1
|
Roh H, Hwang SY, Kim JH, Kim JH. Beneficial Effect of Pretreatment Hyperosmolality on Outcome in Severe Traumatic Brain Injury: Evidence from a South Korean Multicenter Registry and Propensity Score Matching Analysis. Neurocrit Care 2024; 41:997-1008. [PMID: 38997449 DOI: 10.1007/s12028-024-02043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/05/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Hyperosmolar therapy has long been a cornerstone in managing increased intracranial pressure and improving outcomes in severe traumatic brain injury (TBI). This therapy hinges on elevating serum osmolality, creating an osmotic gradient that draws excess water from the brain's cellular and interstitial compartments and effectively reducing cerebral edema. Given this information, we hypothesized that the serum hyperosmolality prior to any treatment could significantly impact the clinical outcomes of patients with severe TBI, potentially mitigating secondary cerebral edema after trauma. METHODS Data were extracted from the Korean Multi-center Traumatic Brain Injury data bank, encompassing 4628 patients with TBI admitted between January 2016 and December 2018. Of these, 507 patients diagnosed with severe TBI (Glasgow Coma Scale score < 9) were selected for comprehensive analysis across four data domains: clinical, laboratory, initial computed tomography scan, and treatment. Serum osmolality was assessed prior to treatment, and the hyperosmolar group was defined by a pretreatment serum osmolality exceeding 320 mOsm/L, whereas favorable outcomes were characterized by a modified Rankin Scale score of ≤ 3 at 6 months after trauma. Multivariate regression with receiver operating characteristic curve analysis and propensity score matching were used to dissect the data set. RESULTS Multivariate analysis showed serum osmolality is significantly associated with clinical outcome in patients with severe TBI (p < 0.001). The optimal cutoff value for predicting favorable outcome was 331 mOsm/L, with a sensitivity of 38.9% and a specificity of 87.7%. Notably, the propensity score matching analysis comparing patients with pretreatment serum hyperosmolality with those without indicated a markedly improved functional outcome in the former group (32.5% vs 18.8%, p = 0.025). CONCLUSIONS The present study has uncovered a significant correlation between the pretreatment serum osmolality and the clinical outcomes of patients with severe TBI. These findings offer a novel perspective, indicating that a serum hyperosmolality prior to any treatment might potentially have a neuroprotective effect in patients with severe TBI.
Collapse
Affiliation(s)
- Haewon Roh
- Department of Neurosurgery, Guro Hospital, Korea University Medical Center, 148, Gurodong-ro, Guro-ru, Seoul, 08308, Republic of Korea
| | - Soon-Young Hwang
- Department of Biostatistics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jang Hun Kim
- Department of Neurosurgery, Anam Hospital, Korea University Medical Center, Seoul, Republic of Korea
| | - Jong Hyun Kim
- Department of Neurosurgery, Guro Hospital, Korea University Medical Center, 148, Gurodong-ro, Guro-ru, Seoul, 08308, Republic of Korea.
| |
Collapse
|
2
|
Yan C, Mao J, Yao C, Liu Y, Yan H, Jin W. Neuroprotective effects of mild hypothermia against traumatic brain injury by the involvement of the Nrf2/ARE pathway. Brain Behav 2022; 12:e2686. [PMID: 35803901 PMCID: PMC9392531 DOI: 10.1002/brb3.2686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is the leading cause of death and disability worldwide. Mild hypothermia (32-35°C) has been found to show neuroprotective effects against TBI. However, the specific mechanism is still elusive. In the current study, we explored the relationship between oxidative damage after TBI and treatment with mild hypothermia as well as the underlying molecular mechanisms. METHODS We used the closed cortex injury model to perform the brain injury and a temperature monitoring and control system to regulate the body temperature of mice after injury. Adult male C57BL/6 mice were adopted in this study and divided into four experimental groups. Tissue samples were harvested 24 h after injury. RESULTS First, our results showed that treatment with mild hypothermia significantly improved neurobehavioral dysfunction and alleviated brain edema after TBI. Moreover, treatment with mild hypothermia enhanced the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase and reduced the accumulation of lipid peroxidation malondialdehyde. Importantly, the expression and activation of the nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway were upregulated by mild hypothermia after TBI. Finally, treatment with hypothermia significantly decreased the cell apoptosis induced by TBI. CONCLUSION Our results showed that the protective effects of mild hypothermia after TBI may be achieved by the upregulation of the Nrf2-ARE pathway and revealed Nrf2 as a potentially important target to improve the prognosis of TBI.
Collapse
Affiliation(s)
- Chaolong Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.,Department of Neurosurgery, Zhongshan Hospital, The Affiliated Hospital of Fudan University, Shanghai, China
| | - Jiannan Mao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chenbei Yao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huiying Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Jin
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
3
|
The effectiveness of early prophylactic hypothermia in adult patients with traumatic brain injury: A systematic review and meta-analysis. Aust Crit Care 2020; 34:83-91. [PMID: 32698987 DOI: 10.1016/j.aucc.2020.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES Previously published systematic reviews have explored the effects of therapeutic hypothermia on adult patients with traumatic brain injury (TBI). However, none explored the effect of early prophylactic hypothermia (within 6 h from injury to hypothermia induction). Animal studies indicated that early prophylactic hypothermia may reduce secondary injury and improve neurological outcomes. This systematic review aimed to investigate the effects of early prophylactic hypothermia on adult TBI regarding mortality, favourable outcomes, and complications. DATA SOURCE We searched electronic databases including Cochrane CENTRAL, PubMed, MEDLINE, CINAHL, EMBASE, Web of Science, OpenGrey, and ClinicalTrials.gov from inception to June 12, 2019. Manual search was conducted for additional information. REVIEW METHODS Only randomised controlled trials were included. The Cochrane Collaboration Risk of Bias Tool was used to assess the quality of included studies. We extracted general demographic characteristics, the initiation timing, methods of cooling, duration, target temperature, rewarming rate, mortality, neurological outcomes, and complications. RESULTS Six studies with a total of 1207 participants were included. Meta-analyses showed no significant difference in mortality and favourable outcomes (risk ratio = 1.11, 95% confidence interval = 0.90-1.37, P = 0.32; risk ratio = 1.03, 95% confidence interval = 0.91-1.16, P = 0.65, respectively). Similar results were found regarding different durations of hypothermia and different rewarming rates. Various complications were reported in the included studies. No statistical difference was found in three studies, while complications were reported to be significantly higher in the hypothermia group in the other three studies. CONCLUSIONS This review does not support the use of early prophylactic hypothermia (within 6 h after injury) as a neurological protection strategy in adult patients with TBI, irrespective of the short term or long term. No significant benefits were found regarding hypothermia with different rewarming rates. Owing to the limited number of studies, more randomised controlled trials with higher quality are required to establish true effects of early hypothermia in adult TBI.
Collapse
|
4
|
Hypothermia-rewarming: A Double-edged sword? Med Hypotheses 2019; 133:109387. [PMID: 31541781 DOI: 10.1016/j.mehy.2019.109387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023]
Abstract
Hypothermia is a condition in which the body's core temperature drops below 35.0 °C. Hypothermia is the opposite of hyperthermia, which the metabolism and body functions are abnormal. Severe hypothermia is a life-threatening problem that may cause atrial and ventricular dysrhythmias, coagulopathy, cardiac, and central nervous system depression. What is worse, it is fatal when untreated or treated improperly. Accidental deaths due to hypothermia resulting from immersion in cold water, especially involving naval fighters and maritime victims have occurred continually in the past years. Currently, the treatment of hypothermia has become a research focus. Rewarming is the only approach that should be considered for hypothermia treatment. However, the treatment is of low efficiency, and few active rewarming cases have been reported. It is well known that timely reperfusion is the best way to save the lives of patients with ischemia. Similarly, reoxygenation is effective for hypoxia. However, several studies have identified that improper reperfusion of ischemic tissues and reoxygenation of hypoxic tissues give rise to further injury. Analogically, this study attempts to propose the hypothesis that hypothermia-rewarming injury may also exist. When suffered from hypothermia, both the blood circulation and the oxygen supply in the body will be affected in a deficient state, an injury may also appear in the improper rewarming process. In a word, hypothermia-rewarming may be a double-edged sword.
Collapse
|
5
|
Abdelmalik PA, Draghic N, Ling GSF. Management of moderate and severe traumatic brain injury. Transfusion 2019; 59:1529-1538. [PMID: 30980755 DOI: 10.1111/trf.15171] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 12/28/2022]
Abstract
Traumatic brain injury (TBI) is a common disorder with high morbidity and mortality, accounting for one in every three deaths due to injury. Older adults are especially vulnerable. They have the highest rates of TBI-related hospitalization and death. There are about 2.5 to 6.5 million US citizens living with TBI-related disabilities. The cost of care is very high. Aside from prevention, little can be done for the initial primary injury of neurotrauma. The tissue damage incurred directly from the inciting event, for example, a blow to the head or bullet penetration, is largely complete by the time medical care can be instituted. However, this event will give rise to secondary injury, which consists of a cascade of changes on a cellular and molecular level, including cellular swelling, loss of membrane gradients, influx of immune and inflammatory mediators, excitotoxic transmitter release, and changes in calcium dynamics. Clinicians can intercede with interventions to improve outcome in the mitigating secondary injury. The fundamental concepts in critical care management of moderate and severe TBI focus on alleviating intracranial pressure and avoiding hypotension and hypoxia. In addition to these important considerations, mechanical ventilation, appropriate transfusion of blood products, management of paroxysmal sympathetic hyperactivity, using nutrition as a therapy, and, of course, venous thromboembolism and seizure prevention are all essential in the management of moderate to severe TBI patients. These concepts will be reviewed using the recent 2016 Brain Trauma Foundation Guidelines to discuss best practices and identify future research priorities.
Collapse
Affiliation(s)
| | - Nicole Draghic
- Department of Clinical Neurosciences, Inova Fairfax Hospital, Falls Church, Virginia
| | - Geoffrey S F Ling
- Department of Clinical Neurosciences, Inova Fairfax Hospital, Falls Church, Virginia.,Neurosciences Critical Care, Departments of Neurology, Neurosurgery and Anesthesiology-Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
6
|
Liska MG, Crowley MG, Tuazon JP, Borlongan CV. Neuroprotective and neuroregenerative potential of pharmacologically-induced hypothermia with D-alanine D-leucine enkephalin in brain injury. Neural Regen Res 2018; 13:2029-2037. [PMID: 30323116 PMCID: PMC6199924 DOI: 10.4103/1673-5374.241427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022] Open
Abstract
Neurovascular disorders, such as traumatic brain injury and stroke, persist as leading causes of death and disability - thus, the search for novel therapeutic approaches for these disorders continues. Many hurdles have hindered the translation of effective therapies for traumatic brain injury and stroke primarily because of the inherent complexity of neuropathologies and an inability of current treatment approaches to adapt to the unique cell death pathways that accompany the disorder symptoms. Indeed, developing potent treatments for brain injury that incorporate dynamic and multiple disorder-engaging therapeutic targets are likely to produce more effective outcomes than traditional drugs. The therapeutic use of hypothermia presents a promising option which may fit these criteria. While regulated temperature reduction has displayed great promise in preclinical studies of brain injury, clinical trials have been far less consistent and associated with adverse effects, especially when hypothermia is pursued via systemic cooling. Accordingly, devising better methods of inducing hypothermia may facilitate the entry of this treatment modality into the clinic. The use of the delta opioid peptide D-alanine D-leucine enkephalin (DADLE) to pharmacologically induce temperature reduction may offer a potent alternative, as DADLE displays both the ability to cause temperature reduction and to confer a broad profile of other neuroprotective and neuroregenerative processes. This review explores the prospect of DADLE-mediated hypothermia to treat neurovascular brain injuries, emphasizing the translational steps necessary for its clinical translation.
Collapse
Affiliation(s)
- M. Grant Liska
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Marci G. Crowley
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Julian P. Tuazon
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
7
|
Zhu L. Hypothermia Used in Medical Applications for Brain and Spinal Cord Injury Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:295-319. [PMID: 30315552 DOI: 10.1007/978-3-319-96445-4_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite more than 80 years of animal experiments and clinical practice, efficacy of hypothermia in improving treatment outcomes in patients suffering from cell and tissue damage caused by ischemia is still ongoing. This review will first describe the history of utilizing cooling in medical treatment, followed by chemical and biochemical mechanisms of cooling that can lead to neuroprotection often observed in animal studies and some clinical studies. The next sections will be focused on current cooling approaches/devices, as well as cooling parameters recommended by researchers and clinicians. Animal and clinical studies of implementing hypothermia to spinal cord and brain tissue injury patients are presented next. This section will review the latest outcomes of hypothermia in treating patients suffering from traumatic brain injury (TBI), spinal cord injury (SCI), stroke, cardiopulmonary surgery, and cardiac arrest, followed by a summary of available evidence regarding both demonstrated neuroprotection and potential risks of hypothermia. Contributions from bioengineers to the field of hypothermia in medical treatment will be discussed in the last section of this review. Overall, an accumulating body of clinical evidence along with several decades of animal research and mathematical simulations has documented that the efficacy of hypothermia is dependent on achieving a reduced temperature in the target tissue before or soon after the injury-precipitating event. Mild hypothermia with temperature reduction of several degrees Celsius is as effective as modest or deep hypothermia in providing therapeutic benefit without introducing collateral/systemic complications. It is widely demonstrated that the rewarming rate must be controlled to be lower than 0.5 °C/h to avoid mismatch between local blood perfusion and metabolism. In the past several decades, many different cooling methods and devices have been designed, tested, and used in medical treatments with mixed results. Accurately designing treatment protocols to achieve specific cooling outcomes requires collaboration among engineers, researchers, and clinicians. Although this problem is quite challenging, it presents a major opportunity for bioengineers to create methods and devices that quickly and safely produce hypothermia in targeted tissue regions without interfering with routine medical treatment.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
8
|
Abstract
Different mechanisms explain thermoregulatory dysfunction following ischemic stroke, hemorrhagic stroke, and traumatic brain injury. Temperature instability following brain injury likely involves hypothalamic injury, pathologic changes in cerebral blood flow, metabolic derangement, and a neurogenic inflammatory response. Although targeted temperature management (TTM) exerts pleiotropic effects, the heterogeneity of brain injury has hindered identification of patient subsets most likely to benefit from TTM. Early optimism about TTM's role in brain injury has been tempered by the failure of successive clinical trials to show improved patient outcomes. However, given the deleterious effects of fever, aggressive fever management is still warranted in the critically ill neurologic patient.
Collapse
Affiliation(s)
- Ram Gowda
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Matthew Jaffa
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neeraj Badjatia
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
9
|
Marehbian J, Muehlschlegel S, Edlow BL, Hinson HE, Hwang DY. Medical Management of the Severe Traumatic Brain Injury Patient. Neurocrit Care 2017; 27:430-446. [PMID: 28573388 PMCID: PMC5700862 DOI: 10.1007/s12028-017-0408-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Severe traumatic brain injury (sTBI) is a major contributor to long-term disability and a leading cause of death worldwide. Medical management of the sTBI patient, beginning with prehospital triage, is aimed at preventing secondary brain injury. This review discusses prehospital and emergency department management of sTBI, as well as aspects of TBI management in the intensive care unit where advances have been made in the past decade. Areas of emphasis include intracranial pressure management, neuromonitoring, management of paroxysmal sympathetic hyperactivity, neuroprotective strategies, prognostication, and communication with families about goals of care. Where appropriate, differences between the third and fourth editions of the Brain Trauma Foundation guidelines for the management of severe traumatic brain injury are highlighted.
Collapse
Affiliation(s)
- Jonathan Marehbian
- Division of Neurocritical Care and Emergency Neurology, Yale School of Medicine, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Susanne Muehlschlegel
- Departments of Neurology, Anesthesia/Critical Care, and Surgery, University of Massachusetts Medical School, 55 Lake Ave North, S-5, Worcester, MA, 01655, USA
| | - Brian L Edlow
- Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, 55 Fruit Street - Lunder 650, Boston, MA, 02114, USA
| | - Holly E Hinson
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, CR-127, Portland, OR, 97239, USA
| | - David Y Hwang
- Division of Neurocritical Care and Emergency Neurology, Yale School of Medicine, P.O. Box 208018, New Haven, CT, 06520, USA.
| |
Collapse
|
10
|
PRASETYO E, ISLAM AASADUL, HATTA M, WIDODO D, PATTELONGI I. The Profile of MMP-9, MMP-9 mRNA Expression, -1562 C/T Polymorphism and Outcome in High-risk Traumatic Brain Injury: The Effect of Therapeutic Mild Hypothermia. Neurol Med Chir (Tokyo) 2017; 57:612-619. [PMID: 28966304 PMCID: PMC5709715 DOI: 10.2176/nmc.oa.2016-0322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/29/2017] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the effect of mild hypothermia therapy (34-36°C) and the alterations of matrix metalloproteinase-9 (MMP-9) in 20 patients with high-risk traumatic brain injury (TBI). The neurologic status and outcome were assessed using Full Outline of UnResponsiveness (FOUR) score and Glasgow Coma Scale (GCS). A prospective randomized control study involved patients with high-risk TBI (FOUR score ≤ 7). Patients were randomized into two groups, with and without mild hypothermia therapy which were investigated within 24 and 72 h. The MMP-9 level, MMP-9 mRNA expression and -1562 C/T polymorphism were estimated using enzyme-linked immune sorbent assay (ELISA), reversing transcription polymerase chain reaction (RT-PCR) and PCR-restriction fragment length polymorphism (PCR-RFLP). Different levels of these variables were compared in the two groups. In the hypothermia group, the expression of MMP-9 mRNA and the level of serum MMP-9 were significantly decreased (P < 0.05) within 72 h. There was a highly significant correlation between the expression of MMP-9 mRNA and the level of MMP-9 protein (R2 = 0.741, r = 0.861, P < 0.05). The study did not find in -1562 C/T polymorphism. The patients' outcome was improved significantly after mild hypothermia therapy (P < 0.05). The data obtained from this study show that mild hypothermia therapy down regulated the expression of MMP-9 mRNA, the MMP-9 protein level and increased the FOUR score and GCS in high-risk TBI patients within 72 h.
Collapse
Affiliation(s)
- Eko PRASETYO
- Post Graduate, Faculty Medicine, University of Hasanuddin, Makassar, Indonesia
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Sam Ratulangi, Manado, Indonesia
| | - Andi ASADUL ISLAM
- Post Graduate, Faculty Medicine, University of Hasanuddin, Makassar, Indonesia
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Mochammad HATTA
- Post Graduate, Faculty Medicine, University of Hasanuddin, Makassar, Indonesia
- Molecular Biology and Immunology Laboratory, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Djoko WIDODO
- Post Graduate, Faculty Medicine, University of Hasanuddin, Makassar, Indonesia
- Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Ilhamjaya PATTELONGI
- Post Graduate, Faculty Medicine, University of Hasanuddin, Makassar, Indonesia
- Department of Physiology, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| |
Collapse
|
11
|
Larsen GY, Schober M, Fabio A, Wisniewski SR, Grant MJC, Shafi N, Bennett TD, Hirtz D, Bell MJ. Structure, Process, and Culture Differences of Pediatric Trauma Centers Participating in an International Comparative Effectiveness Study of Children with Severe Traumatic Brain Injury. Neurocrit Care 2017; 24:353-60. [PMID: 26627225 DOI: 10.1007/s12028-015-0218-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an important worldwide cause of death and disability for children. The Approaches and Decisions for Acute Pediatric TBI (ADAPT) Trial is an observational, cohort study to compare the effectiveness of six aspects of TBI care. Understanding the differences between clinical sites-including their structure, clinical processes, and culture differences-will be necessary to assess differences in outcome from the study and can inform the overall community regarding differences across academic centers. METHODS We developed a survey and queried ADAPT site principal investigators with a focus on six domains: (i) hospital, (ii) pediatric intensive care unit (PICU), (iii) medical staff characteristics, (iv) quality of care, (v) medication safety, and (vi) safety culture. Summary statistics were used to describe differences between centers. RESULTS ADAPT clinical sites that enrolled a subject within the first year (32 US-based, 11 international) were studied. A wide variation in site characteristics was observed in hospital and ICU characteristics, including an almost sevenfold range in ICU size (8-55 beds) and more than fivefold range of overall ICU admissions (537-2623). Nursing staffing (predominantly 1:1 or 1:2) and the presence of pharmacists within the ICU (79 %) were less variable, and most sites "strongly agreed" or "agreed" that Neurosurgery and Critical Care teams worked well together (81.4 %). However, a minority of sites (46 %) used an explicit protocol for treatment of children with severe TBI care. CONCLUSIONS We found a variety of inter-center structure, process, and culture differences. These intrinsic differences between sites may begin to explain why interventional studies have failed to prove efficacy of experimental therapies. Understanding these differences may be an important factor in analyzing future ADAPT trial results and in determining best practices for pediatric severe TBI.
Collapse
Affiliation(s)
- Gitte Y Larsen
- Departments of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Michelle Schober
- Departments of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Anthony Fabio
- Departments of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Mary Jo C Grant
- Departments of Nursing, University of Utah, Salt Lake City, UT, USA
| | - Nadeem Shafi
- Department of Pediatrics, University of Tennessee, Memphis, TN, USA
| | - Tellen D Bennett
- Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Deborah Hirtz
- Division of Extramural Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Michael J Bell
- Department Critical Care Medicine, Neurological Surgery and Pediatrics, University of Pittsburgh, 3434 Fifth Avenue, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
12
|
Chen QH, Lin D, Yu QG, Zhou J. Efficacy of lumbar cistern drainage combined with intrathecal antibiotherapy for the treatment of ventriculo-subarachnoid infections following surgery for hypertensive intracerebral hemorrhage. Neurochirurgie 2017; 63:13-16. [DOI: 10.1016/j.neuchi.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/29/2022]
|
13
|
Traumatic brain injury: physiological targets for clinical practice in the prehospital setting and on the Neuro-ICU. Curr Opin Anaesthesiol 2016; 28:517-24. [PMID: 26331713 DOI: 10.1097/aco.0000000000000233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Over many years, understanding of the pathophysiology in traumatic brain injury (TBI) has resulted in the development of core physiological targets and therapies to preserve cerebral oxygenation, and in doing so prevent secondary insult. The present review revisits the evidence for these targets and therapies. RECENT FINDINGS Achieving oxygen, carbon dioxide, blood pressure, temperature and glucose targets remain a key goal of therapy in TBI, as does the role of effective prehospital care. Physician led air ambulance teams reduce mortality. Normobaric hyperoxia is dangerous to the injured brain; as are both high and low carbon dioxide levels. Hypotension is life threatening and higher targets have now been suggested in TBI. Both therapeutic normothermia and hypothermia have a role in specific groups of patients with TBI. Although consensus has not been reached on the optimal intravenous fluid for resuscitation in TBI, vigilant goal-directed fluid administration may improve outcome. Osmotherapeutic agents such as hypertonic sodium lactate solutions may also have a role alongside conventional agents. SUMMARY Maintaining physiological targets in several areas remains part of protocol led care in the acute phase of TBI management. As evidence accumulates however, the target values and therefore therapies may be set to change.
Collapse
|
14
|
Emami P, Czorlich P, Fritzsche FS, Westphal M, Rueger JM, Lefering R, Hoffmann M. Impact of Glasgow Coma Scale score and pupil parameters on mortality rate and outcome in pediatric and adult severe traumatic brain injury: a retrospective, multicenter cohort study. J Neurosurg 2016; 126:760-767. [PMID: 27035177 DOI: 10.3171/2016.1.jns152385] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Prediction of death and functional outcome is essential for determining treatment strategies and allocation of resources for patients with severe traumatic brain injury (TBI). The aim of this study was to evaluate, by using pupillary status and Glasgow Coma Scale (GCS) score, if patients with severe TBI who are ≤ 15 years old have a lower mortality rate and better outcome than adults with severe TBI. METHODS A retrospective cohort analysis of patients suffering from severe TBI registered in the Trauma Registry of the German Society for Trauma Surgery between 2002 and 2013 was undertaken. Severe TBI was defined as an Abbreviated Injury Scale of the head (AIShead) score of ≥ 3 and an AIS score for any other part of the body that does not exceed the AIShead score. Only patients with complete data (GCS score, age, and pupil parameters) were included. To assess the impact of GCS score and pupil parameters, the authors also used the recently introduced Eppendorf-Cologne Scale and divided the study population into 2 groups: children (0-15 years old) and adults (16-55 years old). Each patient's outcome was measured at discharge from the trauma center by using the Glasgow Outcome Scale. RESULTS A total of 9959 patients fulfilled the study inclusion criteria; 888 (8.9%) patients were ≤ 15 years old (median 10 years). The overall mortality rate and the mortality rate for patients with a GCS of 3 and bilaterally fixed and dilated pupils (19.9% and 16.3%, respectively) were higher for the adults than for the pediatric patients (85% vs 80.9%, respectively), although cardiopulmonary resuscitation rates were significantly higher in the pediatric patients (5.6% vs 8.8%, respectively). In the multivariate logistic regression analysis, no motor response (OR 3.490, 95% CI 2.240-5.435) and fixed pupils (OR 4.197, 95% CI 3.271-5.386) and bilateral dilated pupils (OR 2.848, 95% CI 2.282-3.556) were associated with a higher mortality rate. Patients ≤ 15 years old had a statistically lower mortality rate (OR 0.536, 95% CI 0.421-0.814; p = 0.001). The rate of good functional outcomes (Glasgow Outcome Scale Score 4 or 5) was higher in pediatric patients than in the adults (72.2% vs 63.1%, respectively). CONCLUSIONS This study found that severe TBI in children aged ≤ 15 years is associated with a lower mortality rate and superior functional outcome than in adults. Also, children admitted with a missing motor response or fixed and bilaterally dilated pupils also have a lower mortality rate and higher functional outcome than adults with the same initial presentation. Therefore, patients suffering from severe TBI, especially pediatric patients, could benefit from early and aggressive treatment.
Collapse
Affiliation(s)
| | | | | | | | - Johannes M Rueger
- Trauma, Hand, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg; and
| | - Rolf Lefering
- Institute for Research in Operative Medicine, Witten/Herdecke University, Cologne, Germany
| | - Michael Hoffmann
- Trauma, Hand, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg; and
| |
Collapse
|
15
|
Klauke N, Gräff I, Fleischer A, Boehm O, Guttenthaler V, Baumgarten G, Meybohm P, Wittmann M. Effects of prehospital hypothermia on transfusion requirements and outcomes: a retrospective observatory trial. BMJ Open 2016; 6:e009913. [PMID: 27029772 PMCID: PMC4823393 DOI: 10.1136/bmjopen-2015-009913] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Prehospital hypothermia is defined as a core temperature <36.0 °C and has been shown to be an independent risk factor for early death in patients with trauma. In a retrospective study, a possible correlation between the body temperature at the time of admission to the emergency room and subsequent in-hospital transfusion requirements and the in-hospital mortality rate was explored. SETTING This is a retrospective single-centre study at a primary care hospital in Germany. PARTICIPANTS 15,895 patients were included in this study. Patients were classified by admission temperature and transfusion rate. Excluded were ambulant patients and patients with missing data. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome values were length of stay (LOS) in days, in-hospital mortality, the transferred amount of packed red blood cells (PRBCs), and admission to an intensive care unit. Secondary influencing variables were the patient's age and the Glasgow Coma Scale. RESULTS In 22.85% of the patients, hypothermia was documented. Hypothermic patients died earlier in the course of their hospital stay than non-hypothermic patients (p<0.001). The administration of 1-3 PRBC increased the LOS significantly (p<0.001) and transfused patients had an increased risk of death (p<0.001). Prehospital hypothermia could be an independent risk factor for mortality (adjusted OR 8.521; p=0.001) and increases the relative risk for transfusion by factor 2.0 (OR 2.007; p=0.002). CONCLUSIONS Low body temperature at hospital admission is associated with a higher risk of transfusion and death. Hence, a greater awareness of prehospital temperature management should be established.
Collapse
Affiliation(s)
- Nora Klauke
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Ingo Gräff
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Andreas Fleischer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Olaf Boehm
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Vera Guttenthaler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Georg Baumgarten
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Patrick Meybohm
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Frankfurt am Main, Frankfurt am Main, Germany
| | - Maria Wittmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
16
|
Niven DJ, Gaudet JE, Laupland KB, Mrklas KJ, Roberts DJ, Stelfox HT. Accuracy of peripheral thermometers for estimating temperature: a systematic review and meta-analysis. Ann Intern Med 2015; 163:768-77. [PMID: 26571241 DOI: 10.7326/m15-1150] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Body temperature is commonly used to screen patients for infectious diseases, establish diagnoses, monitor therapy, and guide management decisions. PURPOSE To determine the accuracy of peripheral thermometers for estimating core body temperature in adults and children. DATA SOURCES MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and CINAHL Plus from inception to July 2015. STUDY SELECTION Prospective studies comparing the accuracy of peripheral (tympanic membrane, temporal artery, axillary, or oral) thermometers with central (pulmonary artery catheter, urinary bladder, esophageal, or rectal) thermometers. DATA EXTRACTION 2 reviewers extracted data on study characteristics, methods, and outcomes and assessed the quality of individual studies. DATA SYNTHESIS 75 studies (8682 patients) were included. Most studies were at high or unclear risk of patient selection bias (74%) or index test bias (67%). Compared with central thermometers, peripheral thermometers had pooled 95% limits of agreement (random-effects meta-analysis) outside the predefined clinically acceptable range (± 0.5 °C), especially among patients with fever (-1.44 °C to 1.46 °C for adults; -1.49 °C to 0.43 °C for children) and hypothermia (-2.07 °C to 1.90 °C for adults; no data for children). For detection of fever (bivariate random-effects meta-analysis), sensitivity was low (64% [95% CI, 55% to 72%]; I2 = 95.7%; P < 0.001) but specificity was high (96% [CI, 93% to 97%]; I2 = 96.3%; P < 0.001). Only 1 study reported sensitivity and specificity for the detection of hypothermia. LIMITATIONS High-quality data for some temperature measurement techniques are limited. Pooled data are associated with interstudy heterogeneity that is not fully explained by stratified and metaregression analyses. CONCLUSION Peripheral thermometers do not have clinically acceptable accuracy and should not be used when accurate measurement of body temperature will influence clinical decisions. PRIMARY FUNDING SOURCE None.
Collapse
Affiliation(s)
- Daniel J. Niven
- From Peter Lougheed Centre, Foothills Medical Centre, and University of Calgary, Calgary, Alberta; and Royal Inland Hospital, Kamloops, British Columbia, Canada
| | - Jonathan E. Gaudet
- From Peter Lougheed Centre, Foothills Medical Centre, and University of Calgary, Calgary, Alberta; and Royal Inland Hospital, Kamloops, British Columbia, Canada
| | - Kevin B. Laupland
- From Peter Lougheed Centre, Foothills Medical Centre, and University of Calgary, Calgary, Alberta; and Royal Inland Hospital, Kamloops, British Columbia, Canada
| | - Kelly J. Mrklas
- From Peter Lougheed Centre, Foothills Medical Centre, and University of Calgary, Calgary, Alberta; and Royal Inland Hospital, Kamloops, British Columbia, Canada
| | - Derek J. Roberts
- From Peter Lougheed Centre, Foothills Medical Centre, and University of Calgary, Calgary, Alberta; and Royal Inland Hospital, Kamloops, British Columbia, Canada
| | - Henry Thomas Stelfox
- From Peter Lougheed Centre, Foothills Medical Centre, and University of Calgary, Calgary, Alberta; and Royal Inland Hospital, Kamloops, British Columbia, Canada
| |
Collapse
|
17
|
Wavra T, Laux C, Guanci MM, Figueroa SA, Brophy GM, Kurczewski L, Livesay SL. Clinical Q & A: Translating Therapeutic Temperature Management from Theory to Practice. Ther Hypothermia Temp Manag 2015; 5:177-81. [DOI: 10.1089/ther.2015.29002.mkb] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Chris Laux
- Harborview Medical Center, Seattle, Washington
| | | | - Stephen A. Figueroa
- Division of Neurocritical Care, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Lisa Kurczewski
- Department of Pharmacy Services, Virginia Commonwealth University Health System, Richmond, Virginia
| | | |
Collapse
|
18
|
Saxena M, Young P, Pilcher D, Bailey M, Harrison D, Bellomo R, Finfer S, Beasley R, Hyam J, Menon D, Rowan K, Myburgh J. Early temperature and mortality in critically ill patients with acute neurological diseases: trauma and stroke differ from infection. Intensive Care Med 2015; 41:823-32. [PMID: 25643903 PMCID: PMC4414938 DOI: 10.1007/s00134-015-3676-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fever suppression may be beneficial for patients with traumatic brain injury (TBI) and stroke, but for patients with meningitis or encephalitis [central nervous system (CNS) infection], the febrile response may be advantageous. OBJECTIVE To evaluate the relationship between peak temperature in the first 24 h of intensive care unit (ICU) admission and all-cause hospital mortality for acute neurological diseases. DESIGN, SETTING AND PARTICIPANTS Retrospective cohort design from 2005 to 2013, including 934,159 admissions to 148 ICUs in Australia and New Zealand (ANZ) and 908,775 admissions to 236 ICUs in the UK. RESULTS There were 53,942 (5.8 %) patients in ANZ and 56,696 (6.2 %) patients in the UK with a diagnosis of TBI, stroke or CNS infection. For both the ANZ (P = 0.02) and UK (P < 0.0001) cohorts there was a significant interaction between early peak temperature and CNS infection, indicating that the nature of the relationship between in-hospital mortality and peak temperature differed between TBI/stroke and CNS infection. For patients with CNS infection, elevated peak temperature was not associated with an increased risk of death, relative to the risk at 37-37.4 °C (normothermia). For patients with stroke and TBI, peak temperature below 37 °C and above 39 °C was associated with an increased risk of death, compared to normothermia. CONCLUSIONS The relationship between peak temperature in the first 24 h after ICU admission and in-hospital mortality differs for TBI/stroke compared to CNS infection. For CNS infection, increased temperature is not associated with increased risk of death.
Collapse
Affiliation(s)
- Manoj Saxena
- Critical Care and Trauma Division, George Institute for Global Health, Sydney, NSW, Australia,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Maekawa T, Yamashita S, Nagao S, Hayashi N, Ohashi Y. Prolonged mild therapeutic hypothermia versus fever control with tight hemodynamic monitoring and slow rewarming in patients with severe traumatic brain injury: a randomized controlled trial. J Neurotrauma 2015; 32:422-9. [PMID: 25099730 DOI: 10.1089/neu.2013.3197] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although mild therapeutic hypothermia is an effective neuroprotective strategy for cardiac arrest/resuscitated patients, and asphyxic newborns, recent randomized controlled trials (RCTs) have equally shown good neurological outcome between targeted temperature management at 33 °C versus 36 °C, and have not shown consistent benefits in patients with traumatic brain injury (TBI). We aimed to determine the effect of therapeutic hypothermia, while avoiding some limitations of earlier studies, which included patient selection based on Glasgow coma scale (GCS), delayed initiation of cooling, short duration of cooling, inter-center variation in patient care, and relatively rapid rewarming. We conducted a multicenter RCT in patients with severe TBI (GCS 4-8). Patients were randomly assigned (2:1 allocation ratio) to either therapeutic hypothermia (32-34 °C, n = 98) or fever control (35.5-37 °C, n = 50). Patients with therapeutic hypothermia were cooled as soon as possible for ≥ 72 h and rewarmed at a rate of <1 °C/day. All patients received tight hemodynamic monitoring under intensive neurological care. The Glasgow Outcome Scale was assessed at 6 months by physicians who were blinded to the treatment allocation. The overall rates of poor neurological outcomes were 53% and 48% in the therapeutic hypothermia and fever control groups, respectively. There were no significant differences in the likelihood of poor neurological outcome (relative risk [RR] 1.24, 95% confidence interval [CI] 0.62-2.48, p = 0.597) or mortality (RR 1.82, 95% CI 0.82-4.03, p = 0.180) between the two groups. We concluded that tight hemodynamic management and slow rewarming, together with prolonged therapeutic hypothermia (32-34 °C) for severe TBI, did not improve the neurological outcomes or risk of mortality compared with strict temperature control (35.5-37 °C).
Collapse
Affiliation(s)
- Tsuyoshi Maekawa
- 1 Department of Stress and Bio-response Medicine, Yamaguchi University Graduate School of Medicine , Yamaguchi, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Lu J, Gary KW, Copolillo A, Ward J, Niemeier JP, Lapane KL. Randomized controlled trials in adult traumatic brain injury: a review of compliance to CONSORT statement. Arch Phys Med Rehabil 2014; 96:702-14. [PMID: 25497515 DOI: 10.1016/j.apmr.2014.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/03/2014] [Accepted: 10/31/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To describe the extent to which adherence to Consolidated Standards of Reporting Trials (CONSORT) statement in randomized controlled trials (RCTs) in adult traumatic brain injury (TBI) has improved over time. DATA SOURCES MEDLINE, PsycINFO, and CINAHL databases were searched from inception to September 2013. STUDY SELECTION Primary report of RCTs in adult TBI. The quality of reporting on CONSORT checklist items was examined and compared over time. Study selection was conducted by 2 researchers independently. Any disagreements were solved by discussion. DATA EXTRACTION Two reviewers independently conducted data extraction based on a set of structured data extraction forms. Data regarding the publication years, size, locations, participation centers, intervention types, intervention groups, and CONSORT checklist items were extracted from the including trials. DATA SYNTHESIS Of 105 trials reviewed, 38.1%, 5.7%, and 32.4% investigated drugs, surgical procedures, and rehabilitations as the intervention of interest, respectively. Among reports published between the 2 periods 2002 and 2010 (n=51) and 2011 and September 2013 (n=16), the median sample sizes were 99 and 118; 39.2% and 37.5% of all reports detailed implementation of the randomization process; 60.8% and 43.8% provided information on the method of allocation concealment; 56.9% and 31.3% stated how blinding was achieved; 15.7% and 43.8% reported information regarding trial registration; and only 2.0% and 6.3% stated where the full trial protocol could be accessed, all respectively. CONCLUSIONS Reporting of several important methodological aspects of RCTs conducted in adult TBI populations improved over the years; however, the quality of reporting remains below an acceptable level. The small sample sizes suggest that many RCTs are likely underpowered. Further improvement is recommended in designing and reporting RCTs.
Collapse
Affiliation(s)
- Juan Lu
- Department of Family Medicine and Population Health, Division of Epidemiology, Virginia Commonwealth University, Richmond, VA.
| | - Kelli W Gary
- Department of Occupational Therapy, Virginia Commonwealth University, Richmond, VA
| | - Al Copolillo
- Department of Occupational Therapy, Virginia Commonwealth University, Richmond, VA
| | - John Ward
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA
| | - Janet P Niemeier
- Department of Physical Medicine and Rehabilitation, Carolinas Rehabilitation, Charlotte, NC
| | - Kate L Lapane
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
21
|
Suehiro E, Koizumi H, Fujiyama Y, Suzuki M. Recent advances and future directions of hypothermia therapy for traumatic brain injury. Neurol Med Chir (Tokyo) 2014; 54:863-9. [PMID: 25367589 PMCID: PMC4533346 DOI: 10.2176/nmc.st.2014-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For severe traumatic brain injury (TBI) patients, no effective treatment method replacing hypothermia therapy has emerged, and hypothermia therapy still plays the major role. To increase its efficacy, first, early introduction is important. Since there are diverse pathologies of severe TBI, it is necessary to appropriately control the temperature in the hypothermia maintenance and rewarming phases by monitoring relative to the pathology. Currently, hypothermia is considered appropriate for severe TBI patients requiring craniotomy for removal of hematoma, while induced normothermia is appropriate for severe TBI patients with diffuse brain injury. Induced normothermia is expected to exhibit a cerebroprotective effect equivalent to hypothermia, as well as reduce the complexity of whole-body management and systemic complications. According to the Japan Neurotrauma Data Bank of the Japan Society of Neurotraumatology, the brain temperature was controlled in 43.9% of severe TBI patients (induced normothermia: 32.2%, hypothermia: 11.7%) in Japan. Brain temperature management was performed mainly in young patients, and the outcome on discharge was favorable in patients who received brain temperature management. Particularly, patients who need craniotomy for removal of hematoma were a good indication of therapeutic hypothermia. Improvement of therapeutic outcomes with widespread temperature management in TBI patients is expected.
Collapse
Affiliation(s)
- Eiichi Suehiro
- Department of Neurosurgery, Yamaguchi University School of Medicine
| | | | | | | |
Collapse
|
22
|
Abstract
Full cerebral recovery after cardiopulmonary resuscitation is still a rare event. Unfortunately, up to now, no specific and outcome-improving therapy was available after such events. From several cases it is known that low body and brain temperature during a cardiocirculatory arrest improves the neurological outcome following these events. As it is not possible in acute events to induce hypothermia beforehand, whether cooling after the insult could also be protective was evaluated. After animal studies in the 1990s and first clinical pilot trials of mild therapeutic and induced hypothermia, two randomized trials of hypothermic therapy after successful resuscitation after cardiac arrest were conducted. These studies demonstrated that hypothermia after cardiac arrest could improve neurological outcome as well as overall mortality.
Collapse
Affiliation(s)
- Michael Holzer
- Department of Emergency Medicine, University of Vienna, Universitätsklinik für Notfallmedizin, AKH--Wien, Austria.
| | | |
Collapse
|
23
|
The effect of hypothermia on sensory-motor function and tissue sparing after spinal cord injury. Spine J 2013; 13:1881-91. [PMID: 24012427 DOI: 10.1016/j.spinee.2013.06.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 01/17/2013] [Accepted: 06/01/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT In recent years, hypothermia has been described as a therapeutic approach that leads to potential protective effects via minimization of secondary damage consequences, reduction of neurologic deficit, and increase of motor performance after spinal cord injury (SCI) in animal models and humans. PURPOSE The objective of this study was to determine the therapeutic efficacy of hypothermia treatment on sensory-motor function and bladder activity outcome correlated with the white and gray matter sparing and neuronal survival after SCI in adult rats. STUDY DESIGN A standardized animal model of compression SCI was used to test the hypothesis that hypothermia could have a neuroprotective effect on neural cell death and loss of white and/or gray matter. METHODS Animals underwent spinal cord compression injury at the Th8-Th9 level followed by systemic hypothermia of 32.0°C with gradual re-warming to 37.0°C. Motor function of hind limbs (BBB score) and mechanical allodynia (von Frey hair filaments) together with function of urinary bladder was monitored in all experimental animals throughout the whole survival period. RESULTS Present results showed that hypothermia had beneficial effects on urinary bladder activity and on locomotor function recovery at Days 7 and 14 post-injury. Furthermore, significant increase of NeuN-positive neuron survival within dorsal and ventral horns at Days 7, 14, and 21 were documented. CONCLUSIONS Our conclusions suggest that hypothermia treatment may not only promote survival of neurons, which can have a significant impact on the improvement of motor and vegetative functions, but also induce mechanical allodynia.
Collapse
|
24
|
Namjoshi DR, Good C, Cheng WH, Panenka W, Richards D, Cripton PA, Wellington CL. Towards clinical management of traumatic brain injury: a review of models and mechanisms from a biomechanical perspective. Dis Model Mech 2013; 6:1325-38. [PMID: 24046354 PMCID: PMC3820257 DOI: 10.1242/dmm.011320] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury (TBI) is a major worldwide healthcare problem. Despite promising outcomes from many preclinical studies, the failure of several clinical studies to identify effective therapeutic and pharmacological approaches for TBI suggests that methods to improve the translational potential of preclinical studies are highly desirable. Rodent models of TBI are increasingly in demand for preclinical research, particularly for closed head injury (CHI), which mimics the most common type of TBI observed clinically. Although seemingly simple to establish, CHI models are particularly prone to experimental variability. Promisingly, bioengineering-oriented research has advanced our understanding of the nature of the mechanical forces and resulting head and brain motion during TBI. However, many neuroscience-oriented laboratories lack guidance with respect to fundamental biomechanical principles of TBI. Here, we review key historical and current literature that is relevant to the investigation of TBI from clinical, physiological and biomechanical perspectives, and comment on how the current challenges associated with rodent TBI models, particularly those involving CHI, could be improved.
Collapse
Affiliation(s)
- Dhananjay R Namjoshi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Rubiano AM, Sanchez AI, Estebanez G, Peitzman A, Sperry J, Puyana JC. The effect of admission spontaneous hypothermia on patients with severe traumatic brain injury. Injury 2013; 44:1219-25. [PMID: 23273319 PMCID: PMC3644529 DOI: 10.1016/j.injury.2012.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/09/2012] [Accepted: 11/25/2012] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Recent information has emerged regarding the harmful effects of spontaneous hypothermia at time of admission in trauma patients. However the volume of evidence regarding the role of spontaneous hypothermia in TBI patients is inadequate. METHODS We performed secondary data analysis of 10 years of the Pennsylvania trauma outcome study (PTOS) database. Unadjusted comparisons of the association of admission spontaneous hypothermia with mortality were performed. In addition, full assessment of the association of hypothermia with mortality was conducted using multivariable logistic regressions reporting the odds ratios (OR) with the 95% confidence intervals (CI) and P-values. RESULTS There were 11,033 patients identified from the PTOS with severe TBI. There were 4839 deaths (43.9%). The proportion of deaths in hypothermic patients was higher than the proportion of deaths in normothermic patients (53.9% vs. 37.4% respectively; P value<0.001). In a multivariable logistic regression model adjusted for demographics, injury characteristics, and information at admission to the trauma centre, the odds of death among patients with hypothermia were 1.70 times the odds of death among patients with normothermia (OR 1.70, 95% CI 1.50-1.93), indicating that the probability of death was significantly higher when patients arrived hypothermic at the trauma centre. CONCLUSION The presence of spontaneous hypothermia at hospital admission is associated with a significant increase in the risk of mortality in patients with severe TBI. The benefit of maintaining normothermia in severe TBI patients, the impact of prolonged re-warming in patients with established hypothermia and the introduction of prophylactic measures to complications of hypothermia are key points that require further investigation.
Collapse
Affiliation(s)
- Andrés M. Rubiano
- Neurosurgeon and Critical Care Physician, Chief of Trauma and Emergency Service, Neiva University Hospital, Professor of Neurosciences, South Colombia University, Colombia, , Fax: +5788723885, Tel: +573006154775
| | - Alvaro I Sanchez
- Epidemiologist and Trauma Research Fellow, Division of Trauma, University of Pittsburgh Medical Centre, Pittsburgh, Pennsylvania, United States of America,
| | - Glyn Estebanez
- Core Surgical Trainee, Department of Surgery, Whiston Hospital, United Kingdom,
| | - Andrew Peitzman
- Trauma Surgeon, Division of General Surgery, University of Pittsburgh Medical Centre, Pittsburgh, Pennsylvania, United States of America,
| | - Jason Sperry
- Trauma Surgeon, Division of General Surgery, University of Pittsburgh Medical Centre, Pittsburgh, Pennsylvania, United States of America,
| | - Juan Carlos Puyana
- Trauma Surgeon, Division of General Surgery, University of Pittsburgh Medical Centre, Pittsburgh, Pennsylvania, United States of America,
| |
Collapse
|
26
|
Abstract
BACKGROUND Early diagnosis of traumatic brain injury (TBI) and reliable prediction of outcome are essential for determining treatment strategies and allocating resources. This study introduces the Eppendorf-Cologne Scale (ECS) and evaluated its predictive accuracy for outcome and TBI presence compared with those of the Glasgow Coma Scale (GCS). METHODS A retrospective cohort analysis of severely injured trauma patients registered in the Trauma Registry of the German Society for Trauma Surgery from 1993 to 2010 was conducted. Only directly admitted patients alive on admission and with complete data on GCS, pupil reactivity, and size were included. The ECS was modeled using pupil reactivity, size, and a modified GCS motor component. The unadjusted predictive role of each component was evaluated using multivariable regression analysis. The predictive power regarding the presence of TBI and outcome of the ECS and the GCS was modeled using area under the receiver operating characteristic (AUROC) curve analyses. RESULTS A total of 28,305 patients fulfilled the study inclusion criteria. The ECS outmatched the predictive accuracy of the GCS for outcome (AUROC, 0.824; 95% confidence interval [95% CI], 0.817-0.831; and AUROC, 0.811; 95% CI, 0.804-0.818, respectively; rs = 0.887, p < 0.001) and TBI presence (AUROC, 0.813; 95% CI, 0.805-0.822; and AUROC, 0.777; 95% CI, 0.768-0.786, respectively; rs = 0.889, p < 0.001). Patients with TBI were five times more often unconscious at the scene and showed a 3.5-fold increased in-hospital mortality. An ECS score of 8 was associated with a 20-fold higher mortality compared with an ECS score of 0. The ECS differentiates patients with a fourfold higher mortality within the GCS 3 collective. CONCLUSION The ECS shows a significantly higher accuracy for prediction of outcome and TBI presence compared with the GCS and provides a simple, yet reliable, stratification tool for early decision making. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
|
27
|
Furuse M, Preul MC, Kinoshita Y, Nishihara K, Isono N, Kuroiwa T. Rapid induction of brain hypothermia by endovascular intra-arterial perfusion. Neurol Res 2013; 29:53-7. [PMID: 17427276 DOI: 10.1179/174313206x152537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Achieving rapid, brain cooling has potentially important clinical implications. To investigate potential practicalities, we induced brain hypothermia in canines by perfusing cooled crystalloid solution into the carotid artery using an extracorporeal cooling-filtration system. METHODS Ringer's solution cooled to approximately 6.5 degrees C was infused at a rate of 3 ml/kg/min for 30 minutes into the right common carotid artery through an angiographic catheter via the right femoral artery in six adult canines (13.81 +/- 0.60 kg). Excessive fluid was ultrafiltrated through a venovenous extracorporeal circuit via the right femoral vein. Temperature was monitored in the cerebral hemispheres, the rectum and the vena cava. The extracellular lactate concentrations were measured by microdialysis in the frontal lobes. RESULTS Right brain temperature decreased to 33.6 +/- 2.0 degrees C from 37.7 +/- 1.1 degrees C 30 minutes after initiation of perfusion, while left brain and rectal temperatures were 34.3 +/- 1.7 and 34.1 +/- 1.3 degrees C, respectively. The cooling rate of the right cerebral hemisphere was 4.2 +/- 1.1 degrees C/ 30 minutes and advanced compared with the rectum (p<0.01), the left cerebral hemisphere and the vena cava (both p<0.05). There was no significant increase in the extracellular lactate concentrations in the cerebral hemispheres. Hemoglobin, hematocrit and cardiac function significantly changed during perfusion (p<0.05). CONCLUSIONS Brain hypothermia was rapidly and safely induced using an intra-arterial crystalloid infusion and an extracorporeal cooing-filtration system. With refinement and further assessment of metabolic and physiologic parameters, the method holds a potential for clinical utility.
Collapse
Affiliation(s)
- Motomasa Furuse
- Department of Neurosurgery, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Lu J, Gary KW, Neimeier JP, Ward J, Lapane KL. Randomized controlled trials in adult traumatic brain injury. Brain Inj 2013; 26:1523-48. [PMID: 23163248 DOI: 10.3109/02699052.2012.722257] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND To optimize strategies for achieving the effectiveness of interdisciplinary interventions, this study conducted a comprehensive literature review of all Randomized Controlled Trials (RCT) in adults with traumatic brain injury (TBI) over the past 30 years. METHOD Three major databases including Medline, PsycINFO and CINAHL were searched, yielding 1176 peer reviewed publications. One hundred RCTs were included, encompassing 55 pharmacologic and non-pharmacologic acute phase trials and 45 rehabilitation and pharmacologic post-acute trials. RESULTS The majority of acute phase pharmacologic or non-pharmacologic trials (40/55) showed either no effect or adverse effect on TBI outcomes. Several trials involving early nutritional therapy or pre-hospital rapid intubation demonstrated significant treatment effects. The effect of decompressive craniectomy, therapeutic hypothermia and osmotic therapy remained controversial. The majority of post-acute phase trials (36/45), consisting of cognitive rehabilitation, physical rehabilitation and pharmacotherapy, produced various beneficial treatment effects. CONCLUSION The data indicate that several active interventions during the acute phase of TBI are likely to be more effective than pharmacotherapy, whereas a comprehensive rehabilitation approach is preferred in post-acute phase TBI management. Great progress has been made in understanding the heterogeneous injury mechanisms as well as the complexity of medical management and rehabilitation following the recovery course of TBI.
Collapse
Affiliation(s)
- Juan Lu
- Department of Epidemiology and Community Health, Virginia Commonwealth University, Richmond, VA 23298-0212, USA.
| | | | | | | | | |
Collapse
|
29
|
Ahmad FU, Wang MY, Levi AD. Hypothermia for acute spinal cord injury--a review. World Neurosurg 2013; 82:207-14. [PMID: 23298671 DOI: 10.1016/j.wneu.2013.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 10/26/2012] [Accepted: 01/03/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Spinal cord injury (SCI) is a catastrophic neurological event with no proven treatments that protect against its consequences. Potential benefits of hypothermia in preventing/limiting central nervous system injury are now well known. There has been an interest in its potential use after SCI. This article reviews the current experimental and clinical evidence on the use of therapeutic hypothermia in patients with SCI. METHODS Review of literature. RESULTS There are various mechanisms by which hypothermia is known to protect the central nervous system. Modest hypothermia (32°C-34°C) can deliver the potential benefits of hypothermia without incurring the complications associated with deep hypothermia. Several recent experimental studies have repeatedly shown that the use of hypothermia provides the benefit of neuroprotection after SCI. Although older clinical studies were often focused on local cooling strategies and demonstrated mixed results, more recent data from systemic hypothermia use demonstrate its safety and its benefits. Endovascular cooling is a safe and reliable method of inducing hypothermia. CONCLUSIONS There is robust experimental and some clinical evidence that hypothermia is beneficial in acute SCI. Larger, multicenter trials should be initiated to further study the usefulness of systemic hypothermia in SCI.
Collapse
Affiliation(s)
- Faiz U Ahmad
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Michael Y Wang
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Allan D Levi
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
30
|
Bramlett HM, Dietrich WD. THE EFFECTS OF POSTTRAUMATIC HYPOTHERMIA ON DIFFUSE AXONAL INJURY FOLLOWING PARASAGGITAL FLUID PERCUSSION BRAIN INJURY IN RATS. Ther Hypothermia Temp Manag 2012; 2:14-23. [PMID: 23420536 DOI: 10.1089/ther.2012.0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous investigations have demonstrated the beneficial effects of mild hypothermia following different types of traumatic brain injury (TBI). In some models, early cooling following TBI has been shown to reduce the frequency of axonal damage, a major consequence of head injury. The purpose of this study was to evaluate the effects of posttraumatic hypothermia in a model that has been shown to be sensitive to temperature manipulations in the early injury setting. Animals underwent moderate parasagittal fluid percussion (FP) brain injury and were then either randomized into normothermic or hypothermic groups. In the hypothermic groups, brain temperature was reduced to either 30 or 33°C 5 minutes after trauma and maintained for a three hour period. Normothermic or sham-operated animals were held under normal temperature conditions. At three days after TBI, animals were perfusion-fixed for quantitative assessment of β-APP immunohistochemistry and silver staining. Traumatic injury led to a significant increase in the frequency of β-APP immunoreactive profiles both within the corpus callosum, external capsule, as well as internal capsule. While early cooling revealed a trend for protection, no significant differences were shown between normothermic and hypothermic animals in terms of the frequency of injured axons at 3 days posttrauma. These results emphasize that axonal pathology is a major consequence of brain injury using this particular model. It is concluded that longer periods of posttraumatic hypothermia may be required to chronically protect axon populations undergoing progressive injury.
Collapse
Affiliation(s)
- Helen M Bramlett
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery University of Miami Miller School of Medicine Miami, Florida 33136
| | | |
Collapse
|
31
|
The impact of nontherapeutic hypothermia on outcomes after severe traumatic brain injury. ACTA ACUST UNITED AC 2012; 71:1627-31. [PMID: 21537207 DOI: 10.1097/ta.0b013e3182159e31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION In patients with isolated severe traumatic brain injury (TBI), the effect of controlled, therapeutic hypothermia on outcomes has been studied extensively. What is not well understood, however, and the purpose of this study, was to examine the impact of noninduced, nontherapeutic hypothermia on outcomes in these patients. METHODS A retrospective review of the institutional trauma registry at the Los Angeles County + University of Southern California Medical Center was performed to identify all trauma patients admitted to the surgical intensive care unit (SICU) with isolated severe TBI from January 2000 to December 2008. Patients were classified as hypothermic (core temperature [Tc] ≤35°C) or normothermic (Tc >35°C) based on their first Tc recorded on SICU admission. The primary outcome measure was in-hospital mortality, and secondary outcomes included SICU and hospital length of stay. RESULTS During the study period, 1,403 patients sustaining an isolated severe TBI were admitted to the SICU. After excluding 122 patients with missing temperature data, 1,281 patients were analyzed. Hypothermia (Tc ≤35°C) on SICU admission was identified in 10.9% (n = 140) of the study population, with the remaining 89.1% (n = 1,141) being normothermic (Tc >35°C). After adjusting for differences in baseline characteristics between the two groups, patients who were hypothermic on SICU admission were found to be significantly less likely to survive (odds ratio, 2.9; 95% confidence interval, 1.3, 6.7; p < 0.013). A penetrating mechanism of injury, Injury Severity Score ≥25, and undergoing an exploratory laparotomy before admission were found to be independent risk factors for the development of hypothermia on SICU admission. CONCLUSION For patients who have sustained isolated severe TBI, the presence of noninduced, nontherapeutic hypothermia on SICU admission is associated with a significant increase in mortality. The impact of preventative measures used to avoid the development of hypothermia and the effectiveness of measures for restoring normothermia warrant further investigation.
Collapse
|
32
|
Effect of the modified Glasgow Coma Scale score criteria for mild traumatic brain injury on mortality prediction: comparing classic and modified Glasgow Coma Scale score model scores of 13. ACTA ACUST UNITED AC 2011; 71:1185-92; discussion 1193. [PMID: 22071923 DOI: 10.1097/ta.0b013e31823321f8] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The Glasgow Coma Scale (GCS) classifies traumatic brain injuries (TBIs) as mild (14-15), moderate (9-13), or severe (3-8). The Advanced Trauma Life Support modified this classification so that a GCS score of 13 is categorized as mild TBI. We investigated the effect of this modification on mortality prediction, comparing patients with a GCS score of 13 classified as moderate TBI (classic model) to patients with GCS score of 13 classified as mild TBI (modified model). METHODS We selected adult TBI patients from the Pennsylvania Outcome Study database. Logistic regressions adjusting for age, sex, cause, severity, trauma center level, comorbidities, and isolated TBI were performed. A second evaluation included the time trend of mortality. A third evaluation also included hypothermia, hypotension, mechanical ventilation, screening for drugs, and severity of TBI. Discrimination of the models was evaluated using the area under receiver operating characteristic curve (AUC). Calibration was evaluated using the Hosmer-Lemershow goodness of fit test. RESULTS In the first evaluation, the AUCs were 0.922 (95% CI, 0.917-0.926) and 0.908 (95% CI, 0.903-0.912) for classic and modified models, respectively. Both models showed poor calibration (p < 0.001). In the third evaluation, the AUCs were 0.946 (95% CI, 0.943-0.949) and 0.938 (95% CI, 0.934-0.940) for the classic and modified models, respectively, with improvements in calibration (p = 0.30 and p = 0.02 for the classic and modified models, respectively). CONCLUSION The lack of overlap between receiver operating characteristic curves of both models reveals a statistically significant difference in their ability to predict mortality. The classic model demonstrated better goodness of fit than the modified model. A GCS score of 13 classified as moderate TBI in a multivariate logistic regression model performed better than a GCS score of 13 classified as mild.
Collapse
|
33
|
Shahlaie K, Keachie K, Hutchins IM, Rudisill N, Madden LK, Smith KA, Ko KA, Latchaw RE, Muizelaar JP. Risk factors for posttraumatic vasospasm. J Neurosurg 2011; 115:602-11. [PMID: 21663415 DOI: 10.3171/2011.5.jns101667] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECT Posttraumatic vasospasm (PTV) is an underrecognized cause of ischemic damage after severe traumatic brain injury (TBI) that independently predicts poor outcome. There are, however, no guidelines for PTV screening and management, partly due to limited understanding of its pathogenesis and risk factors. METHODS A database review of 46 consecutive cases of severe TBI in pediatric and adult patients was conducted to identify risk factors for the development of PTV. Univariate analysis was performed to identify potential risk factors for PTV, which were subsequently analyzed using a multivariate logistic regression model to calculate odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Fever on admission was an independent risk factor for development of PTV (OR 22.2, 95% CI 1.9-256.8), and patients with hypothermia on admission did not develop clinically significant vasospasm during their hospital stay. The presence of small parenchymal contusions was also an independent risk factor for PTV (OR 7.8, 95% CI 0.9-69.5), whereas the presence of subarachnoid hemorrhage or other patterns of intracranial injury were not. Other variables, such as age, sex, ethnicity, degree of TBI severity, or admission laboratory values, were not independent predictors for the development of clinically significant PTV. CONCLUSIONS Independent risk factors for PTV include parenchymal contusions and fever. These results suggest that diffuse mechanical injury and activation of inflammatory pathways may be underlying mechanisms for the development of PTV, and that a subset of patients with these risk factors may be an appropriate population for aggressive screening. Further studies are needed to determine if treatments targeting fever and inflammation may be effective in reducing the incidence of vasospasm following severe TBI.
Collapse
Affiliation(s)
- Kiarash Shahlaie
- Department of Neurological Surgery, University of California Davis School of Medicine, Sacramento, California 95817, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
High WM, Briones-Galang M, Clark JA, Gilkison C, Mossberg KA, Zgaljardic DJ, Masel BE, Urban RJ. Effect of growth hormone replacement therapy on cognition after traumatic brain injury. J Neurotrauma 2011; 27:1565-75. [PMID: 20578825 DOI: 10.1089/neu.2009.1253] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a major public health issue, and yet medical science has little to offer for the persistent symptoms that prevent many of these individuals from fully re-entering society. Post-traumatic hypopituitarism, and specifically growth hormone deficiency (GHD), has been found in a large percentage of individuals with chronic moderate to severe TBI. Presently, there are no published treatment studies of hormone replacement in this population. In this study, 83 subjects with chronic TBI were screened for hypopituitarism. Forty-two subjects were found to have either GHD or GH insufficiency (GHI), of which 23 agreed to be randomized to either a year of GH replacement or placebo. All subjects completed the study with no untoward side effects from treatment. A battery of neuropsychological tests and functional measures were administered before and after treatment. Improvement was seen on the following tests: Dominant Hand Finger Tapping Test, Wechsler Adult Intelligence Scale III-Information Processing Speed Index, California Verbal Learning Test II, and the Wisconsin Card Sorting Test (executive functioning). The findings of this pilot study provide preliminary evidence suggesting that some of the cognitive impairments observed in persons who are GHD/GHI after TBI may be partially reversible with appropriate GH replacement therapy.
Collapse
Affiliation(s)
- Walter M High
- Department of Physical Medicine and Rehabilitation, University of Kentucky College of Medicine, Lexington, Kentucky 40504, USA.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wade CE, Salinas J, Eastridge BJ, McManus JG, Holcomb JB. Admission hypo- or hyperthermia and survival after trauma in civilian and military environments. Int J Emerg Med 2011; 4:35. [PMID: 21699695 PMCID: PMC3134000 DOI: 10.1186/1865-1380-4-35] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/23/2011] [Indexed: 11/10/2022] Open
Abstract
Background In the care of patients with traumatic injuries, focus is placed on hypothermia secondary to its deleterious impact on the coagulation cascade. However, there is scant information on the mortality effect of hyperthermia. Study objectives We hypothesized that both hypothermia and hyperthermia are associated with decreased survival in patients with traumatic injuries. Furthermore, we hypothesized that in the military setting, the incidence of hyperthermia would be greater compared to the civilian environment and thus contributing to an increase in mortality. Methods Registries compared were the National Trauma Data Bank (NTDB), three civilian Level I trauma centers, and military combat support hospitals. The NTDB was used as a reference to define hypothermia and hyperthermia based upon survival. Admission temperature and outcome were known for 4,093 civilian and 4,394 military records. Results Hypothermia was defined as < 36°C and hyperthermia > 38°C as mortality increased outside this range. The overall mortality rates were 3.5% for civilians and 2.5% for military (p < 0.05). Of civilians, 9.3% (382) were hypothermic and 2.2% (92) hyperthermic. The incidence of hypothermia in the military patients was 6.0% (263) and for hyperthermia the incidence was 7.4% (327). Irrespective of group, patients with hypothermia or hyperthermia had an increased mortality compared to those with normal temperatures, ([for civilian:military ] hypothermia 12%:11%; normal 2%:2%; hyperthermia 14%:4%). Conclusion Care of the victim with traumatic injuries emphasizes avoidance of hypothermia; however, hyperthermia is also detrimental. The presence of hypothermia or hyperthermia should be considered in the initial treatment of the patient with traumatic injuries.
Collapse
Affiliation(s)
- Charles E Wade
- US Army Institute of Surgical Research, Fort Sam Houston, TX, USA.
| | | | | | | | | |
Collapse
|
36
|
Feng JF, Zhang KM, Jiang JY, Gao GY, Fu X, Liang YM. Effect of therapeutic mild hypothermia on the genomics of the hippocampus after moderate traumatic brain injury in rats. Neurosurgery 2011; 67:730-42. [PMID: 20651628 DOI: 10.1227/01.neu.0000378023.81727.6e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI), a major cause of morbidity and mortality, is a serious public health concern. OBJECTIVE To evaluate the effect of mild hypothermia on gene expression in the hippocampus and to try to elucidate molecular mechanisms of hypothermic neuroprotection after TBI. METHODS Rats were subjected to mild hypothermia (group 1: n = 3, 33 degrees C, 3H) or normothermia (group 2: n = 3; 37 degrees C, 3H) after TBI. Six genome arrays were applied to detect the gene expression profiles of ipsilateral hippocampus. Functional clustering and gene ontology analysis were then carried out. Another 20 rats were randomly assigned to 4 groups (n = 5 per group): group 3, sham-normothermia; group 4, sham-hypothermia; group 5, TBI-normothermia; and group 6, TBI-hypothermia. Real-time fluorescent quantitative reverse-transcription polymerase chain reaction was used to detect specific selected genes. RESULTS We found that 133 transcripts in the hypothermia group were statistically different from those in the normothermia group, including 57 transcripts that were upregulated and 76 that were downregulated after TBI (P < .01). Most of these genes were involved in various pathophysiological processes, and some were critical to cell survival. Analysis showed that 9 gene ontology categories were significantly affected by hypothermia, including the most affected categories: synapse organization and biogenesis (upregulated) and regulation of inflammatory response (downregulated). The mRNA expression of Ank3, Cmbp, Nrxn3, Tgm2, and Fcgr3 was regulated by hypothermia, TBI, or a combination of TBI and hypothermia compared with the sham-normothermia group. Their mRNA expression was significantly regulated by hypothermia in TBI groups. CONCLUSION Posttraumatic mild hypothermia has a significant effect on the gene expression profiles of the hippocampus, especially those genes belonging to the 9 gene ontology categories. Differential expression of those genes may be involved in the most fundamental molecular mechanisms of cerebral protection by mild hypothermia after TBI.
Collapse
Affiliation(s)
- Jun-feng Feng
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
37
|
Inamasu J, Nakatsukasa M, Suzuki M, Miyatake S. Therapeutic hypothermia for out-of-hospital cardiac arrest: an update for neurosurgeons. World Neurosurg 2011; 74:120-8. [PMID: 21300001 DOI: 10.1016/j.wneu.2010.02.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 02/20/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Neurosurgeons have been familiar with the idea that hypothermia is protective against various types of brain injuries, including traumatic brain injury (TBI). Recent randomized controlled trials, however, have failed to demonstrate the efficacy of therapeutic hypothermia (TH) in patients with TBI. On the other hand, TH becomes popular in the treatment of out-of-hospital cardiac arrest (OHCA) survivors, after randomized controlled trials have shown that survival rate and functional outcome is improved with the use of TH in selected patients. We believe that knowledge on the recent progress in TH for OHCA is useful for neurosurgeons, because feedback of information obtained in the treatment of OHCA may revitalize the interest in TH for neurosurgical disorders, particularly TBI. METHODS A review of the literature was conducted with the use of PubMed. RESULTS Various cooling techniques and devices have been developed and trialed in the treatment of OHCA survivors, including prehospital cooling with bolus ice-cold saline, endovascular cooling catheters, and new generation surface cooling devices, some of which have already been known to neurosurgeons. The efficacy of these new methods and devices has been demonstrated in many preliminary studies, and phase III trials are also expected. CONCLUSIONS Neurosurgeons and critical care medicine physicians pursue the same goal of rescuing the brain from the secondary injury despite the difference in etiology (focal trauma vs. global ischemia), with the presumption that earlier and faster implementation of TH will result in better outcome. Thoughtful application of knowledge and techniques obtained in OHCA to TBI under a rigorously controlled situation will make a small, but significant difference in the outcome of TBI victims.
Collapse
Affiliation(s)
- Joji Inamasu
- Department of Neurosurgery, Saiseikai Utsunomiya Hospital, Utsunomiya, Japan.
| | | | | | | |
Collapse
|
38
|
Abstract
Three large randomized controlled trials have demonstrated benefits from 3 days of cooling to 33-34°C after perinatal asphyxia. No serious adverse effects were documented. The trials excluded many infants for hypothermia (HT) therapy, including those of age >6 hours and those with prematurity of <36 weeks gestation, abnormal coagulation, persistent pulmonary hypertension, and congenital abnormalities. This article considers whether the foregoing trial exclusion criteria are feasible given current knowledge and evidence. HT affects the validity of some outcome predictors (eg, clinical examination, amplitude-integrated electroencephalography), but not of magnetic resonance imaging. HT is a time-critical emergency treatment after perinatal asphyxia that requires optimal collaboration among local hospitals, transport teams, and cooling centers.
Collapse
Affiliation(s)
- Marianne Thoresen
- Department of Child Health, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
39
|
Clifton GL, Valadka A, Zygun D, Coffey CS, Drever P, Fourwinds S, Janis LS, Wilde E, Taylor P, Harshman K, Conley A, Puccio A, Levin HS, McCauley SR, Bucholz RD, Smith KR, Schmidt JH, Scott JN, Yonas H, Okonkwo DO. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol 2011; 10:131-9. [PMID: 21169065 PMCID: PMC3628679 DOI: 10.1016/s1474-4422(10)70300-8] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The inconsistent effect of hypothermia treatment on severe brain injury in previous trials might be because hypothermia was induced too late after injury. We aimed to assess whether very early induction of hypothermia improves outcome in patients with severe brain injury. METHODS The National Acute Brain Injury Study: Hypothermia II (NABIS: H II) was a randomised, multicentre clinical trial of patients with severe brain injury who were enrolled within 2·5 h of injury at six sites in the USA and Canada. Patients with non-penetrating brain injury who were 16-45 years old and were not responsive to instructions were randomly assigned (1:1) by a random number generator to hypothermia or normothermia. Patients randomly assigned to hypothermia were cooled to 35°C until their trauma assessment was completed. Patients who had none of a second set of exclusion criteria were either cooled to 33°C for 48 h and then gradually rewarmed or treated at normothermia, depending upon their initial treatment assignment. Investigators who assessed the outcome measures were masked to treatment allocation. The primary outcome was the Glasgow outcome scale score at 6 months. Analysis was by modified intention to treat. This trial is registered with ClinicalTrials.gov, NCT00178711. FINDINGS Enrolment occurred from December, 2005, to June, 2009, when the trial was terminated for futility. Follow-up was from June, 2006, to December, 2009. 232 patients were initially randomised a mean of 1·6 h (SD 0·5) after injury: 119 to hypothermia and 113 to normothermia. 97 patients (52 in the hypothermia group and 45 in the normothermia group) did not meet any of the second set of exclusion criteria. The mean time to 35°C for the 52 patients in the hypothermia group was 2·6 h (SD 1·2) and to 33°C was 4·4 h (1·5). Outcome was poor (severe disability, vegetative state, or death) in 31 of 52 patients in the hypothermia group and 25 of 56 in the normothermia group (relative risk [RR] 1·08, 95% CI 0·76-1·53; p=0·67). 12 patients in the hypothermia group died compared with eight in the normothermia group (RR 1·30, 95% CI 0·58-2·52; p=0·52). INTERPRETATION This trial did not confirm the utility of hypothermia as a primary neuroprotective strategy in patients with severe traumatic brain injury.
Collapse
Affiliation(s)
- Guy L Clifton
- Vivian L Smith Center for Neurologic Research, Department of Neurosurgery, The University of Texas Medical School at Houston, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Attenuation of brain nitrostative and oxidative damage by brain cooling during experimental traumatic brain injury. J Biomed Biotechnol 2011; 2011:145214. [PMID: 21318143 PMCID: PMC3034961 DOI: 10.1155/2011/145214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 12/16/2010] [Accepted: 01/04/2011] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to ascertain whether brain cooling causes attenuation of traumatic brain injury by reducing brain nitrostative and oxidative damage. Brain cooling was accomplished by infusion of 5 mL of 4°C saline over 5 minutes via the external jugular vein. Immediately after the onset of traumatic brain injury, rats were randomized into two groups and given 37°C or 4°C normal saline. Another group of rats were used as sham operated controls. Behavioral and biochemical assessments were conducted on 72 hours after brain injury or sham operation. As compared to those of the sham-operated controls, the 37°C saline-treated brain injured animals displayed motor deficits, higher cerebral contusion volume and incidence, higher oxidative damage (e.g., lower values of cerebral superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, but higher values of cerebral malondialdehyde), and higher nitrostative damage (e.g., higher values of neuronal nitric oxide synthase and 3-nitrotyrosine). All the motor deficits and brain nitrostative and oxidative damage were significantly reduced by retrograde perfusion of 4°C saline via the jugular vein. Our data suggest that brain cooling may improve the outcomes of traumatic brain injury in rats by reducing brain nitrostative and oxidative damage.
Collapse
|
41
|
Ireland S, Endacott R, Cameron P, Fitzgerald M, Paul E. The incidence and significance of accidental hypothermia in major trauma--a prospective observational study. Resuscitation 2010; 82:300-6. [PMID: 21074927 DOI: 10.1016/j.resuscitation.2010.10.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/12/2010] [Accepted: 10/16/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND Serious sequelae have been associated with injured patients who are hypothermic (<35°C) including coagulopathy, acidosis, decreased myocardial contractility and risk of mortality. AIM Establish the incidence of accidental hypothermia in major trauma patients and identify causative factors. METHOD Prospective identification and subsequent review of 732 medical records of major trauma patients presenting to an Adult Major Trauma Centre was undertaken between January and December 2008. Multivariate analysis was performed using logistic regression. Significant and clinically relevant variables from univariate analysis were entered into multivariate models to evaluate determinants for hypothermia and for death. Goodness of fit was determined with the use of the Hosmer-Lemeshow statistic. MAIN RESULTS Overall mortality was 9.15%. The incidence of hypothermia was 13.25%. The mortality of patients with hypothermia was 29.9% with a threefold independent risk of death: OR (CI 95%) 3.44 (1.48-7.99), P = 0.04. Independent determinants for hypothermia were pre-hospital intubation: OR (CI 95%) 5.18 (2.77-9.71), P < 0.001, Injury Severity Score (ISS): 1.04 (1.01-1.06), P = 0.01, Arrival Systolic Blood Pressure (ASBP) < 100 mm Hg: 3.04 (1.24-7.44), P = 0.02, and winter time: 1.84 (1.06-3.21), P = 0.03. Of the 87 hypothermic patients who had repeat temperatures recorded in the Emergency Department, 77 (88.51%) patients had a temperature greater than the recorded arrival temperature. There was no change in recorded temperature for four (4.60%) patients, whereas six (6.90%) patients were colder at Emergency Department discharge. CONCLUSION Seriously injured patients with accidental hypothermia have a higher mortality independent of measured risk factors. For patients with multiple injuries a coordinated effort by paramedics, nurses and doctors is required to focus efforts toward early resolution of hypothermia aiming to achieve a temperature >35 °C.
Collapse
Affiliation(s)
- Sharyn Ireland
- Emergency and Trauma Centre, Alfred Health, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
42
|
Thompson HJ, Kirkness CJ, Mitchell PH. Hypothermia and rapid rewarming is associated with worse outcome following traumatic brain injury. J Trauma Nurs 2010; 17:173-7. [PMID: 21157248 PMCID: PMC3556902 DOI: 10.1097/jtn.0b013e3181ff272e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of the present study was to determine (1) the prevalence and degree of hypothermia in patients on emergency department admission and (2) the effect of hypothermia and rate of rewarming on patient outcomes. METHODS Secondary data analysis was conducted on patients admitted to a level I trauma center following severe traumatic brain injury (n = 147). Patients were grouped according to temperature on admission according to hypothermia status and rate of rewarming (rapid or slow). Regression analyses were performed. FINDINGS Hypothermic patients were more likely to have lower postresuscitation Glasgow Coma Scale scores and a higher initial injury severity score. Hypothermia on admission was correlated with longer intensive care unit stays, a lower Glasgow Coma Scale score at discharge, higher mortality rate, and lower Glasgow outcome score-extended scores up to 6 months postinjury (P < .05). When controlling for other factors, rewarming rates more than 0.25°C/h were associated with lower Glasgow Coma Scale scores at discharge, longer intensive care unit length of stay, and higher mortality rate than patients rewarmed more slowly although these did not reach statistical significance. CONCLUSION Hypothermia on admission is correlated with worse outcomes in brain-injured patients. Patients with traumatic brain injury who are rapidly rewarmed may be more likely to have worse outcomes. Trauma protocols may need to be reexamined to include controlled rewarming at rates 0.25°C/h or less.
Collapse
Affiliation(s)
- Hilaire J Thompson
- Biobehavioral Nursing and Health Systems, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
43
|
Abstract
For infants with perinatal hypoxia-ischaemia, the ability to give an accurate prognosis at different ages enables the clinician to make decisions on the continuation of management, and also assists in discussions regarding further treatment and prognosis with parents and families. This review suggests which outcome markers are still valid, which need new 'cut-off values' and which can no longer be used in cooled infants. The main focus is on convenient bedside technologies such as the amplitude-integrated electroencephalogram that can be easily applied in routine clinical practice.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Therapeutic hypothermia after traumatic brain injury (TBI)? For the last 10 years, no topic has been more popular and more controversial among neurointensivists. This article reviews the most current findings (experimental, clinical, adult and pediatric TBI), as well as the clinical management of therapeutic hypothermia. RECENT FINDINGS Despite ample experimental evidence, the clinical utility of therapeutic hypothermia has still to be conclusively demonstrated in terms of reduced mortality or improved functional recovery after TBI (even in pediatric TBI). Current findings support that hypothermia should be initiated as soon as possible, for at least 48 h duration, and that outcome is worse when barbiturates are part of ICU management. Currently, available cooling techniques, including prehospital cooling protocols, expand and improve clinical management of therapeutic hypothermia. SUMMARY Taking into consideration all results from clinical hypothermia TBI studies discussion has to be focused around the possibility that a better outcome could be achieved if protocols for therapeutic hypothermia are reviewed. It is possible that the negative effects of the cooling and the rewarming procedure currently overshadow the neuroprotective effects.
Collapse
|
45
|
Finkelstein RA, Alam HB. Induced hypothermia for trauma: current research and practice. J Intensive Care Med 2010; 25:205-26. [PMID: 20444735 DOI: 10.1177/0885066610366919] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Induction of hypothermia with the goal of providing therapeutic benefit has been accepted for use in the clinical setting of adult cardiac arrest and neonatal hypoxic-ischemic encephalopathy (HIE). However, its potential as a treatment in trauma is not as well defined. This review discusses potential benefits and complications of induced hypothermia (IH) with emphasis on the current state of knowledge and practice in various types of trauma. There is excellent preclinical research showing that in cases of penetrating trauma with cardiac arrest, inducing hypothermia to 10 degrees C using cardiopulmonary bypass (CPB) could possibly save those otherwise likely to die without causing neurologic sequelae. A human trial of this intervention is about to get underway. Preclinical studies suggest that inducing hypothermia may be useful to delay cardiac arrest in penetrating trauma victims who are hypotensive. There is potential for IH to be used in cases of blunt trauma, but it has not been well studied. In the case of traumatic brain injury (TBI), clinical trials have shown conflicting results, despite almost uniform efficacy seen in preclinical experiments. Major studies are analyzed and ways to standardize its use and optimize future clinical trials are discussed. More preclinical and clinical research is needed to better define whether there could be a role for IH in the case of spinal cord injuries.
Collapse
Affiliation(s)
- Robert A Finkelstein
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
46
|
Yan Y, Tang W, Deng Z, Zhong D, Yang G. Cerebral oxygen metabolism and neuroelectrophysiology in a clinical study of severe brain injury and mild hypothermia. J Clin Neurosci 2010; 17:196-200. [DOI: 10.1016/j.jocn.2009.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/06/2009] [Accepted: 05/17/2009] [Indexed: 10/20/2022]
|
47
|
Abstract
OBJECTIVE To describe the use and feasibility of therapeutic hypothermia after pediatric cardiac arrest. DESIGN Retrospective cohort study. SETTING Pediatric tertiary care university hospital. PATIENTS Infants and children (age 1 wk to 21 yrs) without complex congenital heart disease with return of spontaneous circulation after in-hospital or out-of-hospital cardiac arrest from 2000 to 2006. INTERVENTION None. MEASUREMENTS AND MAIN RESULTS We studied 181 patients after cardiac arrest, of which 91% were asphyxial in etiology (vs. cardiac) and 52% occurred in-hospital. Overall survival to hospital discharge was 45%. Forty patients received therapeutic hypothermia; all were admitted during or after 2002. Sixty percent of patients in the therapeutic hypothermia group had an initial temperature <35 degrees C. The median therapeutic hypothermia target temperature was 34.0 degrees C (33.5-34.8 degrees C), was reached by 7 hrs (5-8 hrs) after admission in patients who were not hypothermic on admission, and was maintained for 24 hrs (16-48 hrs). Re-warming lasted 6 hrs (5-8 hrs). In the therapeutic hypothermia group, temperature <32 degrees C occurred in 15% of patients and was associated with higher hospital mortality (29% vs. 11%; p = .02). Patients treated with therapeutic hypothermia differed from those treated with standard therapy, with more un-witnessed cardiac arrest (p = .04), more doses of epinephrine to achieve return of spontaneous circulation (p = .03), and a trend toward more out-of-hospital cardiac arrests (p = .11). After arrest, therapeutic hypothermia patients received more frequent electrolyte supplementation (p < .05). Standard therapy patients were twice as likely as therapeutic hypothermia patients to have a fever (>38 degrees C) after arrest (37% vs. 18%; p = .02) and trended toward a higher rate of re-arrest (26% vs. 13%; p = .09). Rates of red blood cell transfusions, infection, and arrhythmias were similar between groups. There was no difference in hospital mortality (55.0% therapeutic hypothermia vs. 55.3% standard therapy; p = 1.0), and 78% of the therapeutic hypothermia survivors were discharged home (vs. 68% of the standard therapy survivors; p = .46). In multivariate analysis, mortality was independently associated with initial hypoglycemia or hyperglycemia, number of doses of epinephrine during resuscitation, asphyxial etiology, and longer duration of cardiopulmonary resuscitation, but not treatment group (odds ratio for mortality in the therapeutic hypothermia group, 0.47; p = .2). CONCLUSIONS This is the largest study reported on the use of therapeutic mild hypothermia in pediatric cardiac arrest to date. We found that therapeutic hypothermia was feasible, with target temperature achieved in <3 hrs overall. Temperature below target range was associated with increased mortality. Prospective study is urgently needed to determine the efficacy of therapeutic hypothermia in pediatric patients after cardiac arrest.
Collapse
|
48
|
Jia F, Mao Q, Liang YM, Jiang JY. Effect of post-traumatic mild hypothermia on hippocampal cell death after traumatic brain injury in rats. J Neurotrauma 2009; 26:243-52. [PMID: 19236165 DOI: 10.1089/neu.2008.0670] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In this investigation, we evaluated the effect of post-traumatic mild hypothermia on cell death in the hippocampus after fluid percussion traumatic brain injury (TBI) in rats. Adult male Sprague-Dawley rats were randomly divided into three groups (n = 40/group): TBI with hypothermia treatment (32 degrees C), TBI with normothermia (37 degrees C), and sham injury. The TBI model was induced by a fluid percussion TBI device. Mild hypothermia (32 degrees C) was achieved by partial immersion in a water bath (0 degrees C) under general anesthesia for 4h. All rats were killed at 24 or 72h after TBI. The ipsilateral hippocampal CA1 in all rats were analyzed by hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate-biotin nick end labeling (TUNEL), and 4',6-diamidino-2-phenylindole (DAPI) staining for determining cell death. Caspase-3 expression was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. At 24h, based on TUNEL and DAPI results, the cell death index was 28.80 +/- 2.60% and 32.10 +/- 1.40% in the normothermia TBI group, while reaching only 14.30 +/- 2.70% and 18.40 +/- 2.10% in the hypothermic TBI group (p < 0.01). Based on RT-PCR and Western blotting results, the expression of caspase-3 was 210.20 +/- 5.30% and 170.30 +/- 4.80% in the normothermic TBI group, while reaching only 165.10 +/- 3.70% and 130.60 +/- 4.10% in the hypothermic TBI group (p < 0.05). At 72h, based on TUNEL and DAPI results, the cell death index was 20.80 +/- 2.50% and 25.50 +/- 1.80% in the normothermic TBI group, while reaching only 10.20 +/- 2.60% and 15.50 +/- 2.10% in the hypothermic TBI group (p < 0.01). Based on RT-PCR and Western blotting results, the expression of caspase-3 was 186.20 +/- 6.20% and 142.30 +/- 5.10% in the normothermic TBI group, versus only 152.10 +/- 3.60% and 120.60 +/- 3.90% in the hypothermic TBI group (p < 0.05). Based on our findings, we conclude that post-traumatic hypothermia significantly attenuates cell death within the hippocampus following fluid percussion injury. Taken together with other studies, these observations support the premise that post-traumatic mild hypothermia can provide cerebral protection for patients with TBI.
Collapse
Affiliation(s)
- Feng Jia
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
49
|
Tawfeeq NA, Halawani MM, Al-Faridi K, Aal-Shaya WA, Taha WS. Traumatic brain injury: neuroprotective anaesthetic techniques, an update. Injury 2009; 40 Suppl 4:S75-81. [PMID: 19895957 DOI: 10.1016/j.injury.2009.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Traumatic brain injuries remain an area of great challenge to both neurosurgeons and neuroanaesthesiologists. The management of these injuries starts at the scene of the accident. However, strategies for preventing secondary brain injury and its sequelae are continuing to evolve. These strategies include the use of pharmacological and nonpharmacological techniques. Preventing hypoxia and the use of hypertonic saline have been shown to have favourable results on the outcome of these injuries. The use of isoflurane has been shown to have a neuronprotective effect. Propofol is thought to be the future drug of choice because of its neuroprotective properties, although these still need to be further proven through research. In this review an understanding of the pathophysiology of traumatic brain injury will be outlined in order to understand the effects of pharmacological and nonpharmacological agents on secondary brain injury.
Collapse
Affiliation(s)
- Nasser A Tawfeeq
- Department of Anaesthesia, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
50
|
Hostler D, Northington WE, Callaway CW. High-dose diazepam facilitates core cooling during cold saline infusion in healthy volunteers. Appl Physiol Nutr Metab 2009; 34:582-6. [PMID: 19767791 DOI: 10.1139/h09-011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies have suggested that inducing mild hypothermia improves neurologic outcomes after traumatic brain injury, major stroke, cardiac arrest, or exertional heat illness. While infusion of cold normal saline is a simple and inexpensive method for reducing core temperature, human cold-defense mechanisms potentially make this route stressful or ineffective. We hypothesized that intravenous administration of diazepam during a rapid infusion of 30 mL.kg-1 of cold (4 degrees C) 0.9% saline to healthy subjects would be more comfortable and reduce core body temperature more than the administration of cold saline alone. Fifteen subjects received rapidly infused cold (4 degrees C) 0.9% saline. Subjects were randomly assigned to receive, intravenously, 20 mg diazepam (HIGH), 10 mg diazepam (LOW), or placebo (CON). Main outcomes were core temperature, skin temperature, and oxygen consumption. Data for the main outcomes were analyzed with generalized estimating equations to identify differences in group, time, or a group x time interaction. Core temperature decreased in all groups (CON, 1.0 +/- 0.2 degrees C; LOW, 1.4 +/- 0.2 degrees C; HIGH, 1.5 +/- 0.2 degrees C), while skin temperature was unchanged. Mean (95% CI) oxygen consumption was 315.3 (253.8, 376.9) mL.kg-1.min-1 in the CON group, 317.9 (275.5, 360.3) in the LOW group, and 226.1 (216.4, 235.9) in the HIGH group. Significant time and group x time interaction was observed for core temperature and oxygen consumption (p < 0.001). Administration of high-dose diazepam resulted in decreased oxygen consumption during cold saline infusion, suggesting that 20 mg of intravenous diazepam may reduce the shivering threshold without compromising respiratory or cardiovascular function.
Collapse
Affiliation(s)
- David Hostler
- University of Pittsburgh, Department of Emergency Medicine, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|