1
|
Zhao Y, Yuan C, Shi Y, Liu X, Luo L, Zhang L, Pešić M, Yao H, Li L. Drug screening approaches for small-molecule compounds in cancer-targeted therapy. J Drug Target 2025; 33:368-383. [PMID: 39575843 DOI: 10.1080/1061186x.2024.2427185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 02/08/2025]
Abstract
Small-molecule compounds exhibit distinct pharmacological properties and clinical effectiveness. Over the past decade, advances in covalent drug discovery have led to successful small-molecule drugs, such as EGFR, BTK, and KRAS (G12C) inhibitors, for cancer therapy. Researchers are paying more attention to refining drug screening methods aiming for high throughput, fast speed, high specificity, and accuracy. Therefore, the discovery and development of small-molecule drugs has been facilitated by significantly reducing screening time and financial resources, and increasing promising lead compounds compared with traditional methods. This review aims to introduce classical and emerging methods for screening small-molecule compounds in targeted cancer therapy. It includes classification, principles, advantages, disadvantages, and successful applications, serving as valuable references for subsequent researchers.
Collapse
Affiliation(s)
- Yelin Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenyu Yuan
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| | - Liaoxin Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research, 'Siniša Stanković'- National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Hongjuan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Luo L, Chang Y, Zhang W, Liu X, Ge J, Chen J, Li Y, Zhang D, Sheng L. 7-Hydroxycoumarin and its conjugated metabolites interact with organic anion transporters 1 and 3 in vitro and in vivo. Chem Biol Interact 2025; 405:111293. [PMID: 39481674 DOI: 10.1016/j.cbi.2024.111293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
7-Hydroxycoumarin (7-HC) is a natural coumarin compound rich in Chinese herbal medicines and has various pharmacological activities. After oral administration of 7-HC in rodents, its conjugated metabolites 7-hydroxycoumarin-β-D-glucuronide (7-HCG) and 7-hydroxycoumarin sulfate (7-HCS), exhibit high systemic exposure and urinary excretion. Organic anion transporters 1 and 3 (OAT1 and OAT3), mainly expressed in the proximal renal tubules, play an important role in drug-drug interactions and drug-induced kidney injury. We aimed to explore the mechanisms of OAT-mediated drug interactions and renal protective mechanisms of 7-HC and its conjugates. OAT-overexpressing cell models revealed that 7-HC was not a substrate for OAT1 and OAT3, while 7-HCG was specifically transported by OAT3. In contrast, 7-HCS can be transported by both OATs. Besides, 7-HC significantly inhibited the activity of OAT1 and OAT3, while 7-HCS had a strong inhibitory effect on OAT1 (IC50 < 10 μM). After co-administration of 100 mg/kg of 7-HC to mice, systemic exposure and clearance of furosemide (a clinical substrate of OATs) were significantly increased and decreased, respectively. In addition, 7-HC decreased OAT-mediated cytotoxicity and reduced the renal distribution of adefovir in mice. Together, these findings will provide support for OAT-mediated drug interactions and the renal protection of 7-HC.
Collapse
Affiliation(s)
- Lijun Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yongchun Chang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Weilin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xiao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Junpu Ge
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jieyi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Dan Zhang
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Li Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
3
|
Seka DJ, Schulz AK, Thaker TM, Tomasiak TM. The N-terminal signature motif on the transporter MCT1 is critical for CD147-mediated trafficking. J Biol Chem 2024; 300:107333. [PMID: 38820650 PMCID: PMC11176948 DOI: 10.1016/j.jbc.2024.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 06/02/2024] Open
Abstract
The human Solute Carrier (SLC) family member, monocarboxylate transporter 1 (MCT1), transports lactic and pyruvic acid across biological membranes to regulate cellular pH and metabolism. Proper trafficking of MCT1 from the endoplasmic reticulum to the plasma membrane hinges on its interactions with the membrane-bound chaperone protein, CD147. Here, using AlphaFold2 modeling and copurification, we show how a conserved signature motif located in the flexible N-terminus of MCT1 is a crucial region of interaction between MCT1 and the C-terminus of CD147. Mutations to this motif-namely, the thymic cancer linked G19C and the highly conserved W20A-destabilize the MCT1-CD147 complex and lead to a loss of proper membrane localization and cellular substrate flux. Notably, the monomeric stability of MCT1 remains unaffected in mutants, thus supporting the role of CD147 in mediating the trafficking of the heterocomplex. Using the auxiliary chaperone, GP70, we demonstrated that W20A-MCT1 can be trafficked to the plasma membrane, while G19C-MCT1 remains internalized. Overall, our findings underscore the critical role of the MCT1 transmembrane one signature motif for engaging CD147 and identify altered chaperone binding mechanisms between the CD147 and GP70 glycoprotein chaperones.
Collapse
Affiliation(s)
- Devin J Seka
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Annika K Schulz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Tarjani M Thaker
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Thomas M Tomasiak
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
4
|
Puri S, Stefan K, Khan SL, Pahnke J, Stefan SM, Juvale K. Indole Derivatives as New Structural Class of Potent and Antiproliferative Inhibitors of Monocarboxylate Transporter 1 (MCT1; SLC16A1). J Med Chem 2023; 66:657-676. [PMID: 36584238 PMCID: PMC9841531 DOI: 10.1021/acs.jmedchem.2c01612] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 12/31/2022]
Abstract
The solute carrier (SLC) monocarboxylate transporter 1 (MCT1; SLC16A1) represents a promising target for the treatment of cancer; however, the MCT1 modulator landscape is underexplored with only roughly 100 reported compounds. To expand the knowledge about MCT1 modulation, we synthesized a library of 16 indole-based molecules and subjected these to a comprehensive biological assessment platform. All compounds showed functional inhibitory activities against MCT1 at low nanomolar concentrations and great antiproliferative activities against the MCT1-expressing cancer cell lines A-549 and MCF-7, while the compounds were selective over MCT4 (SLC16A4). Lead compound 24 demonstrated a greater potency than the reference compound, and molecular docking revealed strong binding affinities to MCT1. Compound 24 led to cancer cell cycle arrest as well as apoptosis, and it showed to sensitize these cancer cells toward an antineoplastic agent. Strikingly, compound 24 had also significant inhibitory power against the multidrug transporter ABCB1 and showed to reverse ABCB1-mediated multidrug resistance (MDR).
Collapse
Affiliation(s)
- Sachin Puri
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s
NMIMS, V.L. Mehta Road,
Vile Parle (W), Mumbai400056, India
| | - Katja Stefan
- Department
of Pathology, Section of Neuropathology, Translational Neurodegeneration
Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372Oslo, Norway
| | - Sharuk L. Khan
- Department
of Pharmaceutical Chemistry, N.B.S. Institute
of Pharmacy, Ausa413520, Maharashtra, India
| | - Jens Pahnke
- Department
of Pathology, Section of Neuropathology, Translational Neurodegeneration
Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372Oslo, Norway
- Drug
Development and Chemical Biology Lab, Lübeck Institute of Experimental
Dermatology (LIED), University of Lübeck
and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538Lübeck, Germany
- Department
of Pharmacology, Faculty of Medicine, University
of Latvia, Jelgavas iela
4, 1004Ri̅ga, Latvia
| | - Sven Marcel Stefan
- Department
of Pathology, Section of Neuropathology, Translational Neurodegeneration
Research and Neuropathology Lab (www.pahnkelab.eu), University of Oslo and Oslo University Hospital, Sognsvannsveien 20, 0372Oslo, Norway
- Drug
Development and Chemical Biology Lab, Lübeck Institute of Experimental
Dermatology (LIED), University of Lübeck
and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538Lübeck, Germany
| | - Kapil Juvale
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s
NMIMS, V.L. Mehta Road,
Vile Parle (W), Mumbai400056, India
| |
Collapse
|
5
|
Wang S, Wang R, Gao F, Huang J, Zhao X, Li D. Pan-cancer analysis of the DNA methylation patterns of long non-coding RNA. Genomics 2022; 114:110377. [PMID: 35513292 DOI: 10.1016/j.ygeno.2022.110377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/23/2022] [Accepted: 04/27/2022] [Indexed: 11/04/2022]
Abstract
Long non-coding RNA (lncRNA) regulated by abnormal DNA methylation (ADM-lncRNA) emerges as a biomarker for cancer diagnosis and treatment. This study comprehensively described the methylation patterns of lncRNA in pan-cancer using the cancer data set in The Cancer Genome Atlas (TCGA). Based on the cancer heterogeneity of ADM-lncRNA in pan-cancer, we constructed a co-expression network of pan-cancer ADM-lncRNA (pADM-lncRNA) in 10 cancers, highlighting the combined action mode of abnormal DNA methylation, and indicating the internal connection among different cancers. Functional analysis revealed the pan-carcinogenic pathway of pADM-lncRNA and suggested potential factors for cancer heterogeneity and tumor immune microenvironment changes. Survival analysis showed the potential of pADM-lncRNA-mRNA co-expression pair as cancer biomarkers. Revealing the action mode of lncRNA and DNA methylation in cancer may help understand the key molecular mechanisms of cell carcinogenesis.
Collapse
Affiliation(s)
- Shijia Wang
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China
| | - Rendong Wang
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China
| | - Fang Gao
- Health Management Center, Binzhou People's Hospital, Shandong Province, China
| | - Jun Huang
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China
| | - Xiaoxiao Zhao
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China
| | - Dongguo Li
- School of Biomedical Engineering, Capital Medical University, 10 You An Men Wai, Xi Tou Tiao, Beijing 100069, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
6
|
MPP +-Induced Changes in Cellular Impedance as a Measure for Organic Cation Transporter (SLC22A1-3) Activity and Inhibition. Int J Mol Sci 2022; 23:ijms23031203. [PMID: 35163125 PMCID: PMC8835585 DOI: 10.3390/ijms23031203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
The organic cation transporters OCT1-3 (SLC22A1-3) facilitate the transport of cationic endo- and xenobiotics and are important mediators of drug distribution and elimination. Their polyspecific nature makes OCTs highly susceptible to drug-drug interactions (DDIs). Currently, screening of OCT inhibitors depends on uptake assays that require labeled substrates to detect transport activity. However, these uptake assays have several limitations. Hence, there is a need to develop novel assays to study OCT activity in a physiological relevant environment without the need to label the substrate. Here, a label-free impedance-based transport assay is established that detects OCT-mediated transport activity and inhibition utilizing the neurotoxin MPP+. Uptake of MPP+ by OCTs induced concentration-dependent changes in cellular impedance that were inhibited by decynium-22, corticosterone, and Tyrosine Kinase inhibitors. OCT-mediated MPP+ transport activity and inhibition were quantified on both OCT1-3 overexpressing cells and HeLa cells endogenously expressing OCT3. Moreover, the method presented here is a valuable tool to identify novel inhibitors and potential DDI partners for MPP+ transporting solute carrier proteins (SLCs) in general.
Collapse
|
7
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
8
|
Sijben HJ, van Oostveen WM, Hartog PBR, Stucchi L, Rossignoli A, Maresca G, Scarabottolo L, IJzerman AP, Heitman LH. Label-free high-throughput screening assay for the identification of norepinephrine transporter (NET/SLC6A2) inhibitors. Sci Rep 2021; 11:12290. [PMID: 34112854 PMCID: PMC8192900 DOI: 10.1038/s41598-021-91700-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
The human norepinephrine transporter (NET) is an established drug target for a wide range of psychiatric disorders. Conventional methods that are used to functionally characterize NET inhibitors are based on the use of radiolabeled or fluorescent substrates. These methods are highly informative, but pose limitations to either high-throughput screening (HTS) adaptation or physiologically accurate representation of the endogenous uptake events. Recently, we developed a label-free functional assay based on the activation of G protein-coupled receptors by a transported substrate, termed the TRACT assay. In this study, the TRACT assay technology was applied to NET expressed in a doxycycline-inducible HEK 293 JumpIn cell line. Three endogenous substrates of NET-norepinephrine (NE), dopamine (DA) and epinephrine (EP)-were compared in the characterization of the reference NET inhibitor nisoxetine. The resulting assay, using NE as a substrate, was validated in a manual HTS set-up with a Z' = 0.55. The inhibitory potencies of several reported NET inhibitors from the TRACT assay showed positive correlation with those from an established fluorescent substrate uptake assay. These findings demonstrate the suitability of the TRACT assay for HTS characterization and screening of NET inhibitors and provide a basis for investigation of other solute carrier transporters with label-free biosensors.
Collapse
Affiliation(s)
- Hubert J Sijben
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Wieke M van Oostveen
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Peter B R Hartog
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Laura Stucchi
- Axxam S.p.A, Openzone Science Park, Bresso, Milan, Italy
| | | | | | | | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands.
- Oncode Institute, Leiden, The Netherlands.
| |
Collapse
|
9
|
Sijben HJ, van den Berg JJE, Broekhuis JD, IJzerman AP, Heitman LH. A study of the dopamine transporter using the TRACT assay, a novel in vitro tool for solute carrier drug discovery. Sci Rep 2021; 11:1312. [PMID: 33446713 PMCID: PMC7809260 DOI: 10.1038/s41598-020-79218-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Members of the solute carrier (SLC) transporter protein family are increasingly recognized as therapeutic drug targets. The majority of drug screening assays for SLCs are based on the uptake of radiolabeled or fluorescent substrates. Thus, these approaches often have limitations that compromise on throughput or the physiological environment of the SLC. In this study, we report a novel application of an impedance-based biosensor, xCELLigence, to investigate dopamine transporter (DAT) activity via substrate-induced activation of G protein-coupled receptors (GPCRs). The resulting assay, which is coined the 'transporter activity through receptor activation' (TRACT) assay, is based on the hypothesis that DAT-mediated removal of extracellular dopamine directly affects the ability of dopamine to activate cognate membrane-bound GPCRs. In two human cell lines with heterologous DAT expression, dopamine-induced GPCR signaling was attenuated. Pharmacological inhibition or the absence of DAT restored the apparent potency of dopamine for GPCR activation. The inhibitory potencies for DAT inhibitors GBR12909 (pIC50 = 6.2, 6.6) and cocaine (pIC50 = 6.3) were in line with values from reported orthogonal transport assays. Conclusively, this study demonstrates the novel use of label-free whole-cell biosensors to investigate DAT activity using GPCR activation as a readout. This holds promise for other SLCs that share their substrate with a GPCR.
Collapse
Affiliation(s)
- Hubert J Sijben
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Julie J E van den Berg
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Jeremy D Broekhuis
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands.
- Oncode Institute, Leiden, The Netherlands.
| |
Collapse
|
10
|
Ota S, Sakuraba H, Hiraga H, Yoshida S, Satake M, Akemoto Y, Tanaka N, Watanabe R, Takato M, Murai Y, Ueno K, Niioka T, Hayakari M, Ishiguro Y, Fukuda S. Cyclosporine protects from intestinal epithelial injury by modulating butyrate uptake via upregulation of membrane monocarboxylate transporter 1 levels. Biochem Biophys Rep 2020; 24:100811. [PMID: 33102812 PMCID: PMC7578528 DOI: 10.1016/j.bbrep.2020.100811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/22/2023] Open
Abstract
Background and aims A relationship between treatment outcomes and intestinal microbiota in patients with inflammatory bowel diseases has been demonstrated. Cyclosporine treatment leads to rapid improvement in severe ulcerative colitis. We hypothesized that the potent effects of cyclosporine would be exerted through relationships between intestinal epithelial cells (IECs) and the host microbiota. The present study was designed to elucidate the effects of cyclosporine on monocarboxylate transporter 1 (MCT1) regulation and butyrate uptake by IECs. Methods Colitis was induced in C57BL6 mice via the administration of 4% dextran sulfate sodium in drinking water, following which body weights, colon lengths, and histological scores were evaluated. To examine the role of butyrate in the protective effects of cyclosporine, MCT1 inhibitor and an antibiotic cocktail was administered and tributyrin (TB; a prodrug of butyrate) was supplemented; MCT1 protein expression and acetylated histone 3 (AcH3) signals in IECs, as well as the MCT1-membrane fraction of Caco-2 cells, were evaluated. To explore butyrate uptake, as s butyrate derivatives, 3-bromopyruvic acid (3-BrPA) and 1-pyrenebutyric acid were used. Results Treatment with cyclosporine inhibited body weight loss and colon length shortening. However, treatment with MCT1 inhibitor and the antibiotic cocktail negated the efficacy of cyclosporine, whereas TB supplementation restored its protective effect. Furthermore, cyclosporine upregulated MCT1 expression in the membrane and the AcH3 signal in IECs, while also inducing higher anti-inflammatory cytokine production compared to that in the vehicle-treated mice. The transcription level of MCT1 mRNA in IECs and Caco-2 cells did not increase with cyclosporine treatment; however, cyclosporine treatment increased membrane MCT1 expression in these cells and uptake of butyrate derivative. Conclusion Cyclosporine treatment modulates butyrate uptake via the post-transcriptional upregulation of membrane MCT1 levels in IECs. The protective effect of cyclosporine needs microbiota-derived butyrate. Cyclosporine increased the fraction of MCT1 at the cell membrane. Cyclosporine enhanced butyrate uptake and regulatory cytokine expression.
Collapse
Affiliation(s)
- Shinji Ota
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroto Hiraga
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shukuko Yoshida
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Shibata Irika Co.Ltd.Hirosaki, Japan
| | - Miwa Satake
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yui Akemoto
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Nahoko Tanaka
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Rina Watanabe
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Maeda Takato
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuhisa Murai
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kayo Ueno
- Division of Pharmaceutical Science, Hirosaki University Hospital, Hirosaki, Japan
| | - Takenori Niioka
- Division of Pharmaceutical Science, Hirosaki University Hospital, Hirosaki, Japan
| | - Makoto Hayakari
- Division of Pharmaceutical Science, Hirosaki University Hospital, Hirosaki, Japan
| | - Yoh Ishiguro
- Division of Clinical Research, Hirosaki National Hospital, National Hospital Organization, Hirosaki, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
11
|
Kil YS, Risinger AL, Petersen CL, Liang H, Grkovic T, O’Keefe BR, Mooberry SL, Cichewicz RH. Using the Cancer Dependency Map to Identify the Mechanism of Action of a Cytotoxic Alkenyl Derivative from the Fruit of Choerospondias axillaris. JOURNAL OF NATURAL PRODUCTS 2020; 83:584-592. [PMID: 32105068 PMCID: PMC7864215 DOI: 10.1021/acs.jnatprod.9b00896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
An extract prepared from the fruit of Choerospondias axillaris exhibited differential cytotoxic effects when tested in a panel of pediatric cancer cell lines [Ewing sarcoma (A-673), rhabdomyosarcoma (SJCRH30), medulloblastoma (D283), and hepatoblastoma (Hep293TT)]. Bioassay-guided fractionation led to the purification of five new hydroquinone-based metabolites, choerosponols A-E (1-5), bearing unsaturated hydrocarbon chains. The structures of the natural products were determined using a combination of 1D and 2D NMR, HRESIMS, ECD spectroscopy, and Mosher ester analyses. The purified compounds were evaluated for their antiproliferative and cytotoxic activities, revealing that 1, which contains a benzofuran moiety, exhibited over 50-fold selective antiproliferative activity against Ewing sarcoma and medulloblastoma cells with growth inhibitory (GI50) values of 0.19 and 0.07 μM, respectively. The effects of 1 were evaluated in a larger panel of cancer cell lines, and these data were used in turn to interrogate the Project Achilles cancer dependency database, leading to the identification of the MCT1 transporter as a functional target of 1. These data highlight the utility of publicly available cancer dependency databases such as Project Achilles to facilitate the identification of the mechanisms of action of compounds with selective activities among cancer cell lines, which can be a major challenge in natural products drug discovery.
Collapse
Affiliation(s)
- Yun-Seo Kil
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - April L. Risinger
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Cora L. Petersen
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Huiyun Liang
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Tanja Grkovic
- Natural Products Support Group, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, United States
| | - Barry R. O’Keefe
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland, 21702, United States
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, United States
| | - Susan L. Mooberry
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, Texas, 78229, United States
| | - Robert H. Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|