giordani S. CARBON DOTS: Bioimaging and Anticancer Drug Delivery. Chemistry 2024; 30:e202303982. [PMID: 38205882 DOI: 10.1002/chem.202303982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Cancer, responsible for approximately 10 million lives annually, urgently requires innovative treatments, as well as solutions to mitigate the limitations of traditional chemotherapy, such as long-term adverse side effects and multidrug resistance. This review focuses on Carbon Dots (CDs), an emergent class of nanoparticles (NPs) with remarkable physicochemical and biological properties, and their burgeoning applications in bioimaging and as nanocarriers in drug delivery systems for cancer treatment. The review initiates with an overview of NPs as nanocarriers, followed by an in-depth look into the biological barriers that could affect their distribution, from barriers to administration, to intracellular trafficking. It further explores CDs' synthesis, including both bottom-up and top-down approaches, and their notable biocompatibility, supported by a selection of in vitro, in vivo, and ex vivo studies. Special attention is given to CDs' role in bioimaging, highlighting their optical properties. The discussion extends to their emerging significance as drug carriers, particularly in the delivery of doxorubicin and other anticancer agents, underscoring recent advancements and challenges in this field. Finally, we showcase examples of other promising bioapplications of CDs, emergent owing to the NPs flexible design. As research on CDs evolves, we envisage key challenges, as well as the potential of CD-based systems in bioimaging and cancer therapy.
Collapse
Affiliation(s)
- Michał Bartkowski
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| | - Yingru Zhou
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| | | | | | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
5
|
Elshenawy EA, El-Malla SF, Hammad SF, Mansour FR. Green microwave-prepared N and S Co-doped carbon dots as a new fluorescent nano-probe for tilmicosin detection. Talanta 2023; 265:124853. [PMID: 37379753 DOI: 10.1016/j.talanta.2023.124853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
A straightforward, rapid, and selective fluorescent probe for determination of tilmicosin has been developed based on novel nitrogen and sulfur co-doped CDs (NS-CD). The NS-CDs were synthesized, for the first time, through green, simple one step microwave pyrolysis in only 90 s using glucose as carbon source and l-cysteine as nitrogen and sulfur source. This proposed synthesis method was energy-efficient and resulted in NS-CDs with high production yield (54.27 wt%) and narrow particle size distribution. Greenness of NS-CDs synthesis method was assessed using EcoScale and was proven to be excellent green synthesis. The produced NS-CDs were applied as a nano-probe for determination of tilmicosin in its marketed formulation and milk based on dynamic quenching mechanism. The developed probe showed a good performance for tilmicosin detection in marketed oral solution and pasteurized milk and linearity range of 9-180 μM and 9-120 μM, respectively.
Collapse
Affiliation(s)
- Eman A Elshenawy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy-Tanta University, Tanta, 31111, Egypt.
| | - Samah F El-Malla
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy-Tanta University, Tanta, 31111, Egypt.
| | - Sherin F Hammad
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy-Tanta University, Tanta, 31111, Egypt.
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy-Tanta University, Tanta, 31111, Egypt.
| |
Collapse
|
6
|
Alossaimi MA, Altamimi ASA, Elmansi H, Magdy G. Green synthesized nitrogen-doped carbon quantum dots for the sensitive determination of larotrectinib in biological fluids and dosage forms: Evaluation of method greenness and selectivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122914. [PMID: 37257322 DOI: 10.1016/j.saa.2023.122914] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Recently, the kinase receptor inhibitor drug larotrectinib has been approved as a monotherapy for the treatment of patients with solid tumors containing the neurotrophic receptor tyrosine kinase gene fusion. In this paper, a novel sensitive spectrofluorimetric method was proposed for the determination of larotrectinib based on nitrogen-doped carbon quantum dots (N-CQDs) fluorescent probes. The proposed method is the first spectroscopic method for analysis of the cited drug, which is simple to implement and involves no pre-treatment steps or complicated techniques. The N-CQDs synthesis was performed by adopting a straightforward, fast, and environmentally friendly approach. It was achieved by means of a standard domestic microwave with inexpensive and readily available starting materials: orange juice (carbon source) and urea (nitrogen source). The synthesized N-CQDs were subjected to microscopic and spectroscopic characterization procedures. They were found to be stable with a sufficiently high fluorescence quantum yield (25.3%) and a small particle size distribution (2-5 nm). The motivation for the use of N-CQDs in this study arose from their excellent fluorescence intensities at 417 nm when excited at 325 nm. Larotrectinib was found to have a quantitative and selective quenching effect on the QDs fluorescence allowing for its sensitive determination. The drug's quenching mechanism was investigated and found to be of the static type. Under optimal conditions, the proposed approach permitted the determination of larotrectinib over the concentration interval of 5.0-28.0 µg/mL. The method showed sufficient sensitivity with a detection limit of 0.19 µg/mL and a quantitation limit of 0.57 µg/mL, enabling the determination of LARO in spiked human plasma samples. The approach's recovery percentage was found to be in the range of 99.09-100.73% for pure samples and 97.35-102.59% for plasma samples. The study also successfully applied the proposed approach to the commercial oral solution form of larotrectinib (Vitrakvi®) with high selectivity. Method greenness was further evaluated by adopting two metric tools, including the complementary green analytical procedure index (ComplexGAPI) and Analytical GREENNESS metric approach (AGREE), and it was confirmed to be excellent green. The proposed method was validated in accordance with the ICHQ2 (R1) recommendations and is considered an excellent candidate for potential application in the therapeutic monitoring of larotrectinib.
Collapse
Affiliation(s)
- Manal A Alossaimi
- Pharmaceutical Chemistry Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Abdulmalik S A Altamimi
- Pharmaceutical Chemistry Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Heba Elmansi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura P.O. Box 35516, Egypt
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33511, Egypt
| |
Collapse
|
7
|
Munusamy S, Mandlimath TR, Swetha P, Al-Sehemi AG, Pannipara M, Koppala S, Paramasivam S, Boonyuen S, Pothu R, Boddula R. Nitrogen-doped carbon dots: Recent developments in its fluorescent sensor applications. ENVIRONMENTAL RESEARCH 2023; 231:116046. [PMID: 37150390 DOI: 10.1016/j.envres.2023.116046] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Doped carbon dots have attracted great attention from researchers across disciplines because of their unique characteristics, such as their low toxicity, physiochemical stability, photostability, and outstanding biocompatibility. Nitrogen is one of the most commonly used elements for doping because of its sizeable atomic radius, strong electronegativity, abundance, and availability of electrons. This distinguishes them from other atoms and allows them to perform distinctive roles in various applications. Here, we have reviewed the most current breakthroughs in nitrogen-doped CDs (N-CDs) for fluorescent sensor applications in the last five years. The first section of the article addresses several synthetic and sustainable ways of making N-CDs. Next, we briefly reviewed the fluorescent features of N-CDs and their sensing mechanism. Furthermore, we have thoroughly reviewed their fluorescent sensor applications as sensors for cations, anions, small molecules, enzymes, antibiotics, pathogens, explosives, and pesticides. Finally, we have discussed the N-CDs' potential future as primary research and how that may be used. We hope that this study will contribute to a better understanding of the principles of N-CDs and the sensory applications that they can serve.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Angkok, 10330, Pathumwan, Thailand.
| | - Triveni Rajashekhar Mandlimath
- Department of Chemistry, School of Advanced Sciences, VIT-AP University, G-30, Inavolu, Besides AP Secretariat Amaravati, Andhra Pradesh, India
| | - Puchakayala Swetha
- Department of Chemistry, Oakland University, Rochester, MI, 48309, United States
| | | | | | - Sivasankar Koppala
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 602105, Tamil Nadu, India
| | - Shanmugam Paramasivam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Bangkok, 12120, Pathumthani, Thailand
| | - Ramyakrishna Pothu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Rajender Boddula
- Center for Advanced Materials (CAM), Qatar University Doha, 2713, Qatar.
| |
Collapse
|
8
|
Alossaimi MA, Elmansi H, Alajaji M, Altharawi A, Altamimi ASA, Magdy G. A Novel Quantum Dots-Based Fluorescent Sensor for Determination of the Anticancer Dacomitinib: Application to Dosage Forms. Molecules 2023; 28:molecules28052351. [PMID: 36903599 PMCID: PMC10005270 DOI: 10.3390/molecules28052351] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
One of the most promising drugs recently approved for the treatment of various types of cancer is dacomitinib, which belongs to the tyrosine kinase inhibitor class. The US Food and Drugs Administration (FDA) has recently approved dacomitinib as a first-line treatment for patients suffering from non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. The current study proposes the design of a novel spectrofluorimetric method for determining dacomitinib based on newly synthesized nitrogen-doped carbon quantum dots (N-CQDs) as fluorescent probes. The proposed method is simple and does not require pretreatment or preliminary procedures. Since the studied drug does not have any fluorescent properties, the importance of the current study is magnified. When excited at 325 nm, N-CQDs exhibited native fluorescence at 417 nm, which was quantitatively and selectively quenched by the increasing concentrations of dacomitinib. The developed method involved the simple and green microwave-assisted synthesis of N-CQDs, using orange juice as a carbon source and urea as a nitrogen source. The characterization of the prepared quantum dots was performed using different spectroscopic and microscopic techniques. The synthesized dots had consistently spherical shapes and a narrow size distribution and demonstrated optimal characteristics, including a high stability and a high fluorescence quantum yield (25.3%). When assessing the effectiveness of the proposed method, several optimization factors were considered. The experiments demonstrated highly linear quenching behavior across the concentration range of 1.0-20.0 μg/mL with a correlation coefficient (r) of 0.999. The recovery percentages were found to be in the range of 98.50-100.83% and the corresponding relative standard deviation (%RSD) was 0.984. The proposed method was shown to be highly sensitive with a limit of detection (LOD) as low as 0.11 μg/mL. The type of mechanism by which quenching took place was also investigated by different means and was found to be static with a complementary inner filter effect. For quality purposes, the assessment of the validation criteria adhered to the ICHQ2(R1) recommendations. Finally, the proposed method was applied to a pharmaceutical dosage form of the drug (Vizimpro® Tablets) and the obtained results were satisfactory. Considering the eco-friendly aspect of the suggested methodology, using natural materials to synthesize N-CQDs and water as a diluting solvent added to its greenness profile.
Collapse
Affiliation(s)
- Manal A. Alossaimi
- Pharmaceutical Chemistry Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence:
| | - Heba Elmansi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura P.O. Box 35516, Egypt
| | - Mai Alajaji
- King Abdullah International Medical Research Center, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia
| | - Ali Altharawi
- Pharmaceutical Chemistry Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Pharmaceutical Chemistry Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33511, Egypt
| |
Collapse
|
9
|
Magdy G, Belal F, Elmansi H. Rapid microwave-assisted synthesis of nitrogen-doped carbon quantum dots as fluorescent nanosensors for the spectrofluorimetric determination of palbociclib: application for cellular imaging and selective probing in living cancer cells. RSC Adv 2023; 13:4156-4167. [PMID: 36744285 PMCID: PMC9890896 DOI: 10.1039/d2ra05759j] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
The current study introduces a spectrofluorimetric methodology for the assessment of palbociclib without the need for any pre-derivatization steps for the first time. This approach relied on the palbociclib quenching effect on the native fluorescence of newly synthesized nitrogen-doped carbon quantum dots (N-CQDs). An innovative, facile, and rapid microwave-assisted pyrolysis procedure was applied for the synthesis of N-CQDs using available and economic starting materials (the carbon source is orange juice and the nitrogen source is urea) in less than 10 minutes. Full characterization of the prepared QDs was carried out using various techniques. The prepared N-CQDs exhibited good fluorescence emission at 417 nm after excitation at 325 nm with stable fluorescence intensity and good quantum yield (29.3%). They showed spherical shapes and narrow size distribution with a particle size of around 2-5 nm. Different experimental variables influencing fluorescence quenching were examined and optimized. A good linear correlation was exhibited alongside the range of 1.0 to 20.0 μg mL-1 with a correlation coefficient of 0.9997 and a detection limit of 0.021 μg mL-1. The proposed methodology showed good selectivity allowing its efficient application in tablets with high percentage recoveries and low percentage RSD values. The mechanism of quenching was proved to be static by applying the Stern-Volmer equation at four different temperatures. The method was validated in accordance with ICHQ2 (R1) recommendations. Intriguingly, N-CQDs demonstrated good biocompatibility and low cytotoxicity, which permitted cellular imaging and palbociclib detection in living cancer cells. Therefore, the proposed method may have potential applications in cancer therapy and related mechanism research.
Collapse
Affiliation(s)
- Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University P.O. Box 33511 Kafrelsheikh Egypt +201000137394
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University P.O. Box 35516 Mansoura Egypt
| | - Heba Elmansi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University P.O. Box 35516 Mansoura Egypt
| |
Collapse
|
10
|
Romero Valenzuela AE, Chokradjaroen C, Choeichom P, Wang X, Kim K, Saito N. Carbon Fibers Prepared via Solution Plasma-Generated Seeds. MATERIALS (BASEL, SWITZERLAND) 2023; 16:906. [PMID: 36769911 PMCID: PMC9918063 DOI: 10.3390/ma16030906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Carbon fibers are materials with potential applications for CO2 capture due to their porous structure and high surface areas. Nevertheless, controlling their porosity at a microscale remains challenging. The solution plasma (SP) process provides a fast synthesis route for carbon materials when organic precursors are used. During the discharge and formation of carbon materials in solution, a soot product-denominated solution plasma-generated seeds (SPGS) is simultaneously produced at room temperature and atmospheric pressure. Here, we propose a preparation method for carbon fibers with different and distinctive morphologies. The control over the morphology is also demonstrated by the use of different formulations.
Collapse
Affiliation(s)
- Andres Eduardo Romero Valenzuela
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Chayanaphat Chokradjaroen
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of International Collaborative Program in Sustainable Materials and Technology for Industries between Nagoya University and Chulalongkorn University, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Pongpol Choeichom
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Xiaoyang Wang
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kyusung Kim
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nagahiro Saito
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), Strategic International Collaborative Research Program (SICORP), Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA), Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Conjoint Research Laboratory in Nagoya University, Shinshu University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
11
|
Rapid microwave synthesis of N,S-doped carbon quantum dots as a novel turn off-on sensor for label-free determination of copper and etidronate disodium. Anal Chim Acta 2022; 1197:339491. [DOI: 10.1016/j.aca.2022.339491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/07/2023]
|
12
|
Heteroatom Modified Hybrid Carbon Quantum Dots Derived from Cucurbita pepo for the Visible Light Driven Photocatalytic Dye Degradation. Top Catal 2022. [DOI: 10.1007/s11244-022-01581-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
González-González RB, González LT, Madou M, Leyva-Porras C, Martinez-Chapa SO, Mendoza A. Synthesis, Purification, and Characterization of Carbon Dots from Non-Activated and Activated Pyrolytic Carbon Black. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:298. [PMID: 35159643 PMCID: PMC8838732 DOI: 10.3390/nano12030298] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023]
Abstract
In this work, carbon dots were created from activated and non-activated pyrolytic carbon black obtained from waste tires, which were then chemically oxidized with HNO3. The effects caused to the carbon dot properties were analyzed in detail through characterization techniques such as ion chromatography; UV-visible, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy; ζ potential; transmission electron microscopy (TEM); and spectrofluorometry. The presence of functional groups on the surface of all carbon dots was revealed by UV-visible, FTIR, XPS, and Raman spectra. The higher oxidation degrees of carbon dots from activated precursors compared to those from nonactivated precursors resulted in differences in photoluminescence (PL) properties such as bathochromic shift, lower intensity, and excitation-dependent behavior. The results demonstrate that the use of an activating agent in the recovery of pyrolytic carbon black resulted in carbon dots with different PL properties. In addition, a dialysis methodology is proposed to overcome purification obstacles, finding that 360 h were required to obtain pure carbon dots synthesized by a chemical oxidation method.
Collapse
Affiliation(s)
- Reyna Berenice González-González
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (R.B.G.-G.); (L.T.G.); (S.O.M.-C.)
| | - Lucy Teresa González
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (R.B.G.-G.); (L.T.G.); (S.O.M.-C.)
| | - Marc Madou
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, CA 92697, USA;
| | - César Leyva-Porras
- Laboratorio Nacional de Nanotecnología (Nanotech), Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes No. 120, Chihuahua 31136, Mexico;
| | - Sergio Omar Martinez-Chapa
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (R.B.G.-G.); (L.T.G.); (S.O.M.-C.)
| | - Alberto Mendoza
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (R.B.G.-G.); (L.T.G.); (S.O.M.-C.)
| |
Collapse
|
14
|
Smrithi SP, Kottam N, Muktha H, Mahule AM, Chamarti K, Vismaya V, Sharath R. Carbon dots derived from Beta vulgaris: evaluation of its potential as antioxidant and anticancer agent. NANOTECHNOLOGY 2021; 33:045403. [PMID: 34666320 DOI: 10.1088/1361-6528/ac30f1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Carbon dots (CDs) endowed with outstanding physico-chemical characteristics expeditiously garnered tremendous popularity in the scientific community. CDs can be synthesized from a variety of natural resources and can replace metal semiconductor quantum dots in the range of applications such as bio-imaging, sensing and catalysis. Herein, CDs are green synthesized fromBeta vulgarisvia a single step hydrothermal approach (b-CDs). The synthesized carbon dots are characterized using UV-visible spectrophotometry, Fluorescence spectroscopy, High resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction technique (XRD) and Raman spectroscopy. The b-CDs hence developed exhibited the signature 'excitation-dependent fluorescence emission' with its most intense emission in the green region. The quantum yield for the b-CDs obtained by this synthetic approach evinced an appreciable value of 11.6%. The antioxidant property of b-CDs are evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay to obtain a maximum scavenging activity of 94.5% at a concentration of 1000μg ml-1and its underlying mechanisms are illustrated. The blood compatibility of b-CDs are assessed using haemolysis assay and the cytotoxicity evaluated using MTT assay shows significant cell growth-inhibition against the human breast cancer (MCF-7) and hepatocellular carcinoma (HepG2) cell lines. This succinct study demonstrates the inherent therapeutic potential of biocompatible carbon dots.
Collapse
Affiliation(s)
- S P Smrithi
- Department of Chemistry, M S Ramaiah Institute of Technology (An autonomous Institute affiliated to Visvesvaraya Technological University, Belgaum), Bangalore 560054, India
| | - Nagaraju Kottam
- Department of Chemistry, M S Ramaiah Institute of Technology (An autonomous Institute affiliated to Visvesvaraya Technological University, Belgaum), Bangalore 560054, India
- Center for Advanced Materials Technology, M. S Ramaiah Institute of Technology, Bangalore 560054, India
| | - H Muktha
- Department of Biotechnology, M S Ramaiah Institute of Technology (An autonomous Institute affiliated to Visvesvaraya Technological University, Belgaum), Bangalore 560054, India
| | - Apurva M Mahule
- Department of Chemical Engineering, M S Ramaiah Institute of Technology (An autonomous Institute affiliated to Visvesvaraya Technological University, Belgaum), Bangalore 560054, India
| | - Keertana Chamarti
- Department of Chemical Engineering, M S Ramaiah Institute of Technology (An autonomous Institute affiliated to Visvesvaraya Technological University, Belgaum), Bangalore 560054, India
| | - V Vismaya
- Department of Chemical Engineering, M S Ramaiah Institute of Technology (An autonomous Institute affiliated to Visvesvaraya Technological University, Belgaum), Bangalore 560054, India
| | - R Sharath
- Department of Food Technology, Davangere University, Shivagangotri, Davanagere 577 007, India
| |
Collapse
|
15
|
Kim K, Chae S, Choi PG, Itoh T, Saito N, Masuda Y. Facile synthesis of ZnO nanobullets by solution plasma without chemical additives. RSC Adv 2021; 11:26785-26790. [PMID: 35480000 PMCID: PMC9037661 DOI: 10.1039/d1ra05008g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
ZnO nano-bullets were synthesized using solution plasma from only Zn electrode in water without any chemical agents. In this sustainable synthesis system, the rapid quenching reaction at the interface between the plasma/liquid phases facilitates the fast formation of nano-sized materials. The coil-to-pin type electrode geometry, which overcomes the discharge interruption owing to the electrode gap broadening of the typical pin-to-pin type enables the synthesis of numerous nanomaterials through a stable discharge for 1 h. The as-prepared samples exhibited a high crystalline ZnO structure without post calcination, and the length and width were 71.8 and 29.1 nm, respectively. The main exposed facet of ZnO nano-bullets was the (100) crystal facet, but interestingly, the (101) facet was confirmed at the inclined surfaces in the edges. The (101) crystal facet has an asymmetric Zn and O atom arrangement, and it could result in a focused electron density area with relatively high reactivity. Therefore, ZnO nano-bullets are promising materials for applications in advanced technologies. ZnO nano-bullets were synthesized using only Zn electrode and water by solution plasma and new electrode geometry improved discharge time up to 1 h.![]()
Collapse
Affiliation(s)
- Kyusung Kim
- National Institute of Advanced Industrial Science and Technology (AIST) 2266-98 Anagahora, Shimoshidami, Moriyama Nagoya 463-8560 Japan
| | - Sangwoo Chae
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Pil Gyu Choi
- National Institute of Advanced Industrial Science and Technology (AIST) 2266-98 Anagahora, Shimoshidami, Moriyama Nagoya 463-8560 Japan
| | - Toshio Itoh
- National Institute of Advanced Industrial Science and Technology (AIST) 2266-98 Anagahora, Shimoshidami, Moriyama Nagoya 463-8560 Japan
| | - Nagahiro Saito
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Yoshitake Masuda
- National Institute of Advanced Industrial Science and Technology (AIST) 2266-98 Anagahora, Shimoshidami, Moriyama Nagoya 463-8560 Japan
| |
Collapse
|