1
|
Ayari F, Abdollahzade Fard A, Chodari L. Selenium pretreatment improve renal function, autophagy signaling pathway and mir21a gene expression in renal ischemia reperfusion injury model in male rat. J Trace Elem Med Biol 2025; 88:127610. [PMID: 39970693 DOI: 10.1016/j.jtemb.2025.127610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) is a major cause of acute kidney injury (AKI). Autophagy is an important mechanisms involved in this damage. In this study, we investigated effect of selenium on autophagy in kidney following IRI. METHODS In this study, 24 Wistar male rats (200 ± 20 gr) were divided into 4 groups: 1) Sham 2) Sham+ Sodium selenite (0.5 mg/kg) 3) Ischemia-reperfusion (I/R) 4) I/R + sodium selenite. RIRI induces by vascular microclamp for 45 min. At the end of study, blood was taken from the heart tissue and used to measure BUN and Creatinine with the kit, the left kidney tissue was frozen for measurement of LC3II, LC3I, Beclin1, Rab11a, P62, and Caspase3 by western blot technique and measurement of mir21a by RT-PCR method. In addition, right kidney tissue was placed in formalin for histological studies with Haematoxylin-eosin staining. RESULT According to the results, in the I/R group compared to the sham group, serum levels of creatinine and urea, amount of autophagy including expression levels of Lc3II/Lc3I, beclin1, Rab11a, Cleaved Caspase3/Pro Caspase3 proteins significantly increased and expression of p62 decreased. Also, mir21a gene expression significantly decreased in the I/R group. According to histological results, ischemia-reperfusion has caused kidney tissue damage, such as destruction of the brush border of renal tubules, congestion, and leukocyte filtration. Our results showed that pretreatment with selenium reduced tissue damage and moderated the expression changes of the mentioned proteins. CONCLUSION It seems selenium inhibits autophagy by changing the expression levels of mediator molecules Rab11a and mir21a, and it can apply its healing effects in the damage caused by ischemia and reperfusion of kidney tissue in an animal model.
Collapse
Affiliation(s)
- Fatemeh Ayari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Abdollahzade Fard
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center,Cellular and Molecular Medicine Research Institute,Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Chen C, Yang Z, Ma J, Xie W, Wang Z. Recent research progress on the biological functions, synthesis and applications of selenium nanoparticles. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124448. [PMID: 39778390 DOI: 10.1016/j.jchromb.2024.124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Selenium is an essential trace element that is involved in a variety of complex biological processes and has a significant positive effect on the prevention and treatment of cardiovascular disease, inflammatory diseases, and cancer. Selenium in the body is mainly provided by daily meals. However, selenium has two sides, beneficial in moderation and harmful in excess. Selenium nanoparticles (SeNPs), which has better biocompatibility, safety and stability compared with other forms of selenium, is a good choice for selenium supplementing. Current researchers are exploring SeNPs in a variety of ways, including but not limited to antioxidant, antimicrobial, antiviral, inhibition of inflammation, anti-tumor, development of bio-diagnostic reagents, and nano-carrier systems. Also, efforts are being made to synthesize stable and efficient SeNPs for various applications. This study briefly describes how SeNPs are synthesized, summarizes in detail the wide range of uses of SeNPs, and provides an outlook on the future development of it. In addition, combined with the research results of our group, this study discusses the application and biological assays of SeNPs in diagnosis, which will provide inspiration and help for researchers to broaden the application of SeNPs.
Collapse
Affiliation(s)
- Chunxia Chen
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Zhan Yang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Jingjing Ma
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Weiqi Xie
- The First Affiliated Hospital of Henan University, Kaifeng 475004, China
| | - Zhizeng Wang
- Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
3
|
Zhu H, Wang X, Meng X, Kong Y, Li Y, Yang C, Guo Y, Wang X, Yang H, Liu Z, Wang F. Selenium Supplementation Improved Cardiac Functions by Suppressing DNMT2-Mediated GPX1 Promoter DNA Methylation in AGE-Induced Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5402997. [PMID: 35432721 PMCID: PMC9007686 DOI: 10.1155/2022/5402997] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022]
Abstract
Objective Advanced glycation end products (AGEs) are featured metabolites associated with diabetic cardiomyopathy which is characterized by heart failure caused by myocyte apoptosis. Selenium was proved cardioprotective. This study was aimed at investigating the therapeutic effects and underlying mechanisms of selenium supplementation on AGE-induced heart failure. Methods Rats and primary myocytes were exposed to AGEs. Selenium supplementation was administrated. Cardiac functions and myocyte apoptosis were evaluated. Oxidative stress was assessed by total antioxidant capacity (TAC), reactive oxygen species (ROS) generation, and GPX activity. Expression levels of DNA methyltransferases (DNMTs) and glutathione peroxidase 1 (GPX1) were evaluated. DNA methylation of the GPX1 promoter was analyzed. Results AGE exposure elevated intracellular ROS generation, induced myocyte apoptosis, and impaired cardiac functions. AGE exposure increased DNMT1 and DNMT2 expression, leading to the reduction of GPX1 expression and activity in the heart. Selenium supplementation decreased DNMT2 expression, recovered GPX1 expression and activity, and alleviated intracellular ROS generation and myocyte apoptosis, resulting in cardiac function recovery. DNA methylation analysis in primary myocytes indicated that selenium supplementation or DNMT inhibitor AZA treatment reduced DNA methylation of the GPX1 gene promoter. Selenium supplementation and AZA administration showed synergic inhibitory effect on GPX1 gene promoter methylation. Conclusions Selenium supplementation showed cardioprotective effects on AGE-induced heart failure by suppressing ROS-mediated myocyte apoptosis. Selenium supplementation suppressed ROS generation by increasing GPX1 expression via inhibiting DNMT2-induced GPX1 gene promoter DNA methylation in myocytes exposed to AGEs.
Collapse
Affiliation(s)
- Huolan Zhu
- Department of Geriatrics, Shaanxi Provincial Clinical Research Center for Geriatric Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Xuyang Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Yiya Kong
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Yi Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenguang Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Guo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiqiang Wang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Haini Yang
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
- Cardiovascular Research Center, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fang Wang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
4
|
Zhang ZW, Wei P, Zhang GJ, Yan JX, Zhang S, Liang J, Wang XL. Intravenous infusion of the exosomes derived from human umbilical cord mesenchymal stem cells enhance neurological recovery after traumatic brain injury via suppressing the NF-κB pathway. Open Life Sci 2022; 17:189-201. [PMID: 35415238 PMCID: PMC8932398 DOI: 10.1515/biol-2022-0022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/13/2021] [Accepted: 01/03/2022] [Indexed: 02/05/2023] Open
Abstract
Abstract
Traumatic brain injury (TBI) is a predominant cause of death and permanent disability globally. In recent years, much emphasis has been laid on treatments for TBI. Increasing evidence suggests that human umbilical cord mesenchymal stem cells (HUCMSCs) can improve neurological repair after TBI. However, the clinical use of HUCMSCs transplantation in TBI has been limited by immunological rejection, ethical issues, and the risk of tumorigenicity. Many studies have shown that HUCMSCs-derived exosomes may be an alternative approach for HUCMSCs transplantation. We hypothesized that exosomes derived from HUCMSCs could inhibit apoptosis after TBI, reduce neuroinflammation, and promote neurogenesis. A rat model of TBI was established to investigate the efficiency of neurological recovery with exosome therapy. We found that exosomes derived from HUCMSCs significantly ameliorated sensorimotor function and spatial learning in rats after TBI. Moreover, HUCMSCs-derived exosomes significantly reduced proinflammatory cytokine expression by suppressing the NF-κB signaling pathway. Furthermore, we found that HUCMSC-derived exosomes inhibited neuronal apoptosis, reduced inflammation, and promoted neuron regeneration in the injured cortex of rats after TBI. These results indicate that HUCMSCs-derived exosomes may be a promising therapeutic strategy for TBI.
Collapse
Affiliation(s)
- Zhen-Wen Zhang
- Department of Encephalopathy, Affiliated Hospital of Gansu University of Chinese Medicine , Lanzhou 730000 , Gansu , China
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF , Tianjin 300162 , China
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine , Lanzhou 730000 , Gansu , China
| | - Pan Wei
- Department of Neurosurgery, The First People’s Hospital of Long Quan Yi District , Cheng Du 610000 , Si Chuan , China
| | - Gui-Jun Zhang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University , Chengdu 610041 , Sichuan , China
| | - Jing-Xing Yan
- Department of Encephalopathy, Affiliated Hospital of Gansu University of Chinese Medicine , Lanzhou 730000 , Gansu , China
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine , Lanzhou 730000 , Gansu , China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF , Tianjin 300162 , China
| | - Jin Liang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF , Tianjin 300162 , China
| | - Xiao-Li Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF , Tianjin 300162 , China
| |
Collapse
|
5
|
Tang C, Li S, Zhang K, Li J, Han Y, Zhao Q, Guo X, Qin Y, Yin J, Zhang J. Selenium Deficiency Induces Pathological Cardiac Lipid Metabolic Remodeling and Inflammation. Mol Nutr Food Res 2021; 66:e2100644. [PMID: 34932259 DOI: 10.1002/mnfr.202100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/09/2021] [Indexed: 11/10/2022]
Abstract
SCOPE Selenium (Se) disequilibrium is closely involved in many cardiac diseases, although its in vivo mechanism remains uncertain. Therefore, a pig model was created in order to generate a comprehensive picture of cardiac response to dietary Se deficiency. METHODS AND RESULTS A total of 24 pigs were divided into two equal groups, which were fed a diet with either 0.007 mg/kg Se or 0.3 mg/kg Se for 16 weeks. Se deficiency caused cardiac oxidative stress by blocking glutathione and thioredoxin systems and increased thioredoxin domain-containing protein S-nitrosylation. Energy production was disordered as free fatty acids were overloaded, the tricarboxylic acid cycle was strengthened, and three respiratory chain proteins enhanced S-nitrosylation. Excess free fatty acids led to increased synthesis of diacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, where the latter two are vulnerable to oxidation and caused an increase in malondialdehyde. Moreover, increased palmitic acid enhanced de novo ceramide synthesis and accumulation. Additionally, Se deficiency initiated inflammation via cytosolic DNA-sensing pathways, which activated downstream interferon regulatory factor 7 and nuclear factor kappa B. CONCLUSIONS The present study identified a lipid metabolic vulnerability and inflammation initiation pathways via Se deficiency, which may provide targets for human redox imbalance-induced cardiac disease treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology of China Agricultural University, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kai Zhang
- College of Animal Science and Technology of Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunsheng Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoqing Guo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingdong Yin
- College of Animal Science and Technology of China Agricultural University, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
6
|
Bardas E, Arslan YK, Polat S, Erisir M, Uslu GA, Cetin N, Cicek B. Vitamin E and Selenium Reduce Prednisolone Side Effects in Rat Hearts. INT J VITAM NUTR RES 2020; 90:309-317. [PMID: 30987549 DOI: 10.1024/0300-9831/a000582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aim of this work was to determine the effects of dietary intake vitamin E and Se on lipid peroxidation (LPO) as Thiobarbituric acid reactive substances (TBARS) and on the antioxidative defense mechanisms in heart tissues of rats treated with high doses of prednisolone. 250 adult male Wistar rats were randomly divided into 5 groups and fed with normal diet. Additionally groups 3, 4, and 5 received a daily supplement in their drinking water of 20 mg vitamin E, 0.3 mg Se, and a combination of vitamin E and Se (20 mg/ 0.3 mg), respectively, for 30 days. For 3 d subsequently, control group was treated with placebo, and remaining four groups were injected intramuscularly with 100 mg/kg prednisolone. After last administration of prednisolone, 10 rats from each group were killed at 4, 8, 12, 24, and 48 h and the activities of antioxidant enzymes and the levels of GSH and TBARS were measured. GSH-Px, CAT activities and GSH levels decreased starting from 4th hour to 48% and 65% of control levels by 24th hour, respectively and it reincreased to control levels at 48th hour in the prednisolone group (p < 0.001, p < 0.001). In addition, prednisolone administration led 2-fold increase in heart TBARS levels at 24th hour (p < 0.001). E vitamins and Se inhibited the increase in heart TBARS and the decrease in antioxidative enzymes levels. Therefore, It is concluded that vitamin E and Se may have a preventive role in decreasing the increase of TBARS caused by prednisolone administration in our study.
Collapse
Affiliation(s)
- Ebru Bardas
- Department of Medical Physiology, Faculty of Medicine, University of Erzincan, Erzincan, Turkey
| | - Yusuf Kemal Arslan
- Department of Biostatistics, Faculty of Medicine, University of Erzincan, Erzincan, Turkey
| | - Seher Polat
- Department of Medical Genetics, Faculty of Medicine, University of Erzincan, Erzincan, Turkey
| | - Mine Erisir
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Firat, Elazıg, Turkey
| | - Gözde Atila Uslu
- Department of Physiology, Faculty of Veterinary Medicine, University of Kafkas, Kars, Turkey
| | - Nihal Cetin
- Department of Pharmacology, Faculty of Medicine, University of Selcuk, Konya, Turkey
| | - Betul Cicek
- Department of Medical Physiology, Faculty of Medicine, University of Erzincan, Erzincan, Turkey
| |
Collapse
|
7
|
Reyes L, Bishop DP, Hawkins CL, Rayner BS. Assessing the Efficacy of Dietary Selenomethionine Supplementation in the Setting of Cardiac Ischemia/Reperfusion Injury. Antioxidants (Basel) 2019; 8:antiox8110546. [PMID: 31766199 PMCID: PMC6912310 DOI: 10.3390/antiox8110546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress is a major hallmark of cardiac ischemia/reperfusion (I/R) injury. This partly arises from the presence of activated phagocytes releasing myeloperoxidase (MPO) and its production of hypochlorous acid (HOCl). The dietary supplement selenomethionine (SeMet) has been shown to bolster endogenous antioxidant processes as well as readily react with MPO-derived oxidants. The aim of this study was to assess whether supplementation with SeMet could modulate the extent of cellular damage observed in an in vitro cardiac myocyte model exposed to (patho)-physiological levels of HOCl and an in vivo rat model of cardiac I/R injury. Exposure of the H9c2 cardiac myoblast cell line to HOCl resulted in a dose-dependent increase in necrotic cell death, which could be prevented by SeMet supplementation and was attributed to SeMet preventing the HOCl-induced loss of mitochondrial inner trans-membrane potential, and the associated cytosolic calcium accumulation. This protection was credited primarily to the direct oxidant scavenging ability of SeMet, with a minor contribution arising from the ability of SeMet to bolster cardiac myoblast glutathione peroxidase (GPx) activity. In vivo, a significant increase in selenium levels in the plasma and heart tissue were seen in male Wistar rats fed a diet supplemented with 2 mg kg−1 SeMet compared to controls. However, SeMet-supplementation demonstrated only limited improvement in heart function and did not result in better heart remodelling following I/R injury. These data indicate that SeMet supplementation is of potential benefit within pathological settings where excessive HOCl is known to be generated but has limited efficacy as a therapeutic agent for the treatment of heart attack.
Collapse
Affiliation(s)
- Leila Reyes
- Heart Research Institute, Sydney 2042, Australia; (L.R.); (C.L.H.)
- Sydney Medical School, University of Sydney, Sydney 2006, Australia
| | - David P. Bishop
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia;
| | - Clare L. Hawkins
- Heart Research Institute, Sydney 2042, Australia; (L.R.); (C.L.H.)
- Sydney Medical School, University of Sydney, Sydney 2006, Australia
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Benjamin S. Rayner
- Heart Research Institute, Sydney 2042, Australia; (L.R.); (C.L.H.)
- Sydney Medical School, University of Sydney, Sydney 2006, Australia
- Correspondence: ; Tel.: +61-2808-8900
| |
Collapse
|
8
|
CaMKII Activity in the Inflammatory Response of Cardiac Diseases. Int J Mol Sci 2019; 20:ijms20184374. [PMID: 31489895 PMCID: PMC6770001 DOI: 10.3390/ijms20184374] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a physiological process by which the body responds to external insults and stress conditions, and it is characterized by the production of pro-inflammatory mediators such as cytokines. The acute inflammatory response is solved by removing the threat. Conversely, a chronic inflammatory state is established due to a prolonged inflammatory response and may lead to tissue damage. Based on the evidence of a reciprocal regulation between inflammation process and calcium unbalance, here we described the involvement of a calcium sensor in cardiac diseases with inflammatory drift. Indeed, the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated in several diseases with an inflammatory component, such as myocardial infarction, ischemia/reperfusion injury, pressure overload/hypertrophy, and arrhythmic syndromes, in which it actively regulates pro-inflammatory signaling, among which includes nuclear factor kappa-B (NF-κB), thus contributing to pathological cardiac remodeling. Thus, CaMKII may represent a key target to modulate the severity of the inflammatory-driven degeneration.
Collapse
|
9
|
Bartekova M, Radosinska J, Jelemensky M, Dhalla NS. Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev 2019; 23:733-758. [PMID: 29862462 DOI: 10.1007/s10741-018-9716-x] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By virtue of their actions on NF-κB, an inflammatory nuclear transcription factor, various cytokines have been documented to play important regulatory roles in determining cardiac function under both physiological and pathophysiological conditions. Several cytokines including TNF-α, TGF-β, and different interleukins such as IL-1 IL-4, IL-6, IL-8, and IL-18 are involved in the development of various inflammatory cardiac pathologies, namely ischemic heart disease, myocardial infarction, heart failure, and cardiomyopathies. In ischemia-related pathologies, most of the cytokines are released into the circulation and serve as biological markers of inflammation. Furthermore, there is an evidence of their direct role in the pathogenesis of ischemic injury, suggesting cytokines as potential targets for the development of some anti-ischemic therapies. On the other hand, certain cytokines such as IL-2, IL-4, IL-6, IL-8, and IL-10 are involved in the post-ischemic tissue repair and thus are considered to exert beneficial effects on cardiac function. Conflicting reports regarding the role of some cytokines in inducing cardiac dysfunction in heart failure and different types of cardiomyopathies seem to be due to differences in the nature, duration, and degree of heart disease as well as the concentrations of some cytokines in the circulation. In spite of extensive research work in this field of investigation, no satisfactory anti-cytokine therapy for improving cardiac function in any type of heart disease is available in the literature.
Collapse
Affiliation(s)
- Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Marek Jelemensky
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Center, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
10
|
Dallak M. A synergistic protective effect of selenium and taurine against experimentally induced myocardial infarction in rats. Arch Physiol Biochem 2017; 123:344-355. [PMID: 28699791 DOI: 10.1080/13813455.2017.1347687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study investigated the protective effect of subacute pre-adminsitration of either selenium (Se), taurine (Tau), or both drugs in combination against experimentally induced myocardial infarction (MI) in rats and illustrates the possible mechanisms of action. While solely pre-administration of Se or Tau resulted in partial amelioration in all of the measured parameters in MI rats, concomitant administration of both drugs to MI rats significantly restored contractility function by increasing LVSP and decreasing LVEDP and significantly normalized serum levels of LDH, CK-MB and BNP and restored normal cardiac architecture. This concomitant treatment acted by increasing the activity of major antioxidant enzymes (SOD and GPx), decreasing the levels of inflammatory markers including TNF-α, IL-6 as well as levels of Bcl-2 and caspase-3 and downregulating mRNA levels of Bax and P53, markers of apoptosis. In conclusion, a combination of Se and Tau provides a new strategy to alleviate MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Mohammad Dallak
- a Department of Physiology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| |
Collapse
|
11
|
Yang Y, Yang M, Ai F, Huang C. Cardioprotective Effect of Aloe vera Biomacromolecules Conjugated with Selenium Trace Element on Myocardial Ischemia-Reperfusion Injury in Rats. Biol Trace Elem Res 2017; 177:345-352. [PMID: 27873288 DOI: 10.1007/s12011-016-0896-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/07/2016] [Indexed: 01/10/2023]
Abstract
The present study was undertaken to evaluate the cardioprotection potential and underlying molecular mechanism afforded by a selenium (Se) polysaccharide (Se-AVP) from Aloe vera in the ischemia-reperfusion (I/R) model of rats in vivo. Myocardial I/R injury was induced by occluding the left anterior descending coronary artery (LAD) for 30 min followed by 2-h continuous reperfusion. Pretreatment with Se-AVP (100, 200, and 400 mg/kg) attenuated myocardial damage, as evidenced by reduction of the infarct sizes, increase in serum and myocardial endogenous antioxidants (superoxide dismutase (SOD), glutathione peroxidase (GSH), and catalase (CAT)), and decrease in the malondialdehyde (MDA) level in the rats suffering I/R injury. This cardioprotective activity afforded by Se-AVP is further supported by the decreased levels of cardiac marker enzymes creatine kinase (CK) and lactate dehydrogenase (LDH), as well as the rise of myocardial Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities in I/R rats. Additionally, cardiomyocytic apoptosis was measured by terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining and the result showed that the percent of TUNEL-positive cells in myocardium of Se-AVP-treated groups was lower than I/R rats. In conclusion, we clearly demonstrated that Se-AVP had a protective effect against myocardial I/R injury in rats by augmenting endogenous antioxidants and protecting rat hearts from oxidative stress-induced myocardial apoptosis.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Network Medical, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ming Yang
- Department of Network Medical, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Fen Ai
- Emergency Department, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
Zendedel A, Gharibi Z, Anbari K, Abbaszadeh A, Khayat ZK, Khorramabadi RM, Soleymaninejad M, Gholami M. Selenium Ameliorate Peripheral Nerve Ischemic-Reperfusion Injury via Decreased TNF-α. Biol Trace Elem Res 2017; 176:328-337. [PMID: 27600929 DOI: 10.1007/s12011-016-0836-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Selenium is considered as a trace element that plays antioxidant role in the body. So, the aim of this study was to evaluate the effect of selenium on ameliorating of sciatic nerve ischemia-reperfusion injury. Eighty (80) adult male Wistar rats weighing 250-300 g were used. They were divided into 10 groups (n = 8). Then, femoral vessels were obstructed by using 4/0 silk and splitknot techniques. After 3-h ischemia for all the groups, reperfusion was applied for different periods: 3, 7, 14, and 28 days. In half of each experimental group, 0.2 mg/kg selenium was injected intraperitoneally, coinciding with ischemia. After reperfusion, according to the grouping, rats were killed by using high dose of anesthetic drug and then sciatic nerve was removed and fixed. Then, tissue samples were processed and subsequently stained with hematoxylin-eosin, apoptosis, and immunohistochemistry stains. On the third day of reperfusion, the amount of TNF-α as an inflammatory marker of ischemia-reperfusion acute phase increased. On the seventh day of reperfusion, the amount of NF-кB as an apoptotic index and infiltration of mast cells increased in the tissue as a result of development of inflammation. But, on the 14th day of reperfusion, the amount of NF-кB as an apoptotic index decreased to the lowest amount. On the 28th day of reperfusion, the amount of TNF-α as an inflammatory marker decreased to its lowest level. Prescription of selenium concurrent with development of ischemia can reduce the damage caused by sciatic nerve ischemia-reperfusion.
Collapse
Affiliation(s)
- Abolfazl Zendedel
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Gharibi
- Department of Anatomical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Khatereh Anbari
- Department of Social Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abolfazl Abbaszadeh
- Department of Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | | | | | - Mohammadreza Gholami
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Anatomical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
13
|
Zendedel A, Delavari S, Ahmadvand H, Ghanadi K, Gholami M. Effects of Selenium on Antioxidant Activity and Recovery From Sciatic Nerve Ischemia–Reperfusion in Adult Rats. ACTA ACUST UNITED AC 2015. [DOI: 10.17795/zjrms-5200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Liu L, Liu C, Hou L, Lv J, Wu F, Yang X, Ren S, Ji W, Wang M, Chen L. Protection against ischemia/reperfusion‑induced renal injury by co‑treatment with erythropoietin and sodium selenite. Mol Med Rep 2015; 12:7933-40. [PMID: 26647839 PMCID: PMC4758319 DOI: 10.3892/mmr.2015.4426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/09/2015] [Indexed: 01/07/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) has lzong been an area of concern and focus of investigations. Erythropoietin (EPO) exhibits multiple protective effects, and selenium is an antioxidant trace element in the body, however, there have been no reports concerning the effects of EPO combined with sodium selenite on IRI. In the present study, a mouse model of renal IRI (RIRI) was pre–treated with EPO and sodium selenite to determine the most appropriate combination ratio of the two for further investigation. The results revealed that EPO and sodium selenite had synergistic protective effects in RIRI. EPO was identified as the predominant treatment component, with sodium selenite serving as an adjuvant, and combination treatment was markedly more effective, compared with treatment with either drug alone. The optimal ratio of treatment was 10:1 (10 IU EPO: 1 µg sodium selenite). The results indicated that RIRI markedly induced renal injury, as evidenced by elevated levels of blood urea nitrogen (BUN), as well as higher pathological scores, based on hematoxylin and eosin staining. Pre–treatment with EPO and sodium selenite significantly decreased serum expression levels of BUN and malonaldehyde, and increased the expression levels of superoxide dismutase, glutathione peroxidase and nitric oxide (NO), compared with the model group. Furthermore, co treatment with EPO and sodium selenite upregulated the protein expression levels of phosphatidylinositol 3 kinase (PI3K) in renal tissue samples. Together, the results suggested that co administration of EPO and sodium selenite effectively ameliorates IRI induced renal injury by reducing oxidative stress and activating the PI3K/NO signaling pathway.
Collapse
Affiliation(s)
- Lu Liu
- Department of Clinical Medicine, College of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Chao Liu
- Department of Clinical Medicine, College of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Lan Hou
- Department of Clinical Medicine, College of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Juan Lv
- Department of Pharmacology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Fang Wu
- Department of Clinical Medicine, College of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Xuefei Yang
- Department of Pharmacology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Shuting Ren
- Department of Pathology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Wenjun Ji
- Department of Pharmacology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Meng Wang
- Department of Pharmacology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Lina Chen
- Department of Pharmacology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
15
|
Deletioglu V, Tuncay E, Toy A, Atalay M, Turan B. Immuno-spin trapping detection of antioxidant/pro-oxidant properties of zinc or selenium on DNA and protein radical formation via hydrogen peroxide. Mol Cell Biochem 2015; 409:23-31. [DOI: 10.1007/s11010-015-2508-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/04/2015] [Indexed: 11/29/2022]
|
16
|
Abstract
Although heart disease due to diabetes is mainly associated with complications of the large vessels, microvascular abnormalities are also considered to be involved in altering cardiac structure and function. Three major defects, such as endothelial dysfunction, alteration in the production/release of hormones, and shift in metabolism of smooth muscle cells, have been suggested to produce damage to the small arteries and capillaries (microangiopathy) due to hyperglycemia, and promote the development of diabetic cardiomyopathy. These factors may either act alone or in combination to produce oxidative stress as well as changes in cellular signaling and gene transcription, which in turn cause vasoconstriction and structural remodeling of the coronary vessels. Such alterations in microvasculature produce hypoperfusion of the myocardium and thereby lower the energy status resulting in changes in Ca(2+)-handling, apoptosis, and decreased cardiac contractile force. This article discusses diabetes-induced mechanisms of microvascular damage leading to cardiac dysfunction that is characterized by myocardial dilatation, cardiac hypertrophy as well as early diastolic and late systolic defects. Metabolic defects and changes in neurohumoral system due to diabetes, which promote disturbances in vascular homeostasis, are highlighted. In addition, increase in the vulnerability of the diabetic heart to the development of heart failure and the signaling pathways integrating nuclear factor κB and protein kinase C in diabetic cardiomyopathy are also described for comparison.
Collapse
Affiliation(s)
- Adriana Adameova
- Institute of Cardiovascular Sciences, Department of Physiology, Faculty of Medicine, University of Manitoba, St. Boniface Hospital Research, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | | |
Collapse
|
17
|
Jia P, Wang J, Wang L, Chen X, Chen Y, Li WZ, Long R, Chen J, Shu YW, Liu K, Wang ZH. TNF-α upregulates Fgl2 expression in rat myocardial ischemia/reperfusion injury. Microcirculation 2014; 20:524-33. [PMID: 23432784 DOI: 10.1111/micc.12050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/18/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Proinflammatory cytokine TNF-α during MI/R injury has been studied extensively. However, how TNF-α induces microvascular dysfunction in MI/R is still unclear. This study investigates whether TNF-α regulates fibrinogen-like protein 2 (fgl2) expression, a procoagulant resulting in the formation of fibrin-rich microthrombus in MI/R injury. METHODS AND RESULTS Microthrombosis, TNF-α and fgl2 expression were assessed in rats with MI/R injury. The effect of TNF-α on fgl2 expression and fgl2 prothrombinase activity was investigated in CMECs, then CMECs were pretreated with selective inhibitors of NF-κB and p38 MAPK pathways. TNF-α and fgl2 expression were both upregulated in MI/R group. When neutralization of TNF-α, fgl2 expression was decreased in vivo. Fgl2 expression was upregulated in CMECs exposed to TNF-α. Accordingly, the ability of thrombin generation was increased in CMECs. Besides, TNF-α-induced fgl2 expression in the cells was suppressed by NF-κB inhibitor PDTC and/or p38 MAPK inhibitor SB203580. CONCLUSION TNF-α upregulates fgl2 expression via activation of NF-kB and p38 MAPK in CMECs. TNF-α-induced flg2 in CMECs mediates the formation of fibrin-rich microthrombus, which may be one of the mechanisms of microvascular dysfunction or obstruction due to MI/R injury.
Collapse
Affiliation(s)
- Peng Jia
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cardioprotective effect of selenium via modulation of cardiac ryanodine receptor calcium release channels in diabetic rat cardiomyocytes through thioredoxin system. J Nutr Biochem 2013; 24:2110-8. [PMID: 24183307 DOI: 10.1016/j.jnutbio.2013.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 11/21/2022]
Abstract
Increased oxidative stress contributes to heart dysfunction via impaired Ca(2+) homeostasis in diabetes. Abnormal RyR2 function related with altered cellular redox state is an important factor in the pathogenesis of diabetic cardiomyopathy, while its underlying mechanisms remain poorly understood. In the present study, we used a streptozotocin-induced rat model of diabetic cardiomyopathy and tested a hypothesis that diabetes-related alteration in RyR2 function is related with ROS-induced posttranslational modifications. For this, we used heart preparations from either a diabetic rat or a sodium selenate (NaSe)-treated (0.3 mg/kg for 4 weeks) diabetic rat as well as either NaSe- (100 nmol/L) or thioredoxin (Trx; 5 μmol/L)-incubated (30 min) diabetic cardiomyocytes. Experimental approaches included imaging of intracellular free-Ca(2+) ([Ca(2+)]i) under both electrically stimulated and resting Fluo-3-loaded cardiomyocytes. RyR2-mediated SR-Ca(2+) leak was significantly enhanced in diabetic cardiomyocytes, resulting in reduced amplitude and prolonged time courses of [Ca(2+)]i transients compared to those of controls. Both SR-Ca(2+) leak and [Ca(2+)]i transients were normalized by treating diabetic rats with NaSe or by incubating diabetic myocytes with NaSe or Trx. Moreover, exposure of diabetic cardiomyocytes to antioxidants significantly improved [Ca(2+)]i handling factors such as phosphorylation/protein levels of RyR2, amount of RyR2-bound FKBP12.6 and activities of both protein kinase A and CaMKII. NaSe treatment also normalized the oxidative stress/antioxidant defense biomarkers in plasma as well as Trx activity and nuclear factor-κB phosphorylation in the diabetic rat heart. Collectively, these findings suggest that redox modification through Trx-system besides the glutathione system contributes to abnormal function of RyR2s in hyperglycemic cardiomyocytes, presenting a potential therapeutic target for treating diabetics to preserve cardiac function.
Collapse
|
19
|
Ošt'ádalová I. Biological effects of selenium compounds with a particular attention to the ontogenetic development. Physiol Res 2013; 61:S19-34. [PMID: 22827875 DOI: 10.33549/physiolres.932327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Selenium is a trace element that is essential for living organism. Its beneficial effect is, however, expressed in a very narrow dosage range: the high and low doses of selenium are connected with pathological manifestations. The toxicity depends on the chemical form of selenium, state of organism, interactions with heavy metals and on the stage of ontogenetic development. Whereas one dose of sodium selenite (20 micromol/kg b.w.) is lethal in adult rats, suckling rats are entirely resistant. However, within one week after administration of the same dose, cataract of eye lens developed. The highest incidence of cataract was observed in 10-day-old animals and it decreased until day 20. From postnatal day 20 to day 40 the rats were resistant to both the lethal and cataractogenic effects of selenium. The incidence of cataract may be suppressed by premature weaning, lower hydration of suckling, change of water soluble/water insoluble lens protein ratio, thyroxine treatment, and by interaction with mercury. By means of its oxidative and reduction properties, selenium is involved in the maintenance of the cell redox homeostasis. Typical example is its possible cardioprotective effect: selenium decreased number of arrhythmias, reduced infarct size and improved the contractile recovery after ischemia/reperfusion injury. Selenium supplementation may thus increase cardiac tolerance to ischemic damage.
Collapse
Affiliation(s)
- I Ošt'ádalová
- Centre for Cardiovascular Research, Prague, Czech Republic.
| |
Collapse
|
20
|
Selenium in the prevention of anthracycline-induced cardiac toxicity in children with cancer. JOURNAL OF ONCOLOGY 2012; 2012:651630. [PMID: 23125858 PMCID: PMC3480000 DOI: 10.1155/2012/651630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 08/22/2012] [Indexed: 11/17/2022]
Abstract
High cumulative doses of anthracyclines (300-500 mg/m(2)) used in the treatment of children with cancer may result in cardiotoxicity, a major long-term adverse effect that limits clinical usefulness of this class of chemotherapeutic agents. We assessed anthracycline-induced cardiotoxicity by measuring Pro-BNP levels and echocardiographic (ECHO) findings and investigated potential protective effect of selenium (Se) supplementation in a group of pediatric cancer patients. Plasma level of Pro-BNP was measured, and ECHO was performed in 67 patients (45 boys, 22 girls; ages 2-18 years; median age 12 years) after they completed anthracycline-containing chemotherapy. Serum Se level was measured in 37 patients. Eleven patients had high Pro-BNP levels and/or cardiac failure with Pro-BNP levels of 10-8,022 pg/mL (median 226.3 pg/mL; laboratory normal level is less than 120 pg/mL). Serum Se levels were low (20-129 mcg/L, median 62 mcg/L) in ten of these eleven patients. Eight of 10 patients with low Se and high Pro-BNP levels were supplemented with Se 100 mcg/day for a period of 4-33 months (median 6 months) which resulted in improvement in Pro-BNP and/or ECHO findings. These results suggest that Se supplementation may have a role in protection against anthracycline-induced cardiac toxicity.
Collapse
|
21
|
Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:14787. [PMID: 23990836 PMCID: PMC3747764 DOI: 10.3402/mehd.v23i0.14787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/28/2022]
Abstract
There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and non-infectious inflammatory diseases such as asthma and rheumatoid arthritis.
Collapse
|
22
|
Sozmen NN, Tuncay E, Bilginoglu A, Turan B. Profound cardioprotection with timolol in a female rat model of aging-related altered left ventricular function. Can J Physiol Pharmacol 2011; 89:277-88. [DOI: 10.1139/y11-018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing evidence shows a marked beneficial effect with β-blockers in heart dysfunction via scavenging reactive oxygen species. Previously we showed that chronic treatment with either timolol or propranolol possessed similar beneficial effects for heart function in male rats as age increased, whereas only timolol exerted similar benefits in female rats. Therefore, in this study, we aimed first to examine the cellular bases for age-related alterations in excitation–contraction coupling in ventricular myocytes from female rats and, second, to investigate the hypothesis that age-related changes in [Ca2+]ihomeostasis and receptor-mediated system can be prevented with chronic timolol treatment. Chronic timolol treatment of 3-month-old female rats abolished age-related decrease in left ventricular developed pressure and the attenuated responses to β-adrenoreceptor stimulation. It also normalized the altered parameters of [Ca2+]itransients, decreased Ca2+loading of sarcoplasmic reticulum and increased basal [Ca2+]i, and decreased L-type Ca2+currents in 12-month-old female rats compared with the 3-month-old group. Adenylyl cyclase activity, β-adrenoreceptor affinity to its agonist, and β-adrenoreceptor density of the 12-month-old group are normalized to those of the 3-month-old group. Moreover, timolol treatment prevented dysfunction of the antioxidant system, including increased lipid peroxidation, decreased ratio of reduced glutathione to oxidized glutathione, and decreased activities of thioredoxin reductase and glucose-6-phosphate dehydrogenase, in the left ventricle of hearts from the 12-month-old group. Our data confirmed that aging-related early myocardial impairment is primarily related to a dysfunctional antioxidant system and impairment of Ca2+homeostasis, which can be prevented with chronic timolol treatment.
Collapse
Affiliation(s)
- Nazli N. Sozmen
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ayca Bilginoglu
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
23
|
Christophersen OA, Haug A. Animal products, diseases and drugs: a plea for better integration between agricultural sciences, human nutrition and human pharmacology. Lipids Health Dis 2011; 10:16. [PMID: 21247506 PMCID: PMC3031257 DOI: 10.1186/1476-511x-10-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 01/20/2011] [Indexed: 12/17/2022] Open
Abstract
Eicosanoids are major players in the pathogenesis of several common diseases, with either overproduction or imbalance (e.g. between thromboxanes and prostacyclins) often leading to worsening of disease symptoms. Both the total rate of eicosanoid production and the balance between eicosanoids with opposite effects are strongly dependent on dietary factors, such as the daily intakes of various eicosanoid precursor fatty acids, and also on the intakes of several antioxidant nutrients including selenium and sulphur amino acids. Even though the underlying biochemical mechanisms have been thoroughly studied for more than 30 years, neither the agricultural sector nor medical practitioners have shown much interest in making practical use of the abundant high-quality research data now available. In this article, we discuss some specific examples of the interactions between diet and drugs in the pathogenesis and therapy of various common diseases. We also discuss, using common pain conditions and cancer as specific examples, how a better integration between agricultural science, nutrition and pharmacology could lead to improved treatment for important diseases (with improved overall therapeutic effect at the same time as negative side effects and therapy costs can be strongly reduced). It is shown how an unnaturally high omega-6/omega-3 fatty acid concentration ratio in meat, offal and eggs (because the omega-6/omega-3 ratio of the animal diet is unnaturally high) directly leads to exacerbation of pain conditions, cardiovascular disease and probably most cancers. It should be technologically easy and fairly inexpensive to produce poultry and pork meat with much more long-chain omega-3 fatty acids and less arachidonic acid than now, at the same time as they could also have a similar selenium concentration as is common in marine fish. The health economic benefits of such products for society as a whole must be expected vastly to outweigh the direct costs for the farming sector.
Collapse
|
24
|
Alterations in serum selenium levels and their relation to troponin I in acute myocardial infarction. Mol Cell Biochem 2010; 345:23-7. [DOI: 10.1007/s11010-010-0555-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
|
25
|
Tappia PS, Asemu G, Rodriguez-Leyva D. Phospholipase C as a potential target for cardioprotection during oxidative stressThis review is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Can J Physiol Pharmacol 2010; 88:249-63. [DOI: 10.1139/y10-019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cardiac dysfunction due to ischemia–reperfusion (I/R) is associated with marked changes in membrane function and subsequent Ca2+-handling abnormalities in cardiomyocytes. The membrane abnormalities in hearts subjected to I/R arise primarily from oxidative stress as a consequence of increased formation of reactive oxygen species and other oxidants, as well as reduced antioxidant defenses. Little is known, however, about the nature and mechanisms of the sarcolemmal membrane changes with respect to phospholipase C (PLC)-related signaling events. In addition, the mechanisms involved in protection of the postischemic myocardium and in ischemic preconditioning with respect to PLC function need to be established. Accordingly, this article reviews the historical and current information on PLC-mediated signal transduction mechanisms in I/R, as well as outlining future directions that should be addressed. Such information will extend our knowledge of ischemic heart disease and help improve its therapy.
Collapse
Affiliation(s)
- Paramjit S. Tappia
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Girma Asemu
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Delfin Rodriguez-Leyva
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Department of Human Nutritional Sciences, Faculty of Human Ecology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
26
|
Dhalla NS, Saini-Chohan HK, Duhamel TA. Strategies for the regulation of intracellular calcium in ischemic heart disease. Future Cardiol 2009; 4:339-45. [PMID: 19804313 DOI: 10.2217/14796678.4.4.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Haug A, Graham RD, Christophersen OA, Lyons GH. How to use the world's scarce selenium resources efficiently to increase the selenium concentration in food. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009; 19:209-228. [PMID: 18833333 PMCID: PMC2556185 DOI: 10.1080/08910600701698986] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/22/2007] [Indexed: 12/30/2022]
Abstract
The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality. Selenium deficiency is regarded as a major health problem for 0.5 to 1 billion people worldwide, while an even larger number may consume less selenium than required for optimal protection against cancer, cardiovascular diseases and severe infectious diseases including HIV disease. Efficient recycling of selenium is difficult. Selenium is added in some commercial fertilizers, but only a small proportion is taken up by plants and much of the remainder is lost for future utilization. Large biofortification programmes with selenium added to commercial fertilizers may therefore be a fortification method that is too wasteful to be applied to large areas of our planet. Direct addition of selenium compounds to food (process fortification) can be undertaken by the food industry. If selenomethionine is added directly to food, however, oxidation due to heat processing needs to be avoided. New ways to biofortify food products are needed, and it is generally observed that there is less wastage if selenium is added late in the production chain rather than early. On these bases we have proposed adding selenium-enriched, sprouted cereal grain during food processing as an efficient way to introduce this nutrient into deficient diets. Selenium is a non-renewable resource. There is now an enormous wastage of selenium associated with large-scale mining and industrial processing. We recommend that this must be changed and that much of the selenium that is extracted should be stockpiled for use as a nutrient by future generations.
Collapse
Affiliation(s)
- Anna Haug
- Norwegian University of Life Sciences, As, Norway
| | | | | | | |
Collapse
|
28
|
Abstract
Controversy continues to surround the appropriate form and timing of nutrition support for the patient with circulatory shock. Clinical studies have demonstrated improvements in outcome with the administration of enteral nutrition to critically ill patients; however, the provision of enteral nutrition to critically ill patients with ongoing shock remains controversial. This article reviews gut perfusion during normal states and during circulatory shock as well as alterations in perfusion when enteral feeding is provided. Pharmaconutrients studied during ischemia and reperfusion are discussed.
Collapse
Affiliation(s)
- Gail Cresci
- Medical College of Georgia, Department of Surgery, Room 4072, 1120 15th Street, Augusta, GA 30912, USA.
| | | |
Collapse
|
29
|
Zapletal C, Heyne S, Breitkreutz R, Gebhard MM, Golling M. The influence of selenium substitution on microcirculation and glutathione metabolism after warm liver ischemia/reperfusion in a rat model. Microvasc Res 2008; 76:104-9. [PMID: 18572201 DOI: 10.1016/j.mvr.2008.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 04/14/2008] [Accepted: 04/30/2008] [Indexed: 01/20/2023]
Abstract
Ischemia/reperfusion (I/R) injury is a variable yet unavoidable complication in liver surgery and transplantation. Selenium-dependent glutathione-peroxidases (GPx) and selenoproteins function as antioxidant defense systems. One target in preventing I/R injury is enhancing the capacity of endogenous redox defense. It was the aim of this study to analyze the effects of selenium substitution on liver microcirculation, hepatocellular injury and glutathione status in a model of partial warm liver ischemia in the rat. Sodium selenite was administered in three different dosages i.v.: 0.125 microg/g, 0.25 microg/g and 0.375 microg/g body weight and compared to an untreated control group (each n=10). Intravital microscopy was performed after 70 min of partial warm liver ischemia and 90 min of reperfusion. Liver tissue and plasma samples were taken at the end of the experiment for laboratory analysis. Microcirculation improved significantly in all therapy groups in contrast to control animals. ALT levels decreased significantly whereas malondialdehyde levels remained unchanged. In liver tissue, selenium supplementation caused an increase in the amount of total and reduced glutathione without changes in oxidized glutathione. This effect is likely mediated by selenite itself and selenoprotein P rather than by modulating GPx activity. We were able to show that selenite substitution has an immediate protective effect on I/R injury after warm hepatic ischemia by acting as a radical scavenger and preserving the antioxidative capacity of the liver.
Collapse
Affiliation(s)
- Christina Zapletal
- Department of Surgery, Johann Wolfgang Goethe-University Frankfurt, Main, Germany.
| | | | | | | | | |
Collapse
|
30
|
Ray SD, Parmar M, Syed I, Rathod J, Zinkovsky D, Bulku E, Gigliotti J, Hackman RM, Stohs SJ. Long term exposure effect of a unique metabolic nutrition system containing a diverse group of phytochemicals on serum chemistry and genomic and non-genomic changes in the liver of female B6C3F1 mice. Phytother Res 2008; 22:458-71. [DOI: 10.1002/ptr.2337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Asano S, Rice KM, Kakarla S, Katta A, Desai DH, Walker EM, Wehner P, Blough ER. Aging influences multiple indices of oxidative stress in the heart of the Fischer 344/NNia x Brown Norway/BiNia rat. Redox Rep 2007; 12:167-80. [PMID: 17705987 DOI: 10.1179/135100007x200254] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We report the influence of aging on multiple markers of oxidative-nitrosative stress in the heart of adult (6-month), aged (30-month) and very aged (36-month) Fischer 344/NNiaHSd x Brown Norway/BiNia (F344/NXBN) rats. Compared to adult (6-month) hearts, indices of oxidative (superoxide anion [O2*-], 4-hydroxy-2-nonenal [4-HNE]) and nitrosative (protein nitrotyrosylation) stress were 34.1 +/- 28.1%, 186 +/- 28.1% and 94 +/- 5.8% higher, respectively, in 36-month hearts and these findings were highly correlated with increases in left ventricular wall thickness (r > 0.669; r > 0.710 and P < 0.01, respectively). Regression analysis showed that increases in cardiac oxidative-nitrosative stress with aging were significantly correlated with changes in the expression and/or regulation of proteins involved in transcriptional (NF-kappaB) activities, signaling (mitogen-activated protein kinases along with Src), apoptotic (Bcl-2, Traf-2), and cellular stress (HSPs). These results suggest that the aging F344/NXBN heart may be highly suited for unraveling the molecular events that lead to age-associated alterations in cardiac oxidative stress.
Collapse
Affiliation(s)
- Shinichi Asano
- Department of Biological Sciences, Marshall University, Huntington, West Virginia 25755-1090, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Shilo S, Pardo M, Aharoni-Simon M, Glibter S, Tirosh O. Selenium supplementation increases liver MnSOD expression: molecular mechanism for hepato-protection. J Inorg Biochem 2007; 102:110-8. [PMID: 17804075 DOI: 10.1016/j.jinorgbio.2007.07.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 07/23/2007] [Accepted: 07/23/2007] [Indexed: 11/18/2022]
Abstract
Selenium is recognized as essential in animal and human nutrition. Several hypotheses have been advanced for its biological activity. The aim of this study was to investigate the in vivo effect of selenium on rat liver manganese superoxide dismutase (MnSOD), a key antioxidant enzyme, under naïve and inflammatory conditions. Rats received sodium selenite supplementation and LPS injection. Whole-liver samples, isolated hepatocytes, Kupffer cells and blood samples were subjected to protein, RNA and biochemical analysis. Liver enrichment with selenium increased whole-liver MnSOD levels due to an increase in MnSOD transcription in hepatocytes. This was due to an increase in the ratio of specificity protein 1 to activating enhancer binding protein 2 DNA-binding activity. The inflammatory stimulus further elevated MnSOD levels in the whole-liver that was abrogated in sodium selenite supplementation due to reduced transcription of MnSOD in Kupffer cells. Moreover, selenium enrichment decreased Kupffer cells IL-6 transcription in LPS-injected animals. Anti-inflammatory activity of selenium was demonstrated by normalized blood levels of ALT and IL-6 in LPS-injected animals. In conclusion, selenium up-regulates hepatocytes MnSOD expression, probably improving their anti-oxidant defense, while decreasing MnSOD and IL-6 transcription in Kupffer cells in the presence of inflammatory stimuli, attenuating their inflammatory response. This selective mechanism may explain the anti-inflammatory and hepato-protective effect of selenium.
Collapse
Affiliation(s)
- Shani Shilo
- The School of Nutritional Sciences, Institute of Biochemistry, Food Science and Nutrition, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
33
|
Dhalla NS, Saini HK, Tappia PS, Sethi R, Mengi SA, Gupta SK. Potential role and mechanisms of subcellular remodeling in cardiac dysfunction due to ischemic heart disease. J Cardiovasc Med (Hagerstown) 2007; 8:238-50. [PMID: 17413299 DOI: 10.2459/01.jcm.0000263489.13479.68] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several studies have revealed varying degrees of changes in sarcoplasmic reticular and myofibrillar activities, protein content, gene expression and intracellular Ca-handling during cardiac dysfunction due to ischemia-reperfusion (I/R); however, relatively little is known about the sarcolemmal and mitochondrial alterations, as well as their mechanisms in the I/R hearts. Because I/R is associated with oxidative stress and intracellular Ca-overload, it has been indicated that changes in subcellular activities, protein content and gene expression due to I/R are related to both oxidative stress and Ca-overload. Intracellular Ca-overload appears to induce changes in subcellular activities, protein contents and gene expression (subcellular remodeling) by activation of proteases and phospholipases, as well as by affecting the genetic apparatus, whereas oxidative stress is considered to cause oxidation of functional groups of different subcellular proteins in addition to modifying the genetic machinery. Ischemic preconditioning, which is known to depress the development of both intracellular Ca-overload and oxidative stress due to I/R, was observed to attenuate the I/R-induced subcellular remodeling and improve cardiac performance. It is suggested that a combination therapy with antioxidants and interventions, which reduce the development of intracellular Ca-overload, may improve cardiac function by preventing or attenuating the occurrence of subcellular remodeling due to ischemic heart disease. It is proposed that defects in the activities of subcellular organelles may serve as underlying mechanisms for I/R-induced cardiac dysfunction under acute conditions, whereas subcellular remodeling due to alterations in gene expression may explain the impaired cardiac performance under chronic conditions of I/R.
Collapse
Affiliation(s)
- Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St Boniface General Hospital Research Centre, and Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| | | | | | | | | | | |
Collapse
|
34
|
Ueno H, Kajihara H, Nakamura H, Yodoi J, Nakamuro K. Contribution of thioredoxin reductase to T-cell mitogenesis and NF-kappaB DNA-binding promoted by selenite. Antioxid Redox Signal 2007; 9:115-21. [PMID: 17115890 DOI: 10.1089/ars.2007.9.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the essential role of selenium for cellular immune responses is obvious, delineation of the functions is lacking because selenium can either promote or inhibit cell growth, cytokine production, and activation of transcription factor nuclear factor-kappaB (NF-kappaB). Studies with human thioredoxin-1 (Trx-1)-transgenic (Tg) mice were conducted to evaluate the relationship between stimulation of T-cell mitogenic response by sodium selenite and the intracellular Trx-1 levels, and the activities of selenoenzymes and NF-kappaB-DNA binding. Concanavalin A-induced mitogenesis of wild-type mouse splenic cells was stimulated by exposure to low levels of selenite (0.02-0.1 microM), with augmentation of NF-kappaB-DNA binding activity. Treatment with NF-kappaB nuclear translocation inhibitor SN50 or thioredoxin reductase (TR) inhibitor aurothioglucose depressed this stimulatory action. The mitogenic response of Trx-1-Tg mouse splenic cells was enhanced by exposure to relatively high levels of selenite (> or = 0.05 microM), compared with the wild-type mouse. Selenite also augmented TR activity but not cellular glutathione peroxidase activity in the Trx-1-overexpressed cells. These results suggest that the stimulation of T-cell mitogenic response by the physiological levels of selenite is predominantly caused by increased TR activity, which may lead to reduction of Trx-1 dependent on the intracellular expression level and promotion of DNA binding of NF-kappaB.
Collapse
Affiliation(s)
- Hitoshi Ueno
- Department of Public Health and Preventive Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan.
| | | | | | | | | |
Collapse
|
35
|
Ostadalova I, Vobecky M, Chvojkova Z, Mikova D, Hampl V, Wilhelm J, Ostadal B. Selenium protects the immature rat heart against ischemia/reperfusion injury. Mol Cell Biochem 2006; 300:259-67. [PMID: 17187170 DOI: 10.1007/s11010-006-9391-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 11/21/2006] [Indexed: 11/27/2022]
Abstract
The aim of the study was to find out whether administration of selenium (Se) will protect the immature heart against ischemia/reperfusion.The control pregnant rats were fed laboratory diet (0.237 mg Se/kg diet); experimental rats received 2 ppm Na(2)SeO(3) in the drinking water from the first day of pregnancy until day 10 post partum. The concentration of Se in the serum and heart tissue was determined by activation analysis, the serum concentration of NO by chemiluminescence, cardiac concentration of lipofuscin-like pigment by fluorescence analysis. The 10 day-old hearts were perfused (Langendorff); recovery of developed force (DF) was measured after 40 min of global ischemia. In acute experiments, 10 day-old hearts were perfused with selenium (75 nmol/l) before or after global ischemia. Sensitivity to isoproterenol (ISO, pD(50)) was assessed as a response of DF to increasing cumulative dose.Se supplementation elevated serum concentration of Se by 16%. Se increased ischemic tolerance (recovery of DF, 32.28 +/- 2.37 vs. 41.82 +/- 2.91%, P < 0.05). Similar results were obtained after acute administration of Se during post-ischemic reperfusion (32.28 +/- 2.37 vs. 49.73 +/- 4.40%, P < 0.01). The pre-ischemic treatment, however, attenuated the recovery (23.08 +/- 3.04 vs. 32.28 +/- 2.37%, P < 0.05). Moreover, Se supplementation increased the sensitivity to the inotropic effect of ISO, decreased cardiac concentration of lipofuscin-like pigment and serum concentration of NO. Our results suggest that Se protects the immature heart against ischemia/reperfusion injury. It seems therefore, that ROS may affect the function of the neonatal heart, similarly as in adults.
Collapse
Affiliation(s)
- Ivana Ostadalova
- Centre of Cardiovascular Research, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4-Krc, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|