1
|
Mohabati R, Rezaei R, Mohajel N, Ranjbar MM, Samimi-Rad K, Azadmanesh K, Roohvand F. Generation of Optimized Consensus Sequences for Hepatitis C virus (HCV) Envelope 2 Glycoprotein (E2) by a Modified Algorithm: Implication for a Pan-genomic HCV Vaccine. Avicenna J Med Biotechnol 2024; 16:268-278. [PMID: 39606685 PMCID: PMC11589427 DOI: 10.18502/ajmb.v16i4.16743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/08/2024] [Indexed: 11/29/2024] Open
Abstract
Background Despite the success of "direct-acting antivirals" in treating Hepatitis C Virus (HCV) infection, invention of a preventive HCV vaccine is crucial for global elimination of the virus. Recent data indicated the importance of the induction of Pangenomic neutralizing Antibodies (PnAbs) against heterogenic HCV Envelope 2(E2), the cellular receptor binding antigen, by any HCV vaccine candidate. To overcome HCVE2 heterogeneity, "generation of consensus HCVE2 sequences" is proposed. However, Consensus Sequence (CS) generating algorithms such as "Threshold" and "Majority" have certain limitations including "Threshold-rigidity" which leads to induction of undefined residues and insensitivity of the "Majority" towards the "evolutionary cost of residual substitutions". Methods Herein, first a modification to the "Majority" algorithm was introduced by incorporating BLOSUM matrices. Secondly, the HCVE2 sequences generated by the "Fitness" algorithm (using 1698 sequences from genotypes 1, 2, and 3) was compared with those generated by the "Majority" and "Threshold" algorithms using several in silico tools. Results Results indicated that only "Fitness" provided completely defined, gapless HCVE2s for all genotypes/subtypes, while considered the evolutionary cost of amino acid replacements (main "Majority/Threshold" limitations) by substitution of several residues within the generated consensuses. Moreover, "Fitness-generated HCVE2 CSs" were superior for antigenic/immunogenic characteristics as an antigen, while their positions within the phylogenetic trees were still preserved. Conclusion "Fitness" algorithm is capable of generating superior/optimum HCVE2 CSs for inclusion in a pan-genomic HCV vaccine and can be similarly used in CS generation for other highly variable antigens from other heterogenic pathogens.
Collapse
Affiliation(s)
- Reyhaneh Mohabati
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Rezaei
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nasir Mohajel
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mehdi Ranjbar
- Department of FMD Vaccine Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Katayoun Samimi-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Farzin Roohvand
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Lingel A, Bullard BL, Weaver EA. Efficacy of an Adenoviral Vectored Multivalent Centralized Influenza Vaccine. Sci Rep 2017; 7:14912. [PMID: 29097763 PMCID: PMC5668234 DOI: 10.1038/s41598-017-14891-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022] Open
Abstract
Mice were immunized with Adenovirus expressing the H1-con, H2-con, H3-con and H5-con HA consensus genes in combination (multivalent) and compared to mice immunized with the traditional 2010-2011 FluZone and FluMist seasonal vaccines. Immunized mice were challenged with 10-100 MLD50 of H1N1, H3N1, H3N2 and H5N1 influenza viruses. The traditional vaccines induced robust levels of HA inhibition (HI) titers, but failed to protect against five different heterologous lethal influenza challenges. Conversely, the multivalent consensus vaccine (1 × 1010 virus particles (vp)/mouse) induced protective HI titers of ≥40 against 8 of 10 influenza viruses that represent a wide degree of divergence within the HA subtypes and protected 100% of mice from 8 of 9 lethal heterologous influenza virus challenges. The vaccine protection was dose dependent, in general, and a dose as low as 5 × 107 vp/mouse still provided 100% survival against 7 of 9 lethal heterologous influenza challenges. These data indicate that very low doses of Adenovirus-vectored consensus vaccines induce superior levels of immunity against a wide divergence of influenza subtypes as compared to traditional vaccines. These doses are scalable and translatable to humans and may provide the foundation for complete and long-lasting anti-influenza immunity.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/therapeutic use
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Vaccination
Collapse
Affiliation(s)
- Amy Lingel
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, USA
| | - Brianna L Bullard
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, USA
| | - Eric A Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, USA.
| |
Collapse
|
3
|
Centralized Consensus Hemagglutinin Genes Induce Protective Immunity against H1, H3 and H5 Influenza Viruses. PLoS One 2015; 10:e0140702. [PMID: 26469190 PMCID: PMC4607479 DOI: 10.1371/journal.pone.0140702] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
With the exception of the live attenuated influenza vaccine there have been no substantial changes in influenza vaccine strategies since the 1940’s. Here we report an alternative vaccine approach that uses Adenovirus-vectored centralized hemagglutinin (HA) genes as vaccine antigens. Consensus H1-Con, H3-Con and H5-Con HA genes were computationally derived. Mice were immunized with Ad vaccines expressing the centralized genes individually. Groups of mice were vaccinated with 1 X 1010, 5 X 107 and 1 X 107 virus particles per mouse to represent high, intermediate and low doses, respectively. 100% of the mice that were vaccinated with the high dose vaccine were protected from heterologous lethal challenges within each subtype. In addition to 100% survival, there were no signs of weight loss and disease in 7 out of 8 groups of high dose vaccinated mice. Lower doses of vaccine showed a reduction of protection in a dose-dependent manner. However, even the lowest dose of vaccine provided significant levels of protection against the divergent influenza strains, especially considering the stringency of the challenge virus. In addition, we found that all doses of H5-Con vaccine were capable of providing complete protection against mortality when challenged with lethal doses of all 3 H5N1 influenza strains. This data demonstrates that centralized H1-Con, H3-Con and H5-Con genes can be effectively used to completely protect mice against many diverse strains of influenza. Therefore, we believe that these Ad-vectored centralized genes could be easily translated into new human vaccines.
Collapse
|
4
|
Craigo JK, Ezzelarab C, Cook SJ, Liu C, Horohov D, Issel CJ, Montelaro RC. Protective efficacy of centralized and polyvalent envelope immunogens in an attenuated equine lentivirus vaccine. PLoS Pathog 2015; 11:e1004610. [PMID: 25569288 PMCID: PMC4287611 DOI: 10.1371/journal.ppat.1004610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/07/2014] [Indexed: 11/18/2022] Open
Abstract
Lentiviral Envelope (Env) antigenic variation and related immune evasion present major hurdles to effective vaccine development. Centralized Env immunogens that minimize the genetic distance between vaccine proteins and circulating viral isolates are an area of increasing study in HIV vaccinology. To date, the efficacy of centralized immunogens has not been evaluated in the context of an animal model that could provide both immunogenicity and protective efficacy data. We previously reported on a live-attenuated (attenuated) equine infectious anemia (EIAV) virus vaccine, which provides 100% protection from disease after virulent, homologous, virus challenge. Further, protective efficacy demonstrated a significant, inverse, linear relationship between EIAV Env divergence and protection from disease when vaccinates were challenged with viral strains of increasing Env divergence from the vaccine strain Env. Here, we sought to comprehensively examine the protective efficacy of centralized immunogens in our attenuated vaccine platform. We developed, constructed, and extensively tested a consensus Env, which in a virulent proviral backbone generated a fully replication-competent pathogenic virus, and compared this consensus Env to an ancestral Env in our attenuated proviral backbone. A polyvalent attenuated vaccine was established for comparison to the centralized vaccines. Additionally, an engineered quasispecies challenge model was created for rigorous assessment of protective efficacy. Twenty-four EIAV-naïve animals were vaccinated and challenged along with six-control animals six months post-second inoculation. Pre-challenge data indicated the consensus Env was more broadly immunogenic than the Env of the other attenuated vaccines. However, challenge data demonstrated a significant increase in protective efficacy of the polyvalent vaccine. These findings reveal, for the first time, a consensus Env immunogen that generated a fully-functional, replication-competent lentivirus, which when experimentally evaluated, demonstrated broader immunogenicity that does not equate to higher protective efficacy.
Collapse
Affiliation(s)
- Jodi K. Craigo
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Corin Ezzelarab
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sheila J. Cook
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chong Liu
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - David Horohov
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Charles J. Issel
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ronald C. Montelaro
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
5
|
Qin Y, Shi H, Banerjee S, Agrawal A, Banasik M, Cho MW. Detailed characterization of antibody responses against HIV-1 group M consensus gp120 in rabbits. Retrovirology 2014; 11:125. [PMID: 25527085 PMCID: PMC4300834 DOI: 10.1186/s12977-014-0125-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background We recently reported induction of broadly neutralizing antibodies (bnAbs) against multiple HIV-1 (human immunodeficiency virus type 1) isolates in rabbits, albeit weak against tier 2 viruses, using a monomeric gp120 derived from an M group consensus sequence (MCON6). To better understand the nature of the neutralizing activity, detailed characterization of immunological properties of the protein was performed. Immunogenic linear epitopes were identified during the course of immunization, and spatial distribution of these epitopes was determined. Subdomain antibody target analyses were done using the gp120 outer domain (gp120-OD) and eOD-GT6, a protein based on a heterologous sequence. In addition, refined epitope mapping analyses were done by competition assays using several nAbs with known epitopes. Results Based on linear epitope mapping analyses, the V3 loop was most immunogenic, followed by C1 and C5 regions. The V1/V2 loop was surprisingly non-immunogenic. Many immunogenic epitopes were clustered together even when they were distantly separated in primary sequence, suggesting the presence of immunogenic hotspots on the protein surface. Although substantial antibody responses were directed against the outer domain, only about 0.1% of the antibodies bound eOD-GT6. Albeit weak, antibodies against peptides that corresponded to a part of the bnAb VRC01 binding site were detected. Although gp120-induced antibodies could not block VRC01 binding to eOD-GT6, they were able to inhibit VRC01 binding to both gp120 and trimeric BG505 SOSIP gp140. The immune sera also efficiently competed with CD4-IgG2, as well as nAbs 447-52D, PGT121 and PGT126, in binding to gp120. Conclusions The results suggest that some antibodies that bind at or near known bnAb epitopes could be partly responsible for the breadth of neutralizing activity induced by gp120 in our study. Immunization strategies that enhance induction of these antibodies relative to others (e.g. V3 loop), and increase their affinity, could improve protective efficacy of an HIV-1 vaccine.
Collapse
Affiliation(s)
- Yali Qin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1600 S 16th Street, Ames, IA, 50011-1250, USA. .,Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, USA.
| | - Heliang Shi
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1600 S 16th Street, Ames, IA, 50011-1250, USA. .,Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, USA.
| | - Saikat Banerjee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1600 S 16th Street, Ames, IA, 50011-1250, USA. .,Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, USA.
| | - Aditi Agrawal
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1600 S 16th Street, Ames, IA, 50011-1250, USA. .,Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, USA.
| | - Marisa Banasik
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1600 S 16th Street, Ames, IA, 50011-1250, USA. .,Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, USA.
| | - Michael W Cho
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1600 S 16th Street, Ames, IA, 50011-1250, USA. .,Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
6
|
Tongo M, Burgers WA. Challenges in the design of a T cell vaccine in the context of HIV-1 diversity. Viruses 2014; 6:3968-90. [PMID: 25341662 PMCID: PMC4213573 DOI: 10.3390/v6103968] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 12/27/2022] Open
Abstract
The extraordinary variability of HIV-1 poses a major obstacle to vaccine development. The effectiveness of a vaccine is likely to vary dramatically in different populations infected with different HIV-1 subtypes, unless innovative vaccine immunogens are developed to protect against the range of HIV-1 diversity. Immunogen design for stimulating neutralizing antibody responses focuses on “breadth” – the targeting of a handful of highly conserved neutralizing determinants on the HIV-1 Envelope protein that can recognize the majority of viruses across all HIV-1 subtypes. An effective vaccine will likely require the generation of both broadly cross-neutralizing antibodies and non-neutralizing antibodies, as well as broadly cross-reactive T cells. Several approaches have been taken to design such broadly-reactive and cross-protective T cell immunogens. Artificial sequences have been designed that reduce the genetic distance between a vaccine strain and contemporary circulating viruses; “mosaic” immunogens extend this concept to contain multiple potential T cell epitope (PTE) variants; and further efforts attempt to focus T cell immunity on highly conserved regions of the HIV-1 genome. Thus far, a number of pre-clinical and early clinical studies have been performed assessing these new immunogens. In this review, the potential use of these new immunogens is explored.
Collapse
Affiliation(s)
- Marcel Tongo
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
7
|
Tongo M, Zembe L, Ebong E, Roux S, Bekker LG, Williamson C, Mpoudi-Ngole E, Burgers WA. Striking lack of T cell immunodominance in both a multiclade and monoclade HIV-1 epidemic: implications for vaccine development. Vaccine 2014; 32:2328-36. [PMID: 24598726 DOI: 10.1016/j.vaccine.2014.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/02/2014] [Accepted: 02/12/2014] [Indexed: 12/16/2022]
Abstract
Understanding the impact of HIV diversity on immunological responses to candidate immunogens is critical for HIV vaccine development. We investigated the reactivity and immunodominance patterns of HIV-1 consensus group M Gag and Nef in (i) Cameroon, where individuals infected with the predominant CRF02_AG clade were compared with those infected with diverse non-CRF02_AG clades; and (ii) in a multiclade epidemic, namely Cameroon, compared with a monoclade C epidemic, South Africa. We analyzed 57 HIV-infected individuals from Cameroon and 44 HIV-infected individuals from South Africa for differences in detecting HIV-1 consensus M Gag and Nef T cell responses using the IFN-γ ELISpot assay. We found no difference in the predicted epitope coverage between CRF02_AG and non-CRF02_AG viruses for either Gag or Nef. There were no differences in the magnitude and breadth of responses for CRF02_AG and non-CRF02_AG-infected individuals. In contrast, the specificity of epitope targeting was markedly different between the two groups, with fewer than one third (11/38) of peptides commonly recognized in Gag. Furthermore, only one peptide was commonly recognized by at least three individuals from both AG and non-AG groups, indicating poor immunodominance. For Nef, more than half of all targeted peptides (14/27) were recognized by both groups, and four peptides were commonly targeted by at least three individuals. Three times more peptides were exclusively targeted in the diverse non-CRF02_AG group compared to the CRF02_AG group (10 vs. 3). Of note, similar results were obtained when South Africa, a monoclade C epidemic, and Cameroon, a multiclade epidemic, were compared. The central nature of HIV-1 consensus M sequences resulted in their broad recognition, but failed to identify highly immunodominant peptides between homogeneous and diverse HIV epidemics.
Collapse
Affiliation(s)
- Marcel Tongo
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Institute of Medical Research and Study of Medicinal Plants, Yaoundé, Cameroon
| | - Lycias Zembe
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Eugenie Ebong
- Institute of Medical Research and Study of Medicinal Plants, Yaoundé, Cameroon
| | - Surita Roux
- The Desmond Tutu HIV Centre, Cape Town, South Africa
| | | | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Eitel Mpoudi-Ngole
- Institute of Medical Research and Study of Medicinal Plants, Yaoundé, Cameroon
| | - Wendy A Burgers
- Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
8
|
Zhang M, Zhang L, Zhang C, Hong K, Shao Y, Huang Z, Wang S, Lu S. DNA prime-protein boost using subtype consensus Env was effective in eliciting neutralizing antibody responses against subtype BC HIV-1 viruses circulating in China. Hum Vaccin Immunother 2012; 8:1630-7. [PMID: 23111170 DOI: 10.4161/hv.21648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previously, we have shown that DNA prime-protein boost is effective in eliciting neutralizing antibodies (NAb) against randomly selected HIV-1 isolates. Given the genetic diversity of HIV-1 viruses and the unique predominant subtypes in different geographic regions, it is critical to test the DNA prime-protein boost approach against circulating viral isolates in key HIV endemic areas. In the current study, the same DNA prime-protein boost vaccine was used as in previous studies to investigate the induction of NAb responses against HIV-1 clade BC, a major subtype circulating in China. A codon optimized gp120-BC DNA vaccine, based on the consensus envelope (Env) antigen sequence of clade BC, was constructed and a stable CHO cell line expressing the same consensus BC gp120 protein was produced. The immunogenicity of this consensus gp120-BC was examined in New Zealand White rabbits by either DNA prime-protein boost or protein alone vaccination approaches. High levels of Env-specific antibody responses were elicited by both approaches. However, DNA prime-protein boost but not the protein alone immune sera contained significant levels of NAb against pseudotyped viruses expressing HIV-1 BC Env antigens. Furthermore, high frequencies of CD4 binding site-targeted antibodies were found in the DNA prime- protein boost rabbit sera indicating that the positive NAb may be the result of antibodies against conformationally sensitive epitopes on HIV-1 Env. The findings support that DNA prime-protein boost was effective in eliciting NAb against a key HIV-1 virus subtype in China. This result may lead to the development of regional HIV vaccines through this approach.
Collapse
Affiliation(s)
- Mingshun Zhang
- Jiangsu Province Key Laboratory in Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University; Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|