1
|
Cole RN, Fang Q, Matsuoka K, Wang Z. Androgen receptor inhibitors in treating prostate cancer. Asian J Androl 2025; 27:144-155. [PMID: 39558858 PMCID: PMC11949463 DOI: 10.4103/aja202494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
ABSTRACT Androgens play an important role in prostate cancer development and progression. Androgen action is mediated through the androgen receptor (AR), a ligand-dependent DNA-binding transcription factor. AR is arguably the most important target for prostate cancer treatment. Current USA Food and Drug Administration (FDA)-approved AR inhibitors target the ligand-binding domain (LBD) and have exhibited efficacy in prostate cancer patients, particularly when used in combination with androgen deprivation therapy. Unfortunately, patients treated with the currently approved AR-targeting agents develop resistance and relapse with castration-resistant prostate cancer (CRPC). The major mechanism leading to CRPC involves reactivation of AR signaling mainly through AR gene amplification, mutation, and/or splice variants. To effectively inhibit the reactivated AR signaling, new approaches to target AR are being actively explored. These new approaches include novel small molecule inhibitors targeting various domains of AR and agents that can degrade AR. The present review provides a summary of the existing FDA-approved AR antagonists and the current development of some of the AR targeting agents.
Collapse
Affiliation(s)
- Ryan N Cole
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Qinghua Fang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Kanako Matsuoka
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Shapira Lots I, Alroy I. Virtual plates: Getting the best out of high content screens. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:77-85. [PMID: 38036292 DOI: 10.1016/j.slasd.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
High content screening (HCS) is becoming widely adopted as a high throughput screening modality, using hundred-of-thousands compounds library. The use of machine learning and artificial intelligence in image analysis is amplifying this trend. Another factor is the recognition that diverse cell phenotypes can be associated with changes in biological pathways relevant to disease processes. There are numerous challenges in HCS campaigns. These include limited ability to support replicates, low availability of precious and unique cells or reagents, high number of experimental batches, lengthy preparation of cells for imaging, image acquisition time (45-60 min per plate) and image processing time, deterioration of image quality with time post cell fixation and variability within wells and batches. To take advantage of the data in HCS, cell population based rather than well-based analyses are required. Historically, statistical analysis and hypothesis testing played only a limited role in non-high content high throughput campaigns. Thus, only a limited number of standard statistical criteria for hit selection in HCS have been developed so far. In addition to complex biological content in HCS campaigns, additional variability is impacted by cell and reagent handling and by instruments which may malfunction or perform unevenly. Together these can cause a significant number of wells or plates to fail. Here we describe an automated approach for hit analysis and detection in HCS. Our approach automates HCS hit detection using a methodology that is based on a documented statistical framework. We introduce the Virtual Plate concept in which selected wells from different plates are collated into a new, virtual plate. This allows the rescue and analysis of compound wells which have failed due to technical issues as well as to collect hit wells into one plate, allowing the user easier access to the hit data.
Collapse
Affiliation(s)
| | - Iris Alroy
- Anima Biotech Ltd., 2 Shoham St., Ramat Gan 5251003, Israel
| |
Collapse
|
3
|
Cole RN, Fang Q, Wang Z. Androgen receptor nucleocytoplasmic trafficking - A one-way journey. Mol Cell Endocrinol 2023; 576:112009. [PMID: 37414131 PMCID: PMC10528972 DOI: 10.1016/j.mce.2023.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The androgen receptor (AR) is a key regulator of the growth and proliferation of prostate cancer. The majority of lethal castration-resistant prostate cancer (CRPC) growth is still dependent on AR activity. The AR need to be in the nucleus to exert its biological action as a transcription factor. As such, defining the mechanisms that regulate the subcellular localization of AR are important. Previously it was believed that AR was imported into the nucleus in a ligand-dependent manner and subsequently exported out of the nucleus upon ligand withdrawal. Recent evidence has challenged this decades-old paradigm and showed that the AR is degraded, not exported, in the nucleus. This review discusses the current understanding of how AR nucleocytoplasmic localization is regulated by import and through nuclear degradation.
Collapse
Affiliation(s)
- Ryan N Cole
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Qinghua Fang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Riley CM, Elwood JML, Henry MC, Hunter I, Daniel Lopez-Fernandez J, McEwan IJ, Jamieson C. Current and emerging approaches to noncompetitive AR inhibition. Med Res Rev 2023; 43:1701-1747. [PMID: 37062876 DOI: 10.1002/med.21961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023]
Abstract
The androgen receptor (AR) has been shown to be a key determinant in the pathogenesis of castration-resistant prostate cancer (CRPC). The current standard of care therapies targets the ligand-binding domain of the receptor and can afford improvements to life expectancy often only in the order of months before resistance occurs. Emerging preclinical and clinical compounds that inhibit receptor activity via differentiated mechanisms of action which are orthogonal to current antiandrogens show promise for overcoming treatment resistance. In this review, we present an authoritative summary of molecules that noncompetitively target the AR. Emerging small molecule strategies for targeting alternative domains of the AR represent a promising area of research that shows significant potential for future therapies. The overall quality of lead candidates in the area of noncompetitive AR inhibition is discussed, and it identifies the key chemotypes and associated properties which are likely to be, or are currently, positioned to be first in human applications.
Collapse
Affiliation(s)
- Christopher M Riley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Jessica M L Elwood
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Martyn C Henry
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Irene Hunter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Iain J McEwan
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| |
Collapse
|
5
|
Dahlin JL, Hua BK, Zucconi BE, Nelson SD, Singh S, Carpenter AE, Shrimp JH, Lima-Fernandes E, Wawer MJ, Chung LPW, Agrawal A, O'Reilly M, Barsyte-Lovejoy D, Szewczyk M, Li F, Lak P, Cuellar M, Cole PA, Meier JL, Thomas T, Baell JB, Brown PJ, Walters MA, Clemons PA, Schreiber SL, Wagner BK. Reference compounds for characterizing cellular injury in high-content cellular morphology assays. Nat Commun 2023; 14:1364. [PMID: 36914634 PMCID: PMC10011410 DOI: 10.1038/s41467-023-36829-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
Robust, generalizable approaches to identify compounds efficiently with undesirable mechanisms of action in complex cellular assays remain elusive. Such a process would be useful for hit triage during high-throughput screening and, ultimately, predictive toxicology during drug development. Here we generate cell painting and cellular health profiles for 218 prototypical cytotoxic and nuisance compounds in U-2 OS cells in a concentration-response format. A diversity of compounds that cause cellular damage produces bioactive cell painting morphologies, including cytoskeletal poisons, genotoxins, nonspecific electrophiles, and redox-active compounds. Further, we show that lower quality lysine acetyltransferase inhibitors and nonspecific electrophiles can be distinguished from more selective counterparts. We propose that the purposeful inclusion of cytotoxic and nuisance reference compounds such as those profiled in this resource will help with assay optimization and compound prioritization in complex cellular assays like cell painting.
Collapse
Grants
- R35 GM127045 NIGMS NIH HHS
- U01 CA272612 NCI NIH HHS
- T32 HL007627 NHLBI NIH HHS
- R37 GM062437 NIGMS NIH HHS
- S10 OD026839 NIH HHS
- R35 GM122481 NIGMS NIH HHS
- U01 DK123717 NIDDK NIH HHS
- Wellcome Trust
- R35 GM122547 NIGMS NIH HHS
- U01 CA217848 NCI NIH HHS
- K99 GM124357 NIGMS NIH HHS
- R35 GM149229 NIGMS NIH HHS
- This study was supported by the Ono Pharma Breakthrough Science Initiative Award (to BKW). Authors acknowledge the following financial support: JLD (NIH NHLBI, T32-HL007627); BKH (National Science Foundation, DGE1144152 and DGE1745303); BEZ (NIH NIGMS, K99-GM124357); SDN (Harvard University’s Graduate Prize Fellowship, Eli Lilly Graduate Fellowship in Chemistry); PA Cole (NIH NIGMS, R37-GM62437); SLS (NIGMS, R35-GM127045); BKW (Ono Pharma Foundation; NIH NIDDK, U01-DK123717); SS (NIH NIGMS, R35-GM122547). The authors gratefully acknowledge the use of the Opera Phenix High-Content/High-Throughput imaging system at the Broad Institute, funded by the NIH S10 grant OD026839. This research was supported in part by the Intramural/Extramural research program of the NCATS, NIH.
Collapse
Affiliation(s)
- Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA.
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Beth E Zucconi
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Jonathan H Shrimp
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | | | - Mathias J Wawer
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Lawrence P W Chung
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Ayushi Agrawal
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | | | | | - Magdalena Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Parnian Lak
- Department of Pharmaceutical Chemistry and Quantitative Biology Institute, University of California San Francisco, San Francisco, CA, USA
| | - Matthew Cuellar
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Philip A Cole
- Division of Genetics, Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Tim Thomas
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jonathan B Baell
- Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN, USA
| | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
6
|
Huang J, Lin B, Li B. Anti-Androgen Receptor Therapies in Prostate Cancer: A Brief Update and Perspective. Front Oncol 2022; 12:865350. [PMID: 35372068 PMCID: PMC8965587 DOI: 10.3389/fonc.2022.865350] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer is a major health issue in western countries and is the second leading cause of cancer death in American men. Prostate cancer depends on the androgen receptor (AR), a transcriptional factor critical for prostate cancer growth and progression. Castration by surgery or medical treatment reduces androgen levels, resulting in prostatic atrophy and prostate cancer regression. Thus, metastatic prostate cancers are initially managed with androgen deprivation therapy. Unfortunately, prostate cancers rapidly relapse after castration therapy and progress to a disease stage called castration-resistant prostate cancer (CRPC). Currently, clinical treatment for CRPCs is focused on suppressing AR activity with antagonists like Enzalutamide or by reducing androgen production with Abiraterone. In clinical practice, these treatments fail to yield a curative benefit in CRPC patients in part due to AR gene mutations or splicing variations, resulting in AR reactivation. It is conceivable that eliminating the AR protein in prostate cancer cells is a promising solution to provide a potential curative outcome. Multiple strategies have emerged, and several potent agents that reduce AR protein levels were reported to eliminate xenograft tumor growth in preclinical models via distinct mechanisms, including proteasome-mediated degradation, heat-shock protein inhibition, AR splicing suppression, blockage of AR nuclear localization, AR N-terminal suppression. A few small chemical compounds are undergoing clinical trials combined with existing AR antagonists. AR protein elimination by enhanced protein or mRNA degradation is a realistic solution for avoiding AR reactivation during androgen deprivation therapy in prostate cancers.
Collapse
Affiliation(s)
- Jian Huang
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Biyun Lin
- Pathological Diagnosis and Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
7
|
Dahlin JL, Auld DS, Rothenaigner I, Haney S, Sexton JZ, Nissink JWM, Walsh J, Lee JA, Strelow JM, Willard FS, Ferrins L, Baell JB, Walters MA, Hua BK, Hadian K, Wagner BK. Nuisance compounds in cellular assays. Cell Chem Biol 2021; 28:356-370. [PMID: 33592188 PMCID: PMC7979533 DOI: 10.1016/j.chembiol.2021.01.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/02/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022]
Abstract
Compounds that exhibit assay interference or undesirable mechanisms of bioactivity ("nuisance compounds") are routinely encountered in cellular assays, including phenotypic and high-content screening assays. Much is known regarding compound-dependent assay interferences in cell-free assays. However, despite the essential role of cellular assays in chemical biology and drug discovery, there is considerably less known about nuisance compounds in more complex cell-based assays. In our view, a major obstacle to realizing the full potential of chemical biology will not just be difficult-to-drug targets or even the sheer number of targets, but rather nuisance compounds, due to their ability to waste significant resources and erode scientific trust. In this review, we summarize our collective academic, government, and industry experiences regarding cellular nuisance compounds. We describe assay design strategies to mitigate the impact of nuisance compounds and suggest best practices to efficiently address these compounds in complex biological settings.
Collapse
Affiliation(s)
- Jayme L Dahlin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA.
| | - Douglas S Auld
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Ina Rothenaigner
- Assay Development and Screening Platform, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Steve Haney
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, Gastroenterology, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Jarrod Walsh
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Alderley Park SK10 4TG, UK
| | | | | | | | - Lori Ferrins
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, MN 55414, USA
| | - Bruce K Hua
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02140, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02140, USA
| | - Kamyar Hadian
- Assay Development and Screening Platform, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02140, USA
| |
Collapse
|
8
|
Lv S, Song Q, Chen G, Cheng E, Chen W, Cole R, Wu Z, Pascal LE, Wang K, Wipf P, Nelson JB, Wei Q, Huang W, Wang Z. Regulation and targeting of androgen receptor nuclear localization in castration-resistant prostate cancer. J Clin Invest 2021; 131:141335. [PMID: 33332287 DOI: 10.1172/jci141335] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear localization of the androgen receptor (AR) is necessary for its activation as a transcription factor. Defining the mechanisms regulating AR nuclear localization in androgen-sensitive cells and how these mechanisms are dysregulated in castration-resistant prostate cancer (CRPC) cells is fundamentally important and clinically relevant. According to the classical model of AR intracellular trafficking, androgens induce AR nuclear import and androgen withdrawal causes AR nuclear export. The present study has led to an updated model that AR could be imported in the absence of androgens, ubiquitinated, and degraded in the nucleus. Androgen withdrawal caused nuclear AR degradation, but not export. In comparison with their parental androgen-sensitive LNCaP prostate cancer cells, castration-resistant C4-2 cells exhibited reduced nuclear AR polyubiquitination and increased nuclear AR level. We previously identified 3-(4-chlorophenyl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (CPPI) in a high-throughput screen for its inhibition of androgen-independent AR nuclear localization in CRPC cells. The current study shows that CPPI is a competitive AR antagonist capable of enhancing AR interaction with its E3 ligase MDM2 and degradation of AR in the nuclei of CRPC cells. Also, CPPI blocked androgen-independent AR nuclear import. Overall, these findings suggest the feasibility of targeting androgen-independent AR nuclear import and stabilization, two necessary steps leading to AR nuclear localization and activation in CRPC cells, with small molecule inhibitors.
Collapse
Affiliation(s)
- Shidong Lv
- Department of Urology, Nanfang Hospital, Southern Medical University, and.,National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Qiong Song
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Key Laboratory of Longevity and Ageing Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Guang Chen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Urology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Erdong Cheng
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Wei Chen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan Cole
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zeyu Wu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ke Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Peter Wipf
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel B Nelson
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Qiang Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, and
| | - Wenhua Huang
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Masoodi KZ, Wani W, Dar ZA, Mansoor S, Anam-ul-Haq S, Farooq I, Hussain K, Wani SA, Nehvi FA, Ahmed N. Sea buckthorn (Hippophae rhamnoides L.) inhibits cellular proliferation, wound healing and decreases expression of prostate specific antigen in prostate cancer cells in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
Itsumi M, Shiota M, Sekino Y, Ushijima M, Kashiwagi E, Takeuchi A, Inokuchi J, Kajioka S, Uchiumi T, Eto M. High-throughput screen identifies 5-HT receptor as a modulator of AR and a therapeutic target for prostate cancer. Prostate 2020; 80:885-894. [PMID: 32483877 DOI: 10.1002/pros.24022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Eradication of persistent androgen receptor (AR) activity in castration-resistant prostate cancer may be a promising strategy to overcome castration resistance. We aimed to identify novel compounds that inhibit AR activity and could be potential therapeutic agents for prostate cancer. METHODS A high-throughput screening system involving cell lines stably expressing AR protein and AR-responsive luciferase was employed for the 1260 compound library. Molecular and antitumor effects on candidate pathways that interacted with AR signaling were examined in prostate cancer cells expressing AR. RESULTS The high-throughput screening identified various potential compounds that interfered with AR signaling through known and novel pathways. Among them, a 5-hydroxytryptamine 5A (5-HT5A) receptor antagonist suppressed AR activity through protein kinase A signaling, which was confirmed by 5-HT5A receptor knockdown. Consistently, 5-HT5A receptor inhibitors showed cytotoxic effects toward prostate cancer cells. CONCLUSIONS Taken together, this study identifies 5-HT5A receptor as a promising therapeutic target for prostate cancer via its interaction with AR signaling.
Collapse
Affiliation(s)
- Momoe Itsumi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miho Ushijima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ario Takeuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunichi Kajioka
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Ishigami-Yuasa M, Kagechika H. Chemical Screening of Nuclear Receptor Modulators. Int J Mol Sci 2020; 21:E5512. [PMID: 32752136 PMCID: PMC7432305 DOI: 10.3390/ijms21155512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear receptors are ligand-inducible transcriptional factors that control multiple biological phenomena, including proliferation, differentiation, reproduction, metabolism, and the maintenance of homeostasis. Members of the nuclear receptor superfamily have marked structural and functional similarities, and their domain functionalities and regulatory mechanisms have been well studied. Various modulators of nuclear receptors, including agonists and antagonists, have been developed as tools for elucidating nuclear receptor functions and also as drug candidates or lead compounds. Many assay systems are currently available to evaluate the modulation of nuclear receptor functions, and are useful as screening tools in the discovery and development of new modulators. In this review, we cover the chemical screening methods for nuclear receptor modulators, focusing on assay methods and chemical libraries for screening. We include some recent examples of the discovery of nuclear receptor modulators.
Collapse
Affiliation(s)
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan;
| |
Collapse
|
12
|
Dellal H, Boulahtouf A, Alaterre E, Cuenant A, Grimaldi M, Bourguet W, Gongora C, Balaguer P, Pourquier P. High Content Screening Using New U2OS Reporter Cell Models Identifies Harmol Hydrochloride as a Selective and Competitive Antagonist of the Androgen Receptor. Cells 2020; 9:cells9061469. [PMID: 32560058 PMCID: PMC7349874 DOI: 10.3390/cells9061469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men. Its growth mainly relies on the activity of the androgen receptor (AR), justifying the use of androgen deprivation therapy as a gold standard treatment for the metastatic disease. Inhibition of the androgen axis using second generation antagonists has improved patients’ survival, but is systematically confronted to resistance mechanisms, leading to a median survival that does not exceed 5 years. Counteracting this resistance has been the object of a large number of investigations, with a particular emphasis towards the identification of new AR inhibitors, whether they antagonize the receptor by a competitive or a non-competitive binding. To this end, many high content screens have been performed, to identify new non-steroidal AR antagonists, using a variety of approaches, but reported somewhat controversial results, depending on the approach and on the cell model that was used for screening. In our study, we used the U2OS osteosarcoma cells stably transfected with AR or ARv7 and a luciferase reporter as a previously validated model to screen the Prestwick Phytochemical library. The results of our screen identified ellipticine, harmol, and harmine hydrochloride as confirmed hits. Surprisingly, we could demonstrate that harmol hydrochloride, previously identified as a non-competitive inhibitor of AR or a weak inhibitor of androgen signaling, was actually a competitive antagonist of AR, which inhibits the growth of VCaP prostate cancer line, at concentrations for which it did not affect the growth of the AR negative DU145 and PC3 cells. Interestingly, we also report for the first time that harmol hydrochloride was selective for AR, as it could not alter the activity of other nuclear receptors, such as the glucocorticoid receptor (GR), the progesterone receptor (PR), or the mineralocorticoid receptor (MR). Additionally, we demonstrate that, conversely to enzalutamide, harmol hydrochloride did not show any agonistic activity towards the pregnane X receptor (PXR), a master regulator of drug metabolism. Together, our results shed light on the importance of the cellular context for the screening of new AR antagonists. They further indicate that some of the potential hits that were previously identified may have been overlooked.
Collapse
Affiliation(s)
- Hadjer Dellal
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
| | - Abdelhay Boulahtouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
- Institut régional du Cancer de Montpellier, F-34298 Montpellier, France
| | - Elina Alaterre
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
| | - Alice Cuenant
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
| | - Marina Grimaldi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
| | - William Bourguet
- Université de Montpellier, F-34298 Montpellier, France;
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, F-34298 Montpellier, France
| | - Céline Gongora
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
- Correspondence: (P.B.); (P.P.); Tel.: +33-4-67-61-24-09 (P.B.); +33-4-66-68-32-31 (P.P.); Fax: +33-4-67-61-23-37 (P.B.); +33-4-66-68-37-02 (P.P.)
| | - Philippe Pourquier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, F-34298 Montpellier, France; (H.D.); (A.B.); (E.A.); (A.C.); (M.G.); (C.G.)
- Université de Montpellier, F-34298 Montpellier, France;
- Correspondence: (P.B.); (P.P.); Tel.: +33-4-67-61-24-09 (P.B.); +33-4-66-68-32-31 (P.P.); Fax: +33-4-67-61-23-37 (P.B.); +33-4-66-68-37-02 (P.P.)
| |
Collapse
|
13
|
Tai S, Maskrey TS, Nyalapatla PR, Wipf P. Co(II)-salen catalyzed stereoselective cyclopropanation of fluorinated styrenes. Chirality 2019; 31:1014-1027. [PMID: 31680333 DOI: 10.1002/chir.23144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 11/11/2022]
Abstract
Three cis-selective Co(II)-salen complexes have been developed for the asymmetric cyclopropanation of para-fluorinated styrenes with ethyl diazoacetate. Increasing the steric reach of the C2 -symmetric ligand side chains improved the enantiomeric ratio of the reaction from 28:1 to 66:1. The methodology was exemplified by the gram-scale synthesis of a lead compound for the treatment of castration-resistant prostate cancer (CRPC), as well as a structurally related analog.
Collapse
Affiliation(s)
- Serene Tai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Taber S Maskrey
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Yang Z, Wang D, Johnson JK, Pascal LE, Takubo K, Avula R, Chakka AB, Zhou J, Chen W, Zhong M, Song Q, Ding H, Wu Z, Chandran UR, Maskrey TS, Nelson JB, Wipf P, Wang Z. A Novel Small Molecule Targets Androgen Receptor and Its Splice Variants in Castration-Resistant Prostate Cancer. Mol Cancer Ther 2019; 19:75-88. [PMID: 31554654 DOI: 10.1158/1535-7163.mct-19-0489] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/08/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
Reactivation of androgen receptor (AR) appears to be the major mechanism driving the resistance of castration-resistant prostate cancer (CRPC) to second-generation antiandrogens and involves AR overexpression, AR mutation, and/or expression of AR splice variants lacking ligand-binding domain. There is a need for novel small molecules targeting AR, particularly those also targeting AR splice variants such as ARv7. A high-throughput/high-content screen was previously reported that led to the discovery of a novel lead compound, 2-(((3,5-dimethylisoxazol-4-yl)methyl)thio)-1-(4-(2,3-dimethylphenyl)piperazin-1-yl)ethan-1-one (IMTPPE), capable of inhibiting nuclear AR level and activity in CRPC cells, including those resistant to enzalutamide. A novel analogue of IMTPPE, JJ-450, has been investigated with evidence for its direct and specific inhibition of AR transcriptional activity via a pulldown assay and RNA-sequencing analysis, PSA-based luciferase, qPCR, and chromatin immunoprecipitation assays, and xenograft tumor model 22Rv1. JJ-450 blocks AR recruitment to androgen-responsive elements and suppresses AR target gene expression. JJ-450 also inhibits ARv7 transcriptional activity and its target gene expression. Importantly, JJ-450 suppresses the growth of CRPC tumor xenografts, including ARv7-expressing 22Rv1. Collectively, these findings suggest JJ-450 represents a new class of AR antagonists with therapeutic potential for CRPC, including those resistant to enzalutamide.
Collapse
Affiliation(s)
- Zhenyu Yang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China.,The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dan Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - James K Johnson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Keita Takubo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Raghunandan Avula
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anish Bhaswanth Chakka
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jianhua Zhou
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wei Chen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mingming Zhong
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Qiong Song
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Key Laboratory of Longevity and Aging-Related Diseases, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, P.R. China
| | - Hui Ding
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zeyu Wu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Uma R Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Taber S Maskrey
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joel B Nelson
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Fancher AT, Hua Y, Strock CJ, Johnston PA. Assays to Interrogate the Ability of Compounds to Inhibit the AF-2 or AF-1 Transactivation Domains of the Androgen Receptor. Assay Drug Dev Technol 2019; 17:364-386. [PMID: 31502857 DOI: 10.1089/adt.2019.940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the leading cause of cancer and second leading cause of cancer-related death in men in the United States. Twenty percent of patients receiving the standard of care androgen deprivation therapy (ADT) eventually progress to metastatic and incurable castration-resistant prostate cancer (CRPC). Current FDA-approved drugs for CRPC target androgen receptor (AR) binding or androgen production, but only provide a 2- to 5-month survival benefit due to the emergence of resistance. Overexpression of AR coactivators and the emergence of AR splice variants, both promote continued transcriptional activation under androgen-depleted conditions and represent drug resistance mechanisms that contribute to CRPC progression. The AR contains two transactivation domains, activation function 2 (AF-2) and activation function 1 (AF-1), which serve as binding surfaces for coactivators involved in the transcriptional activation of AR target genes. Full-length AR contains both AF-2 and AF-1 surfaces, whereas AR splice variants only have an AF-1 surface. We have recently prosecuted a high-content screening campaign to identify hit compounds that can inhibit or disrupt the protein-protein interactions (PPIs) between AR and transcriptional intermediary factor 2 (TIF2), one of the coactivators implicated in CRPC disease progression. Since an ideal inhibitor/disruptor of AR-coactivator PPIs would target both the AF-2 and AF-1 surfaces, we describe here the development and validation of five AF-2- and three AF-1-focused assays to interrogate and prioritize hits that disrupt both transactivation surfaces. The assays were validated using a test set of seven known AR modulator compounds, including three AR antagonists and one androgen synthesis inhibitor that are FDA-approved ADTs, two investigational molecules that target the N-terminal domain of AR, and an inhibitor of the Hsp90 (heat shock protein) molecular chaperone.
Collapse
Affiliation(s)
- Ashley T Fancher
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yun Hua
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania.,Head and Neck Cancer, and Skin Cancer Specialized Programs of Research Excellence, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Li D, Zhou W, Pang J, Tang Q, Zhong B, Shen C, Xiao L, Hou T. A magic drug target: Androgen receptor. Med Res Rev 2018; 39:1485-1514. [PMID: 30569509 DOI: 10.1002/med.21558] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Androgen receptor (AR) is closely associated with a group of hormone-related diseases including the cancers of prostate, breast, ovary, pancreas, etc and anabolic deficiencies such as muscle atrophy and osteoporosis. Depending on the specific type and stage of the diseases, AR ligands including not only antagonists but also agonists and modulators are considered as potential therapeutics, which makes AR an extremely interesting drug target. Here, we at first review the current understandings on the structural characteristics of AR, and then address why and how AR is investigated as a drug target for the relevant diseases and summarize the representative antagonists and agonists targeting five prospective small molecule binding sites at AR, including ligand-binding pocket, activation function-2 site, binding function-3 site, DNA-binding domain, and N-terminal domain, providing recent insights from a target and drug development view. Further comprehensive studies on AR and AR ligands would bring fruitful information and push the therapy of AR relevant diseases forward.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenfang Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinping Pang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qin Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bingling Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Xiao
- School of Life Science, Huzhou University, Huzhou, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Close DA, Wang AX, Kochanek SJ, Shun T, Eiseman JL, Johnston PA. Implementation of the NCI-60 Human Tumor Cell Line Panel to Screen 2260 Cancer Drug Combinations to Generate >3 Million Data Points Used to Populate a Large Matrix of Anti-Neoplastic Agent Combinations (ALMANAC) Database. SLAS DISCOVERY 2018; 24:242-263. [PMID: 30500310 DOI: 10.1177/2472555218812429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal and clinical studies demonstrate that cancer drug combinations (DCs) are more effective than single agents. However, it is difficult to predict which DCs will be more efficacious than individual drugs. Systematic DC high-throughput screening (HTS) of 100 approved drugs in the National Cancer Institute's panel of 60 cancer cell lines (NCI-60) produced data to help select DCs for further consideration. We miniaturized growth inhibition assays into 384-well format, increased the fetal bovine serum amount to 10%, lengthened compound exposure to 72 h, and used a homogeneous detection reagent. We determined the growth inhibition 50% values of individual drugs across 60 cell lines, selected drug concentrations for 4 × 4 DC matrices (DCMs), created DCM master and replica daughter plate sets, implemented the HTS, quality control reviewed the data, and analyzed the results. A total of 2620 DCMs were screened in 60 cancer cell lines to generate 3.04 million data points for the NCI ALMANAC (A Large Matrix of Anti-Neoplastic Agent Combinations) database. We confirmed in vitro a synergistic drug interaction flagged in the DC HTS between the vinca-alkaloid microtubule assembly inhibitor vinorelbine (Navelbine) tartrate and the epidermal growth factor-receptor tyrosine kinase inhibitor gefitinib (Iressa) in the SK-MEL-5 melanoma cell line. Seventy-five percent of the DCs examined in the screen are not currently in the clinical trials database. Selected synergistic drug interactions flagged in the DC HTS described herein were subsequently confirmed by the NCI in vitro, evaluated mechanistically, and were shown to have greater than single-agent efficacy in mouse xenograft human cancer models. Enrollment is open for two clinical trials for DCs that were identified in the DC HTS. The NCI ALMANAC database therefore constitutes a valuable resource for selecting promising DCs for confirmation, mechanistic studies, and clinical translation.
Collapse
Affiliation(s)
- David A Close
- 1 Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Allen Xinwei Wang
- 1 Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Stanton J Kochanek
- 1 Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Tongying Shun
- 2 University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Julie L Eiseman
- 3 Cancer Therapeutics Program, The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA, USA.,4 Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,5 University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| | - Paul A Johnston
- 1 Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.,5 University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Fancher AT, Hua Y, Camarco DP, Close DA, Strock CJ, Johnston PA. High-Content Screening Campaign to Identify Compounds That Inhibit or Disrupt Androgen Receptor-Transcriptional Intermediary Factor 2 Protein-Protein Interactions for the Treatment of Prostate Cancer. Assay Drug Dev Technol 2018; 16:297-319. [PMID: 30109944 DOI: 10.1089/adt.2018.858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Twenty percent of prostate cancer (PCa) patients develop a noncurable drug-resistant form of the disease termed castration-resistant prostate cancer (CRPC). Overexpression of Androgen Receptor (AR) coactivators such as transcriptional intermediary factor 2 (TIF2) is associated with poor CRPC patient outcomes. We describe the implementation of the AR-TIF2 protein-protein interaction biosensor (PPIB) assay in a high-content screening (HCS) campaign of 143,535 compounds. The assay performed robustly and reproducibly and enabled us to identify compounds that inhibited dihydrotestosterone (DHT)-induced AR-TIF2 protein-protein interaction (PPI) formation or disrupted preexisting AR-TIF2 PPIs. We used multiparameter HCS data z-scores to identify and deprioritize cytotoxic or autofluorescent outliers and confirmed the resulting qualified actives in triplicate. None of the confirmed AR-TIF2 PPIB inhibitors/disruptors exhibited activity in a p53-hDM2 PPIB counter screen, indicating that they were unlikely to be either nonselective PPI inhibitors or to interfere with the biosensor assay format. However, eight confirmed AR-TIF2 PPIB actives also inhibited the glucocorticoid receptor (GR) nuclear translocation counter screen by >50%. These compounds were deprioritized because they either lacked AR specificity/selectivity, or they inhibited a shared component of the AR and GR signaling pathways. Twenty-nine confirmed AR-TIF2 PPIB actives also inhibited the AR nuclear localization counter screen, suggesting that they might indirectly inhibit the AR-TIF2 PPIB assay rather than directly blocking/disrupting PPIs. A total of 62.2% of the confirmed actives inhibited the DHT-induced AR-TIF2 PPI formation in a concentration-dependent manner with IC50s < 40 μM, and 59.4% also disrupted preexisting AR-TIF2 PPI complexes. Overall, the hit rate for the AR-TIF2 PPIB HCS campaign was 0.12%, and most hits inhibited AR-TIF2 PPI formation and disrupted preexisting AR-TIF2 complexes with similar AR-red fluorescent protein distribution phenotypes. Further secondary and tertiary hit characterization assays are underway to select AR-TIF2 PPI inhibitor/disruptor hits suitable for medicinal chemistry lead optimization and development into novel PCa/CRPC therapeutics.
Collapse
Affiliation(s)
- Ashley T Fancher
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Yun Hua
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Daniel P Camarco
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - David A Close
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | - Paul A Johnston
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 University of Pittsburgh Medical Center , Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Ediriweera MK, Tennekoon KH, Samarakoon SR. In vitro assays and techniques utilized in anticancer drug discovery. J Appl Toxicol 2018; 39:38-71. [DOI: 10.1002/jat.3658] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Meran Keshawa Ediriweera
- Institute of Biochemistry, Molecular Biology and Biotechnology; University of Colombo; Colombo 03 Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology; University of Colombo; Colombo 03 Sri Lanka
| | | |
Collapse
|
20
|
Masoodi KZ, Eisermann K, Yang Z, Dar JA, Pascal LE, Nguyen M, O’Malley K, Parrinello E, Feturi FG, Kenefake AN, Nelson JB, Johnston PA, Wipf P, Wang Z. Inhibition of Androgen Receptor Function and Level in Castration-Resistant Prostate Cancer Cells by 2-[(isoxazol-4-ylmethyl)thio]-1-(4-phenylpiperazin-1-yl)ethanone. Endocrinology 2017; 158:3152-3161. [PMID: 28977599 PMCID: PMC5659684 DOI: 10.1210/en.2017-00408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/17/2017] [Indexed: 02/08/2023]
Abstract
The androgen receptor (AR) plays a critical role in the development of castration-resistant prostate cancer (CRPC) as well as in the resistance to the second-generation AR antagonist enzalutamide and the selective inhibitor of cytochrome P450 17A1 (CYP17A1) abiraterone. Novel agents targeting AR may inhibit the growth of prostate cancer cells resistant to enzalutamide and/or abiraterone. Through a high-throughput/high-content screening of a 220,000-member small molecule library, we have previously identified 2-[(isoxazol-4-ylmethyl)thio]-1-(4-phenylpiperazin-1-yl)ethanone (IMTPPE) (SID 3712502) as a novel small molecule capable of inhibiting AR transcriptional activity and protein level in C4-2 prostate cancer cells. In this study, we show that IMTPPE inhibits AR-target gene expression using real-time polymerase chain reaction, Western blot, and luciferase assays. IMTPPE inhibited proliferation of AR-positive, but not AR-negative, prostate cancer cells in culture. IMTPPE inhibited the transcriptional activity of a mutant AR lacking the ligand-binding domain (LBD), indicating that IMTPPE inhibition of AR is independent of the LBD. Furthermore, animal studies showed that IMTPPE inhibited the growth of 22Rv1 xenograft tumor, a model for enzalutamide-resistant prostate cancer. These findings suggest that IMTPPE is a potential lead compound for developing clinical candidates for the treatment of CRPC, including those resistant to enzalutamide.
Collapse
Affiliation(s)
- Khalid Z. Masoodi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
- Transcriptomics Laboratory, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, Srinagar, Jammu and Kashmir 190025, India
| | - Kurtis Eisermann
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - Zhenyu Yang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, People’s Republic of China
| | - Javid A. Dar
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
- Central Laboratory College of Science, King Saud University, Riyadh KSA-11451, Saudi Arabia
| | - Laura E. Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
| | - Minh Nguyen
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
| | - Katherine O’Malley
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
| | - Erica Parrinello
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
| | - Firuz G. Feturi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15232
| | - Alex N. Kenefake
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
| | - Joel B. Nelson
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
| | - Paul A. Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15232
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
| | - Peter Wipf
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15232
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15232
| |
Collapse
|
21
|
Masoodi KZ, Xu Y, Dar JA, Eisermann K, Pascal LE, Parrinello E, Ai J, Johnston PA, Nelson JB, Wipf P, Wang Z. Inhibition of Androgen Receptor Nuclear Localization and Castration-Resistant Prostate Tumor Growth by Pyrroloimidazole-based Small Molecules. Mol Cancer Ther 2017; 16:2120-2129. [PMID: 28655783 DOI: 10.1158/1535-7163.mct-17-0176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/19/2017] [Accepted: 06/19/2017] [Indexed: 01/01/2023]
Abstract
The androgen receptor (AR) is a ligand-dependent transcription factor that controls the expression of androgen-responsive genes. A key step in androgen action, which is amplified in castration-resistant prostate cancer (CRPC), is AR nuclear translocation. Small molecules capable of inhibiting AR nuclear localization could be developed as novel therapeutics for CRPC. We developed a high-throughput screen and identified two structurally-related pyrroloimidazoles that could block AR nuclear localization in CRPC cells. We show that these two small molecules, 3-(4-ethoxyphenyl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (EPPI) and 3-(4-chlorophenyl)-6,7-dihydro-5H-pyrrolo[1,2-a]imidazole (CPPI) can inhibit the nuclear localization and transcriptional activity of AR and reduce the proliferation of AR-positive but not AR-negative prostate cancer cell lines. EPPI and CPPI did not inhibit nuclear localization of the glucocorticoid receptor or the estrogen receptor, suggesting they selectively target AR. In LNCaP tumor xenografts, CPPI inhibited the proliferation of relapsed LNCaP tumors. These findings suggest that EPPI and CPPI could serve as lead structures for the development of therapeutic agents for CRPC. Mol Cancer Ther; 16(10); 2120-9. ©2017 AACR.
Collapse
Affiliation(s)
- Khalid Z Masoodi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Transcriptomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Yadong Xu
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Urology, The Second Xiangya Hospital of Central South University, Hunan 410011, China.,The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Javid A Dar
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Central Laboratory College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kurtis Eisermann
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Laura E Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Erica Parrinello
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Junkui Ai
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Paul A Johnston
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joel B Nelson
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Peter Wipf
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. .,University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Szafran AT, Stephan C, Bolt M, Mancini MG, Marcelli M, Mancini MA. High-Content Screening Identifies Src Family Kinases as Potential Regulators of AR-V7 Expression and Androgen-Independent Cell Growth. Prostate 2017; 77:82-93. [PMID: 27699828 PMCID: PMC5956900 DOI: 10.1002/pros.23251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/28/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND AR-V7 is an androgen receptor (AR) splice variant that lacks the ligand-binding domain and is isolated from prostate cancer cell lines. Increased expression of AR-V7 is associated with the transition from hormone-sensitive prostate cancer to more advanced castration-resistant prostate cancer (CRPC). Due to the loss of the ligand-binding domain, AR-V7 is not responsive to traditional AR-targeted therapies, and the mechanisms that regulate AR-V7 are still incompletely understood. Therefore, we aimed to explore existing classes of small molecules that may regulate AR-V7 expression and intracellular localization and their potential therapeutic role in CRPC. METHODS We used AR high-content analysis (AR-HCA) to characterize the effects of a focused library of well-characterized clinical compounds on AR-V7 expression at the single-cell level in PC3 prostate cancer cells stably expressing green fluorescent protein (GFP)-AR-V7 (GFP-AR-V7:PC3). In parallel, an orthogonal AR-HCA screen of a small interfering (si)RNA library targeting 635 protein kinases was performed in GFP-AR-V7:PC3. The effect of the Src-Abl inhibitor PD 180970 was further characterized using cell-proliferation assays, quantitative PCR, and western blot analysis in multiple hormone-sensitive and CRPC cell lines. RESULTS Compounds that tended to target Akt, Abl, and Src family kinases (SFKs) decreased overall AR-V7 expression, nuclear translocation, absolute nuclear level, and/or altered nuclear distribution. We identified 20 protein kinases that, when knocked down, either decreased nuclear GFP-AR-V7 levels or altered AR-V7 nuclear distribution, a set that included the SFKs Src and Fyn. The Src-Abl dual kinase inhibitor PD180970 decreased expression of AR-V7 by greater than 46% and decreased ligand-independent transcription of AR target genes in the 22RV1 human prostate carcinoma cell line. Further, PD180970 inhibited androgen-independent cell proliferation in endogenous-AR-V7-expressing prostate cancer cell lines and also overcame bicalutamide resistance observed in the 22RV1 cell line. CONCLUSIONS SFKs, especially Src and Fyn, may be important upstream regulators of AR-V7 expression and represent promising targets in a subset of CRPCs expressing high levels of AR-V7. Prostate 77:82-93, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam T. Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Cliff Stephan
- Texas A&M University Health Science Center Institute for Bioscience and Technology, Houston, TX 77030
| | - Michael Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Marco Marcelli
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
- Department of Medicine, Baylor College of Medicine, Houston TX 77030 (USA)
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston TX 77030 (USA)
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 701304
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
- Diana Helis Henry Medical Research Foundation, New Orleans, LA 701304
| |
Collapse
|
23
|
Fancher AT, Hua Y, Camarco DP, Close DA, Strock CJ, Johnston PA. Reconfiguring the AR-TIF2 Protein-Protein Interaction HCS Assay in Prostate Cancer Cells and Characterizing the Hits from a LOPAC Screen. Assay Drug Dev Technol 2016; 14:453-477. [PMID: 27606620 DOI: 10.1089/adt.2016.741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The continued activation of androgen receptor (AR) transcription and elevated expression of AR and transcriptional intermediary factor 2 (TIF2) coactivator observed in prostate cancer (CaP) recurrence and the development of castration-resistant CaP (CRPC) support a screening strategy for small-molecule inhibitors of AR-TIF2 protein-protein interactions (PPIs) to find new drug candidates. Small molecules can elicit tissue selective effects, because the cells of distinct tissues express different levels and cohorts of coregulatory proteins. We reconfigured the AR-TIF2 PPI biosensor (PPIB) assay in the PC-3 CaP cell line to determine whether AR modulators and hits from an AR-TIF2 PPIB screen conducted in U-2 OS cells would behave differently in the CaP cell background. Although we did not observe any significant differences in the compound responses between the assay performed in osteosarcoma and CaP cells, the U-2 OS AR-TIF2 PPIB assay would be more amenable to screening, because both the virus and cell culture demands are lower. We implemented a testing paradigm of counter-screens and secondary hit characterization assays that allowed us to identify and deprioritize hits that inhibited/disrupted AR-TIF2 PPIs and AR transcriptional activation (AR-TA) through antagonism of AR ligand binding or by non-specifically blocking nuclear receptor trafficking. Since AR-TIF2 PPI inhibitor/disruptor molecules act distally to AR ligand binding, they have the potential to modulate AR-TA in a cell-specific manner that is distinct from existing anti-androgen drugs, and to overcome the development of resistance to AR antagonism. We anticipate that the application of this testing paradigm to characterize the hits from an AR-TIF2 PPI high-content screening campaign will enable us to prioritize the AR-TIF2 PPI inhibitor/disruptor leads that have potential to be developed into novel therapeutics for CaP and CRPC.
Collapse
Affiliation(s)
- Ashley T Fancher
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Yun Hua
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Daniel P Camarco
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - David A Close
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | - Paul A Johnston
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 University of Pittsburgh Cancer Institute , Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Johnson J, Skoda EM, Zhou J, Parrinello E, Wang D, O’Malley K, Eyer BR, Kazancioglu M, Eisermann K, Johnston PA, Nelson JB, Wang Z, Wipf P. Small Molecule Antagonists of the Nuclear Androgen Receptor for the Treatment of Castration-Resistant Prostate Cancer. ACS Med Chem Lett 2016; 7:785-90. [PMID: 27563404 PMCID: PMC4983742 DOI: 10.1021/acsmedchemlett.6b00186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/27/2016] [Indexed: 01/29/2023] Open
Abstract
After a high-throughput screening campaign identified thioether 1 as an antagonist of the nuclear androgen receptor, a zone model was developed for structure-activity relationship (SAR) purposes and analogues were synthesized and evaluated in a cell-based luciferase assay. A novel thioether isostere, cyclopropane (1S,2R)-27, showed the desired increased potency and structural properties (stereospecific SAR response, absence of a readily oxidized sulfur atom, low molecular weight, reduced number of flexible bonds and polar surface area, and drug-likeness score) in the prostate-specific antigen luciferase assay in C4-2-PSA-rl cells to qualify as a new lead structure for prostate cancer drug development.
Collapse
Affiliation(s)
- James
K. Johnson
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Erin M. Skoda
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jianhua Zhou
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Erica Parrinello
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Dan Wang
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Katherine O’Malley
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Benjamin R. Eyer
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mustafa Kazancioglu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Kurtis Eisermann
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Paul A. Johnston
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Joel B. Nelson
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Zhou Wang
- Department
of Urology, University of Pittsburgh School
of Medicine, Pittsburgh, Pennsylvania 15232, United States
| | - Peter Wipf
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmaceutical Sciences, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|