1
|
Zhang M, Wang P, Wu Y, Jin L, Liu J, Deng P, Luo R, Chen X, Zhao M, Zhang X, Guo Y, Yan Y, Di Y, Qin J. A microengineered 3D human neurovascular unit model to probe the neuropathogenesis of herpes simplex encephalitis. Nat Commun 2025; 16:3701. [PMID: 40251168 PMCID: PMC12008363 DOI: 10.1038/s41467-025-59042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
Herpes simplex encephalitis (HSE) caused by HSV-1 is the most common non-epidemic viral encephalitis, and the neuropathogenesis of HSE remains elusive. This work describes a 3D human neurovascular unit (NVU) model that allows to explore the neuropathogenesis of HSE in vitro. This model is established by co-culturing human microvascular endothelial cells, astrocytes, microglia and neurons on a multi-compartment chip. Upon HSV-1 infection, this NVU model exhibited HSE-associated pathological changes, including cytopathic effects, blood-brain barrier dysfunction and pro-inflammatory cytokines release. Besides, significant innate immune responses were observed with the infiltration of peripheral immune cells and microglial activation. Transcriptomic analysis revealed broadly inflammatory and chemotactic responses in host cells. Mechanistically, we found HSV-1 could induce severe suppression of autophagic flux in glial cells, especially in microglia. Autophagy activators could effectively inhibit HSV-1 replication and rescue neurovascular injuries, indicating the utility of this unique platform for studying neurological diseases and new therapeutics.
Collapse
Affiliation(s)
- Min Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Peng Wang
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Yunsong Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Jin
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Pengwei Deng
- University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiyue Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengqian Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xu Zhang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yaqiong Guo
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ying Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Yingtong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Science and Technology of China, Hefei, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Zilberter Y, Tabuena DR, Zilberter M. NOX-induced oxidative stress is a primary trigger of major neurodegenerative disorders. Prog Neurobiol 2023; 231:102539. [PMID: 37838279 PMCID: PMC11758986 DOI: 10.1016/j.pneurobio.2023.102539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Neurodegenerative diseases (NDDs) causing cognitive impairment and dementia are difficult to treat due to the lack of understanding of primary initiating factors. Meanwhile, major sporadic NDDs share many risk factors and exhibit similar pathologies in their early stages, indicating the existence of common initiation pathways. Glucose hypometabolism associated with oxidative stress is one such primary, early and shared pathology, and a likely major cause of detrimental disease-associated cascades; targeting this common pathology may therefore be an effective preventative strategy for most sporadic NDDs. However, its exact cause and trigger remain unclear. Recent research suggests that early oxidative stress caused by NADPH oxidase (NOX) activation is a shared initiating mechanism among major sporadic NDDs and could prove to be the long-sought ubiquitous NDD trigger. We focus on two major NDDs - Alzheimer's disease (AD) and Parkinson's disease (PD), as well as on acquired epilepsy which is an increasingly recognized comorbidity in NDDs. We also discuss available data suggesting the relevance of the proposed mechanisms to other NDDs. We delve into the commonalities among these NDDs in neuroinflammation and NOX involvement to identify potential therapeutic targets and gain a deeper understanding of the underlying causes of NDDs.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Dennis R Tabuena
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
| |
Collapse
|
3
|
Gong H, Yuan N, Shen Z, Tang C, Shipp S, Qian L, Lu Y, Andolina IM, Zhang S, Wu J, Yang H, Wang W. Transduction catalysis: Doxorubicin amplifies rAAV-mediated gene expression in the cortex of higher-order vertebrates. iScience 2021; 24:102685. [PMID: 34195565 PMCID: PMC8233199 DOI: 10.1016/j.isci.2021.102685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/24/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
Rapid and efficient gene transduction via recombinant adeno-associated viruses (rAAVs) is highly desirable across many basic and clinical research domains. Here, we report that vector co-infusion with doxorubicin, a clinical anti-cancer drug, markedly enhanced rAAV-mediated transgene expression in the cerebral cortex across mammalian species (cat, mouse, and macaque), acting throughout the time period examined and detectable at just three days after transfection. This enhancement showed serotype generality, being common to all rAAV serotypes tested (2, 8, 9, and PHP.eB) and was observed both locally and at remote locations consistent with doxorubicin undergoing retrograde axonal transport. All these effects were observed at doses matching human blood plasma levels in clinical therapy and lacked detectable cytotoxicity as assessed by cell morphology, activity, apoptosis, and behavioral testing. Altogether, this study identifies an effective means to improve the capability and scope of in vivo rAAV applications, amplifying cell transduction at doxorubicin concentrations paralleling medical practice.
Collapse
Affiliation(s)
- Hongliang Gong
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nini Yuan
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiming Shen
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Tang
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stewart Shipp
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liling Qian
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yiliang Lu
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ian Max Andolina
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shenghai Zhang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Jihong Wu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China
| | - Hui Yang
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Wei Wang
- Institute of Neuroscience, the Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Center for Brain and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| |
Collapse
|
4
|
A map of transcriptional heterogeneity and regulatory variation in human microglia. Nat Genet 2021; 53:861-868. [PMID: 34083789 PMCID: PMC7610960 DOI: 10.1038/s41588-021-00875-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Microglia, the tissue-resident macrophages of the central nervous system (CNS), play critical roles in immune defense, development and homeostasis. However, isolating microglia from humans in large numbers is challenging. Here, we profiled gene expression variation in primary human microglia isolated from 141 patients undergoing neurosurgery. Using single-cell and bulk RNA sequencing, we identify how age, sex and clinical pathology influence microglia gene expression and which genetic variants have microglia-specific functions using expression quantitative trait loci (eQTL) mapping. We follow up one of our findings using a human induced pluripotent stem cell-based macrophage model to fine-map a candidate causal variant for Alzheimer's disease at the BIN1 locus. Our study provides a population-scale transcriptional map of a critically important cell for human CNS development and disease.
Collapse
|
5
|
The Mast Cell Is an Early Activator of Lipopolysaccharide-Induced Neuroinflammation and Blood-Brain Barrier Dysfunction in the Hippocampus. Mediators Inflamm 2020; 2020:8098439. [PMID: 32184702 PMCID: PMC7060448 DOI: 10.1155/2020/8098439] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/28/2019] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Neuroinflammation contributes to or even causes central nervous system (CNS) diseases, and its regulation is thus crucial for brain disorders. Mast cells (MCs) and microglia, two resident immune cells in the brain, together with astrocytes, play critical roles in the progression of neuroinflammation-related diseases. MCs have been demonstrated as one of the fastest responders, and they release prestored and newly synthesized mediators including histamine, β-tryptase, and heparin. However, temporal changes in MC activation in this inflammation process remain unclear. This study demonstrated that MC activation began at 2 h and peaked at 4 h after lipopolysaccharide (LPS) administration. The number of activated MCs remained elevated until 24 h after LPS administration. In addition, the levels of histamine and β-tryptase in the hippocampus markedly and rapidly increased within 6 h and remained higher than the baseline level within 24 h after LPS challenge. Furthermore, mast cell-deficient KitW-sh/W-sh mice were used to investigate the effects of MCs on microglial and astrocytic activation and blood-brain barrier (BBB) permeability at 4 h after LPS stimulation. Notably, LPS-induced proinflammatory cytokine secretion, microglial activation, and BBB damage were inhibited in KitW-sh/W-sh mice. However, no detectable astrocytic changes were found in WT and KitW-sh/W-sh mice at 4 h after LPS stimulation. Our findings indicate that MC activation precedes CNS inflammation and suggest that MCs are among the earliest participants in the neuroinflammation-initiating events.
Collapse
|
6
|
Nagy B, Hovhannisyan A, Barzan R, Chen TJ, Kukley M. Different patterns of neuronal activity trigger distinct responses of oligodendrocyte precursor cells in the corpus callosum. PLoS Biol 2017; 15:e2001993. [PMID: 28829781 PMCID: PMC5567905 DOI: 10.1371/journal.pbio.2001993] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/18/2017] [Indexed: 12/28/2022] Open
Abstract
In the developing and adult brain, oligodendrocyte precursor cells (OPCs) are influenced by neuronal activity: they are involved in synaptic signaling with neurons, and their proliferation and differentiation into myelinating glia can be altered by transient changes in neuronal firing. An important question that has been unanswered is whether OPCs can discriminate different patterns of neuronal activity and respond to them in a distinct way. Here, we demonstrate in brain slices that the pattern of neuronal activity determines the functional changes triggered at synapses between axons and OPCs. Furthermore, we show that stimulation of the corpus callosum at different frequencies in vivo affects proliferation and differentiation of OPCs in a dissimilar way. Our findings suggest that neurons do not influence OPCs in “all-or-none” fashion but use their firing pattern to tune the response and behavior of these nonneuronal cells. Oligodendrocytes are glial cells of the central nervous system. One of their major tasks is to enwrap neuronal axons with myelin, providing electrical insulation of axons and a dramatic increase in the speed of nerve impulse propagation. Oligodendrocytes develop from oligodendrocyte precursor cells (OPCs). Self-renewal of OPCs, their differentiation into oligodendrocytes, and the process of myelin synthesis are influenced by neuronal activity. Furthermore, OPCs receive glutamatergic synaptic input from neurons. Neuronal activity in vivo is highly variable depending on the brain region, input stimulus, and/or behavioral task that an animal or human has to perform in everyday life. Therefore, it is important to understand whether different types of neuronal activity affect development and function of oligodendrocyte lineage cells in a distinct way. In this study, we demonstrate that the amount and the timing of glutamate release at synapses between neurons and OPCs, the properties of the subsequent ionic current through glutamate receptors in OPC membrane, as well as the extent of OPCs’ self-renewal and differentiation into oligodendrocytes differ depending on the frequency and duration of neuronal activity. Hence, the pattern of neuronal activity rather than just presence or absence of activity is an important parameter that determines development and function of oligodendroglial cells.
Collapse
Affiliation(s)
- Balint Nagy
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- * E-mail: (MK); (BN)
| | - Anahit Hovhannisyan
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Ruxandra Barzan
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Ting-Jiun Chen
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Maria Kukley
- Group of Neuron Glia Interaction, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- * E-mail: (MK); (BN)
| |
Collapse
|
7
|
Greene-Schloesser DM, Kooshki M, Payne V, D'Agostino RB, Wheeler KT, Metheny-Barlow LJ, Robbins ME. Cellular response of the rat brain to single doses of (137)Cs γ rays does not predict its response to prolonged 'biologically equivalent' fractionated doses. Int J Radiat Biol 2014; 90:790-8. [PMID: 24937374 DOI: 10.3109/09553002.2014.933915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To determine if the brain's response to single doses predicts its response to 'biologically equivalent' fractionated doses. METHODS Young adult male Fischer 344 rats were whole-brain irradiated with either single 11, 14, or 16.5 Gy doses of (137)Cs γ rays or their 'biologically equivalent' 20, 30, or 40 Gy fractionated doses (fWBI) delivered in 5 Gy fractions, twice/week for 2, 3, or 4 weeks, respectively. At 2 months post-irradiation, cellular markers of inflammation (total, activated, and newborn microglia) and neurogenesis (newborn neurons) were measured in 40 μm sections of the dentate gyrus (DG). RESULTS Although the total number of microglia in the DG/hilus was not significantly different (p > 0.7) in unirradiated, single dose, and fWBI rats, single doses produced a significant (p < 0.003) increase in the percent-activated microglia; fWBI did not (p > 0.1). Additionally, single doses produced a significant (p < 0.002) dose-dependent increase in surviving newborn microglia; fWBI did not (p < 0.8). Although total proliferation in the DG was reduced equally by single and fWBI doses, single doses produced a significant dose-dependent (p < 0.02) decrease in surviving newborn neurons; fWBI did not (p > 0.6). CONCLUSIONS These data demonstrate that the rat brain's cellular response to single doses often does not predict its cellular response to 'biologically equivalent' fWBI doses.
Collapse
Affiliation(s)
- Dana M Greene-Schloesser
- Department of Radiation Oncology, Wake Forest School of Medicine , Winston-Salem, North Carolina , USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Xiao L, Saiki C, Ide R. Stem cell therapy for central nerve system injuries: glial cells hold the key. Neural Regen Res 2014; 9:1253-60. [PMID: 25221575 PMCID: PMC4160849 DOI: 10.4103/1673-5374.137570] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 12/13/2022] Open
Abstract
Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. Endogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efficacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely influence local and transplanted neural stem cells survival and fates. This review critically analyzes current finding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells’ behavior to create a permissive microenvironment for neuronal stem cells.
Collapse
Affiliation(s)
- Li Xiao
- Pharmacology Department, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Chikako Saiki
- Physiology Department, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Ryoji Ide
- Physiology Department, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 2013; 8:e76310. [PMID: 24086725 PMCID: PMC3785459 DOI: 10.1371/journal.pone.0076310] [Citation(s) in RCA: 399] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/23/2013] [Indexed: 12/31/2022] Open
Abstract
Recombinant Adeno-associated virus vectors (rAAV) are widely used for gene delivery and multiple naturally occurring serotypes have been harnessed to target cells in different tissues and organs including the brain. Here, we provide a detailed and quantitative analysis of the transduction profiles of rAAV vectors based on six of the most commonly used serotypes (AAV1, AAV2, AAV5, AAV6, AAV8, AAV9) that allows systematic comparison and selection of the optimal vector for a specific application. In our studies we observed marked differences among serotypes in the efficiency to transduce three different brain regions namely the striatum, hippocampus and neocortex of the mouse. Despite the fact that the analyzed serotypes have the general ability to transduce all major cell types in the brain (neurons, microglia, astrocytes and oligodendrocytes), the expression level of a reporter gene driven from a ubiquitous promoter varies significantly for specific cell type / serotype combinations. For example, rAAV8 is particularly efficient to drive transgene expression in astrocytes while rAAV9 appears well suited for the transduction of cortical neurons. Interestingly, we demonstrate selective retrograde transport of rAAV5 along axons projecting from the ventral part of the entorhinal cortex to the dentate gyrus. Furthermore, we show that self-complementing rAAV can be used to significantly decrease the time required for the onset of transgene expression in the mouse brain.
Collapse
|
10
|
Lee SW, Haditsch U, Cord BJ, Guzman R, Kim SJ, Boettcher C, Priller J, Ormerod BK, Palmer TD. Absence of CCL2 is sufficient to restore hippocampal neurogenesis following cranial irradiation. Brain Behav Immun 2013; 30:33-44. [PMID: 23041279 PMCID: PMC3556199 DOI: 10.1016/j.bbi.2012.09.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 02/08/2023] Open
Abstract
Cranial irradiation for the treatment of brain tumors causes a delayed and progressive cognitive decline that is pronounced in young patients. Dysregulation of neural stem and progenitor cells is thought to contribute to these effects by altering early childhood brain development. Earlier work has shown that irradiation creates a chronic neuroinflammatory state that severely and selectively impairs postnatal and adult neurogenesis. Here we show that irradiation induces a transient non-classical cytokine response with selective upregulation of CCL2/monocyte chemoattractant protein-1 (MCP-1). Absence of CCL2 signaling in the hours after irradiation is alone sufficient to attenuate chronic microglia activation and allow the recovery of neurogenesis in the weeks following irradiation. This identifies CCL2 signaling as a potential clinical target for moderating the long-term defects in neural stem cell function following cranial radiation in children.
Collapse
Affiliation(s)
- Star W. Lee
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA
| | - Ursula Haditsch
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA
| | - Branden J. Cord
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA
| | - Raphael Guzman
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Soo Jeong Kim
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA
| | - Chotima Boettcher
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charite-Universitaetsmedizin, Berlin, Germany
| | - Josef Priller
- Neuropsychiatry and Laboratory of Molecular Psychiatry, Charite-Universitaetsmedizin, Berlin, Germany
| | - Brandi K. Ormerod
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Theo D. Palmer
- Stanford University, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA,To whom correspondence should be addressed: , The Lorry I. Lokey Stem Cell Research Building, 265 Campus Dr., Stanford, CA 94305-5454, 650-736-1482 phone, 650-736-1949 fax
| |
Collapse
|
11
|
Kizil C, Kaslin J, Kroehne V, Brand M. Adult neurogenesis and brain regeneration in zebrafish. Dev Neurobiol 2012; 72:429-61. [DOI: 10.1002/dneu.20918] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Clausen F, Hånell A, Israelsson C, Hedin J, Ebendal T, Mir AK, Gram H, Marklund N. Neutralization of interleukin-1β reduces cerebral edema and tissue loss and improves late cognitive outcome following traumatic brain injury in mice. Eur J Neurosci 2011; 34:110-23. [PMID: 21623956 DOI: 10.1111/j.1460-9568.2011.07723.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing evidence suggests that interleukin-1β (IL-1β) is a key mediator of the inflammatory response following traumatic brain injury (TBI). Recently, we showed that intracerebroventricular administration of an IL-1β-neutralizing antibody was neuroprotective following TBI in mice. In the present study, an anti-IL-1β antibody or control antibody was administered intraperitoneally following controlled cortical injury (CCI) TBI or sham injury in 105 mice and we extended our histological, immunological and behavioral analysis. First, we demonstrated that the treatment antibody reached target brain regions of brain-injured animals in high concentrations (> 11 nm) remaining up to 8 days post-TBI. At 48 h post-injury, the anti-IL-1β treatment attenuated the TBI-induced hemispheric edema (P < 0.05) but not the memory deficits evaluated using the Morris water maze (MWM). Neutralization of IL-1β did not influence the TBI-induced increases (P < 0.05) in the gene expression of the Ccl3 and Ccr2 chemokines, IL-6 or Gfap. Up to 20 days post-injury, neutralization of IL-1β was associated with improved visuospatial learning in the MWM, reduced loss of hemispheric tissue and attenuation of the microglial activation caused by TBI (P < 0.05). Motor function using the rotarod and cylinder tests was not affected by the anti-IL-1β treatment. Our results suggest an important negative role for IL-1β in TBI. The improved histological and behavioral outcome following anti-IL-1β treatment also implies that further exploration of IL-1β-neutralizing compounds as a treatment option for TBI patients is warranted.
Collapse
Affiliation(s)
- Fredrik Clausen
- Department of Neuroscience, Section for Neurosurgery, Uppsala University, Entrance 85, 2nd floor, Uppsala University Hospital, S-75185 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Neuropathogenesis of Noonan syndrome is mediated by inflammatory microglia. Transl Neurosci 2011. [DOI: 10.2478/s13380-011-0035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractMicroglia are resident hematopoietic cells that play important roles in the damaged or degenerating adult nervous system. Microglia are involved in neuropathogenesis of various diseases. Microglia are also essential for neuroprotection and comprise an essential component of the neural stem cell niche. The activation of microglia is an important phenomenon associated with several neurological disorders that arise from infections to developmental abnormalities and behavioral pathologies. Noonan syndrome (NS) is associated with mutations in the PTPN11 gene and also accounts for mental retardation in children. Interestingly, in mouse models of NS, mutations in the PTPN11 gene resulted in dysregulation of neural progenitors. The present study describes the activation of microglia in the NS mouse model, which results in an inflammatory phenotype with expression of IL-1b and defective phagocytosis. To test whether microglia from NS mice are important for neural precursor maintenance or self-renewal, embryonic neural precursors from the cortex of WT mice were cultured. Microglia from NS and WT mice were then added to cortical precursor cells which showed that microglia from NS mice inhibited astrogenesis. Together, these results demonstrate that microglia can dysregulate neural precursor development in NS, and suggest that alterations in microglial number as a consequence of genetic or pathological events may perturb neural development by directly affecting embryonic neural precursors.
Collapse
|
14
|
Mayo L, Levy A, Jacob-Hirsch J, Amariglio N, Rechavi G, Stein R. Bid regulates the immunological profile of murine microglia and macrophages. Glia 2010; 59:397-412. [PMID: 21264947 DOI: 10.1002/glia.21109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 10/18/2010] [Indexed: 11/12/2022]
Abstract
Apoptosis is a controlled cell-death process mediated inter alia by proteins of the Bcl-2 family. Some proteins previously shown to promote the apoptotic process were found to have nonapoptotic functions as well. Microglia, the resident immune cells of the central nervous system, respond to brain derangements by becoming activated to contend with the brain damage. Activated microglia can also undergo activation-induced cell death. Previous studies have addressed the role of core apoptotic proteins in the death process, but whether these proteins also play a role or not in the activation process is not been reported. Here we explore the effect of the BH3-only protein Bid on the immunological features of microglia and macrophages. Our results showed that Bid regulates both the phagocytotic activities and the inflammatory profiles of these cells. Deficiency of Bid attenuated the phagocytotic activity of primary microglia and peritoneal macrophages. It also changed the expression profile of distinct inflammation-related genes in lipopolysaccharide-activated microglia and peritoneal macrophages in vitro and in an in vivo sepsis-like paradigm. Notably, similar changes followed downregulation of Bid in the N9 microglial cell line. Cell death could not be detected in any of the systems examined. Our findings demonstrate that Bid can regulate the immunological profiles of activated microglial and macrophages, via a novel nonapoptotic activity. In view of the critical role of these cells in various pathologies, including acute and chronic brain insults, our findings suggest that impairments in Bid expression may contribute to these pathologies also via a nonapoptotic activity.
Collapse
Affiliation(s)
- Lior Mayo
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
15
|
Parkhurst CN, Gan WB. Microglia dynamics and function in the CNS. Curr Opin Neurobiol 2010; 20:595-600. [PMID: 20705452 DOI: 10.1016/j.conb.2010.07.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 06/30/2010] [Accepted: 07/06/2010] [Indexed: 11/20/2022]
Abstract
Microglial cells constitute the resident immune cell population of the mammalian central nervous system. One striking feature of these cells is their highly dynamic nature under both normal and pathological brain conditions. The highly branched processes of resting microglia display a constitutive mobility and undergo rapid directional movement towards sites of acute tissue disruption. Microglia can be converted by a large number of different stimuli to a chronically activated state by signaling through both purinergic and Toll-like receptor systems, among others. Recent work has uncovered some of the mechanisms underlying microglia dynamics and shed new light into the functional significance of this enigmatic member of the glial cell family.
Collapse
Affiliation(s)
- Christopher N Parkhurst
- Molecular Neurobiology Program, Skirball Institute, Department of Physiology and Neuroscience, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
16
|
Smiljanic K, Lavrnja I, Mladenovic Djordjevic A, Ruzdijic S, Stojiljkovic M, Pekovic S, Kanazir S. Brain injury induces cholesterol 24-hydroxylase (Cyp46) expression in glial cells in a time-dependent manner. Histochem Cell Biol 2010; 134:159-69. [PMID: 20559650 DOI: 10.1007/s00418-010-0718-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2010] [Indexed: 12/14/2022]
Abstract
Maintaining the cholesterol homeostasis is essential for normal CNS functioning. The enzyme responsible for elimination of cholesterol excess from the brain is cholesterol 24-hydroxylase (Cyp46). Since cholesterol homeostasis is disrupted following brain injury, in this study we examined the effect of right sensorimotor cortex suction ablation on cellular and temporal pattern of Cyp46 expression in the rat brain. Increased expression of Cyp46 at the lesion site at all post injury time points (2, 7, 14, 28 and 45 days post injury, dpi) was detected. Double immunofluorescence staining revealed colocalization of Cyp46 expression with different types of glial cells in time-dependent manner. In ED1(+) microglia/macrophages Cyp46 expression was most prominent at 2 and 7 dpi, whereas Cyp46 immunoreactivity persisted in reactive astrocytes throughout all time points post-injury. However, during the first 2 weeks Cyp46 expression was enhanced in both GFAP(+) and Vim(+) astrocytes, while at 28 and 45 dpi its expression was mostly associated with GFAP(+) cells. Pattern of neuronal Cyp46 expression remained unchanged after the lesion, i.e. Cyp46 immunostaining was detected in dendrites and cell body, but not in axons. The results of this study clearly demonstrate that in pathological conditions, like brain injury, Cyp46 displayed atypical expression, being expressed not only in neuronal cells, but also in microglia and astrocytes. Therefore, injury-induced expression of Cyp46 in microglial and astroglial cells may be involved in the post-injury removal of damaged cell membranes contributing to re-establishment of the brain cholesterol homeostasis.
Collapse
Affiliation(s)
- Kosara Smiljanic
- Department of Neurobiology, Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
17
|
Clausen F, Hånell A, Björk M, Hillered L, Mir AK, Gram H, Marklund N. Neutralization of interleukin-1beta modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur J Neurosci 2009; 30:385-96. [PMID: 19614750 DOI: 10.1111/j.1460-9568.2009.06820.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interleukin-1beta (IL-1beta) may play a central role in the inflammatory response following traumatic brain injury (TBI). We subjected 91 mice to controlled cortical impact (CCI) brain injury or sham injury. Beginning 5 min post-injury, the IL-1beta neutralizing antibody IgG2a/k (1.5 microg/mL) or control antibody was infused at a rate of 0.25 microL/h into the contralateral ventricle for up to 14 days using osmotic minipumps. Neutrophil and T-cell infiltration and microglial activation was evaluated at days 1-7 post-injury. Cognition was assessed using Morris water maze, and motor function using rotarod and cylinder tests. Lesion volume and hemispheric tissue loss were evaluated at 18 days post-injury. Using this treatment strategy, cortical and hippocampal tissue levels of IgG2a/k reached 50 ng/mL, sufficient to effectively inhibit IL-1betain vitro. IL-1beta neutralization attenuated the CCI-induced cortical and hippocampal microglial activation (P < 0.05 at post-injury days 3 and 7), and cortical infiltration of neutrophils (P < 0.05 at post-injury day 7). There was only a minimal cortical infiltration of activated T-cells, attenuated by IL-1beta neutralization (P < 0.05 at post-injury day 7). CCI induced a significant deficit in neurological motor and cognitive function, and caused a loss of hemispheric tissue (P < 0.05). In brain-injured animals, IL-1beta neutralizing treatment resulted in reduced lesion volume, hemispheric tissue loss and attenuated cognitive deficits (P < 0.05) without influencing neurological motor function. Our results indicate that IL-1beta is a central component in the post-injury inflammatory response that, in view of the observed positive neuroprotective and cognitive effects, may be a suitable pharmacological target for the treatment of TBI.
Collapse
Affiliation(s)
- Fredrik Clausen
- Department of Neuroscience, Section for Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
18
|
Mitchell CS, Lee RH. Pathology dynamics predict spinal cord injury therapeutic success. J Neurotrauma 2009; 25:1483-97. [PMID: 19125684 DOI: 10.1089/neu.2008.0658] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Secondary injury, the complex cascade of cellular events following spinal cord injury (SCI), is a major source of post-insult neuron death. Experimental work has focused on the details of individual factors or mechanisms that contribute to secondary injury, but little is known about the interactions among factors leading to the overall pathology dynamics that underlie its propagation. Prior hypotheses suggest that the pathology is dominated by interactions, with therapeutic success lying in combinations of neuroprotective treatments. In this study, we provide the first comprehensive, system-level characterization of the entire secondary injury process using a novel relational model methodology that aggregates the findings of approximately 250 experimental studies. Our quantitative examination of the overall pathology dynamics suggests that, while the pathology is initially dominated by "fire-like", rate-dependent interactions, it quickly switches to a "flood-like", accumulation-dependent process with contributing factors being largely independent. Our evaluation of approximately 20,000 potential single and combinatorial treatments indicates this flood-like pathology results in few highly influential factors at clinically realistic treatment time frames, with multi-factor treatments being merely additive rather than synergistic in reducing neuron death. Our findings give new fundamental insight into the understanding of the secondary injury pathology as a whole, provide direction for alternative therapeutic strategies, and suggest that ultimate success in treating SCI lies in the pursuit of pathology dynamics in addition to individually involved factors.
Collapse
Affiliation(s)
- Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
19
|
Batchelor PE, Tan S, Wills TE, Porritt MJ, Howells DW. Comparison of inflammation in the brain and spinal cord following mechanical injury. J Neurotrauma 2009; 25:1217-25. [PMID: 18986223 DOI: 10.1089/neu.2007.0308] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inflammation in the CNS predominantly involves microglia and macrophages, and is believed to be a significant cause of secondary injury following trauma. This study compares the microglial and macrophage response in the rat brain and spinal cord following discrete mechanical injury to better appreciate the degree to which these cells could contribute to secondary damage in these areas. We find that, 1 week after injury, the microglial and macrophage response is significantly greater in the spinal cord compared to the brain. This is the case for injuries to both gray and white matter. In addition, we observed a greater inflammatory response in white matter compared to gray matter within both the brain and spinal cord. Because activated microglia and macrophages appear to be effectors of secondary damage, a greater degree of inflammation in the spinal cord is likely to result in more extensive secondary damage. Tissue saving strategies utilizing anti-inflammatory treatments may therefore be more useful in traumatic spinal cord than brain injury.
Collapse
Affiliation(s)
- Peter E Batchelor
- Department of Medicine, University of Melbourne, Austin Health, Victoria, Australia
| | | | | | | | | |
Collapse
|
20
|
Hulsebosch CE, Hains BC, Crown ED, Carlton SM. Mechanisms of chronic central neuropathic pain after spinal cord injury. ACTA ACUST UNITED AC 2008; 60:202-13. [PMID: 19154757 DOI: 10.1016/j.brainresrev.2008.12.010] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2008] [Indexed: 12/25/2022]
Abstract
Not all spinal contusions result in mechanical allodynia, in which non-noxious stimuli become noxious. The studies presented use the NYU impactor at 12.5 mm drop or the Infinite Horizons Impactor (150 kdyn, 1 s dwell) devices to model spinal cord injury (SCI). Both of these devices and injury parameters, if done correctly, will result in animals with above level (forelimb), at level (trunk) and below level (hindlimb) mechanical allodynia that model the changes in evoked somatosensation experienced by the majority of people with SCI. The sections are as follows: 1) Mechanisms of remote microglial activation and pain signaling in "below-level" central pain 2) Intracellular signaling mechanisms in central sensitization in "at-level" pain 3) Peripheral sensitization contributes to "above level" injury pain following spinal cord injury and 4) Role of reactive oxygen species in central sensitization in regional neuropathic pain following SCI. To summarize, differential regional mechanisms contribute to the regional chronic pain states. We propose the importance of understanding the mechanisms in the differential regional pain syndromes after SCI in the chronic condition. Targeting regional mechanisms will be of enormous benefit to the SCI population that suffer chronic pain, and will contribute to better treatment strategies for other chronic pain syndromes.
Collapse
Affiliation(s)
- Claire E Hulsebosch
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, USA.
| | | | | | | |
Collapse
|
21
|
Mayo L, Jacob-Hirsch J, Amariglio N, Rechavi G, Moutin MJ, Lund FE, Stein R. Dual role of CD38 in microglial activation and activation-induced cell death. THE JOURNAL OF IMMUNOLOGY 2008; 181:92-103. [PMID: 18566373 DOI: 10.4049/jimmunol.181.1.92] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microglia, the resident immune cells of the CNS, are normally quiescent but become activated after infection or injury. Their properties then change, and they promote both repair and damage processes. The extent of microglial activation is regulated, in part, by activation-induced cell death (AICD). Although many apoptotic aspects of the microglial AICD mechanism have been elucidated, little is known about the connection between the activation step and the death process. Using mouse primary microglial cultures, we show that the ectoenzyme CD38, via its calcium-mobilizing metabolite cyclic-ADP-ribose (cADPR), helps promote microglial activation and AICD induced by LPS plus IFN-gamma (LPS/IFN-gamma), suggesting that CD38 links the two processes. Accordingly, CD38 expression and activity, as well as the intracellular calcium concentration ([Ca2+]i) in the primary microglia were increased by LPS/IFN-gamma treatment. Moreover, CD38 deficiency or treatment with cADPR antagonists conferred partial resistance to LPS/IFN-gamma-induced AICD and also reduced [Ca2+]i. Microglial activation, indicated by induced expression of NO synthase-2 mRNA and production of NO, secretion and mRNA expression of TNF-alpha and IL-12 p40, and expression of IL-6 mRNA, was attenuated by CD38 deficiency or cADPR-antagonist treatment. The observed effects of CD38 on microglial activation are probably mediated via a cADPR-dependent increase in [Ca2+]i and the effect on AICD by regulation of NO production. Our results thus suggest that CD38 significantly affects regulation of the amount and function of activated microglia, with important consequences for injury and repair processes in the brain.
Collapse
Affiliation(s)
- Lior Mayo
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
22
|
Nixon K, Kim DH, Potts EN, He J, Crews FT. Distinct cell proliferation events during abstinence after alcohol dependence: microglia proliferation precedes neurogenesis. Neurobiol Dis 2008; 31:218-29. [PMID: 18585922 DOI: 10.1016/j.nbd.2008.04.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/12/2008] [Accepted: 04/21/2008] [Indexed: 01/07/2023] Open
Abstract
Excessive alcohol intake characteristic of Alcohol Use Disorders (AUDs) produces neurodegeneration that may recover with abstinence. The mechanism of regeneration is unclear, however neurogenesis from neural stem/progenitor cells is a feasible mechanism of structural plasticity. Therefore, a timecourse of cell proliferation was examined in a rat model of an AUD and showed a striking burst in cell proliferation at 2 days of abstinence preceding the previously reported neurogenic proliferation at 7 days. New cells at 2 days, assessed by bromo-deoxy-uridine incorporation and endogenous markers, were observed throughout hippocampus and cortex. Although the majority of these new cells did not become neurons, neurogenesis was not altered at this specific time point. These new cells expressed a microglia-specific marker, Iba-1, and survived at least 2 months. This first report of microglia proliferation in a model of an AUD suggests that microgliosis could contribute to volume recovery in non-neurogenic regions during abstinence.
Collapse
Affiliation(s)
- K Nixon
- Department of Pharmaceutical Sciences, The University of Kentucky, College of Pharmacy, 725 Rose Street, Lexington, KY 40536-0082, USA
| | | | | | | | | |
Collapse
|
23
|
McKay SM, Brooks DJ, Hu P, McLachlan EM. Distinct types of microglial activation in white and grey matter of rat lumbosacral cord after mid-thoracic spinal transection. J Neuropathol Exp Neurol 2007; 66:698-710. [PMID: 17882014 DOI: 10.1097/nen.0b013e3181256b32] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The inflammatory response has been characterized in the lumbosacral segments (L4-S1) of rats after spinal transection at T8. Immune cells were identified immunohistochemically using antibodies to complement type 3 receptor, CD11b (OX-42), the macrophage lysosomal antigen, CD68 (ED1), major histocompatibility complex class II (MHC II), and CD163 (ED2), a marker of perivascular cells. One week after cord transection, OX-42+ microglial density had nearly doubled. In the white matter, microglia became enlarged, often with retracted processes. In contrast, microglia in the grey matter remained ramified although nearly half of those lying medially contained clusters of ED1+ granules. After 8 weeks, ED1+ (+/-MHC II) macrophages were prominent in regions of Wallerian degeneration extending from dorsolateral to ventral funiculi. Microglial density remained raised in grey matter, particularly in the ventral horns of L4/5. Ramified microglia expressing MHC II+ (+/-ED1) extended from deep in the dorsal columns and around the central canal to the ventral columns. More ED2+ (+/-MHC II) perivascular and meningeal cells were recruited and expressed ED1. Thus, distinct from their conversion into macrophages in the white matter, the activation of ramified microglia after degeneration in the grey matter involves expression of ED1 without morphologic transformation.
Collapse
Affiliation(s)
- Sarah M McKay
- Spinal Injuries Research Centre, Prince of Wales Medical Research Institute, Randwick, NSW, Australia
| | | | | | | |
Collapse
|
24
|
Thomale UW, Bender M, Casalis P, Rupprecht S, Griebenow M, Neumann K, Woiciechowsky C, Unterberg AW, Stover JF. Tacrolimus depresses local immune cell infiltration but fails to reduce cortical contusion volume in brain-injured rats. Immunobiology 2007; 212:567-76. [PMID: 17678714 DOI: 10.1016/j.imbio.2007.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 01/15/2007] [Accepted: 01/17/2007] [Indexed: 11/24/2022]
Abstract
The immunosuppressant drug tacrolimus (FK-506) failed to show an anti-edematous effect despite suppressing pro-inflammatory cytokines in cerebrospinal fluid following focal traumatic brain injury. By questioning the role of the inflammatory response as a pharmacological target, we investigated the effects of FK-506 on immune cell infiltration in brain-injured rats. Following induction of a cortical contusion, male Sprague-Dawley rats received FK-506 or physiological saline intraperitoneally. Brains were removed at 24 h, 72 h or 7 days, respectively. Frozen brain sections (7 microm) were stained immunohistologically for markers of endothelial activation (intercellular adhesion molecule-1--ICAM-1), neutrophil infiltration (His-48), and microglial and macrophage activation (Ox-6; ED-1), respectively. Immunopositive cells were counted microscopically. Contusion volume (CV) was quantified morphometrically 7 days after trauma. Inflammatory response was confined to the ipsilateral cortex and hippocampal formation, predominating in the contusion and pericontusional cortex. Strongest ICAM-1 expression coincided with sustained granulocyte accumulation at 72h which was suppressed by FK-506. Ox-6+ cells prevailing at 72 h were also significantly reduced by FK-506. ED-1+ cells reaching highest intensity at 7 days were significantly attenuated at 72 h. Cortical CV was not influenced. FK-506 significantly decreased post-traumatic local inflammation which, however, was not associated with a reduction in cortical CV. These results question the importance of post-traumatic local immune cell infiltration in the secondary growth of a cortical contusion.
Collapse
Affiliation(s)
- Ulrich W Thomale
- Department of Neurosurgery, Charité, Medical University of Berlin, Campus Virchow Medical Center, D-13353 Berlin, Germany, and University Hospital Zürich, Division of Surgical Instensive Care Medicine, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Potter EG, Cheng Y, Knight JB, Gordish-Dressman H, Natale JE. Basic science; metallothionein I and II attenuate the thalamic microglial response following traumatic axotomy in the immature brain. J Neurotrauma 2007; 24:28-42. [PMID: 17263668 DOI: 10.1089/neu.2006.0056.r1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The clinical manifestations of inflicted traumatic brain injury in infancy most commonly result from intracranial hemorrhage, axonal stretch and disruption, and cerebral edema. Often hypoxia ischemia is superimposed, leading to early forebrain and later thalamic neurodegeneration. Such acute and delayed cellular injury activates microglia in the CNS. Although activated microglia provide important benefits in response to injury, microglial release of reactive oxygen species can be harmful to axotomized neurons. We have previously shown that the antioxidants metallothionein I and II (MT I & II) promote geniculocortical neuronal survival after visual cortex lesioning. The purpose of this investigation was to determine the influence of MT I & II on the density and rate of thalamic microglial activation and accumulation following in vivo axotomy. We ablated the visual cortex of 10-day-old and adult MT I & II knock out (MT(-/-)) and wild-type mice and then determined the density of microglia in the dorsal lateral geniculate nucleus (dLGN) over time. Compared to the wild-type strain, microglial activation occurred earlier in both young and adult MT(-/-) mice. Similarly, microglial density was significantly greater in young MT(-/-) mice 30, 36, and 48 hours after injury, and 3, 4, and 5 days after injury in MT(-/-) adults. In both younger and older mice, time and MT I & II deficiency each contributed significantly to greater microglial density. Only in younger mice did MT I & II expression significantly slow the rate (density x time) of microglial accumulation. These results suggest that augmentation of MT I & II expression may provide therapeutic benefits to infants with inflicted brain injury.
Collapse
Affiliation(s)
- Emily G Potter
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA
| | | | | | | | | |
Collapse
|
26
|
Kelso ML, Wehner JM, Collins AC, Scheff SW, Pauly JR. The pathophysiology of traumatic brain injury in α7 nicotinic cholinergic receptor knockout mice. Brain Res 2006; 1083:204-10. [PMID: 16545784 DOI: 10.1016/j.brainres.2006.01.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 01/24/2006] [Accepted: 01/28/2006] [Indexed: 10/24/2022]
Abstract
The alpha7 nicotinic cholinergic receptor is a ligand-gated ion channel with calcium permeability similar to that of ionotrophic glutamate receptors. Previous studies from our laboratory have implicated changes in expression alpha7 nicotinic cholinergic receptors in the pathophysiology of traumatic brain injury (TBI). In rats, TBI causes a time-dependent and significant decrease in cortical and hippocampal alpha-[(125)I]-bungarotoxin (BTX) binding. We have postulated that deficits in alpha7 expression may contribute to TBI-induced cognitive impairment and that nicotinic receptor agonists can reverse alpha7 binding deficits and result in significant cognitive improvement compared to saline-treated controls. Thus, alpha7 nAChRs could be involved in a form of cholinergically mediated excitotoxicity following brain injury. In the current study, wild-type, heterozygous and null mutant mice were employed to test the hypothesis that genotypic depletion of the alpha7 receptor would render animals less sensitive to tissue loss and brain inflammation following experimental brain injury. Mice were anesthetized and subjected to a 0.5-mm cortical contusion injury of the somatosensory cortex. Brain inflammation, changes in nicotinic receptor expression and cortical tissue sparing were evaluated in wild-type, heterozygous and homozygous mice 1 week following TBI. In wild-type mice, brain injury caused a significant decrease in BTX binding in several hippocampal regions, consistent with what we have measured in rat brain following TBI. However, there were no genotypic differences in cortical tissue sparing or brain inflammation in this experiment. Although the results of this study were largely negative, it is still plausible that changes in the activity/expression of native alpha7 receptors contribute to pathophysiology following TBI. However, when null mutant mice develop in the absence of central alpha7 expression, it is possible that compensatory changes occur that confound the results obtained.
Collapse
Affiliation(s)
- Matthew L Kelso
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
27
|
Mander PK, Jekabsone A, Brown GC. Microglia proliferation is regulated by hydrogen peroxide from NADPH oxidase. THE JOURNAL OF IMMUNOLOGY 2006; 176:1046-52. [PMID: 16393992 DOI: 10.4049/jimmunol.176.2.1046] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microglia are resident brain macrophages that become activated and proliferate following brain damage or stimulation by immune mediators, such as IL-1beta or TNF-alpha. We investigated the mechanisms by which microglial proliferation is regulated in primary cultures of rat glia. We found that basal proliferation of microglia was stimulated by proinflammatory cytokines IL-1beta or TNF-alpha, and this proliferation was completely inhibited by catalase, implicating hydrogen peroxide as a mediator of proliferation. In addition, inhibitors of NADPH oxidase (diphenylene iodonium or apocynin) also prevented microglia proliferation, suggesting that this may be the source of hydrogen peroxide. IL-1beta and TNF-alpha rapidly stimulated the rate of hydrogen peroxide produced by isolated microglia, and this was inhibited by diphenylene iodonium, implying that the cytokines were acting directly on microglia to stimulate the NADPH oxidase. Low concentrations of PMA or arachidonic acid (known activators of NADPH oxidase) or xanthine/xanthine oxidase or glucose oxidase (generating hydrogen peroxide) also increased microglia proliferation and this was blocked by catalase, showing that NADPH oxidase activation or hydrogen peroxide was sufficient to stimulate microglia proliferation. In contrast to microglia, the proliferation of astrocytes was unaffected by the presence of catalase. In conclusion, these findings indicate that microglial proliferation in response to IL-1beta or TNF-alpha is mediated by hydrogen peroxide from NADPH oxidase.
Collapse
Affiliation(s)
- Palwinder K Mander
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
28
|
Cunningham TJ, Souayah N, Jameson B, Mitchell J, Yao L. Systemic Treatment of Cerebral Cortex Lesions in Rats with a New Secreted Phospholipase A2 Inhibitor. J Neurotrauma 2004; 21:1683-91. [PMID: 15684658 DOI: 10.1089/neu.2004.21.1683] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
An internal fragment of the human neuroprotective polypeptide DSEP (Diffusible Survival Evasion Peptide) was delivered at 0.4 mg/kg (subcutaneously) 20-30 min after stab wound lesions in the parietal cortex of anesthetized rats. The peptide, CHEASAAQC or CHEC-9, inhibited the inflammatory response to the lesion and the degeneration of neurons adjacent to the wound. Four days after surgery, peptide-treated animals (n = 6) had 75% fewer reactive ameboid microglia/brain macrophages in the cortical parenchyma surrounding the lesion compared to vehicle-injected control rats (n = 6, p = 0.004). The cortical laminae in area 2 adjacent to the lesion were completely obscured in controls because of the increase in inflammatory cells and frank degeneration of neurons, while there was preservation of the neurons and cytoarchitecture after peptide treatment. In parallel experiments, CHEC-9 was found to inhibit the enzymatic activity of secreted phospholipase A2 (sPLA2), including activity present in the serum of peptide-injected rats. Kinetic analysis revealed the peptide increased the average Km for serum by 318% when tested 45 min after treatment (peptide-treated, n = 6; control-treated, n = 6; p = 0.0087), suggesting the principal effect of the peptide was to lower the affinity of serum sPLA2 for substrate. The sPLA2 inhibition by this particular peptide sequence appeared to be highly specific since inversion of a single pair of amino acids eliminated the inhibitory effect. Phorbol-12-myristate-13-acetate stimulated platelet aggregation, a PLA2-regulated activity, was also inhibited by the peptide. The discovery of CHEC-9 makes it possible to study in vivo the long appreciated contribution made by PLA2-directed inflammation to both acute and chronic neurodegeneration and may be helpful in designing therapies to limit neuron death in these conditions.
Collapse
Affiliation(s)
- Timothy J Cunningham
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.
| | | | | | | | | |
Collapse
|
29
|
Bigler ED. Neuropsychological results and neuropathological findings at autopsy in a case of mild traumatic brain injury. J Int Neuropsychol Soc 2004; 10:794-806. [PMID: 15327725 DOI: 10.1017/s1355617704105146] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 03/17/2004] [Indexed: 01/16/2023]
Abstract
Autopsy studies were undertaken in a 47-year-old college-educated male patient who, 7 months prior to an unexpected death, had sustained a mild traumatic brain injury (TBI) as manifested by brief loss of consciousness and an initial Glasgow Coma Scale score of 14. The patient died from cardiac arrest secondary to an undiagnosed and unknown arteriosclerotic cardiovascular disease as assessed by the coroners office at the time of autopsy. Gross inspection of the brain at autopsy was normal; however, microscopic analysis demonstrated what were considered trauma findings of hemosiderin-laden macrophages in the perivascular space and macrophages in the white matter, particularly the section taken from the frontal lobe. The patient had partially returned to work at the time of death, but had encountered problems with diminished cognitive performance in his work as an appraiser. Neuropsychological studies were generally within normal limits although several tests of either speed of processing or short-term memory showed lower than expected performance. This case demonstrates the presence of subtle neuropathological changes in the brain of a patient who sustained a mild TBI and was still symptomatic for the residual effects of the injury 7 months post injury when he unexpectedly died.
Collapse
Affiliation(s)
- Erin D Bigler
- Departments of Psychology and Neuroscience, Brigham Young University, Provo, Utah 84602, USA.
| |
Collapse
|
30
|
Dalmau I, Vela JM, González B, Finsen B, Castellano B. Dynamics of microglia in the developing rat brain. J Comp Neurol 2003; 458:144-57. [PMID: 12596255 DOI: 10.1002/cne.10572] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Entrance of mesodermal precursors into the developing CNS is the most well-accepted origin of microglia. However, the contribution of proliferation and death of recruited microglial precursors to the final microglial cell population remains to be elucidated. To investigate microglial proliferation and apoptosis during development, we combined proliferating cell nuclear antigen (PCNA) immunohistochemistry, in situ detection of nuclear DNA fragmentation (TUNEL), and caspase-3 immunohistochemistry with tomato lectin histochemistry, a selective microglial marker. The study was carried out in Wistar rats from embryonic day (E) 16 to postnatal day (P) 18 in cerebral cortex, subcortical white matter, and hippocampus. Proliferating microglial cells were found at all ages in the three brain regions and represented a significant fraction of the total microglial cell population. The percentage of microglia expressing PCNA progressively increased from the embryonic period (25-51% at E16) to a maximum at P9, when the great majority of microglia expressed PCNA (92-99%) in all the brain regions analyzed. In spite of the remarkable proliferation and expansion of the microglial population with time, the density of microglia remained quite constant in most brain regions because of the considerable growth of the brain during late prenatal and early postnatal periods. In contrast, apoptosis of microglia was detected only at certain times and was restricted to some ameboid cells in white matter and primitive ramified cells in gray matter, representing a small fraction of the microglial population. Therefore, our results point to proliferation of microglial precursors in the developing brain as a physiological mechanism contributing to the acquisition of the adult microglial cell population. In contrast, microglial apoptosis occurs only locally at certain developmental stages and thus seems less crucial for the establishment of the final density of microglia.
Collapse
Affiliation(s)
- Ishar Dalmau
- Departmet of Histology, Faculty of Medicine, Autonomous University of Barcelona, E-08193-Bellaterra, Spain
| | | | | | | | | |
Collapse
|
31
|
Yuan Q, Xie Y, So KF, Wu W. Inflammatory response associated with axonal injury to spinal motoneurons in newborn rats. Dev Neurosci 2003; 25:72-8. [PMID: 12876433 DOI: 10.1159/000071470] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Accepted: 03/12/2003] [Indexed: 11/19/2022] Open
Abstract
Axonal injury in peripheral nerve results in massive motoneuron loss during development. The purpose of this study was to examine the response of phagocytic populations (brain macrophages, BMOs, versus microglia) after different types of axonal lesions (distal axotomy or avulsion) in newborn rats. The morphology, spatial location and activation state of these inflammatory cells were observed. Following spinal root avulsion, BMOs were signaled rapidly and specifically to the location of dying motoneurons in the spinal cord. A large number of BMOs were observed around the avulsed motoneurons on the lesioned side of the spinal cord 1 day following the lesion. These BMOs were large, round, and intensely stained by both antibodies against ED1 and OX-42. The number of BMOs decreased by 3 days and disappeared by 5 days after injury. At the same time, reactive microglia appeared in the lesioned area and rapidly reached the peak level by the 5th day following avulsion. These reactive microglia were medium in size with retracted cellular processes and were also intensely stained by both ED1 and OX-42 antibodies. The number and staining intensity of reactive microglia declined sharply by day 7 after the lesion. In contrast, after distal axotomy only microglia but not BMOs were observed in the lesioned area. These microglial cells were small in size with long and fine-branched processes. They were ED1-negative but OX-42-positive.
Collapse
Affiliation(s)
- Qiuju Yuan
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | | | | | | |
Collapse
|