1
|
Sierra-Sánchez Á, Sanabria-de la Torre R, Ubago-Rodríguez A, Quiñones-Vico MI, Montero-Vílchez T, Sánchez-Díaz M, Arias-Santiago S. Blood Plasma, Fibrinogen or Fibrin Biomaterial for the Manufacturing of Skin Tissue-Engineered Products and Other Dermatological Treatments: A Systematic Review. J Funct Biomater 2025; 16:79. [PMID: 40137358 PMCID: PMC11942893 DOI: 10.3390/jfb16030079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
The use of blood plasma, fibrinogen or fibrin, a natural biomaterial, has been widely studied for the development of different skin tissue-engineered products and other dermatological treatments. This systematic review reports the preclinical and clinical studies which use it alone or combined with other biomaterials and/or cells for the treatment of several dermatological conditions. Following the PRISMA 2020 Guidelines, 147 preclinical studies have revealed that the use of this biomaterial as a wound dressing or as a monolayer (one cell type) skin substitute are the preferred strategies, mainly for the treatment of excisional or surgical wounds. Moreover, blood plasma is mainly used alone although its combination with other biomaterials such as agarose, polyethylene glycol or collagen has also been reported to increase its wound healing potential. However, most of the 17 clinical reviewed evaluated its use for the treatment of severely burned patients as a wound dressing or bilayer (two cell types) skin substitute. Although the number of preclinical studies evaluating the use of blood plasma as a dermatological treatment has increased during the last fifteen years, this has not been correlated with a wide variety of clinical studies. Its safety and wound healing potential have been proved; however, the lack of a standard model and the presence of several approaches have meant that its translation to a clinical environment is still limited. A higher number of clinical studies should be carried out in the coming years to set a standard wound healing strategy for each dermatological disease.
Collapse
Affiliation(s)
- Álvaro Sierra-Sánchez
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NA 27101, USA
| | - Raquel Sanabria-de la Torre
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology IIi and Immunology, University of Granada, 18071 Granada, Spain
| | - Ana Ubago-Rodríguez
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - María I. Quiñones-Vico
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, University of Granada, 18016 Granada, Spain
| | - Trinidad Montero-Vílchez
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
| | - Manuel Sánchez-Díaz
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
| | - Salvador Arias-Santiago
- Unidad de Producción Celular e Ingeniería Tisular, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, 18014 Granada, Spain; (Á.S.-S.); (S.A.-S.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Dermatology, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Department of Dermatology, University of Granada, 18016 Granada, Spain
| |
Collapse
|
2
|
Trimukhe AM, Melo JS, Chaturvedi D, Jain RD, Dandekar P, Deshmukh RR. RF pulsed plasma modified composite scaffold for enhanced anti-microbial activity and accelerated wound healing. Int J Pharm 2024; 667:124864. [PMID: 39461682 DOI: 10.1016/j.ijpharm.2024.124864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/15/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Infected wounds present significant challenges pertaining to healing and often demand administration of strong antibiotics to patients. Also, drug resistant microbes may alter the physiology of wounds to create biofilms, frequently leading to high morbidity and mortality. In this investigation, a biodegradable, microporous composite agarose-chitosan scaffold was fabricated. Furthermore, its surface was modified with diphenyldiselenide deposition, using low pressure pulsed plasma technology. The optimized plasma parameters, viz. 5ON/15OFF (ms) of plasma pulse rate and 80 min of treatment time resulted in scaffolds having enhanced anti-bacterial activity against gram positive microbes like Staphylococcus (S.) aureus and S. epidermidis. The scaffolds were non-toxic to skin cells, as confirmed by the MTT assay. Cell proliferation through plasma treated and untreated scaffolds was assessed by culturing primary human dermal fibroblasts (HdaF) and human keratinocytes (HaCaT) and visualizing via confocal microscopy. Moreover, in-vivo rat model confirmed accelerated wound healing with plasma treated scaffold (100 % on day 14), as compared to the untreated scaffold (100 % on day 16) when compared with over-the-counter (OTC) ointment Betadine (100 % on day 12).
Collapse
Affiliation(s)
- A M Trimukhe
- Department of Physics, Institute of Chemical Technology, Mumbai 400019, India
| | - J S Melo
- Enzyme Microbial Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - D Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - R D Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India
| | - P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - R R Deshmukh
- Department of Physics, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
3
|
Martín C, Bachiller A, Fernández-Blázquez JP, Nishina Y, Jorcano JL. Plasma-Derived Fibrin Hydrogels Containing Graphene Oxide for Infections Treatment. ACS MATERIALS LETTERS 2023; 5:1245-1255. [PMID: 38323142 PMCID: PMC10842975 DOI: 10.1021/acsmaterialslett.2c01044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/20/2023] [Indexed: 02/08/2024]
Abstract
Wound infection is inevitable in most patients suffering from extensive burns or chronic ulcers, and there is an urgent demand for the production of bactericidal dressings to be used as grafts to restore skin functionalities. In this context, the present study explores the fabrication of plasma-derived fibrin hydrogels containing bactericidal hybrids based on graphene oxide (GO). The hydrogels were fully characterized regarding gelation kinetics, mechanical properties, and internal hydrogel structures by disruptive cryo scanning electron microscopies (cryo-SEMs). The gelation kinetic experiments revealed an acceleration of the gel formation when GO was added to the hydrogels in a concentration of up to 0.2 mg/mL. The cryo-SEM studies showed up a decrease of the pore size when GO was added to the network, which agreed with a faster area contraction and a higher compression modulus of the hydrogels that contained GO, pointing out the critical structural role of the nanomaterial. Afterward, to study the bactericidal ability of the gels, GO was used as a carrier, loading streptomycin (STREP) on its surface. The loading content of the drug to form the hybrid (GO/STREP) resulted in 50.2% ± 4.7%, and the presence of the antibiotic was also demonstrated by Raman spectroscopy, Z-potential studies, and thermogravimetric analyses. The fibrin-derived hydrogels containing GO/STREP showed a dose-response behavior according to the bactericidal hybrid concentration and allowed a sustained release of the antibiotic at a programmed rate, leading to drug delivery over a prolonged period of time.
Collapse
Affiliation(s)
- Cristina Martín
- Department
of Bioengineering, Universidad Carlos III
de Madrid, Leganés 28911, Spain
| | - Ariadna Bachiller
- Department
of Bioengineering, Universidad Carlos III
de Madrid, Leganés 28911, Spain
| | | | - Yuta Nishina
- Graduate
School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Research
Core for Interdisciplinary Sciences, Okayama
University, Okayama 700-8530, Japan
| | - José L. Jorcano
- Department
of Bioengineering, Universidad Carlos III
de Madrid, Leganés 28911, Spain
| |
Collapse
|
4
|
Therapeutic Efficacy of Polymeric Biomaterials in Treating Diabetic Wounds-An Upcoming Wound Healing Technology. Polymers (Basel) 2023; 15:polym15051205. [PMID: 36904445 PMCID: PMC10007618 DOI: 10.3390/polym15051205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetic wounds are one of the serious, non-healing, chronic health issues faced by individuals suffering from diabetic mellitus. The distinct phases of wound healing are either prolonged or obstructed, resulting in the improper healing of diabetic wounds. These injuries require persistent wound care and appropriate treatment to prevent deleterious effects such as lower limb amputation. Although there are several treatment strategies, diabetic wounds continue to be a major threat for healthcare professionals and patients. The different types of diabetic wound dressings that are currently used differ in their properties of absorbing wound exudates and may also cause maceration to surrounding tissues. Current research is focused on developing novel wound dressings incorporated with biological agents that aid in a faster rate of wound closure. An ideal wound dressing material must absorb wound exudates, aid in the appropriate exchange of gas, and protect from microbial infections. It must support the synthesis of biochemical mediators such as cytokines, and growth factors that are crucial for faster healing of wounds. This review highlights the recent advances in polymeric biomaterial-based wound dressings, novel therapeutic regimes, and their efficacy in treating diabetic wounds. The role of polymeric wound dressings loaded with bioactive compounds, and their in vitro and in vivo performance in diabetic wound treatment are also reviewed.
Collapse
|
5
|
Pereira RVS, EzEldeen M, Ugarte-Berzal E, Martens E, Malengier-Devlies B, Vandooren J, Vranckx J, Matthys P, Opdenakker G. Physiological fibrin hydrogel modulates immune cells and molecules and accelerates mouse skin wound healing. Front Immunol 2023; 14:1170153. [PMID: 37168862 PMCID: PMC10165074 DOI: 10.3389/fimmu.2023.1170153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Wound healing is a complex process to restore homeostasis after injury and insufficient skin wound healing is a considerable problem in medicine. Whereas many attempts of regenerative medicine have been made for wound healing with growth factors and cell therapies, simple pharmacological and immunological studies are lagging behind. We investigated how fibrin hydrogels modulate immune cells and molecules in skin wound healing in mice. Methods Physiological fibrin hydrogels (3.5 mg/mL fibrinogen) were generated, biophysically analyzed for stiffness and protein contents and were structurally studied by scanning electron microscopy. Physiological fibrin hydrogels were applied to full thickness skin wounds and, after 3 days, cells and molecules in wound tissues were analyzed. Leukocytes, endothelial cells, fibroblasts and keratinocytes were explored with the use of Flow Cytometry, whereas cytokines and matrix metalloproteinases were analyzed with the use of qPCR, ELISAs and zymography. Skin wound healing was analyzed microscopically at day 3, macroscopically followed daily during repair in mice and compared with commercially available fibrin sealant Tisseel. Results Exogenous fibrin at physiological concentrations decreased neutrophil and increased non-classical Ly6Clow monocyte and resolutive macrophage (CD206+ and CX3CR1+) populations, at day 3 after injury. Fibrin hydrogel reduced the expression of pro-inflammatory cytokines and increased IL-10 levels. In line with these findings, gelatinase B/MMP-9 was decreased, whereas gelatinase A/MMP-2 levels remained unaltered. Frequencies of dermal endothelial cells, fibroblasts and keratinocytes were increased and keratinocyte migration was enhanced by fibrin hydrogel. Importantly, physiological fibrin accelerated the healing of skin wounds in contrast to the highly concentrated fibrin sealant Tisseel, which delayed wound repair and possessed a higher fiber density. Conclusion Collectively, we show that adding a tailored fibrin hydrogel scaffold to a wound bed positively influences the healing process, modulating leukocyte populations and inflammatory responses towards a faster wound repair.
Collapse
Affiliation(s)
- Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, University Hospitals Leuven/KU Leuven, Department of Imaging and Pathology, Leuven, Belgium
- Pediatric Dentistry and Special Dental Care, University Hospitals Leuven/KU Leuven, Department of Oral Health Sciences, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Department of Development and Regeneration, University Hospitals Leuven/KU Leuven, Leuven, Belgium
- Department of Plastic and Reconstructive Surgery, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
- *Correspondence: Ghislain Opdenakker,
| |
Collapse
|
6
|
Sanz-Horta R, Matesanz A, Gallardo A, Reinecke H, Jorcano JL, Acedo P, Velasco D, Elvira C. Technological advances in fibrin for tissue engineering. J Tissue Eng 2023; 14:20417314231190288. [PMID: 37588339 PMCID: PMC10426312 DOI: 10.1177/20417314231190288] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/11/2023] [Indexed: 08/18/2023] Open
Abstract
Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells. In addition, their poor mechanical properties and batch-to-batch variability affect their handling, long-term stability, standardization, and reliability. One of the most widely used approaches to improve their properties has been modification of the structure and composition of fibrin hydrogels. In this review, recent advances in composite fibrin scaffolds, chemically modified fibrin hydrogels, interpenetrated polymer network (IPN) hydrogels composed of fibrin and other synthetic or natural polymers are critically reviewed, focusing on their use for tissue engineering.
Collapse
Affiliation(s)
- Raúl Sanz-Horta
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Ana Matesanz
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Alberto Gallardo
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - Helmut Reinecke
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| | - José Luis Jorcano
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Pablo Acedo
- Department of Electronic Technology, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Diego Velasco
- Department of Bioengineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Carlos Elvira
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, Spanish National Research Council (ICTP-CSIC), Madrid, Spain
| |
Collapse
|
7
|
Ahmad N. In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics 2022; 15:42. [PMID: 36678671 PMCID: PMC9864730 DOI: 10.3390/pharmaceutics15010042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Chronic wound management represents a major challenge in the healthcare sector owing to its delayed wound-healing process progression and huge financial burden. In this regard, wound dressings provide an appropriate platform for facilitating wound healing for several decades. However, adherent traditional wound dressings do not provide effective wound healing for highly exudating chronic wounds and need the development of newer and innovative wound dressings to facilitate accelerated wound healing. In addition, these dressings need frequent changing, resulting in more pain and discomfort. In order to overcome these issues, a wide range of affordable and innovative modern wound dressings have been developed and explored recently to accelerate and improve the wound healing process. However, a comprehensive understanding of various in vitro and in vivo characterization methods being utilized for the evaluation of different modern wound dressings is lacking. In this context, an overview of modern dressings and their complete in vitro and in vivo characterization methods for wound healing assessment is provided in this review. Herein, various emerging modern wound dressings with advantages and challenges have also been reviewed. Furthermore, different in vitro wound healing assays and in vivo wound models being utilized for the evaluation of wound healing progression and wound healing rate using wound dressings are discussed in detail. Finally, a summary of modern wound dressings with challenges and the future outlook is highlighted.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| |
Collapse
|
8
|
Chen H, Ma X, Zhang M, Liu Z. Injectable and biofunctionalized fibrin hydrogels co-embedded with stem cells induce hair follicle genesis. Regen Biomater 2022; 10:rbac086. [PMID: 36683749 PMCID: PMC9847531 DOI: 10.1093/rb/rbac086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/25/2022] [Accepted: 10/08/2022] [Indexed: 01/25/2023] Open
Abstract
Fibrin-based hydrogels have been widely used in various tissue engineering because of their biocompatibility, biodegradability, tunable mechanical characteristics and nanofibrous structural properties. However, their ability to support stem cells for hair follicle neogenesis is unclear. In this study, we investigated the effect of fibrin hydrogels in supporting skin-derived precursors (SKPs) in hair follicle neogenesis. Our results showed that SKPs in fibrin hydrogels with high cell viability and proliferation, the stemness of SKPs could be maintained, and the expression of hair induction signature genes such as akp2 and nestin was enhanced. Moreover, hair follicle reconstruction experiments showed de novo hair genesis in mice and the hairs persisted for a long time without teratoma formation. More importantly, the blood vessels and sebaceous glands were also regenerated. Our study demonstrated that fibrin hydrogels are promising in hair follicle regeneration and have potential application in clinical settings for alopecia and wound healing.
Collapse
Affiliation(s)
- Haiyan Chen
- Correspondence address. E-mail: (H.C.); (Z.L.)
| | - Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, People’s Republic of China
| | - Mengqi Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, People’s Republic of China
| | | |
Collapse
|
9
|
Urciuolo F, Passariello R, Imparato G, Casale C, Netti PA. Bioengineered Wound Healing Skin Models: The Role of Immune Response and Endogenous ECM to Fully Replicate the Dynamic of Scar Tissue Formation In Vitro. Bioengineering (Basel) 2022; 9:233. [PMID: 35735476 PMCID: PMC9219817 DOI: 10.3390/bioengineering9060233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
The healing of deep skin wounds is a complex phenomenon evolving according with a fine spatiotemporal regulation of different biological events (hemostasis, inflammation, proliferation, remodeling). Due to the spontaneous evolution of damaged human dermis toward a fibrotic scar, the treatment of deep wounds still represents a clinical concern. Bioengineered full-thickness skin models may play a crucial role in this direction by providing a deep understanding of the process that leads to the formation of fibrotic scars. This will allow (i) to identify new drugs and targets/biomarkers, (ii) to test new therapeutic approaches, and (iii) to develop more accurate in silico models, with the final aim to guide the closure process toward a scar-free closure and, in a more general sense, (iv) to understand the mechanisms involved in the intrinsic and extrinsic aging of the skin. In this work, the complex dynamic of events underlaying the closure of deep skin wound is presented and the engineered models that aim at replicating such complex phenomenon are reviewed. Despite the complexity of the cellular and extracellular events occurring during the skin wound healing the gold standard assay used to replicate such a process is still represented by planar in vitro models that have been largely used to identify the key factors regulating the involved cellular processes. However, the lack of the main constituents of the extracellular matrix (ECM) makes these over-simplistic 2D models unable to predict the complexity of the closure process. Three-dimensional bioengineered models, which aim at recreating the closure dynamics of the human dermis by using exogenous biomaterials, have been developed to fill such a gap. Although interesting mechanistic effects have been figured out, the effect of the inflammatory response on the ECM remodelling is not replicated yet. We discuss how more faithful wound healing models can be obtained by creating immunocompetent 3D dermis models featuring an endogenous ECM.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
| | - Roberta Passariello
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| |
Collapse
|
10
|
Preparation and Characterization of Plasma-Derived Fibrin Hydrogels Modified by Alginate di-Aldehyde. Int J Mol Sci 2022; 23:ijms23084296. [PMID: 35457113 PMCID: PMC9029004 DOI: 10.3390/ijms23084296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
Fibrin hydrogels are one of the most popular scaffolds used in tissue engineering due to their excellent biological properties. Special attention should be paid to the use of human plasma-derived fibrin hydrogels as a 3D scaffold in the production of autologous skin grafts, skeletal muscle regeneration and bone tissue repair. However, mechanical weakness and rapid degradation, which causes plasma-derived fibrin matrices to shrink significantly, prompted us to improve their stability. In our study, plasma-derived fibrin was chemically bonded to oxidized alginate (alginate di-aldehyde, ADA) at 10%, 20%, 50% and 80% oxidation, by Schiff base formation, to produce natural hydrogels for tissue engineering applications. First, gelling time studies showed that the degree of ADA oxidation inhibits fibrin polymerization, which we associate with fiber increment and decreased fiber density; moreover, the storage modulus increased when increasing the final volume of CaCl2 (1% w/v) from 80 µL to 200 µL per milliliter of hydrogel. The contraction was similar in matrices with and without human primary fibroblasts (hFBs). In addition, proliferation studies with encapsulated hFBs showed an increment in cell viability in hydrogels with ADA at 10% oxidation at days 1 and 3 with 80 µL of CaCl2; by increasing this compound (CaCl2), the proliferation does not significantly increase until day 7. In the presence of 10% alginate oxidation, the proliferation results are similar to the control, in contrast to the sample with 20% oxidation whose proliferation decreases. Finally, the viability studies showed that the hFB morphology was maintained regardless of the degree of oxidation used; however, the quantity of CaCl2 influences the spread of the hFBs.
Collapse
|
11
|
Hayashi MAF, Campeiro JD, Yonamine CM. Revisiting the potential of South American rattlesnake Crotalus durissus terrificus toxins as therapeutic, theranostic and/or biotechnological agents. Toxicon 2021; 206:1-13. [PMID: 34896407 DOI: 10.1016/j.toxicon.2021.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
The potential biotechnological and biomedical applications of the animal venom components are widely recognized. Indeed, many components have been used either as drugs or as templates/prototypes for the development of innovative pharmaceutical drugs, among which many are still used for the treatment of human diseases. A specific South American rattlesnake, named Crotalus durissus terrificus, shows a venom composition relatively simpler compared to any viper or other snake species belonging to the Crotalus genus, although presenting a set of toxins with high potential for the treatment of several still unmet human therapeutic needs, as reviewed in this work. In addition to the main toxin named crotoxin, which is under clinical trials studies for antitumoral therapy and which has also anti-inflammatory and immunosuppressive activities, other toxins from the C. d. terrificus venom are also being studied, aiming for a wide variety of therapeutic applications, including as antinociceptive, anti-inflammatory, antimicrobial, antifungal, antitumoral or antiparasitic agent, or as modulator of animal metabolism, fibrin sealant (fibrin glue), gene carrier or theranostic agent. Among these rattlesnake toxins, the most relevant, considering the potential clinical applications, are crotamine, crotalphine and gyroxin. In this narrative revision, we propose to organize and present briefly the updates in the accumulated knowledge on potential therapeutic applications of toxins collectively found exclusively in the venom of this specific South American rattlesnake, with the objective of contributing to increase the chances of success in the discovery of drugs based on toxins.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| | - Joana D Campeiro
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Camila M Yonamine
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| |
Collapse
|
12
|
Ma H, Yu Q, Qu Y, Zhu Y, Wu C. Manganese silicate nanospheres-incorporated hydrogels:starvation therapy and tissue regeneration. Bioact Mater 2021; 6:4558-4567. [PMID: 34095615 PMCID: PMC8141607 DOI: 10.1016/j.bioactmat.2021.04.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
To prevent postoperative skin tumor recurrence and repair skin wound, a glucose oxidase (GOx)-loaded manganese silicate hollow nanospheres (MS HNSs)-incorporated alginate hydrogel (G/MS-SA) was constructed for starvation-photothermal therapy and skin tissue regeneration. The MS HNSs showed a photothermal conversion efficiency of 38.5%, and endowed composite hydrogels with satisfactory photothermal effect. Taking advantage of the catalytic activity of Mn ions, the composite hydrogels could decompose hydrogen peroxide (H2O2) into oxygen (O2), which can alleviate the problem of tumor hypoxia microenvironment and endow GOx with an ability to consume glucose in the presence of O2 for tumor starvation. Meanwhile, hyperthermia triggered by near infrared (NIR) irradiation could not only accelerate the reaction rate of H2O2 decomposition by MS HNSs and glucose consumption by GOx, but also ablate tumor cells. The anti-tumor results showed that synergistic effect of starvation-photothermal therapy led to the highest death rate of tumor cells among all groups, and its anti-tumor effect was obviously improved as compared with that of single photothermal treatment or starvation treatment. Interestingly, the introduction of MS HNSs into hydrogels could distinctly promote the epithelialization of the wound beds by releasing Mn ions as compared with the hydrogels without MS HNSs. It is expected that such a multifunctional platform with starvation-photothermal therapy will be promising for treating tumor-caused skin defects in combination of its regeneration bioactivity in the future.
Collapse
Affiliation(s)
- Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
| | - Qingqing Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No,19(A) Yuquan Road, Beijing, 100049, China
| | - Yu Qu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No,19(A) Yuquan Road, Beijing, 100049, China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No,19(A) Yuquan Road, Beijing, 100049, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No,19(A) Yuquan Road, Beijing, 100049, China
| |
Collapse
|
13
|
Montero A, Atienza C, Elvira C, Jorcano JL, Velasco D. Hyaluronic acid-fibrin hydrogels show improved mechanical stability in dermo-epidermal skin substitutes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112352. [PMID: 34474900 DOI: 10.1016/j.msec.2021.112352] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
Human plasma-derived bilayered skin substitutes have been successfully used by our group in different skin tissue engineering applications. However, several issues associated with their poor mechanical properties were observed, and they often resulted in rapid contraction and degradation. In this sense, hydrogels composed of plasma-derived fibrin and thiolated-hyaluronic acid (HA-SH, 0.05-0.2% w/v) crosslinked with poly(ethylene glycol) diacrylate (PEGDA, 2:1, 6:1, 10:1 and 14:1 mol of thiol to moles of acrylate) were developed to reduce the shrinking rates and enhance the mechanical properties of the plasma-derived matrices. Plasma/HA-SH-PEGDA hydrogels showed a decrease in the contraction behaviour ranging from 5% to 25% and an increase in Young's modulus. Furthermore, the results showed that a minimal amount of the added HA-SH was able to escape the plasma/HA-SH-PEGDA hydrogels after incubation in PBS. The results showed that the increase in rigidity of the matrices as well as the absence of adhesion cellular moieties in the second network of HA-SH/PEGDA, resulted in a decrease in contraction in the presence of the encapsulated primary human fibroblasts (hFBs), which may have been related to an overall decrease in proliferation of hFBs found for all hydrogels after 7 days with respect to the plasma control. The metabolic activity of hFB returned to the control levels at 14 days except for the 2:1 PEGDA crosslinking ratio. The metabolic activity of primary human keratinocytes (hKCs) seeded on the hydrogels showed a decrease when high amounts of HA-SH and PEGDA crosslinker were incorporated. Organotypic skins formed in vitro after 21 days with plasma/HA-SH-PEGDA hydrogels with an HA content of 0.05% w/v and a 2:1 crosslinking ratio were up to three times thicker than the plasma controls, evidencing a reduction in contraction, while they also showed better and more homogeneous keratin 10 (K10) expression in the supra-basal layer of the epidermis. Furthermore, filaggrin expression showed the formation of an enhanced stratum corneum for the constructs containing HA. These promising results indicate the potential of using these biomimetic hydrogels as in vitro skin models for pharmaceutical products and cosmetics and future work will elucidate their potential functionality for clinical treatment.
Collapse
Affiliation(s)
- Andrés Montero
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain
| | - Clara Atienza
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain
| | - Carlos Elvira
- Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - José Luis Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | - Diego Velasco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
14
|
Elastin-Plasma Hybrid Hydrogels for Skin Tissue Engineering. Polymers (Basel) 2021; 13:polym13132114. [PMID: 34203144 PMCID: PMC8271496 DOI: 10.3390/polym13132114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Dermo-epidermal equivalents based on plasma-derived fibrin hydrogels have been extensively studied for skin engineering. However, they showed rapid degradation and contraction over time and low mechanical properties which limit their reproducibility and lifespan. In order to achieve better mechanical properties, elasticity and biological properties, we incorporated a elastin-like recombinamer (ELR) network, based on two types of ELR, one modified with azide (SKS-N3) and other with cyclooctyne (SKS-Cyclo) chemical groups at molar ratio 1:1 at three different SKS (serine-lysine-serine sequence) concentrations (1, 3, and 5 wt.%), into plasma-derived fibrin hydrogels. Our results showed a decrease in gelation time and contraction, both in the absence and presence of the encapsulated human primary fibroblasts (hFBs), higher mechanical properties and increase in elasticity when SKSs content is equal or higher than 3%. However, hFBs proliferation showed an improvement when the lowest SKS content (1 wt.%) was used but started decreasing when increasing SKS concentration at day 14 with respect to the plasma control. Proliferation of human primary keratinocytes (hKCs) seeded on top of the hybrid-plasma hydrogels containing 1 and 3% of SKS showed no differences to plasma control and an increase in hKCs proliferation was observed for hybrid-plasma hydrogels containing 5 wt.% of SKS. These promising results showed the need to achieve a balance between the reduced contraction, the better mechanical properties and biological properties and indicate the potential of using this type of hydrogel as a testing platform for pharmaceutical products and cosmetics, and future work will elucidate their potential.
Collapse
|
15
|
Montero A, Quílez C, Valencia L, Girón P, Jorcano JL, Velasco D. Effect of Fibrin Concentration on the In Vitro Production of Dermo-Epidermal Equivalents. Int J Mol Sci 2021; 22:ijms22136746. [PMID: 34201667 PMCID: PMC8269027 DOI: 10.3390/ijms22136746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 01/18/2023] Open
Abstract
Human plasma-derived bilayered skin substitutes were successfully used by our group to produce human-based in vitro skin models for toxicity, cosmetic, and pharmaceutical testing. However, mechanical weakness, which causes the plasma-derived fibrin matrices to contract significantly, led us to attempt to improve their stability. In this work, we studied whether an increase in fibrin concentration from 1.2 to 2.4 mg/mL (which is the useful fibrinogen concentration range that can be obtained from plasma) improves the matrix and, hence, the performance of the in vitro skin cultures. The results show that this increase in fibrin concentration indeed affected the mechanical properties by doubling the elastic moduli and the maximum load. A structural analysis indicated a decreased porosity for the 2.4 mg/mL hydrogels, which can help explain this mechanical behavior. The contraction was clearly reduced for the 2.4 mg/mL matrices, which also allowed for the growth and proliferation of primary fibroblasts and keratinocytes, although at a somewhat reduced rate compared to the 1.2 mg/mL gels. Finally, both concentrations of fibrin gave rise to organotypic skin cultures with a fully differentiated epidermis, although their lifespans were longer (25–35%) in cultures with more concentrated matrices, which improves their usefulness. These systems will allow the generation of much better in vitro skin models for the testing of drugs, cosmetics and chemicals, or even to “personalized” skin for the diagnosis or determination of the most effective treatment possible.
Collapse
Affiliation(s)
- Andrés Montero
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - Cristina Quílez
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - Leticia Valencia
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - Paula Girón
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
| | - José Luis Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: (J.L.J.); (D.V.)
| | - Diego Velasco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), 28903 Madrid, Spain; (A.M.); (C.Q.); (L.V.); (P.G.)
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Correspondence: (J.L.J.); (D.V.)
| |
Collapse
|
16
|
Griffoni C, Neidhart B, Yang K, Groeber-Becker F, Maniura-Weber K, Dandekar T, Walles H, Rottmar M. In vitro skin culture media influence the viability and inflammatory response of primary macrophages. Sci Rep 2021; 11:7070. [PMID: 33782484 PMCID: PMC8007571 DOI: 10.1038/s41598-021-86486-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
The replacement of animal models for investigation of inflammation and wound healing has been advancing by means of in vitro skin equivalents with increasing levels of complexity. However, the current in vitro skin models still have a limited pre-clinical relevance due to their lack of immune cells. So far, few steps have been made towards the incorporation of immune cells into in vitro skin and the requirements for immunocompetent co-cultures remain unexplored. To establish suitable conditions for incorporating macrophages into skin models, we evaluated the effects of different media on primary keratinocytes, fibroblasts and macrophages. Skin maturation was affected by culture in macrophage medium, while macrophages showed reduced viability, altered cell morphology and decreased response to pro- and anti-inflammatory stimuli in skin differentiation media, both in 2D and 3D. The results indicate that immunocompetent skin models have specific, complex requirements for supporting an accurate detection of immune responses, which point at the identification of a suitable culture medium as a crucial pre-requisite for the development of physiologically relevant models.
Collapse
Affiliation(s)
- Chiara Griffoni
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.,Department Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Berna Neidhart
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Ke Yang
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Florian Groeber-Becker
- Department Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany.,Translational Center for Regenerative Therapies, Fraunhofer-Institute for Silicate Research ISC, Würzburg, Germany
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Heike Walles
- Translational Center for Regenerative Therapies, Fraunhofer-Institute for Silicate Research ISC, Würzburg, Germany.,Core Facility Tissue Engineering, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.
| |
Collapse
|
17
|
Kim YS, Lee HY, Jang JY, Lee HR, Shin YS, Kim CH. Redox treatment ameliorates diabetes mellitus-induced skin flap necrosis via inhibiting apoptosis and promoting neoangiogenesis. Exp Biol Med (Maywood) 2021; 246:718-728. [PMID: 33706582 PMCID: PMC7988729 DOI: 10.1177/1535370220974269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/27/2020] [Indexed: 01/13/2023] Open
Abstract
Intractable wound healing is the habitual problem of diabetes mellitus. High blood glucose limits wound healing by interrupting inflammatory responses and inhibiting neoangiogenesis. Oxidative stress is commonly thought to be a major pathogenic cause of diabetic complications. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one, EDV) is a free radical scavenger which suppress oxidative stress. This study investigates whether EDV can reduce oxidative stress in wound healing HaCaT/human dermal fibroblasts cells (HDFs) in vitro and in vivo animal model. Cell viability and wound healing assays, FACS flow cytometry, and Hoechst 33342 staining were performed to confirm apoptosis and cytotoxicity in H2O2 and EDV-treated HaCaT and HDFs. A streptozotocin-induced hyperglycemic animal model was made in adult C57BL6 mice. Full-thickness skin flap was made on dorsomedial back and re-sutured to evaluate the wound healing process. EDV was delivered slowly in the skin flap with degradable fibrin glue. The flap was monitored and analyzed on postoperative days 1, 3, and 5. CD31/DAPI staining was done to detect newly formed blood vessels. The expression levels of NF-κB, bcl-2, NOX3, and STAT3 proteins in C57BL6 mouse tissues were also examined. The wound healing process in hyper- and normoglycemic mice showed a difference in protein expression, especially in oxidative stress management and angiogenesis. Exogenous H2O2 reduced cell viability in a proportion to the concentration via apoptosis. EDV protected HaCaT cells and HDFs from H2O2 induced reactive oxygen species cell damage and apoptosis. In the mouse model, EDV with fibrin resulted in less necrotic areas and increased angiogenesis on postoperative day 5, compared to sham-treated mice. Our results indicate that EDV could protect H2O2-induced cellular injury via inhibiting early apoptosis and inflammation and also increasing angiogenesis. EDV might be valuable in the treatment of diabetic wounds that oxidative stress has been implicated.
Collapse
Affiliation(s)
- Yeon S Kim
- Department of Otorhinolaryngology, College of Medicine, Konyang University Hospital, Konyang University, Daejeon 35365, Korea
| | - Hye-Young Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Jeon Y Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Hye R Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Yoo S Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea
| |
Collapse
|
18
|
Abbade LPF, Barraviera SRCS, Silvares MRC, Lima ABBDCO, Haddad GR, Gatti MAN, Medolago NB, Rigotto Carneiro MT, dos Santos LD, Ferreira RS, Barraviera B. Treatment of Chronic Venous Ulcers With Heterologous Fibrin Sealant: A Phase I/II Clinical Trial. Front Immunol 2021; 12:627541. [PMID: 33708219 PMCID: PMC7940668 DOI: 10.3389/fimmu.2021.627541] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Heterologous fibrin sealant (HFS) consists of a fibrinogen-rich cryoprecipitate extracted from Bubalus bubalis buffalo blood and a thrombin-like enzyme purified from Crotalus durissus terrificus snake venom. This study evaluated the safety and immunogenicity of HFS, estimated the best dose, and assessed its preliminary efficacy in the treatment of chronic venous ulcers (CVU). Methods A phase I/II non-randomized, single-arm clinical trial was performed on 31 participants, accounting for a total of 69 active CVUs. All ulcers were treated with HFS, essential fatty acid, and Unna boot for 12 weeks. The outcomes assessed were: (1) primary safety, immunogenicity analyses, and confirmation of the lowest safe dose; (2) secondary promising efficacy by analyzing the healing process. Immunogenicity was evaluated using the serum-neutralizing (IgM and IgG) and non-neutralizing (IgA and IgE) antibody techniques against the product. The immuno-detection of IgE class antibodies was assessed using dot-blot assay before and at the end of treatment. Positive samples on dot-blot assays were subsequently analyzed by western blotting to verify the results. Results No severe systemic adverse events related to the use of HFS were observed. Local adverse events potentially related to treatment include ulcer pain (52%), peri-ulcer maceration (16%), peri-ulcer pruritus (12%), critical colonization (8%), peri-ulcer eczema (4%), the opening of new ulcers (4%), and increased ulcerated area 4%). Neutralizing and non-neutralizing antibodies did not show significant deviations at any of the evaluated time points. Blot assays showed that all patients presented negative immunological reactions, either before or after treatment, with the thrombin-like enzyme component. In addition, two participants showed a positive immunological reaction to the cryoprecipitate component, while another two were positive before and during treatment. Regarding the secondary outcomes of preliminary efficacy, a total healing and significant reduction of the area was observed in 47.5 and 22%, respectively. A qualitative improvement was observed in the wound beds of unhealed ulcers. Conclusions The investigational HFS bioproduct proved to be safe and non-immunogenic with a good preliminary efficacy for the treatment of CVU, according to the protocol and doses proposed. A multicentric phase III clinical trial will be necessary to verify these findings.
Collapse
Affiliation(s)
- Luciana P. F. Abbade
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Nursing, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Silvia Regina Catharino Sartori Barraviera
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Maria Regina Cavariani Silvares
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Ana Beatriz B. de C. O. Lima
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Gabriela R. Haddad
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Márcia A. N. Gatti
- Nursing School of Sagrado Coração University (UNISAGRADO), Bauru, Brazil
| | - Natália Bronzatto Medolago
- Clinical Research Unit (UPECLIN), Botucatu Medical School, São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Márcia Tonin Rigotto Carneiro
- Clinical Research Unit (UPECLIN), Botucatu Medical School, São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Lucilene Delazari dos Santos
- Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| | - Benedito Barraviera
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, Brazil
| |
Collapse
|
19
|
Martínez-Santamaría L, Cárcamo C, García-Pardo L, García-Arranz M, Melen G, Guerrero-Aspizua S, Llanos L, Río MD, García-Olmo D, Escámez MJ. Combined adipose mesenchymal stromal cell advanced therapy resolved a recalcitrant leg ulcer in an 85-year-old patient. Regen Med 2020; 15:2053-2065. [PMID: 33245008 DOI: 10.2217/rme-2020-0139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Venous leg ulcers (VLU) represent an uphill economic, health and social burden, aggravated in the elderly. Best-practice care interventions are often insufficient and alternative therapies need to be explored. Herein, we have treated for the first time a chronic VLU in an elderly patient by combining cell therapy and tissue engineering in the context of a compassionate use. The administration of allogeneic adipose-derived mesenchymal stromal cells (MSCs) embedded in a plasma-based bioengineered dermis covering the ulcer bed and also injected into the ulcer margins led to the complete closure of a 10-year recalcitrant VLU in an 85-year-old patient. Regenerative properties of MSCs might be boosted by the use of bioengineered matrices for their delivery.
Collapse
Affiliation(s)
- Lucía Martínez-Santamaría
- Department of Bioengineering, Carlos III University (UC3M). Avda. Universidad, 30. 28911. Leganés, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714. C/ Monforte de Lemos 3-5. 28029 Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain.,Centre for Energy, Environment & Technology Research (CIEMAT). Avda. Complutense, 40, 28040 Madrid, Spain
| | - Carmen Cárcamo
- Plastic & Reconstructive Surgery Department, Hospital Universitario Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain
| | - Lourdes García-Pardo
- Plastic & Reconstructive Surgery Department, Hospital Universitario Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain
| | - Mariano García-Arranz
- New Therapy Unit, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz & Universidad Autónoma de Madrid. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain.,Department of Surgery, Medicine School, Universidad Autónoma de Madrid. C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Gustavo Melen
- Production Unit of Advanced Therapies Medicines, Fundación para la Investigación Biomédica del Hospital Infantil Universitario Niño Jesús. Avda. de Menéndez Pelayo,65, 28009 Madrid, Spain
| | - Sara Guerrero-Aspizua
- Department of Bioengineering, Carlos III University (UC3M). Avda. Universidad, 30. 28911. Leganés, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714. C/ Monforte de Lemos 3-5. 28029 Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain.,Centre for Energy, Environment & Technology Research (CIEMAT). Avda. Complutense, 40, 28040 Madrid, Spain
| | - Lucía Llanos
- Clinical Research Unit, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain
| | - Marcela Del Río
- Department of Bioengineering, Carlos III University (UC3M). Avda. Universidad, 30. 28911. Leganés, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714. C/ Monforte de Lemos 3-5. 28029 Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain.,Centre for Energy, Environment & Technology Research (CIEMAT). Avda. Complutense, 40, 28040 Madrid, Spain
| | - Damián García-Olmo
- New Therapy Unit, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz & Universidad Autónoma de Madrid. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain.,Department of Surgery, Medicine School, Universidad Autónoma de Madrid. C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - María-José Escámez
- Department of Bioengineering, Carlos III University (UC3M). Avda. Universidad, 30. 28911. Leganés, Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), U714. C/ Monforte de Lemos 3-5. 28029 Madrid, Spain.,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz. Avda. de los Reyes Católicos, 2, 28040 Madrid, Spain.,Centre for Energy, Environment & Technology Research (CIEMAT). Avda. Complutense, 40, 28040 Madrid, Spain
| |
Collapse
|
20
|
Abbade LPF, Ferreira RS, Dos Santos LD, Barraviera B. Chronic venous ulcers: a review on treatment with fibrin sealant and prognostic advances using proteomic strategies. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190101. [PMID: 32636876 PMCID: PMC7315627 DOI: 10.1590/1678-9199-jvatitd-2019-0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Venous ulcers are the main causes of chronic lower-limb ulcers. The healing difficulties encourage the research and development of new products in order to achieve better therapeutic results. Fibrin sealant is one of these alternatives. Besides being a validated scaffold and drug delivery system, it possesses excellent healing properties. This review covered the last 25 years of the literature and showed that the fibrin sealant is used in various clinical situations to promote the healing of different types of ulcers, especially chronic ones. These are mostly venous in origin and usually does not respond to conventional treatment. Commercially, only the homologous fibrin sealants obtained from human blood are available, which are highly efficient but very expensive. The heterologous fibrin sealant is a non-commercial experimental low-cost product and easily produced due to the abundance of raw material. The phase I/II clinical trial is already completed and showed that the product is safe and promisingly efficacious for the treatment of chronic venous ulcers. In addition, clinical proteomic strategies to assess disease prognosis have been increasingly used. By analyzing liquid samples from the wounds through proteomic strategies, it is possible to predict before treatment which ulcers will evolve favorably and which ones will be difficult to heal. This prognosis is only possible by evaluating the expression of isolated proteins in exudates and analysis using label-free strategies for shotgun. Multicentric clinical trials will be required to evaluate the efficacy of fibrin sealant to treat chronic ulcers, as well as to validate the proteomic strategies to assess prognosis.
Collapse
Affiliation(s)
- Luciana Patricia Fernandes Abbade
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Lucilene Delazari Dos Santos
- Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Benedito Barraviera
- Department of Infectology, Dermatology, Imaging Diagnosis and Radiotherapy, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Graduate Program in Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Graduate Program in Tropical Diseases, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, SP, Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
21
|
Im GB, Kim YH, Kim YJ, Kim SW, Jung E, Jeong GJ, Wang K, Kim J, Kim DI, Kim TH, Yi GR, Yu T, Bhang SH. Enhancing the Wound Healing Effect of Conditioned Medium Collected from Mesenchymal Stem Cells with High Passage Number Using Bioreducible Nanoparticles. Int J Mol Sci 2019; 20:E4835. [PMID: 31569434 PMCID: PMC6801963 DOI: 10.3390/ijms20194835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 12/23/2022] Open
Abstract
Injecting human mesenchymal stem cells (hMSCs) at wound sites is known to have a therapeutic effect; however, hMSCs have several limitations, such as low viability and poor engraftment after injection, as well as a potential risk of oncogenesis. The use of a conditioned medium (CM) was suggested as an alternative method for treating various wounds instead of direct hMSC administration. In addition to not having the adverse effects associated with hMSCs, a CM can be easily mass produced and can be stored for long-term, thereby making it useful for clinical applications. In general, a CM is collected from hMSCs with low passage number; whereas, the hMSCs with high passage number are usually discarded because of their low therapeutic efficacy as a result of reduced angiogenic factor secretion. Herein, we used a CM collected from high passage number (passage 12, P12) hMSCs treated with gold-iron nanoparticles (AuFe NPs). Our AuFe NPs were designed to release the iron ion intracellularly via endocytosis. Endosomes with low pH can dissolve iron from AuFe NPs, and thus, the intracellularly released iron ions up-regulate the hypoxia-inducible factor 1α and vascular endothelial growth factor (VEGF) expression. Through this mechanism, AuFe NPs improve the amount of VEGF expression from P12 hMSCs so that it is comparable to the amount of VEGF expression from low passage number (passage 6, P6), without treatment. Furthermore, we injected the CM retrieved from P12 MSCs treated with AuFe NPs in the mouse skin wound model (AuFe P12 group). AuFe P12 group revealed significantly enhanced angiogenesis in the mouse skin wound model compared to the high passage hMSC CM-injected group. Moreover, the result from the AuFe P12 group was similar to that of the low passage hMSC CM-injected group. Both the AuFe P12 group and low passage hMSC CM-injected group presented significantly enhanced re-epithelization, angiogenesis, and tissue remodeling compared to the high passage hMSC CM-injected group. This study reveals a new strategy for tissue regeneration based on CM injection without considering the high cell passage count.
Collapse
Affiliation(s)
- Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Euiyoung Jung
- Department of Chemical Engineering, Kyung Hee University, Youngin 17104, Korea.
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea.
| | - Gun-Jae Jeong
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
| | - Ke Wang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Jinheung Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea.
| | - Dong-Ik Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Gi-Ra Yi
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| | - Taekyung Yu
- Department of Chemical Engineering, Kyung Hee University, Youngin 17104, Korea.
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
| |
Collapse
|
22
|
Bioengineered Skin Intended for Skin Disease Modeling. Int J Mol Sci 2019; 20:ijms20061407. [PMID: 30897791 PMCID: PMC6470977 DOI: 10.3390/ijms20061407] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical use of bioengineered skin in reconstructive surgery has been established for more than 30 years. The limitations and ethical considerations regarding the use of animal models have expanded the application of bioengineered skin in the areas of disease modeling and drug screening. These skin models should represent the anatomical and physiological traits of native skin for the efficient replication of normal and pathological skin conditions. In addition, reliability of such models is essential for the conduction of faithful, rapid, and large-scale studies. Therefore, research efforts are focused on automated fabrication methods to replace the traditional manual approaches. This report presents an overview of the skin models applicable to skin disease modeling along with their fabrication methods, and discusses the potential of the currently available options to conform and satisfy the demands for disease modeling and drug screening.
Collapse
|
23
|
Wound healing after cultured epithelial autografting in patients with massive burn injury: A cohort study. J Plast Reconstr Aesthet Surg 2019; 72:427-437. [DOI: 10.1016/j.bjps.2018.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/12/2018] [Accepted: 11/03/2018] [Indexed: 01/26/2023]
|
24
|
Velasco D, Quílez C, Garcia M, del Cañizo JF, Jorcano JL. 3D human skin bioprinting: a view from the bio side. ACTA ACUST UNITED AC 2018. [DOI: 10.2217/3dp-2018-0008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Based on the 3D printing technologies and the concepts developed in tissue engineering during the last decades, 3D bioprinting is emerging as the most innovative and promising technology for the generation of human tissues and organs. In the case of skin bioprinting, thanks to the research process carried out during the last years, interfollicular skin has been printed with a structural and functional quality that paves the way for clinical and industrial applications. This review analyzes the present achievements and the future improvements that this area must bring about if bioprinted skin is to become widely used. We have made an effort to integrate the technological and the biological/biomedical sides of the subject.
Collapse
Affiliation(s)
- Diego Velasco
- Department of Bioengineering & Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain
- Department of Basic Research, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Cristina Quílez
- Department of Bioengineering & Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain
| | - Marta Garcia
- Department of Bioengineering & Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain
- Department of Basic Research, Division of Epithelial Biomedicine, CIEMAT-CIBERER, Madrid, Spain
- Department of Basic Research, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Juan F del Cañizo
- Department of Surgery, Universidad Complutense de Madrid, Experimental Medicine & Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jose L Jorcano
- Department of Bioengineering & Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Spain
- Department of Basic Research, Division of Epithelial Biomedicine, CIEMAT-CIBERER, Madrid, Spain
| |
Collapse
|
25
|
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129:134-147. [PMID: 29247766 DOI: 10.1016/j.addr.2017.12.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022]
Abstract
Fibrin, a natural hydrogel, is the end product of the physiological blood coagulation cascade and naturally involved in wound healing. Beyond its role in hemostasis, it acts as a local reservoir for growth factors and as a provisional matrix for invading cells that drive the regenerative process. Its unique intrinsic features do not only promote wound healing directly via modulation of cell behavior but it can also be fine-tuned to evolve into a delivery system for sustained release of therapeutic biomolecules, cells and gene vectors. To further augment tissue regeneration potential, current strategies exploit and modify the chemical and physical characteristics of fibrin to employ combined incorporation of several factors and their timed release. In this work we show advanced therapeutic approaches employing fibrin matrices in wound healing and cover the many possibilities fibrin offers to the field of regenerative medicine.
Collapse
|
26
|
Cubo N, Garcia M, del Cañizo JF, Velasco D, Jorcano JL. 3D bioprinting of functional human skin: production and
in vivo
analysis. Biofabrication 2016; 9:015006. [DOI: 10.1088/1758-5090/9/1/015006] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Priya SG, Gupta A, Jain E, Sarkar J, Damania A, Jagdale PR, Chaudhari BP, Gupta KC, Kumar A. Bilayer Cryogel Wound Dressing and Skin Regeneration Grafts for the Treatment of Acute Skin Wounds. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15145-15159. [PMID: 27223844 DOI: 10.1021/acsami.6b04711] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, the potential of cryogel bilayer wound dressing and skin regenerating graft for the treatment of surgically created full thickness wounds was evaluated. The top layer was composed of polyvinylpyrrolidone-iodine (PVP-I) cryogel and served as the antiseptic layer, while the bottom regenerative layer was made using gelatin cryogel. Both components of the bilayer showed typical features of a cryogel interconnected macropore network, rapid swelling, high water uptake capacity of about 90%. Both PVP and gelatin cryogel showed high tensile strength of 45 and 10 kPa, respectively. Gelatin cryogel sheets were essentially elastic and could be stretched without any visible deformation. The antiseptic PVP-I layer cryogel sheet showed sustained iodine release and suppressed microbial growth when tested with skin pathogens (zone of inhibition ∼2 cm for sheet of 0.9 cm diameter). The gelatin cryogel sheet degraded in vitro in weeks. The gelatin cryogel sheet supported cell infiltration, attachment, and proliferation of fibroblasts and keratinocytes. Microparticles loaded with bioactive molecules (mannose-6-phosphate and human fibrinogen) were also incorporated in the gelatin cryogel sheets for their role in enhancing skin regeneration and scar free wound healing. In vivo evaluation of healing capacity of the bilayer cryogel was checked in rabbits by creating full thickness wound defect (diameter 2 cm). Macroscopic and microscopic observation at regular time intervals for 4 weeks demonstrated better and faster skin regeneration in the wound treated with cryogel bilayer as compared to untreated defect and the repair was comparable to commercial skin regeneration scaffold Neuskin-F. Complete skin regeneration was observed after 4 weeks of implantation with no sign of inflammatory response. Defects implanted with cryogel having mannose-6-phosphate showed no scar formation, while the wound treated with bilayer incorporated with human fibrinogen microparticles showed early signs of skin regeneration; epidermis formation occurred at 2 weeks after implantation.
Collapse
Affiliation(s)
| | | | | | | | | | - Pankaj R Jagdale
- CSIR-Indian Institute of Toxicology Research , Lucknow-226 001, Uttar Pradesh, India
| | - Bhushan P Chaudhari
- CSIR-Indian Institute of Toxicology Research , Lucknow-226 001, Uttar Pradesh, India
| | - Kailash C Gupta
- CSIR-Indian Institute of Toxicology Research , Lucknow-226 001, Uttar Pradesh, India
| | | |
Collapse
|
28
|
Row S, Liu Y, Alimperti S, Agarwal SK, Andreadis ST. Cadherin-11 is a novel regulator of extracellular matrix synthesis and tissue mechanics. J Cell Sci 2016; 129:2950-61. [PMID: 27311482 DOI: 10.1242/jcs.183772] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/10/2016] [Indexed: 01/20/2023] Open
Abstract
We discovered that Cadherin-11 (CDH11) regulates collagen and elastin synthesis, both affecting the mechanical properties and contractile function of animal tissues. Using a Cdh11-null mouse model, we observed a significant reduction in the mechanical properties [Youngs' modulus and ultimate tensile strength (UTS)] of Cdh11(-/-) as compared to wild-type (WT) mouse tissues, such as the aorta, bladder and skin. The deterioration of mechanical properties (Youngs' modulus and UTS) was accompanied by reduced collagen and elastin content in Cdh11(-/-) mouse tissues as well as in cells in culture. Similarly, knocking down CDH11 abolished collagen and elastin synthesis in human cells, and consequently reduced their ability to generate force. Conversely, engagement of CDH11 through homophilic interactions, led to swift activation of the TGF-β and ROCK pathways as evidenced by phosphorylation of downstream effectors. Subsequently, activation of the key transcription factors, MRTF-A (also known as MKL1) and MYOCD led to significant upregulation of collagen and elastin genes. Taken together, our results demonstrate a novel role of adherens junctions in regulating extracellular matrix (ECM) synthesis with implications for many important biological processes, including maintenance of tissue integrity, wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Sindhu Row
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Yayu Liu
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Stella Alimperti
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | - Sandeep K Agarwal
- Section of Allergy, Immunology, and Rheumatology Biology, Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260, USA Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY 14260, USA Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
29
|
Stamm A, Reimers K, Strauß S, Vogt P, Scheper T, Pepelanova I. In vitro wound healing assays – state of the art. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bnm-2016-0002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractWound healing is essential for the restoration of the barrier function of the skin. During this process, cells at the wound edges proliferate and migrate, leading to re-epithelialization of the wound surface. Wound healing assays are used to study the molecular mechanisms of wound repair, as well as in the investigation of potential therapeutics and treatments for improved healing. Numerous models of wound healing have been developed in recent years. In this review, we focus on in vitro assays, as they allow a fast, cost-efficient and ethical alternative to animal models. This paper gives a general overview of 2-dimensional (2D) cell monolayer assays by providing a description of injury methods, as well as an evaluation of each assay’s strengths and limitations. We include a section reviewing assays performed in 3-dimensional (3D) culture, which employ bioengineered skin models to capture complex wound healing mechanics like cell-matrix interactions and the interplay of different cell types in the healing process. Finally, we discuss in detail available software tools and algorithms for data analysis.
Collapse
|
30
|
Mittermayr R, Slezak P, Haffner N, Smolen D, Hartinger J, Hofmann A, Schense J, Spazierer D, Gampfer J, Goppelt A, Redl H. Controlled release of fibrin matrix-conjugated platelet derived growth factor improves ischemic tissue regeneration by functional angiogenesis. Acta Biomater 2016; 29:11-20. [PMID: 26497625 DOI: 10.1016/j.actbio.2015.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/12/2015] [Accepted: 10/16/2015] [Indexed: 12/09/2022]
Abstract
Sustained, local, low dose growth factor stimulus of target tissues/cells is believed to be of imminent importance in tissue regeneration and engineering. Recently, a technology was developed to bind growth factors to a fibrin matrix using the transglutaminase (TG) activity of factor XIIIa, thus allowing prolonged release through enzymatic cleavage. In this study we aimed to determine whether TG-PDGF.AB in fibrin could improve tissue regeneration in a standard ischemic flap model. In vitro determination of binding and release kinetics of TG-PDGF.AB allowed proof of concept of the developed binding technology. A single spray application of TG-PDGF.AB in fibrin matrix at a concentration of 10 and 100ng/ml significantly reduced ischemia-induced flap tissue necrosis in vivo on day 7 after ischemic impact compared to controls. TG-PDGF.AB at a concentration of 100ng/ml fibrin induced distinct angiogenesis as reflected by significantly improved tissue perfusion assessed by laser Doppler imaging as well as enhanced von Willebrand factor (vWF) protein expression determined by immunohistochemical means. In addition, significantly more mature microvessels were observed with 100ng/ml TG-PDGF.AB in fibrin compared to control and vehicle groups as evidenced by an improved smooth muscle actin (sma)/vWF protein ratio. In conclusion, PDGF.AB in a conjugated fibrin matrix effectively reduced ischemia-induced tissue necrosis, increased tissue perfusion and induced the growth of a mature and functional neovasculature. The sealing properties of the fibrin matrix in conjunction with the prolonged growth factor stimulus enabled by the TG-hook binding technology may present an innovative and suitable tool in tissue regeneration. STATEMENT OF SIGNIFICANCE In our experimental study we elucidated recombinant platelet derived growth factor (PDGF) as a potential candidate in inducing angiogenesis. To avoid preterm growth factor degradation in vivo PDGF.AB was covalently linked to a fibrin scaffold using a bi-domain functionalized peptide (FXIII substrate site and plasmin cleavage site). This allowed PDGF binding to fibrin during spray application to the donor site and subsequent prolonged release via endogenous plasmin. This resulted in a mature vascular network thus enhancing tissue perfusion and consequently improved clinical outcome. With our present work we could certainly provide researchers and clinicians with an innovative versatile and reproducible technology not only to induce functional vascularity but also to improve attempts in tissue engineering in general by e.g. using different growth factors. Hence, we believe that this approach studied in the present work may provide a valuable input in an effort to drive the aim forward bringing experimental work in tissue engineering to clinic by using a clinically well characterized and used fibrin scaffold in combination with a human recombinant growth factor (fibrin scaffold linked with the specific binding technology).
Collapse
|
31
|
de la Puente P, Muz B, Gilson RC, Azab F, Luderer M, King J, Achilefu S, Vij R, Azab AK. 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomaterials 2015; 73:70-84. [PMID: 26402156 PMCID: PMC4917006 DOI: 10.1016/j.biomaterials.2015.09.017] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 01/03/2023]
Abstract
PURPOSE Multiple myeloma (MM) is the second most prevalent hematological malignancy and it remains incurable despite the introduction of several novel drugs. The discrepancy between preclinical and clinical outcomes can be attributed to the failure of classic two-dimensional (2D) culture models to accurately recapitulate the complex biology of MM and drug responses observed in patients. EXPERIMENTAL DESIGN We developed 3D tissue engineered bone marrow (3DTEBM) cultures derived from the BM supernatant of MM patients to incorporate different BM components including MM cells, stromal cells, and endothelial cells. Distribution and growth were analyzed by confocal imaging, and cell proliferation of cell lines and primary MM cells was tested by flow cytometry. Oxygen and drug gradients were evaluated by immunohistochemistry and flow cytometry, and drug resistance was studied by flow cytometry. RESULTS 3DTEBM cultures allowed proliferation of MM cells, recapitulated their interaction with the microenvironment, recreated 3D aspects observed in the bone marrow niche (such as oxygen and drug gradients), and induced drug resistance in MM cells more than 2D or commercial 3D tissue culture systems. CONCLUSIONS 3DTEBM cultures not only provide a better model for investigating the pathophysiology of MM, but also serve as a tool for drug development and screening in MM. In the future, we will use the 3DTEBM cultures for developing personalized therapeutic strategies for individual MM patients.
Collapse
Affiliation(s)
- Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca C Gilson
- Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Micah Luderer
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Justin King
- Section of Stem Cell Transplant and Leukemia, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel Achilefu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ravi Vij
- Section of Stem Cell Transplant and Leukemia, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
32
|
Koobatian MT, Row S, Smith RJ, Koenigsknecht C, Andreadis ST, Swartz DD. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large animal model. Biomaterials 2015; 76:344-58. [PMID: 26561932 DOI: 10.1016/j.biomaterials.2015.10.020] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022]
Abstract
The large number of coronary artery bypass procedures necessitates development of off-the-shelf vascular grafts that do not require cell or tissue harvest from patients. However, immediate thrombus formation after implantation due to the absence of a healthy endothelium is very likely. Here we present the successful development of an acellular tissue engineered vessel (A-TEV) based on small intestinal submucosa that was functionalized sequentially with heparin and VEGF. A-TEVs were implanted into the carotid artery of an ovine model demonstrating high patency rates and significant host cell infiltration as early as one week post-implantation. At one month, a confluent and functional endothelium was present and the vascular wall showed significant infiltration of host smooth muscle cells exhibiting vascular contractility in response to vaso-agonists. After three months, the endothelium aligned in the direction of flow and the medial layer comprised of circumferentially aligned smooth muscle cells. A-TEVs demonstrated high elastin and collagen content as well as impressive mechanical properties and vascular contractility comparable to native arteries. This is the first demonstration of successful endothelialization, remodeling, and development of vascular function of a cell-free vascular graft that was implanted in the arterial circulation of a pre-clinical animal model.
Collapse
Affiliation(s)
- Maxwell T Koobatian
- Department of Physiology and Biophysics, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Sindhu Row
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Randall J Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA
| | - Carmon Koenigsknecht
- Department of Pediatrics, University at Buffalo, The State University of New York, Amherst, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
| | - Daniel D Swartz
- Department of Physiology and Biophysics, University at Buffalo, The State University of New York, Amherst, NY, USA; Department of Pediatrics, University at Buffalo, The State University of New York, Amherst, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA.
| |
Collapse
|
33
|
Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur J Cell Biol 2015; 94:483-512. [PMID: 26344860 DOI: 10.1016/j.ejcb.2015.08.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022] Open
Abstract
Advances in cell culture methods, multidisciplinary research, clinical need to replace lost skin tissues and regulatory need to replace animal models with alternative test methods has led to development of three dimensional models of human skin. In general, these in vitro models of skin consist of keratinocytes cultured over fibroblast-populated dermal matrices. Accumulating evidences indicate that mesenchyme-derived signals are essential for epidermal morphogenesis, homeostasis and differentiation. Various studies show that fibroblasts isolated from different tissues in the body are dynamic in nature and are morphologically and functionally heterogeneous subpopulations. Further, these differences seem to be dictated by the local biological and physical microenvironment the fibroblasts reside resulting in "positional identity or memory". Furthermore, the heterogeneity among the fibroblasts play a critical role in scarless wound healing and complete restoration of native tissue architecture in fetus and oral mucosa; and excessive scar formation in diseased states like keloids and hypertrophic scars. In this review, we summarize current concepts about the heterogeneity among fibroblasts and their role in various wound healing environments. Further, we contemplate how the insights on fibroblast heterogeneity could be applied for the development of next generation organotypic skin models.
Collapse
|
34
|
Mehanna RA, Nabil I, Attia N, Bary AA, Razek KA, Ahmed TAE, Elsayed F. The Effect of Bone Marrow-Derived Mesenchymal Stem Cells and Their Conditioned Media Topically Delivered in Fibrin Glue on Chronic Wound Healing in Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:846062. [PMID: 26236740 PMCID: PMC4508387 DOI: 10.1155/2015/846062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 02/05/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) represent a modern approach for management of chronic skin injuries. In this work, we describe BM-MSCs application versus their conditioned media (CM) when delivered topically admixed with fibrin glue to enhance the healing of chronic excisional wounds in rats. Fifty-two adult male rats were classified into four groups after induction of large-sized full-thickness skin wound: control group (CG), fibrin only group (FG), fibrin + MSCs group (FG + SCs), and fibrin + CM group (FG + CM). Healing wounds were evaluated functionally and microscopically. Eight days after injury, number of CD68+ macrophages infiltrating granulation tissue was considerably higher in the latter two groups. Although--later--none of the groups depicted a substantially different healing rate, the quality of regenerated skin was significantly boosted by the application of either BM-MSCs or their CM both (1) structurally as demonstrated by the obviously increased mean area percent of collagen fibers in Masson's trichrome-stained skin biopsies and (2) functionally as supported by the interestingly improved epidermal barrier as well as dermal tensile strength. Thus, we conclude that topically applied BM-MSCs and their CM-via fibrin vehicle--could effectively improve the quality of healed skin in chronic excisional wounds in rats, albeit without true acceleration of wound closure.
Collapse
Affiliation(s)
- Radwa A. Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdel Meguid Street, Mowassat Building, El Shatby, Alexandria 21561, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria 21514, Egypt
| | - Iman Nabil
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria 21514, Egypt
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdel Meguid Street, Mowassat Building, El Shatby, Alexandria 21561, Egypt
| | - Noha Attia
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria 21514, Egypt
- Histology and Cell Biology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdel Meguid Street, Mowassat Building, El Shatby, Alexandria 21561, Egypt
| | - Amany A. Bary
- Pathology Department, Faculty of Medicine, Alexandria University, Dr Fahmi Abdel Meguid Street, Mowassat Building, El Shatby, Alexandria 21561, Egypt
| | - Khalid A. Razek
- Medical Research Institute, Alexandria University, 71 Victor Emanuel Street, Smouha, Alexandria 21615, Egypt
| | - Tamer A. E. Ahmed
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, P.O. Box 21934, Alexandria, Egypt
| | - Fatma Elsayed
- Cell Culture Department, Medical Research Institute, Alexandria University, 71 Victor Emanuel Street, Smouha, Alexandria 21615, Egypt
| |
Collapse
|
35
|
Full-thickness skin wound healing using autologous keratinocytes and dermal fibroblasts with fibrin: bilayered versus single-layered substitute. Adv Skin Wound Care 2015; 27:171-80. [PMID: 24637651 DOI: 10.1097/01.asw.0000445199.26874.9d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Split-skin grafting (SSG) is the gold standard treatment for full-thickness skin defects. For certain patients, however, an extensive skin lesion resulted in inadequacies of the donor site. Tissue engineering offers an alternative approach by using a very small portion of an individual's skin to harvest cells for propagation and biomaterials to support the cells for implantation. The objective of this study was to determine the effectiveness of autologous bilayered tissue-engineered skin (BTES) and single-layer tissue-engineered skin composed of only keratinocytes (SLTES-K) or fibroblasts (SLTES-F) as alternatives for full-thickness wound healing in a sheep model. Full-thickness skin biopsies were harvested from adult sheep. Isolated fibroblasts were cultured using medium Ham's F12: Dulbecco modified Eagle medium supplemented with 10% fetal bovine serum, whereas the keratinocytes were cultured using Define Keratinocytes Serum Free Medium. The BTES, SLTES-K, and SLTES-F were constructed using autologous fibrin as a biomaterial. Eight full-thickness wounds were created on the dorsum of the body of the sheep. On 4 wounds, polyvinyl chloride rings were used as chambers to prevent cell migration at the edge. The wounds were observed at days 7, 14, and 21. After 3 weeks of implantation, the sheep were euthanized and the skins were harvested. The excised tissues were fixed in formalin for histological examination via hematoxylin-eosin, Masson trichrome, and elastin van Gieson staining. The results showed that BTES, SLTES-K, and SLTES-F promote wound healing in nonchambered and chambered wounds, and BTES demonstrated the best healing potential. In conclusion, BTES proved to be an effective tissue-engineered construct that can promote the healing of full-thickness skin lesions. With the support of further clinical trials, this procedure could be an alternative to SSG for patients with partial- and full-thickness burns.
Collapse
|
36
|
Row S, Peng H, Schlaich EM, Koenigsknecht C, Andreadis ST, Swartz DD. Arterial grafts exhibiting unprecedented cellular infiltration and remodeling in vivo: the role of cells in the vascular wall. Biomaterials 2015; 50:115-26. [PMID: 25736502 DOI: 10.1016/j.biomaterials.2015.01.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To engineer and implant vascular grafts in the arterial circulation of a pre-clinical animal model and assess the role of donor medial cells in graft remodeling and function. APPROACH AND RESULTS Vascular grafts were engineered using Small Intestinal Submucosa (SIS)-fibrin hybrid scaffold and implanted interpositionally into the arterial circulation of an ovine model. We sought to demonstrate implantability of SIS-Fibrin based grafts; examine the remodeling; and determine whether the presence of vascular cells in the medial wall was necessary for cellular infiltration from the host and successful remodeling of the implants. We observed no occlusions or anastomotic complications in 18 animals that received these grafts. Notably, the grafts exhibited unprecedented levels of host cell infiltration that was not limited to the anastomotic sites but occurred through the lumen as well as the extramural side, leading to uniform cell distribution. Incoming cells remodeled the extracellular matrix and matured into functional smooth muscle cells as evidenced by expression of myogenic markers and development of vascular reactivity. Interestingly, tracking the donor cells revealed that their presence was beneficial but not necessary for successful grafting. Indeed, the proliferation rate and number of donor cells decreased over time as the vascular wall was dominated by host cells leading to significant remodeling and development of contractile function. CONCLUSIONS These results demonstrate that SIS-Fibrin grafts can be successfully implanted into the arterial circulation of a clinically relevant animal model, improve our understanding of vascular graft remodeling and raise the possibility of engineering mural cell-free arterial grafts.
Collapse
Affiliation(s)
- Sindhu Row
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Haofan Peng
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Evan M Schlaich
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Carmon Koenigsknecht
- Department of Pediatrics, Women and Children's Hospital of Buffalo, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA.
| | - Daniel D Swartz
- Department of Pediatrics, Women and Children's Hospital of Buffalo, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA.
| |
Collapse
|
37
|
Reinertsen E, Skinner M, Wu B, Tawil B. Concentration of fibrin and presence of plasminogen affect proliferation, fibrinolytic activity, and morphology of human fibroblasts and keratinocytes in 3D fibrin constructs. Tissue Eng Part A 2014; 20:2860-9. [PMID: 24738616 PMCID: PMC4229906 DOI: 10.1089/ten.tea.2013.0423] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 04/16/2014] [Indexed: 11/13/2022] Open
Abstract
Fibrin is a hemostatic protein found in the clotting cascade. It is used in the operating room to stop bleeding and deliver cells and growth factors to heal wounds. However, formulations of clinically approved fibrin are optimized for hemostasis, and the extent to which biochemical and physical cues in fibrin mediate skin cell behavior is not fully understood nor utilized in the design of biomaterials. To determine if the concentration of fibrinogen and the presence of plasminogen affect cell behavior relevant to wound healing, we fabricated three-dimensional fibrin constructs made from 5, 10, or 20 mg/mL of clinical fibrin or plasminogen-depleted (PD) fibrin. We cultured dermal fibroblasts or epidermal keratinocytes in these constructs. Fibroblasts proliferated similarly in both types of fibrin, but keratinocytes proliferated more in low concentrations of clinical fibrin and less in PD fibrin. Clinical fibrin constructs with fibroblasts were less stiff and degraded faster than PD fibrin constructs with fibroblasts. Similarly, keratinocytes degraded clinical fibrin, but not PD fibrin. Fibroblast spreading varied with fibrin concentration in both types of fibrin. In conclusion, the concentration of fibrinogen and the presence of plasminogen affect fibroblast and keratinocyte proliferation, morphology, and fibrin degradation. Creating materials with heterogeneous regions of fibrin formulations and concentrations could be a novel strategy for controlling the phenotype of encapsulated fibroblasts and keratinocytes, and the subsequent biomechanical properties of the construct. However, other well-investigated aspects of wound healing remain to be utilized in the design of fibrin biomaterials, such as autocrine and paracrine signaling between fibroblasts, keratinocytes, and immune cells.
Collapse
Affiliation(s)
- Erik Reinertsen
- Department of Bioengineering, UCLA School of Engineering , Los Angeles, California
| | | | | | | |
Collapse
|
38
|
Fibrin as a delivery system in wound healing tissue engineering applications. J Control Release 2014; 196:1-8. [PMID: 25284479 DOI: 10.1016/j.jconrel.2014.09.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022]
Abstract
Fibrin is formed in the body upon initiation of the clotting cascade and is produced commercially for use as a tissue sealant and hemostasis device during surgical procedures. Experimentally fibrin is being increasingly used as a vector to deliver growth factors, cells, drugs and genes in tissue engineering applications mimicking aspects of the extra cellular matrix. Growth factors (GFs) are central to wound healing, inducing cell proliferation, migration and differentiation. Attempts have been made to augment wound healing with GFs, however widespread clinical use has been hindered in vivo due to their rapid metabolism within the body. Fibrin hydrogels protect GFs from rapid degradation and the composition of which can be altered to achieve their optimal release. This article reviews the use of fibrin for the delivery of GFs and details the various strategies that have evolved to alter the release rate so as to enhance the regenerative process, including bi-domain peptides, plasmin degradation sequences and heparin incorporation. This paper also reviews other recent advances in this field, such as dual delivery of cells and GF or sequential release of multiple GF.
Collapse
|
39
|
de la Puente P, Ludeña D. Cell culture in autologous fibrin scaffolds for applications in tissue engineering. Exp Cell Res 2014; 322:1-11. [DOI: 10.1016/j.yexcr.2013.12.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 12/31/2022]
|
40
|
Kumar PTS, Praveen G, Raj M, Chennazhi KP, Jayakumar R. Flexible, micro-porous chitosan–gelatin hydrogel/nanofibrin composite bandages for treating burn wounds. RSC Adv 2014. [DOI: 10.1039/c4ra11969j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fibrin nanoparticles were incorporated into a chitosan–gelatin hydrogel matrix to develop a composite bandage with wound-healing potential.
Collapse
Affiliation(s)
- P. T. Sudheesh Kumar
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham University
- Kochi-682041
- India
| | - G. Praveen
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham University
- Kochi-682041
- India
| | - Mincy Raj
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham University
- Kochi-682041
- India
| | - K. P. Chennazhi
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham University
- Kochi-682041
- India
| | - R. Jayakumar
- Amrita Centre for Nanosciences and Molecular Medicine
- Amrita Institute of Medical Sciences and Research Centre
- Amrita Vishwa Vidyapeetham University
- Kochi-682041
- India
| |
Collapse
|
41
|
Martínez-Santamaría L, Conti CJ, Llames S, García E, Retamosa L, Holguín A, Illera N, Duarte B, Camblor L, Llaneza JM, Jorcano JL, Larcher F, Meana Á, Escámez MJ, Del Río M. The regenerative potential of fibroblasts in a new diabetes-induced delayed humanised wound healing model. Exp Dermatol 2013; 22:195-201. [PMID: 23489422 DOI: 10.1111/exd.12097] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2013] [Indexed: 01/13/2023]
Abstract
Cutaneous diabetic wounds greatly affect the quality of life of patients, causing a substantial economic impact on the healthcare system. The limited clinical success of conventional treatments is mainly attributed to the lack of knowledge of the pathogenic mechanisms related to chronic ulceration. Therefore, management of diabetic ulcers remains a challenging clinical issue. Within this context, reliable animal models that recapitulate situations of impaired wound healing have become essential. In this study, we established a new in vivo humanised model of delayed wound healing in a diabetic context that reproduces the main features of the human disease. Diabetes was induced by multiple low doses of streptozotocin in bioengineered human-skin-engrafted immunodeficient mice. The significant delay in wound closure exhibited in diabetic wounds was mainly attributed to alterations in the granulation tissue formation and resolution, involving defects in wound bed maturation, vascularisation, inflammatory response and collagen deposition. In the new model, a cell-based wound therapy consisting of the application of plasma-derived fibrin dermal scaffolds containing fibroblasts consistently improved the healing response by triggering granulation tissue maturation and further providing a suitable matrix for migrating keratinocytes during wound re-epithelialisation. The present preclinical wound healing model was able to shed light on the biological processes responsible for the improvement achieved, and these findings can be extended for designing new therapeutic approaches with clinical relevance.
Collapse
|
42
|
VanWagner M, Rhadigan J, Lancina M, Lebovsky A, Romanowicz G, Holmes H, Brunette MA, Snyder KL, Bostwick M, Lee BP, Frost MC, Rajachar RM. S-nitroso-N-acetylpenicillamine (SNAP) derivatization of peptide primary amines to create inducible nitric oxide donor biomaterials. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8430-8439. [PMID: 23964741 DOI: 10.1021/am4017945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An S-nitroso-N-acetylpenicillamine (SNAP) derivatization approach was used to modify existing free primary amines found in fibrin (a natural protein-based biomaterial) to generate a controlled nitric oxide (NO) releasing scaffold material. The duration of the derivatization reaction affects the NO release kinetics, the induction of controlled NO-release, hydrophobicity, swelling behavior, elastic moduli, rheometric character, and degradation behavior. These properties were quantified to determine changes in fibrin hydrogels following covalent attachment of SNAP. NO-releasing materials exhibited minimal cytotoxicity when cultured with fibroblasts or osteoblasts. Cells maintained viability and proliferative character on derivatized materials as demonstrated by Live/Dead cell staining and counting. In addition, SNAP-derivatized hydrogels exhibited an antimicrobial character indicative of NO-releasing materials. SNAP derivatization of natural polymeric biomaterials containing free primary amines offers a means to generate inducible NO-releasing biomaterials for use as an antimicrobial and regenerative support for tissue engineering.
Collapse
Affiliation(s)
- Michael VanWagner
- Department of Biomedical Engineering, College of Engineering, Michigan Technological University , 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sudheesh Kumar PT, Raj NM, Praveen G, Chennazhi KP, Nair SV, Jayakumar R. In vitro and in vivo evaluation of microporous chitosan hydrogel/nanofibrin composite bandage for skin tissue regeneration. Tissue Eng Part A 2013; 19:380-92. [PMID: 22934717 PMCID: PMC3542877 DOI: 10.1089/ten.tea.2012.0376] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/17/2012] [Indexed: 11/12/2022] Open
Abstract
In this work, we have developed chitosan hydrogel/nanofibrin composite bandages (CFBs) and characterized using Fourier transform-infrared spectroscopy and scanning electron microscopy. The homogeneous distribution of nanofibrin in the prepared chitosan hydrogel matrix was confirmed by phosphotungstic acid-hematoxylin staining. The mechanical strength, swelling, biodegradation, porosity, whole-blood clotting, and platelet activation studies were carried out. In addition, the cell viability, cell attachment, and infiltration of the prepared CFBs were evaluated using human umbilical vein endothelial cells (HUVECs) and human dermal fibroblast (HDF) cells. It was found that the CFBs were microporous, flexible, biodegradable, and showed enhanced blood clotting and platelet activity compared to the one without nanofibrin. The prepared CFBs were capable of absorbing fluid and this was confirmed when immersed in phosphate buffered saline. Cell viability studies on HUVECs and HDF cells proved the nontoxic nature of the CFBs. Cell attachment and infiltration studies showed that the cells were found attached and proliferated on the CFBs. In vivo experiments were carried out in Sprague-Dawley rats and found that the wound healing occurred within 2 weeks when treated with CFBs than compared to the bare wound and wound treated with Kaltostat. The deposition of collagen was found to be more on CFB-treated wounds compared to the control. The above results proved the use of these CFBs as an ideal candidate for skin tissue regeneration and wound healing.
Collapse
Affiliation(s)
- P T Sudheesh Kumar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham University, Kochi, India
| | | | | | | | | | | |
Collapse
|
44
|
Guthrie KI, Sangha N, Genheimer CW, Basu J, Ludlow JW. Migration assay to evaluate cellular interactions with biomaterials for tissue engineering/regenerative medicine applications. Methods Mol Biol 2013; 1001:189-196. [PMID: 23494430 DOI: 10.1007/978-1-62703-363-3_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Regenerative medicine and tissue engineering approaches for solving current medical dilemmas such as organ failure, congenital defect, or reconstruction following disease or trauma typically require specific considerations regarding biomaterial selection, identification of key cell types, and applicable surgical techniques (Lanza et al. Principles of tissue engineering, Academic, 2007; Kikuchi, Kanama., Quart Rev 24:51-67, 2007). The ability to evaluate these components in vitro under conditions which simulate relevant in vivo environments can reduce development risks including time and money costs associated with early-stage product development. Similarly, such methods can be useful in making progress in researching features of natural and synthetic biomaterial such as porosity, strength, surface topography, and functionalization, and their singular or collective effects on cell behavior (Kikuchi and Kanama., Quart Rev 24:51-67, 2007; Furth et al. Biomaterials 28:5068-5073, 2007; Mieszawska and Kaplan., BMC Biol 8:59, 2010).Adhesion, migration, and gene and protein expression are all cell behaviors that can be affected by properties of a chosen biomaterial and vary based upon organ system (Cornwell et al. J Biomater Res 71A:55-62, 2004; David et al. Tissue Eng 8(5):787-798, 2002). Understanding of these properties and their role in combination with biomaterial in remodeling is sought in order to fully harness and direct regeneration (Lanza et al. Principles of tissue engineering, Academic Press, 2007; Mieszawska and Kaplan. BMC Biol 8:59, 2010; Matragotri and Lahann J. Nat Mater 8:15-23, 2009).
Collapse
|
45
|
Abstract
The critical role of migration and invasion in cancer metastasis warrants new therapeutic approaches targeting the machinery regulating cell migration and invasion. While 2-dimensional (2D) models have helped identify a range of adhesion molecules, cytoskeletal components and regulators that are potentially important for cell migration, the use of models that better mimic the 3-dimensional (3D) environment has yielded new insights into the physiology of cell movement. For example, studying cells in 3D models has revealed that invading cancer cells may switch between heterogeneous invasion modes and thus evade pharmacological inhibition of invasion. Here we summarize published data in which the role of cell adhesion molecules in 2D vs. 3D migration have been directly compared and discuss mechanisms that regulate migration speed and persistence in 2D and 3D. Finally we discuss limits of 3D culture models to recapitulate the in vivo situation.
Collapse
Affiliation(s)
- Peta Bradbury
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Sydney, NSW Australia
| | | | | |
Collapse
|
46
|
Martínez-Santamaría L, Guerrero-Aspizua S, Del Río M. Skin bioengineering: preclinical and clinical applications. ACTAS DERMO-SIFILIOGRAFICAS 2012; 103:5-11. [PMID: 22464599 DOI: 10.1016/j.adengl.2011.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 03/14/2011] [Indexed: 10/28/2022] Open
Abstract
Regenerative Medicine is an emerging field that combines basic research and clinical observations in order to identify the elements required to replace damaged tissues and organs in vivo and to stimulate the body's intrinsic regenerative capacity. Great benefits are expected in this field as researchers take advantage of the potential regenerative properties of both embryonic and adult stem cells, and more recently, of induced pluripotent stem cells. Bioengineered skin emerged mainly in response to a critical need for early permanent coverage of extensive burns. Later this technology was also applied to the treatment of chronic ulcers. Our group has established a humanized mouse model of skin grafting that involves the use of bioengineered human skin in immunodeficient mice. This model is suitable for the study of physiologic and pathologic cutaneous processes and the evaluation of treatment strategies for skin diseases, including protocols for gene and cell therapy and tissue engineering.
Collapse
Affiliation(s)
- L Martínez-Santamaría
- Unidad de Medicina Regenerativa, Departamento de Investigación Básica, División de Biomedicina Epitelial, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | | | | |
Collapse
|
47
|
Martínez-Santamaría L, Guerrero-Aspizua S, Del Río M. Bioingeniería cutánea: aplicaciones preclínicas y clínicas. ACTAS DERMO-SIFILIOGRAFICAS 2012; 103:5-11. [DOI: 10.1016/j.ad.2011.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/09/2011] [Accepted: 03/14/2011] [Indexed: 11/28/2022] Open
|
48
|
Liang MS, Andreadis ST. Engineering fibrin-binding TGF-β1 for sustained signaling and contractile function of MSC based vascular constructs. Biomaterials 2011; 32:8684-93. [PMID: 21864893 DOI: 10.1016/j.biomaterials.2011.07.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 07/27/2011] [Indexed: 01/02/2023]
Abstract
We present a strategy to conjugate TGF-β1 into fibrin hydrogels to mimic the in vivo presentation of the growth factor in a 3D context. To this end, we engineered fusion proteins between TGF-β1 and a bi-functional peptide composed of a Factor XIII domain and a plasmin cleavage site. In another version the protease cleavage site was omitted to examine whether the growth factor that could not be released from the scaffold by cells had different effects on tissue constructs. The optimal insertion site which yielded correctly processed, functional protein was found between the latency associated peptide and mature TGF-β1 domains. In solution the fusion proteins exhibited similar biological activity as native TGF-β1 as evidenced by inhibition of cell proliferation and promoter activity assays. Immunoprecipitation experiments demonstrated that the fusion TGF-β1 protein bound to fibrinogen in a Factor XIII dependent manner and could be released from the peptide by the action of plasmin. In contrast to bolus delivery, immobilized TGF-β1 induced sustained signaling in fibrin-embedded cells for several days as evidenced by Smad2 phosphorylation. Prolonged pathway activation correlated with enhanced contractile function of vascular constructs prepared from hair follicle mesenchymal stem cells or bone marrow derived smooth muscle cells. Our results suggest that fibrin-immobilized TGF-β1 may be used to enhance the local microenvironment and improve the function of engineered tissues in vitro and potentially also after implantation in vivo where growth factor delivery faces overwhelming challenges.
Collapse
Affiliation(s)
- Mao-Shih Liang
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | | |
Collapse
|
49
|
Xie Y, Rizzi SC, Dawson R, Lynam E, Richards S, Leavesley DI, Upton Z. Development of a three-dimensional human skin equivalent wound model for investigating novel wound healing therapies. Tissue Eng Part C Methods 2011; 16:1111-23. [PMID: 20109066 DOI: 10.1089/ten.tec.2009.0725] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Numerous difficulties are associated with the conduct of preclinical studies related to skin and wound repair. Use of small animal models such as rodents is not optimal because of their physiological differences to human skin and mode of wound healing. Although pigs have previously been used because of their human-like mode of healing, the expense and logistics related to their use also renders them suboptimal. In view of this, alternatives are urgently required to advance the field. The experiments reported herein were aimed at developing and validating a simple, reproducible, three-dimensional ex vivo de-epidermised dermis human skin equivalent wound model for the preclinical evaluation of novel wound therapies. Having established that the human skin equivalent wound model does in fact “heal," we tested the effect of two novel wound healing therapies. We also examined the utility of the model for studies exploring the mechanisms underpinning these therapies. Taken together the data demonstrate that these new models will have wide-spread application for the generation of fundamental new information on wound healing processes and also hold potential in facilitating preclinical optimization of dosage, duration of therapies, and treatment strategies prior to clinical trials.
Collapse
Affiliation(s)
- Yan Xie
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|
50
|
Lugo LM, Lei P, Andreadis ST. Vascularization of the dermal support enhances wound re-epithelialization by in situ delivery of epidermal keratinocytes. Tissue Eng Part A 2010; 17:665-75. [PMID: 20929281 DOI: 10.1089/ten.tea.2010.0125] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite significant advances in management of severe wounds such as burns and chronic ulcers, autologous split-thickness skin grafts are still the gold standard of care. The main problems with this approach include pain and discomfort associated with harvesting autologous tissue, limited availability of donor sites, and the need for multiple surgeries. Although tissue engineering has great potential to provide alternative approaches for tissue regeneration, several problems have hampered progress in translating technological advances to clinical reality. Specifically, engineering of skin substitutes requires long culture times and delayed vascularization after implantation compromises graft survival. To address these issues we developed a novel two-prong strategy for tissue regeneration in vivo: (1) vascularization of acellular dermal scaffolds by infiltration of angiogenic factors; and (2) generation of stratified epidermis by in situ delivery of epidermal keratinocytes onto the prevascularized dermal support. Using athymic mouse as a model system, we found that incorporation of angiogenic factors within acellular human dermis enhanced the density and diameter of infiltrating host blood vessels. Increased vascularization correlated with enhanced proliferation and stratification of the neoepidermis originating from the fibrin-keratinocyte cell suspension. This strategy promoted tissue regeneration in vivo with no need for engineering skin substitutes; therefore, it may be useful for treatment of major wounds when skin donor sites are scarce and rapid wound coverage is required.
Collapse
Affiliation(s)
- Liana M Lugo
- Department of Surgery, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | | | | |
Collapse
|