1
|
Pillai S, Munguia-Lopez JG, Tran SD. Hydrogels for Salivary Gland Tissue Engineering. Gels 2022; 8:730. [PMID: 36354638 PMCID: PMC9690182 DOI: 10.3390/gels8110730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 09/19/2023] Open
Abstract
Mimicking the complex architecture of salivary glands (SGs) outside their native niche is challenging due their multicellular and highly branched organization. However, significant progress has been made to recapitulate the gland structure and function using several in vitro and ex vivo models. Hydrogels are polymers with the potential to retain a large volume of water inside their three-dimensional structure, thus simulating extracellular matrix properties that are essential for the cell and tissue integrity. Hydrogel-based culture of SG cells has seen a tremendous success in terms of developing platforms for cell expansion, building an artificial gland, and for use in transplantation to rescue loss of SG function. Both natural and synthetic hydrogels have been used widely in SG tissue engineering applications owing to their properties that support the proliferation, reorganization, and polarization of SG epithelial cells. While recent improvements in hydrogel properties are essential to establish more sophisticated models, the emphasis should still be made towards supporting factors such as mechanotransduction and associated signaling cues. In this concise review, we discuss considerations of an ideal hydrogel-based biomaterial for SG engineering and their associated signaling pathways. We also discuss the current advances made in natural and synthetic hydrogels for SG tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Simon D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
| |
Collapse
|
2
|
Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 2022; 10:6859-6895. [PMID: 36069198 DOI: 10.1039/d2tb01106a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
Collapse
Affiliation(s)
- Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhixuan Su
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Chuan Guo
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
3
|
Song Y, Sharipol A, Uchida H, Ingalls MH, Piraino L, Mereness JA, Moyston T, DeLouise LA, Ovitt CE, Benoit DS. Encapsulation of Primary Salivary Gland Acinar Cell Clusters and Intercalated Ducts (AIDUCs) within Matrix Metalloproteinase (MMP)-Degradable Hydrogels to Maintain Tissue Structure and Function. Adv Healthc Mater 2022; 11:e2101948. [PMID: 34994104 PMCID: PMC8986612 DOI: 10.1002/adhm.202101948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Progress in the development of salivary gland regenerative strategies is limited by poor maintenance of the secretory function of salivary gland cells (SGCs) in vitro. To reduce the precipitous loss of secretory function, a modified approach to isolate intact acinar cell clusters and intercalated ducts (AIDUCs), rather than commonly used single cell suspension, is investigated. This isolation approach yields AIDUCs that maintain many of the cell-cell and cell-matrix interactions of intact glands. Encapsulation of AIDUCs in matrix metalloproteinase (MMP)-degradable PEG hydrogels promotes self-assembly into salivary gland mimetics (SGm) with acinar-like structure. Expression of Mist1, a transcription factor associated with secretory function, is detectable throughout the in vitro culture period up to 14 days. Immunohistochemistry also confirms expression of acinar cell markers (NKCC1, PIP and AQP5), duct cell markers (K7 and K5), and myoepithelial cell markers (SMA). Robust carbachol and ATP-stimulated calcium flux is observed within the SGm for up to 14 days after encapsulation, indicating that secretory function is maintained. Though some acinar-to-ductal metaplasia is observed within SGm, it is reduced compared to previous reports. In conclusion, cell-cell interactions maintained within AIDUCs together with the hydrogel microenvironment may be a promising platform for salivary gland regenerative strategies.
Collapse
Affiliation(s)
- Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - Hitoshi Uchida
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Matthew H. Ingalls
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Dermatology, University of Rochester, Rochester, NY, USA
| | - Jared A. Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Tracey Moyston
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Dermatology, University of Rochester, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
| | - Catherine E. Ovitt
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
| | - Danielle S.W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| |
Collapse
|
4
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
5
|
Akiyama M, Nonomura H, Kamil SH, Ignotz RA. Periosteal Cell Pellet Culture System: A New Technique for Bone Engineering. Cell Transplant 2017; 15:521-32. [PMID: 17121163 DOI: 10.3727/000000006783981765] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To treat bone loss that is induced by disease or wounds, bone grafts are commonly used. In dentistry, guided tissue regeneration is effective in the treatment of periodontal diseases. However, bone resorption after implantation is a major problem with the bone graft and guided tissue regeneration technique. This study examines a cell pellet culture system without exogenous scaffolds for bone regeneration. First, we examined the effect of ascorbic acid on cells. Transmission electron microscopic observation revealed that cells formed a three-dimensional structure of multiple cell layers after 5 weeks of culturing in medium containing 50 μg/ml ascorbic acid with the medium changed every 7 days. A single cell pellet was produced by centrifuging cells that were gathered from 10 tissue culture dishes. Van Gieson staining and collagen type I immunostaining showed that the pellet contained collagen fibers and cells that adhered to the collagen fibers. Several of these cell pellets were implanted subcutaneously on the backs of nude mice for 6 weeks. Histology and immunohistochemistry results indicated new bone formation, vascular invasion, and insular areas of calcification. Bone tissue was surrounded by osteoblasts. The appearance of new bone formation is similar to that seen in intramembranous ossification. The present pellet system is reliable and might solve problems of bone resorption after implantation.
Collapse
Affiliation(s)
- Mari Akiyama
- Center for Tissue Engineering, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | |
Collapse
|
6
|
Man AJ, Kujawski G, Burns TS, Miller EN, Fierro FA, Leach JK, Bannerman P. Neurogenic potential of engineered mesenchymal stem cells overexpressing VEGF. Cell Mol Bioeng 2016; 9:96-106. [PMID: 27087859 PMCID: PMC4830493 DOI: 10.1007/s12195-015-0425-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/08/2015] [Indexed: 02/04/2023] Open
Abstract
Numerous signaling molecules are altered following nerve injury, serving as a blueprint for drug delivery approaches that promote nerve repair. However, challenges with achieving the appropriate temporal duration of recombinant protein delivery have limited the therapeutic success of this approach. Genetic engineering of mesenchymal stem cells (MSCs) to enhance the secretion of proangiogenic molecules such as vascular endothelial growth factor (VEGF) may provide an alternative. We hypothesized that the administration of VEGF-expressing human MSCs would stimulate neurite outgrowth and proliferation of cell-types involved in neural repair. When cultured with dorsal root ganglion (DRG) explants in vitro, control and VEGF-expressing MSCs (VEGF-MSCs) increased neurite extension and proliferation of Schwann cells (SCs) and endothelial cells, while VEGF-MSCs stimulated significantly greater proliferation of endothelial cells. When embedded within a 3D fibrin matrix, VEGF-MSCs maintained overexpression and expressed detectable levels over 21 days. After transplantation into a murine sciatic nerve injury model, VEGF-MSCs maintained high VEGF levels for 2 weeks. This study provides new insight into the role of VEGF on peripheral nerve injury and the viability of transplanted genetically engineered MSCs. The study aims to provide a framework for future studies with the ultimate goal of developing an improved therapy for nerve repair.
Collapse
Affiliation(s)
- Alan J. Man
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA 95817
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Gregory Kujawski
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA 95817
| | - Travis S. Burns
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA 95817
| | - Elaine N. Miller
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA 95817
| | - Fernando A. Fierro
- Institute of Regenerative Cures, University of California, Davis, Sacramento, CA 95817
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| | - Peter Bannerman
- Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, CA 95817
- Department of Cell Biology, UC Davis School of Medicine, UC Davis Medical Center, Sacramento, CA 95817
| |
Collapse
|
7
|
Ozdemir T, Fowler EW, Hao Y, Ravikrishnan A, Harrington DA, Witt RL, Farach-Carson MC, Pradhan-Bhatt S, Jia X. Biomaterials-based strategies for salivary gland tissue regeneration. Biomater Sci 2016; 4:592-604. [PMID: 26878077 DOI: 10.1039/c5bm00358j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The salivary gland is a complex, secretory tissue that produces saliva and maintains oral homeostasis. Radiation induced salivary gland atrophy, manifested as "dry mouth" or xerostomia, poses a significant clinical challenge. Tissue engineering recently has emerged as an alternative, long-term treatment strategy for xerostomia. In this review, we summarize recent efforts towards the development of functional and implantable salivary glands utilizing designed polymeric substrates or synthetic matrices/scaffolds. Although the in vitro engineering of a complex implantable salivary gland is technically challenging, opportunities exist for multidisciplinary teams to assemble implantable and secretory tissue modules by combining stem/progenitor cells found in the adult glands with biomimetic and cell-instructive materials.
Collapse
Affiliation(s)
- Tugba Ozdemir
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tubular Scaffold with Shape Recovery Effect for Cell Guide Applications. J Funct Biomater 2015; 6:564-84. [PMID: 26184328 PMCID: PMC4598671 DOI: 10.3390/jfb6030564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022] Open
Abstract
Tubular scaffolds with aligned polylactic acid (PLA) fibres were fabricated for cell guide applications by immersing rolled PLA fibre mats into a polyvinyl acetate (PVAc) solution to bind the mats. The PVAc solution was also mixed with up to 30 wt % β-tricalcium phosphate (β-TCP) content. Cross-sectional images of the scaffold materials obtained via scanning electron microscopy (SEM) revealed the aligned fibre morphology along with a significant number of voids in between the bundles of fibres. The addition of β-TCP into the scaffolds played an important role in increasing the void content from 17.1% to 25.3% for the 30 wt % β-TCP loading, which was measured via micro-CT (µCT) analysis. Furthermore, µCT analyses revealed the distribution of aggregated β-TCP particles in between the various PLA fibre layers of the scaffold. The compressive modulus properties of the scaffolds increased from 66 MPa to 83 MPa and the compressive strength properties decreased from 67 MPa to 41 MPa for the 30 wt % β-TCP content scaffold. The scaffolds produced were observed to change into a soft and flexible form which demonstrated shape recovery properties after immersion in phosphate buffered saline (PBS) media at 37 °C for 24 h. The cytocompatibility studies (using MG-63 human osteosarcoma cell line) revealed preferential cell proliferation along the longitudinal direction of the fibres as compared to the control tissue culture plastic. The manufacturing process highlighted above reveals a simple process for inducing controlled cell alignment and varying porosity features within tubular scaffolds for potential tissue engineering applications.
Collapse
|
9
|
Shubin AD, Felong TJ, Graunke D, Ovitt CE, Benoit DS. Development of poly(ethylene glycol) hydrogels for salivary gland tissue engineering applications. Tissue Eng Part A 2015; 21:1733-51. [PMID: 25762214 PMCID: PMC4449707 DOI: 10.1089/ten.tea.2014.0674] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/09/2015] [Indexed: 12/21/2022] Open
Abstract
More than 40,000 patients are diagnosed with head and neck cancers annually in the United States with the vast majority receiving radiation therapy. Salivary glands are irreparably damaged by radiation therapy resulting in xerostomia, which severely affects patient quality of life. Cell-based therapies have shown some promise in mouse models of radiation-induced xerostomia, but they suffer from insufficient and inconsistent gland regeneration and accompanying secretory function. To aid in the development of regenerative therapies, poly(ethylene glycol) hydrogels were investigated for the encapsulation of primary submandibular gland (SMG) cells for tissue engineering applications. Different methods of hydrogel formation and cell preparation were examined to identify cytocompatible encapsulation conditions for SMG cells. Cell viability was much higher after thiol-ene polymerizations compared with conventional methacrylate polymerizations due to reduced membrane peroxidation and intracellular reactive oxygen species formation. In addition, the formation of multicellular microspheres before encapsulation maximized cell-cell contacts and increased viability of SMG cells over 14-day culture periods. Thiol-ene hydrogel-encapsulated microspheres also promoted SMG proliferation. Lineage tracing was employed to determine the cellular composition of hydrogel-encapsulated microspheres using markers for acinar (Mist1) and duct (Keratin5) cells. Our findings indicate that both acinar and duct cell phenotypes are present throughout the 14 day culture period. However, the acinar:duct cell ratios are reduced over time, likely due to duct cell proliferation. Altogether, permissive encapsulation methods for primary SMG cells have been identified that promote cell viability, proliferation, and maintenance of differentiated salivary gland cell phenotypes, which allows for translation of this approach for salivary gland tissue engineering applications.
Collapse
Affiliation(s)
- Andrew D. Shubin
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Timothy J. Felong
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Dean Graunke
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Catherine E. Ovitt
- Center for Oral Biology, University of Rochester, Rochester, New York
- Department of Biomedical Genetics, University of Rochester, Rochester, New York
| | - Danielle S.W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
- Center for Oral Biology, University of Rochester, Rochester, New York
- Department of Chemical Engineering, University of Rochester, Rochester, New York
- Center for Musculoskeletal Research, Rochester, New York
| |
Collapse
|
10
|
Cheung JW, Jain D, McCulloch CA, Santerre JP. Pro-Angiogenic Character of Endothelial Cells and Gingival Fibroblasts Cocultures in Perfused Degradable Polyurethane Scaffolds. Tissue Eng Part A 2015; 21:1587-99. [DOI: 10.1089/ten.tea.2014.0548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Jane W.C. Cheung
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Devika Jain
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | | | - J. Paul Santerre
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
- Department of Biomaterials, Faculty of Dentistry, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Goldman EB, Zak A, Tenne R, Kartvelishvily E, Levin-Zaidman S, Neumann Y, Stiubea-Cohen R, Palmon A, Hovav AH, Aframian DJ. Biocompatibility of tungsten disulfide inorganic nanotubes and fullerene-like nanoparticles with salivary gland cells. Tissue Eng Part A 2014; 21:1013-23. [PMID: 25366879 DOI: 10.1089/ten.tea.2014.0163] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Impaired salivary gland (SG) function leading to oral diseases is relatively common with no adequate solution. Previously, tissue engineering of SG had been proposed to overcome this morbidity, however, not yet clinically available. Multiwall inorganic (tungsten disulfide [WS2]) nanotubes (INT-WS2) and fullerene-like nanoparticles (IF-WS2) have many potential medical applications. A yet unexplored venue application is their interaction with SG, and therefore, our aim was to test the biocompatibility of INT/IF-WS2 with the A5 and rat submandibular cells (RSC) SG cells. The cells were cultured and subjected after 1 day to different concentrations of INT-WS2 and were compared to control groups. Growth curves, trypan blue viability test, and carboxyfluorescein succinimidyl ester (CFSE) proliferation assay were obtained. Furthermore, cells morphology and interaction with the nanoparticles were observed by light microscopy, scanning electron microscopy and transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy. The results showed no significant differences in growth curves, proliferation kinetics, and viability between the groups compared. Moreover, no alterations were observed in the cell morphology. Interestingly, TEM images indicated that the nanoparticles are uptaken by the cells and accumulate in cytoplasmic vesicles. These results suggest promising future medical applications for these nanoparticles.
Collapse
Affiliation(s)
- Elisheva B Goldman
- 1 Faculty of Dental Medicine, The Hebrew University of Jerusalem , Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Redirection of Neurite Outgrowth by Coupling Chondroitin Sulfate Proteoglycans to Polymer Membranes. Ann Biomed Eng 2014; 42:1271-81. [DOI: 10.1007/s10439-014-0991-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/19/2014] [Indexed: 12/14/2022]
|
13
|
Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2013; 34:64-79. [PMID: 24001398 DOI: 10.1016/j.matbio.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022]
Abstract
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States.
| | - Curtis R Warren
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel A Harrington
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel D Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| |
Collapse
|
14
|
Silva DRM, Joazeiro PP, Duek EAR, Alberto-Rincon MC. Subdermal implants of poly(L-lactic acid) with plasticizer: an ultrastructural study in rats. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:177-85. [PMID: 16411607 DOI: 10.1163/156856206774879018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Poly(L-lactic acid) (PLLA) membranes containing 7% triethylcitrate plasticizer were implanted in the subcutaneous tissue of rats, and the cellular reaction was evaluated over a period of 2-180 days. The samples were processed for conventional transmission electron microscopy. Polymorphonuclear-type cells and a fibrin network were seen within membrane pores 2 days after implantation. In subsequent samples, there was cellular infiltration, which consisted mainly of fibroblasts, macrophages and multinuclear giant cells embedded in an abundant extracellular matrix containing a network of collagen fibers and blood vessels. At 90 and 180 days after implantation, a high density of voluminous phagocytic cells with a large number of endocytic polymer fragments within their cytoplasm was seen. These results show that PLLA membranes can support connective tissue proliferation and remodeling, which are important properties for successful bio-protheses.
Collapse
Affiliation(s)
- D R M Silva
- Department of Histology and Embryology, Institute of Biology, State University of Campinas (UNICAMP), Brazil
| | | | | | | |
Collapse
|
15
|
The isolation of cell derived extracellular matrix constructs using sacrificial open-cell foams. Biomaterials 2010; 31:9595-603. [PMID: 20950855 DOI: 10.1016/j.biomaterials.2010.08.072] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/27/2010] [Indexed: 11/20/2022]
Abstract
Extracellular matrix derived from human and animal tissues is being used to repair and reconstruct a variety of tissues clinically. The utility of such constructs is limited by the geometry, composition and constitutive properties of the tissue or organ from which the ECM is harvested. To address this limitation, we have developed an approach to isolate extracellular matrix in bulk from populations of living cells grown in culture on three-dimensional substrates. Human biopsy derived fibroblasts were seeded within open-cell foams and cultured in-vitro for periods up to three weeks, after which the synthetic component was removed by incubation in a water miscible solvent. After several wash steps and lyophilization, a white, lacy, multi-molecular construct was isolated. Tandem mass spectroscopy showed that it contained 22 extracellular matrix constituents, including such proteins and proteoglycans as collagen type I and type III, fibronectin, transforming growth factor beta, decorin and biglycan among others. On average 47 mg of construct was isolated for each gram of synthetic substrate initially seeded with cells. The biomaterial harvested from human tracheal fibroblasts had an elastic modulus (250 kPa) and a composition similar to that of human vocal fold tissue, and supported reseeding with human tracheal derived fibroblasts. An important finding was that the approach was useful in isolating ECM from a variety of cell lineages and developmental stages including skin fibroblasts, brain derived astrocytes and mesenchymal stem cells. The results, together with the archival literature, suggest that the approach can be used to produce a range of cell derived constructs with unique physical and chemical attributes for a variety of research and medical applications.
Collapse
|
16
|
Redman RS. On approaches to the functional restoration of salivary glands damaged by radiation therapy for head and neck cancer, with a review of related aspects of salivary gland morphology and development. Biotech Histochem 2009; 83:103-30. [PMID: 18828044 DOI: 10.1080/10520290802374683] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Radiation therapy for cancer of the head and neck can devastate the salivary glands and partially devitalize the mandible and maxilla. As a result, saliva production is drastically reduced and its quality adversely altered. Without diligent home and professional care, the teeth are subject to rapid destruction by caries, necessitating extractions with attendant high risk of necrosis of the supporting bone. Innovative techniques in delivery of radiation therapy and administration of drugs that selectively protect normal tissues can reduce significantly the radiation effects on salivary glands. Nonetheless, many patients still suffer severe oral dryness. I review here the functional morphology and development of salivary glands as these relate to approaches to preventing and restoring radiation-induced loss of salivary function. The acinar cells are responsible for most of the fluid and organic material in saliva, while the larger ducts influence the inorganic content. A central theme of this review is the extent to which the several types of epithelial cells in salivary glands may be pluripotential and the circumstances that may influence their ability to replace cells that have been lost or functionally inactivated due to the effects of radiation. The evidence suggests that the highly differentiated cells of the acini and large ducts of mature glands can replace themselves except when the respective pools of available cells are greatly diminished via apoptosis or necrosis owing to severely stressful events. Under the latter circumstances, relatively undifferentiated cells in the intercalated ducts proliferate and redifferentiate as may be required to replenish the depleted pools. It is likely that some, if not many, acinar cells may de-differentiate into intercalated duct-like cells and thus add to the pool of progenitor cells in such situations. If the stress is heavy doses of radiation, however, the result is not only the death of acinar cells, but also a marked decline in functional differentiation and proliferative capacity of all of the surviving cells, including those with progenitor capability. Restoration of gland function, therefore, seems to require increasing the secretory capacity of the surviving cells, or replacing the acinar cells and their progenitors either in the existing gland remnants or with artificial glands.
Collapse
Affiliation(s)
- R S Redman
- Oral Pathology Research Laboratory, Department of Veterans Affairs Medical Center, Washington, DC, USA.
| |
Collapse
|
17
|
Chen MH, Chen YJ, Liao CC, Chan YH, Lin CY, Chen RS, Young TH. Formation of salivary acinar cell spheroidsin vitroabove a polyvinyl alcohol-coated surface. J Biomed Mater Res A 2009; 90:1066-72. [DOI: 10.1002/jbm.a.32167] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Aframian DJ, Palmon A. Current status of the development of an artificial salivary gland. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:187-98. [PMID: 18471085 DOI: 10.1089/ten.teb.2008.0044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Salivary glands (SGs) secrete more than half a liter of saliva daily. Saliva has many functions in maintaining the normal homeostasis of the oral cavity. Several causes underlie salivary impairment, where irradiation therapy to head and neck cancer patients is one of the most debilitating causes leading to considerable decrease in the patients' quality of life. In the last decade, others and we have focused on implementing tissue engineering principles combined with gene transfer and stem cell methodologies to develop an artificial SG device. This manuscript provides an overview of the current status of engineering an artificial SG.
Collapse
Affiliation(s)
- Doron J Aframian
- Department of Oral Medicine, Salivary Gland Clinic, Hebrew University, Jerusalem, Israel.
| | | |
Collapse
|
19
|
Scheller EL, Krebsbach PH, Kohn DH. Tissue engineering: state of the art in oral rehabilitation. J Oral Rehabil 2009; 36:368-89. [PMID: 19228277 DOI: 10.1111/j.1365-2842.2009.01939.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering.
Collapse
Affiliation(s)
- E L Scheller
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | |
Collapse
|
20
|
Maria OM, Kim JWM, Gerstenhaber JA, Baum BJ, Tran SD. Distribution of tight junction proteins in adult human salivary glands. J Histochem Cytochem 2008; 56:1093-8. [PMID: 18765838 DOI: 10.1369/jhc.2008.951780] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tight junctions (TJs) are an essential structure of fluid-secreting cells, such as those in salivary glands. Three major families of integral membrane proteins have been identified as components of the TJ: claudins, occludin, and junctional adhesion molecules (JAMs), plus the cytosolic protein zonula occludens (ZO). We have been working to develop an orally implantable artificial salivary gland that would be suitable for treating patients lacking salivary parenchymal tissue. To date, little is known about the distribution of TJ proteins in adult human salivary cells and thus what key molecular components might be desirable for the cellular component of an artificial salivary gland device. Therefore, the aim of this study was to determine the distribution of TJ proteins in human salivary glands. Salivary gland samples were obtained from 10 patients. Frozen and formalin-fixed paraffin-embedded sections were stained using IHC methods. Claudin-1 was expressed in ductal, endothelial, and approximately 25% of serous cells. Claudins-2, -3, and -4 and JAM-A were expressed in both ductal and acinar cells, whereas claudin-5 was expressed only in endothelial cells. Occludin and ZO-1 were expressed in acinar, ductal, and endothelial cells. These results provide new information on TJ proteins in two major human salivary glands and should serve as a reference for future studies to assess the presence of appropriate TJ proteins in a tissue-engineered human salivary gland.
Collapse
Affiliation(s)
- Ola M Maria
- Faculty of Dentistry, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
21
|
David R, Shai E, Aframian DJ, Palmon A. Isolation and cultivation of integrin alpha(6)beta(1)-expressing salivary gland graft cells: a model for use with an artificial salivary gland. Tissue Eng Part A 2008; 14:331-7. [PMID: 18333785 DOI: 10.1089/tea.2007.0122] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Regeneration of the salivary glands' (SGs) normal function for patients with cancer of the head and neck treated with irradiation would be a major contribution to their quality of life. This could be accomplished by re-implantation of autologous SG cells into the residual irradiated tissue or by implantation of tissue-engineered artificial SGs. Both methods depend on the isolation of cells able to propagate and differentiate into SG epithelial cells. Recently, it has been shown that SG integrin alpha(6)beta(1)-expressing (SGIE) cells have stem cell capabilities, but these cells could be isolated only after duct ligation insult requiring surgical intervention. Because such an invasive procedure is not clinically acceptable for these patients, our aim in the present study was to explore the use of immuno-magnetic separation of untreated and short heat stress-conditioned rats as a less-insulting methodology for enhancement of these cells. Our results show that submandibular SGIE cells could be isolated and cultivated from untreated animals. However, short heat stress (HS) increased the number of isolated SGIE cells 4.7-fold and their proliferation and clonal capability 4.6-fold and 3 fold, respectively. We believe that SGIE graft cells may be suitable candidates for future tissue-engineered SGs that have been damaged by irradiation in patients with head and neck cancer.
Collapse
Affiliation(s)
- Ran David
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | | | | | | |
Collapse
|
22
|
Aframian DJ, Amit D, David R, Shai E, Deutsch D, Honigman A, Panet A, Palmon A. Reengineering salivary gland cells to enhance protein secretion for use in developing artificial salivary gland device. ACTA ACUST UNITED AC 2007; 13:995-1001. [PMID: 17346100 DOI: 10.1089/ten.2006.0300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Salivary glands (SGs) are considered exocrine glands, which mainly secrete water into the oral cavity. Nevertheless, they also exhibit a smaller endocrine secretory pathway toward the bloodstream. The concept of an artificial SG device for exocrine fluid secretion into the oral region in xerostomic patients has been previously studied. The purpose of the current study was to examine the potential of such a device for enhancing bioactive protein secretion. We engineered a plasmid encoding a SG-specific signal peptide sequence adjacent to a normally nonsecreted encoded reporter gene creating a chimera protein, and examined if this construct can enhance secretion from salivary epithelial cells. An N-terminal encoding epidermal growth factor (EGF) sequence was synthesized and inserted into a pGL3 control vector 5' of a firefly luciferase gene, creating a pGL3-EGF signal peptide (pGL3-EGFSP) fused vector. This vector was cotransfected with a pRL-CMV vector containing a Renilla luciferase gene, in 293 cells (serving as controls), and human submandibular gland ductal epithelial (HSG), rat submandibular gland acinar epithelial (SMIE), and rat submandibular gland ductal epithelial (A5) salivary cell lines. The transfected 293, SMIE, and HSG cells showed 8-, 18-, and 40-fold higher luciferase activity, respectively. These observations lead to the concept of an envisioned secretory device, which can serve as a potential biological pump for bioactive proteins.
Collapse
Affiliation(s)
- Doron J Aframian
- Salivary Gland Clinic, Department of Oral Medicine, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Tran SD, Sugito T, Dipasquale G, Cotrim AP, Bandyopadhyay BC, Riddle K, Mooney D, Kok MR, Chiorini JA, Baum BJ. Re-engineering primary epithelial cells from rhesus monkey parotid glands for use in developing an artificial salivary gland. ACTA ACUST UNITED AC 2007; 12:2939-48. [PMID: 17518661 DOI: 10.1089/ten.2006.12.2939] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
There is no satisfactory conventional treatment for patients who experience irreversible salivary gland damage after therapeutic radiation for head and neck cancer or because of Sjögren's syndrome. Additionally, if most parenchyma is lost, these patients also are not candidates for evolving gene transfer strategies. To help such patients, several years ago we began to develop an artificial salivary gland. In the present study, we used a non-human primate tissue source, parotid glands from rhesus monkeys, to obtain potential autologous graft cells for development of a prototype device for in situ testing. Herein, we present 3 major findings. First, we show that primary cultures of rhesus parotid gland (RPG) cells are capable of attaining a polarized orientation, with Na(+)/K(+)-adenosine triphosphatase, zonula occludens-1, and claudin-1 distributed in specific domains appropriate for epithelial cells. Second, we show that RPG cells exhibit 2 essential epithelial functions required for graft cells in an artificial salivary gland device (i.e., an effective barrier to paracellular water flow and the generation of a moderate transepithelial electrical resistance). Third, we show that RPG cells can express functional water channels, capable of mediating directional fluid movement, after transduction by adenoviral and adeno-associated virus type 2 vectors. Together these results demonstrate that it is feasible to individually prepare RPG cells for eventual use in a prototype artificial salivary gland.
Collapse
Affiliation(s)
- Simon D Tran
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-1190, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Baum BJ, Tran SD. Synergy between genetic and tissue engineering: creating an artificial salivary gland. Periodontol 2000 2006; 41:218-23. [PMID: 16686936 DOI: 10.1111/j.1600-0757.2006.00160.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bruce J Baum
- Gene Transfer Section, NIDCR, National Institute of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
25
|
Marques AP, Cruz HR, Coutinho OP, Reis RL. Effect of starch-based biomaterials on the in vitro proliferation and viability of osteoblast-like cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2005; 16:833-42. [PMID: 16167112 DOI: 10.1007/s10856-005-3580-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 12/17/2004] [Indexed: 05/04/2023]
Abstract
The cytotoxicity of starch-based polymers was investigated using different methodologies. Poly-L-lactic acid (PLLA) was used as a control for comparison purposes. Extracts of four different starch-based blends (corn starch and ethylene vinyl alcohol (SEVA-C), corn starch and cellulose acetate (SCA), corn starch and polycaprolactone (SPCL) and starch and poly-lactic acid (SPLA70) were prepared in culture medium and their toxicity was analysed. Osteoblast-like cells (SaOs-2) were incubated with the extracts and cell viability was assessed using the MTT test and a lactate dehydrogenase (LDH) assay. In addition DNA and total protein were quantified in order to evaluate cell proliferation. Cells were also cultured in direct contact with the polymers for 3 and 7 days and observed in light and scanning electron microscopy (SEM). LDH and DNA quantification revealed to be the most sensitive tests to assess respectively cell viability and cell proliferation after incubation with starch-based materials and PLLA. SCA was the starch blend with higher cytotoxicity index although similar to PLLA polymer. Cell adhesion tests confirmed the worst performance of the blend of starch with cellulose acetate but also showed that SPCL does not perform as well as it could be expected. All the other materials were shown to present a comparable behaviour in terms of cell adhesion showing slight differences in morphology that seem to disappear for longer culture times. The results of this study suggest that not only the extract of the materials but also their three-dimensional form has to be biologically tested in order to analyse material-associated parameters that are not possible to consider within the degradation extract. In this study, the majority of the starch-based biomaterials presented very promising results in terms of cytotoxicity, comparable to the currently used biodegradable PLLA which might lead the biocompatibility evaluation of those novel biomaterials to other studies.
Collapse
Affiliation(s)
- A P Marques
- 3B's Research Group--Biomaterials, Biodegradables, Biomimetics, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | | | | |
Collapse
|
26
|
Sugito T, Kagami H, Hata K, Nishiguchi H, Ueda M. Transplantation of cultured salivary gland cells into an atrophic salivary gland. Cell Transplant 2005; 13:691-9. [PMID: 15648739 DOI: 10.3727/000000004783983567] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Patients with dry mouth have been treated with salivary substitutes and/or medications such as pilocarpine or cevimeline hydrochloride. These treatments temporarily relieve their symptoms and induce salivation from residual tissue. However, no treatment is available for the purpose of regenerating an atrophic gland. In this study, the feasibility of a cell transplantation therapy for the atrophic submandibular glands was investigated in rats. Further, the potential of cell differentiation into a useful phenotype was assessed by immunohistochemistry together with cell tracking with the fluorescent dye PKH 26. Rat submandibular glands were excised, and the salivary gland epithelial cells were cultured for 3 weeks with 3T3 cells as a feeder layer. Ductal ligation of the submandibular gland was employed to generate an atrophic gland. One week after the operation, the ligation was removed, and the cultured cells labeled with PKH 26 were injected into the atrophic submandibular glands. As a control, the cultured cells were also injected into normal submandibular glands. Two weeks after cell transplantation, the transplanted cells were detectable in both the experimental and control groups. The cells were clustered in the connective tissue between the lobules. Four weeks after transplantation, the labeled cells were detectable in the experimental group but not in the control group. In the atrophic glands, the scattered transplanted cells were observed over a broad area of the gland but localized mainly around the acini and ductal region. Immunostaining results showed a possible involvement of the transplanted cells in ductal regeneration, while neither myoepithelial nor acinar differentiations were observed within the 4 weeks since transplantation. This study demonstrated that cell transplantation to the salivary gland is feasible, and that the transplanted cells were selectively attracted to and remained in the damaged area without affecting normal tissue.
Collapse
Affiliation(s)
- T Sugito
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya 466-8440, Japan
| | | | | | | | | |
Collapse
|
27
|
Tran SD, Wang J, Bandyopadhyay BC, Redman RS, Dutra A, Pak E, Swaim WD, Gerstenhaber JA, Bryant JM, Zheng C, Goldsmith CM, Kok MR, Wellner RB, Baum BJ. Primary culture of polarized human salivary epithelial cells for use in developing an artificial salivary gland. ACTA ACUST UNITED AC 2005; 11:172-81. [PMID: 15738672 DOI: 10.1089/ten.2005.11.172] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Therapeutic irradiation for head and neck cancer, and the autoimmune disease Sjogren's syndrome, lead to loss of salivary parenchyma. They are the two main causes of irreversible salivary gland hypofunction. Such patients cannot produce adequate levels of saliva, leading to considerable morbidity. We are working to develop an artificial salivary gland for such patients. A major problem in this endeavor has been the difficulty in obtaining a suitable autologous cellular component. This article describes a method of culturing and expanding primary salivary cells obtained from human submandibular glands (huSMGs) that is serum free and yields cells that are epithelial in nature. These include morphological (light and transmission electron microscopy [TEM]), protein expression (immunologically positive for ZO-1, claudin-1, and E-cadherin), and functional evidence. Under confocal microscopy, huSMG cells show polarization and appropriately localize tight junction proteins. TEM micrographs show an absence of dense core granules, but confirm the presence of tight and intermediate junctions and desmosomes between the cells. Functional assays showed that huSMG cells have high transepithelial electrical resistance and low rates of paracellular fluid movement. Additionally, huSMG cells show a normal karyotype without any morphological or numerical abnormalities, and most closely resemble striated and excretory duct cells in appearance. We conclude that this culture method for obtaining autologous human salivary cells should be useful in developing an artificial salivary gland.
Collapse
Affiliation(s)
- S D Tran
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen MH, Chen RS, Hsu YH, Chen YJ, Young TH. Proliferation and Phenotypic Preservation of Rat Parotid Acinar Cells. ACTA ACUST UNITED AC 2005; 11:526-34. [PMID: 15869431 DOI: 10.1089/ten.2005.11.526] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study is to develop an initial step in salivary gland tissue engineering through proliferation and phenotypic preservation of rat parotid acinar cells in vitro. By using the explant outgrowth technique and M199 medium with the addition of sialic acid, acinar cells not only survived for more than 30 days in the absence of basement membrane substrates but also proliferated to yield cells with acinar phenotypic expression. Furthermore, we tested whether chitosan can be used as a synthetic extracellular matrix to culture salivary acinar cells. Chitosan is a deacetylated product of chitin, which is a plentiful polysaccharide found in nature and is safe for the human body, but little is known about the utility of chitosan in culturing salivary acinar cells. It was found that coating fibronectin on chitosan membrane improved the attachment of acinar cells in the initial stage. However, the poor attachment of acinar cells on pure chitosan membrane did not affect cell growth after longer culture times, indicating that chitosan is potentially useful as a tissue-engineering scaffold of the salivary gland. These in vitro results are encouraging because such a culture system may serve as an artificial salivary gland for future use in the treatment of patients with salivary hypofunction.
Collapse
Affiliation(s)
- Min-Huey Chen
- NTUH, School of Dentistry, College of Medicine, National Taiwan University, Taipei
| | | | | | | | | |
Collapse
|
29
|
Aframian DJ, David R, Ben-Bassat H, Shai E, Deutsch D, Baum BJ, Palmon A. Characterization of murine autologous salivary gland graft cells: a model for use with an artificial salivary gland. ACTA ACUST UNITED AC 2005; 10:914-20. [PMID: 15265309 DOI: 10.1089/1076327041348518] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The purpose of this study was to examine the growth and key functional abilities of primary cultures of salivary epithelial cells toward developing an artificial salivary gland. Cultures of epithelial cells originating from submandibular glands of BALB/c mice were established. Parenchymal cells were isolated by a Percoll gradient technique and thereafter seeded on irradiated NIH 3T3 fibroblasts serving as a feeder layer. The isolated cells were termed autologous salivary gland epithelial (ASGE) cells and could be cultivated for at least five passages (time limit of experiments). ASGE cells presented the typical organizational behavior of epithelial cells and electron microscopy, as well as immunostaining for cytokeratins, confirmed their epithelial origin. Furthermore, measurements of transepithelial resistance and water permeability indicated the ability of the ASGE cells to form a functional epithelial barrier. This study suggests that primary salivary epithelial cells can be obtained that exhibit critical characteristics needed for use with an artificial secretory device.
Collapse
Affiliation(s)
- D J Aframian
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FWH, Schoen FJ, Mayer JE, Bischoff J. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol 2004; 287:H480-7. [PMID: 15277191 DOI: 10.1152/ajpheart.01232.2003] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tissue engineering may offer patients new options when replacement or repair of an organ is needed. However, most tissues will require a microvascular network to supply oxygen and nutrients. One strategy for creating a microvascular network would be promotion of vasculogenesis in situ by seeding vascular progenitor cells within the biopolymeric construct. To pursue this strategy, we isolated CD34(+)/CD133(+) endothelial progenitor cells (EPC) from human umbilical cord blood and expanded the cells ex vivo as EPC-derived endothelial cells (EC). The EPC lost expression of the stem cell marker CD133 but continued to express the endothelial markers KDR/VEGF-R2, VE-cadherin, CD31, von Willebrand factor, and E-selectin. The cells were also shown to mediate calcium-dependent adhesion of HL-60 cells, a human promyelocytic leukemia cell line, providing evidence for a proinflammatory endothelial phenotype. The EPC-derived EC maintained this endothelial phenotype when expanded in roller bottles and subsequently seeded on polyglycolic acid-poly-l-lactic acid (PGA-PLLA) scaffolds, but microvessel formation was not observed. In contrast, EPC-derived EC seeded with human smooth muscle cells formed capillary-like structures throughout the scaffold (76.5 +/- 35 microvessels/mm(2)). These results indicate that 1) EPC-derived EC can be expanded in vitro and seeded on biodegradable scaffolds with preservation of endothelial phenotype and 2) EPC-derived EC seeded with human smooth muscle cells form microvessels on porous PGA-PLLA scaffolds. These properties indicate that EPC may be well suited for creating microvascular networks within tissue-engineered constructs.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Surgery, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Animal experimentation is an integrated part of tissue engineering research. This paper investigates what scientists conducting such experimentation should reasonably take into consideration from an ethical point of view. It is argued that scientists should use their moral imagination in making fundamental ethical choices, in reflecting on legal regulation, in taking public opinion seriously, and in balancing human benefit and animal harm as expected outcomes of the experiments.
Collapse
Affiliation(s)
- Anders Nordgren
- Section for Biomedical Ethics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala Science Park, Uppsala SE-751 85, Sweden.
| |
Collapse
|