1
|
Moreno-Lorite J, Pérez-Luz S, Katsu-Jiménez Y, Oberdoerfer D, Díaz-Nido J. DNA repair pathways are altered in neural cell models of frataxin deficiency. Mol Cell Neurosci 2021; 111:103587. [PMID: 33418083 DOI: 10.1016/j.mcn.2020.103587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/20/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a hereditary and predominantly neurodegenerative disease caused by a deficiency of the protein frataxin (FXN). As part of the overall efforts to understand the molecular basis of neurodegeneration in FRDA, a new human neural cell line with doxycycline-induced FXN knockdown was established. This cell line, hereafter referred to as iFKD-SY, is derived from the human neuroblastoma SH-SY5Y and retains the ability to differentiate into mature neuron-like cells. In both proliferating and differentiated iFKD-SY cells, the induction of FXN deficiency is accompanied by increases in oxidative stress and DNA damage, reduced aconitase enzyme activity, higher levels of p53 and p21, activation of caspase-3, and subsequent apoptosis. More interestingly, FXN-deficient iFKD-SY cells exhibit an important transcriptional deregulation in many of the genes implicated in DNA repair pathways. The levels of some crucial proteins involved in DNA repair appear notably diminished. Furthermore, similar changes are found in two additional neural cell models of FXN deficit: primary cultures of FXN-deficient mouse neurons and human olfactory mucosa stem cells obtained from biopsies of FRDA patients. These results suggest that the deficiency of FXN leads to a down-regulation of DNA repair pathways that synergizes with oxidative stress to provoke DNA damage, which may be involved in the pathogenesis of FRDA. Thus, a failure in DNA repair may be considered a shared common molecular mechanism contributing to neurodegeneration in a number of hereditary ataxias including FRDA.
Collapse
Affiliation(s)
- Jara Moreno-Lorite
- Departamento Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM), Spain
| | - Sara Pérez-Luz
- Departamento Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM), Spain; Molecular Genetics Unit, Institute of Rare Diseases Research, Institute of Health Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km2.200, 28220 Madrid, Spain.
| | - Yurika Katsu-Jiménez
- Departamento Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM), Spain
| | - Daniel Oberdoerfer
- Departamento Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM), Spain
| | - Javier Díaz-Nido
- Departamento Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM), Spain
| |
Collapse
|
2
|
Lanzillotta C, Di Domenico F. Stress Responses in Down Syndrome Neurodegeneration: State of the Art and Therapeutic Molecules. Biomolecules 2021; 11:biom11020266. [PMID: 33670211 PMCID: PMC7916967 DOI: 10.3390/biom11020266] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Down syndrome (DS) is the most common genomic disorder characterized by the increased incidence of developing early Alzheimer’s disease (AD). In DS, the triplication of genes on chromosome 21 is intimately associated with the increase of AD pathological hallmarks and with the development of brain redox imbalance and aberrant proteostasis. Increasing evidence has recently shown that oxidative stress (OS), associated with mitochondrial dysfunction and with the failure of antioxidant responses (e.g., SOD1 and Nrf2), is an early signature of DS, promoting protein oxidation and the formation of toxic protein aggregates. In turn, systems involved in the surveillance of protein synthesis/folding/degradation mechanisms, such as the integrated stress response (ISR), the unfolded stress response (UPR), and autophagy, are impaired in DS, thus exacerbating brain damage. A number of pre-clinical and clinical studies have been applied to the context of DS with the aim of rescuing redox balance and proteostasis by boosting the antioxidant response and/or inducing the mechanisms of protein re-folding and clearance, and at final of reducing cognitive decline. So far, such therapeutic approaches demonstrated their efficacy in reverting several aspects of DS phenotype in murine models, however, additional studies aimed to translate these approaches in clinical practice are still needed.
Collapse
|
3
|
Maretina MA, Zheleznyakova GY, Lanko KM, Egorova AA, Baranov VS, Kiselev AV. Molecular Factors Involved in Spinal Muscular Atrophy Pathways as Possible Disease-modifying Candidates. Curr Genomics 2018; 19:339-355. [PMID: 30065610 PMCID: PMC6030859 DOI: 10.2174/1389202919666180101154916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by mutations in the SMN1 gene. Being a monogenic disease, it is characterized by high clinical heterogeneity. Variations in penetrance and severity of symptoms, as well as clinical discrepancies between affected family members can result from modifier genes influence on disease manifestation. SMN2 gene copy number is known to be the main phenotype modifier and there is growing evidence of additional factors contributing to SMA severity. Potential modifiers of spinal muscular atrophy can be found among the wide variety of different factors, such as multiple proteins interacting with SMN or promoting motor neuron survival, epigenetic modifications, transcriptional or splicing factors influencing SMN2 expression. Study of these factors enables to reveal mechanisms underlying SMA pathology and can have pronounced clinical application.
Collapse
Affiliation(s)
- Marianna A. Maretina
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Galina Y. Zheleznyakova
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden
| | - Kristina M. Lanko
- Saint Petersburg State Institute of Technology, Moskovsky prospect, 26, Saint Petersburg190013, Russia
| | - Anna A. Egorova
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| | - Vladislav S. Baranov
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
- Saint Petersburg State University, Universitetskaya emb. 7/9, 199034Saint Petersburg, Russia
| | - Anton V. Kiselev
- D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line, 3, Saint Petersburg199034, Russia
| |
Collapse
|
4
|
Othman H, Ammari M, Rtibi K, Bensaid N, Sakly M, Abdelmelek H. Postnatal development and behavior effects of in-utero exposure of rats to radiofrequency waves emitted from conventional WiFi devices. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:239-247. [PMID: 28458069 DOI: 10.1016/j.etap.2017.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
The present work investigated the effects of prenatal exposure to radiofrequency waves of conventional WiFi devices on postnatal development and behavior of rat offspring. Ten Wistar albino pregnant rats were randomly assigned to two groups (n=5). The experimental group was exposed to a 2.45GHz WiFi signal for 2h a day throughout gestation period. Control females were subjected to the same conditions as treated group without applying WiFi radiations. After delivery, the offspring was tested for physical and neurodevelopment during its 17 postnatal days (PND), then for anxiety (PND 28) and motricity (PND 40-43), as well as for cerebral oxidative stress response and cholinesterase activity in brain and serum (PND 28 and 43). Our main results showed that the in-utero WiFi exposure impaired offspring neurodevelopment during the first seventeen postnatal days without altering emotional and motor behavior at adult age. Besides, prenatal WiFi exposure induced cerebral oxidative stress imbalance (increase in malondialdehyde level (MDA) and hydrogen peroxide (H2O2) levels and decrease in catalase (CAT) and superoxide dismutase (SOD) activities) at 28 but not 43days old, also the exposure affected acethylcolinesterase activity at both cerebral and seric levels. Thus, the current study revealed that maternal exposure to WiFi radiofrequencies led to various adverse neurological effects in the offspring by affecting neurodevelopment, cerebral stress equilibrium and cholinesterase activity.
Collapse
Affiliation(s)
- Haifa Othman
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna 7021, Tunisia
| | - Mohamed Ammari
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna 7021, Tunisia; University of Tunis El Manar, Higher Institute of Applied Biological Sciences of Tunis, 9, Rue Zouhair Essafi, 1006 Tunis, Tunisia.
| | - Kaïs Rtibi
- University of Jendouba, Higher Institute of Biotechnology of Beja, Laboratory of Nutrition and Animal Physiology, B.P. 382 - 9000 Béja, Tunisia
| | - Noura Bensaid
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna 7021, Tunisia
| | - Mohsen Sakly
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna 7021, Tunisia
| | - Hafedh Abdelmelek
- University of Carthage, Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, Jarzouna 7021, Tunisia
| |
Collapse
|
5
|
Møllersen L, Moldestad O, Rowe AD, Bjølgerud A, Holm I, Tveterås L, Klungland A, Retterstøl L. Effects of Anthocyanins on CAG Repeat Instability and Behaviour in Huntington's Disease R6/1 Mice. PLOS CURRENTS 2016; 8. [PMID: 27540492 PMCID: PMC4973517 DOI: 10.1371/currents.hd.58d04209ab6d5de0844db7ef5628ff67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: Huntington’s disease (HD) is a progressive neurodegenerative disorder caused by CAG repeat expansions in the HTT gene. Somatic repeat expansion in the R6/1 mouse model of HD depends on mismatch repair and is worsened by base excision repair initiated by the 7,8-dihydroxy-8-oxoguanine-DNA glycosylase (Ogg1) or Nei-like 1 (Neil1). Ogg1 and Neil1 repairs common oxidative lesions. Methods: We investigated whether anthocyanin antioxidants added daily to the drinking water could affect CAG repeat instability in several organs and behaviour in R6/1 HD mice. In addition, anthocyanin-treated and untreated R6/1 HD mice at 22 weeks of age were tested in the open field test and on the rotarod. Results: Anthocyanin-treated R6/1 HD mice showed reduced instability index in the ears and in the cortex compared to untreated R6/1 mice, and no difference in liver and kidney. There were no significant differences in any of the parameters tested in the behavioural tests among anthocyanin-treated and untreated R6/1 HD mice. Conclusions: Our results indicate that continuous anthocyanin-treatment may have modest effects on CAG repeat instability in the ears and the cortex of R6/1 mice. More studies are required to investigate if anthocyanin-treatment could affect behaviour earlier in the disease course.
Collapse
Affiliation(s)
- Linda Møllersen
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Olve Moldestad
- Centre for Rare Disorders, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Alexander D Rowe
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Anja Bjølgerud
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ingunn Holm
- Department of Medical Genetics, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Linda Tveterås
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Lars Retterstøl
- Department of Medical Genetics, Oslo University Hospital, Ullevål, Oslo, Norway
| |
Collapse
|
6
|
Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther 2016; 157:84-104. [DOI: 10.1016/j.pharmthera.2015.11.003] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Guerra-Araiza C, Álvarez-Mejía AL, Sánchez-Torres S, Farfan-García E, Mondragón-Lozano R, Pinto-Almazán R, Salgado-Ceballos H. Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases. Free Radic Res 2013; 47:451-62. [DOI: 10.3109/10715762.2013.795649] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RAS, Sultana R. Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 2012; 17:1610-55. [PMID: 22115501 PMCID: PMC3448942 DOI: 10.1089/ars.2011.4109] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
Abstract
Several studies demonstrated that oxidative damage is a characteristic feature of many neurodegenerative diseases. The accumulation of oxidatively modified proteins may disrupt cellular functions by affecting protein expression, protein turnover, cell signaling, and induction of apoptosis and necrosis, suggesting that protein oxidation could have both physiological and pathological significance. For nearly two decades, our laboratory focused particular attention on studying oxidative damage of proteins and how their chemical modifications induced by reactive oxygen species/reactive nitrogen species correlate with pathology, biochemical alterations, and clinical presentations of Alzheimer's disease. This comprehensive article outlines basic knowledge of oxidative modification of proteins and lipids, followed by the principles of redox proteomics analysis, which also involve recent advances of mass spectrometry technology, and its application to selected age-related neurodegenerative diseases. Redox proteomics results obtained in different diseases and animal models thereof may provide new insights into the main mechanisms involved in the pathogenesis and progression of oxidative-stress-related neurodegenerative disorders. Redox proteomics can be considered a multifaceted approach that has the potential to provide insights into the molecular mechanisms of a disease, to find disease markers, as well as to identify potential targets for drug therapy. Considering the importance of a better understanding of the cause/effect of protein dysfunction in the pathogenesis and progression of neurodegenerative disorders, this article provides an overview of the intrinsic power of the redox proteomics approach together with the most significant results obtained by our laboratory and others during almost 10 years of research on neurodegenerative disorders since we initiated the field of redox proteomics.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Professor Barry Halliwell is recognized as a Redox Pioneer because he has published eight articles on redox biology that have been each cited more than 1000 times, and 158 articles that have been each cited more than 100 times. His contributions go back as far as 1976, when he was involved in elucidation of the Foyer-Halliwell-Asada cycle, an efficient mechanism for preventing oxidative damage to chloroplasts. His subsequent work established the important role of iron and zinc in free radical reactions and their relevance to human pathologies. Professor Halliwell is also a leader in developing novel methodology for detecting free radical intermediates in vivo, and his contributions to our knowledge of reactive nitrogen species are highly significant. His sustained excellence won him the top-cited scientist award in the United Kingdom in biomedical sciences in 1999, and in 2003 he was recognized as a highly cited scientist by Institute of Scientific Information (ISI) for work on plant antioxidants, and the same year ranked 28 out of 5494 biochemists/biologists for scientific impact. Two pieces of his scholarly work have been listed as Citation Classics by ISI, and in 2007 his laboratory was ranked number 1 worldwide based on highest citation score in research on free radicals.
Collapse
Affiliation(s)
- Shazib Pervaiz
- ROS, Apoptosis and Cancer Biology Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Sultana R, Butterfield DA. Brain Protein Oxidation and Modification for Good or for Bad in Alzheimer’s Disease. NEUROCHEMICAL MECHANISMS IN DISEASE 2011. [DOI: 10.1007/978-1-4419-7104-3_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Li X, Lin C, O'Connor PB. Glutamine deamidation: differentiation of glutamic acid and gamma-glutamic acid in peptides by electron capture dissociation. Anal Chem 2010; 82:3606-15. [PMID: 20373761 PMCID: PMC2872026 DOI: 10.1021/ac9028467] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Due to its much slower deamidation rate compared to that of asparagine (Asn), studies on glutamine (Gln) deamidation have been scarce, especially on the differentiation of its isomeric deamidation products: alpha- and gamma-glutamic acid (Glu). It has been shown previously that electron capture dissociation (ECD) can be used to generate diagnostic ions for the deamidation products of Asn: aspartic acid (Asp) and isoaspartic acid (isoAsp). The current study explores the possibility of an extension of this ECD based method to the differentiation of the alpha- and gamma-Glu residues, using three human Crystallin peptides (alphaA (1-11), betaB2 (4-14), and gammaS (52-71)) and their potentially deamidated forms as model peptides. It was found that the z(*)-72 ions can be used to both identify the existence and locate the position of the gamma-Glu residues. When the peptide contains a charge carrier near its N-terminus, the c+57 and c+59 ions may also be generated at the gamma-Glu residue. It was unclear whether formation of these N-terminal diagnostic ions is specific to the Pro-gamma-Glu sequence. Unlike the Asp containing peptides, the Glu containing peptides generally do not produce diagnostic side chain loss ions, due to the instability of the resulting radical. The presence of Glu residue(s) may be inferred from the observation of a series of z(n)(*)-59 ions, although it was neither site specific nor without interference from the gamma-Glu residues. Finally, several interference peaks exist in the ECD spectra, which highlights the importance of the use of high performance mass spectrometers for confident identification of gamma-Glu residues.
Collapse
Affiliation(s)
- Xiaojuan Li
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Peter B. O'Connor
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
- Department of Chemistry, University of Warwick, Coventry, UK
| |
Collapse
|
12
|
Franssens V, Boelen E, Anandhakumar J, Vanhelmont T, Büttner S, Winderickx J. Yeast unfolds the road map toward α-synuclein-induced cell death. Cell Death Differ 2009; 17:746-53. [DOI: 10.1038/cdd.2009.203] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
13
|
Kuronen M, Talvitie M, Lehesjoki AE, Myllykangas L. Genetic modifiers of degeneration in the cathepsin D deficient Drosophila model for neuronal ceroid lipofuscinosis. Neurobiol Dis 2009; 36:488-93. [PMID: 19761846 DOI: 10.1016/j.nbd.2009.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/14/2009] [Accepted: 09/07/2009] [Indexed: 11/20/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are pediatric, neurodegenerative, lysosomal storage disorders. Mutations in cathepsin D result in the most severe, congenital form of NCLs. We have previously generated a cathepsin D deficient Drosophila model, which exhibits the key features of NCLs: progressive intracellular accumulation of autofluorescent storage material and modest neurodegeneration in the brain areas related to visual functions. Here we extend the phenotypic characterization of cathepsin D deficient Drosophila and report that modest degenerative changes are also present in their retinae. Furthermore, by utilizing this phenotype, we examined the possible effect of 17 candidate modifiers, selected based on the results from other cathepsin D deficiency models. We found enhancers of this phenotype that support the involvement of endocytosis-, lipid metabolism- and oxidation-related factors in the cathepsin D deficiency induced degeneration. Our results warrant further investigation of these mechanisms in the pathogenesis of cathepsin D deficiency.
Collapse
Affiliation(s)
- Mervi Kuronen
- Folkhälsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
14
|
Sun F, Kanthasamy A, Anantharam V, Kanthasamy AG. Mitochondrial accumulation of polyubiquitinated proteins and differential regulation of apoptosis by polyubiquitination sites Lys-48 and -63. J Cell Mol Med 2009; 13:1632-1643. [PMID: 19432818 DOI: 10.1111/j.1582-4934.2009.00775.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Proteins tagged with lysine (Lys, K) 48 polyubiquitins chains are destined for degradation by the 26S proteasomal system. Impairment of the ubiquitin proteasome system (UPS) function culminates in the accumulation of polyubiquitinated proteins in many neurodegenerative conditions including Parkinson's disease (PD). Nevertheless, the cellular mechanisms underlying cell death induced by an impaired UPS are still not clear. Intriguingly, recent studies indicate that several proteins associated with familial PD are capable of promoting the assembly of Lys-63 polyubiquitin chains. Therefore, the objective of this study was to examine the role of K48 and K63 ubiquitination in mitochondria-mediated apoptosis in in vitro models of dopaminergic degeneration. Exposure of the widely used proteasome inhibitor MG-132 to dopaminergic neuronal cell line (N27) induced a rapid accumulation of polyubiquitinated proteins in the mitochondria. This appears to result in the preferential association of ubiquitin conjugates in the outer membrane and polyubiquitination of outer membrane proteins. Interestingly, the ubiquitin(K48R) mutant effectively rescued cells from MG-132-induced mitochondrial apoptosis without altering the antioxidant status of cells; whereas the ubiquitin(K63R) mutant augmented the proapoptotic effect of MG-132. Herein, we report a novel conclusion that polyubiquitinated proteins, otherwise subjected to proteasomal degradation, preferentially accumulate in the mitochondria during proteolytic stress; and that polyubiquitination of Lys-48 and Lys-63 are key determinants of mitochondria-mediated cell death during proteasomal dysfunction. Together, these findings yield novel insights into a crosstalk between the UPS and mitochondria in dopaminergic neuronal cells.
Collapse
Affiliation(s)
- Faneng Sun
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Vellareddy Anantharam
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
15
|
Abstract
In my career I have moved from chemistry to biochemistry to plant science to clinical chemistry and back again (in a partial way) to plants. This review presents a brief history of my research achievements (ascorbate-glutathione cycle, role of iron in oxidative damage and human disease, biomarkers of free radical damage, and studies on atherosclerosis and neurodegeneration) and how they relate to my research activities today. The field of free radicals/other reactive species/antioxidants underpins all of modern Biology. These agents helped to drive human evolution and the basic principles of the field are repeatedly found to be relevant in other research areas. It was an exciting field when I started some 40 years ago, and it still is today, but some major challenges must be faced.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore.
| |
Collapse
|
16
|
Calkins MJ, Johnson DA, Townsend JA, Vargas MR, Dowell JA, Williamson TP, Kraft AD, Lee JM, Li J, Johnson JA. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid Redox Signal 2009; 11:497-508. [PMID: 18717629 PMCID: PMC2933570 DOI: 10.1089/ars.2008.2242] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor known to induce expression of a variety of cytoprotective and detoxification genes. Several of the genes commonly regulated by Nrf2 have been implicated in protection from neurodegenerative conditions. Work from several laboratories has uncovered the potential for Nrf2-mediated transcription to protect from neurodegeneration resulting from mechanisms involving oxidative stress. For this reason, Nrf2 may be considered a therapeutic target for conditions that are known to involve free radical damage. Because common mechanisms of neurodegeneration, such as mitochondrial dysfunction and build-up of reactive oxygen species, are currently being uncovered, targeting Nrf2 may be valuable in combating conditions with variable causes and etiologies. Most effectively to target this protein in neurodegenerative conditions, a description of the involvement of Nrf2 and potential for neuroprotection must come from laboratory models. Herein, we review the current literature that suggests that Nrf2 may be a valuable therapeutic target for neurodegenerative disease, as well as experiments that illustrate potential mechanisms of protection.
Collapse
Affiliation(s)
- Marcus J Calkins
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rollo CD. Dopamine and Aging: Intersecting Facets. Neurochem Res 2008; 34:601-29. [DOI: 10.1007/s11064-008-9858-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
|
18
|
Sander M, Avlund K, Lauritzen M, Gottlieb T, Halliwell B, Stevnsner T, Wewer U, Bohr VA. Aging-from molecules to populations. Mech Ageing Dev 2008; 129:614-23. [PMID: 18789959 DOI: 10.1016/j.mad.2008.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Accepted: 08/19/2008] [Indexed: 11/26/2022]
Abstract
The mean age of the human population is steadily increasing in many areas around the globe, a phenomenon with large social, political, economic and biological/medical implications. Inevitably, this phenomenon is stimulating great interest in understanding and potentially modulating the process of human aging. To foster interactions and collaboration between diverse scientists interested in the biochemical, physiological, epidemiological and psychosocial aspects of aging, The University of Copenhagen Faculty of Health Sciences recently organized and co-sponsored a workshop entitled Aging-From Molecules to Populations. The following questions about human aging were discussed at the workshop: What is the limit of human life expectancy? What are the key indicators of human aging? What are the key drivers of human aging? Which genes have the greatest impact on human aging? How similar is aging-related cognitive decline to pathological cognitive decline associated with neurological disease? Are human progeriod diseases, characterized by premature aging, good models for "normal" human aging? Is delayed or "elite" aging informative about "normal" human aging? To what extent and by what mechanisms do early life environmental factors influence aging-associated physical and cognitive decline? To what extent and by what mechanism does the social environment influence life course outcomes? What physiological factors underlie the timing and extent of aging-associated physical and cognitive decline? How do cultural stereotypes and perceptions of aging influence the process and experience of aging? One of the primary outcomes of the workshop was a recognition that cross-disciplinary studies and "out-of-the-box" approaches, especially those that adopt an integrated life course perspective on human health status, are needed to expedite advances in aging research. This and other outcomes of the workshop are summarized and discussed in this report.
Collapse
|
19
|
Bánhegyi G, Mandl J, Csala M. Redox-based endoplasmic reticulum dysfunction in neurological diseases. J Neurochem 2008; 107:20-34. [PMID: 18643792 DOI: 10.1111/j.1471-4159.2008.05571.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The redox homeostasis of the endoplasmic reticulum lumen is characteristically different from that of the other subcellular compartments. The concerted action of membrane transport processes and oxidoreductase enzymes maintain the oxidized state of the thiol-disulfide and the reducing state of the pyridine nucleotide redox systems, which are prerequisites for the normal functions of the organelle. The powerful thiol-oxidizing machinery allows oxidative protein folding but continuously challenges the local antioxidant defense. Alterations of the cellular redox environment either in oxidizing or reducing direction affect protein processing and may induce endoplasmic reticulum stress and unfolded protein response. The activated signaling pathways attempt to restore the balance between protein loading and processing and induce apoptosis if the attempt fails. Recent findings strongly support the involvement of this mechanism in brain ischemia, neuronal degenerative diseases and traumatic injury. The redox changes in the endoplasmic reticulum are integral parts of the pathomechanism of neurological diseases, either as causative agents, or as complications.
Collapse
Affiliation(s)
- Gábor Bánhegyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
20
|
Dukes AA, Van Laar VS, Cascio M, Hastings TG. Changes in endoplasmic reticulum stress proteins and aldolase A in cells exposed to dopamine. J Neurochem 2008; 106:333-46. [PMID: 18384645 DOI: 10.1111/j.1471-4159.2008.05392.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In Parkinson's disease, oxidative stress is implicated in protein misfolding and aggregation, which may activate the unfolded protein response by the endoplasmic reticulum (ER). Dopamine (DA) can initiate oxidative stress via H(2)O(2) formation by DA metabolism and by oxidation into DA quinone. We have previously shown that DA quinone induces oxidative protein modification, mitochondrial dysfunction in vitro, and dopaminergic cell toxicity in vivo and in vitro. In this study, we used cysteine- and lysine-reactive fluorescent dyes with 2D difference in-gel electrophoresis, mass spectrometry, and peptide mass fingerprint analysis to identify proteins in PC12 cell mitochondrial-enriched fractions that were altered in abundance following DA exposure (150 muM, 16 h). Quantitative changes in proteins labeled with fluorescent dyes indicated increases in a subset of proteins after DA exposure: calreticulin, ERp29, ERp99, Grp58, Grp78, Grp94 and Orp150 (149-260%), and decreased levels of aldolase A (39-42%). Changes in levels of several proteins detected by 2D difference in-gel electrophoresis were confirmed by western blot. Using this unbiased proteomics approach, our findings demonstrated that in PC12 cells, DA exposure leads to a cellular response indicative of ER stress prior to the onset of cell death, providing a potential link between DA and the unfolded protein response in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- April A Dukes
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
21
|
Yang W, Sheng H, Homi HM, Warner DS, Paschen W. Cerebral ischemia/stroke and small ubiquitin-like modifier (SUMO) conjugation--a new target for therapeutic intervention? J Neurochem 2008; 106:989-99. [PMID: 18410505 DOI: 10.1111/j.1471-4159.2008.05404.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transient cerebral ischemia/stroke activates various post-translational protein modifications such as phosphorylation and ubiquitin conjugation that are believed to play a major role in the pathological process triggered by an interruption of blood supply and culminating in cell death. A new system of post-translational protein modification has been identified, termed as small ubiquitin-like modifier (SUMO) conjugation. Like ubiquitin, SUMO is conjugated to the lysine residue of target proteins in a complex process. This review summarizes observations from recent experiments focusing on the effect of cerebral ischemia on SUMO conjugation. Transient global and focal cerebral ischemia both induced a rapid, dramatic and long-lasting rise in levels of SUMO2/3 conjugation. After transient focal cerebral ischemia, SUMO conjugation was particularly prominent in neurons located at the border of the ischemic territory where SUMO-conjugated proteins translocated to the nucleus. Many SUMO conjugation target proteins are transcription factors and sumoylation has been shown to have a major impact on the activity, stability, and cellular localization of target proteins. The rise in levels of SUMO-conjugated proteins is therefore likely to have a major effect on the fate of post-ischemic neurons. The sumoylation process could provide an exciting new target for therapeutic intervention.
Collapse
Affiliation(s)
- Wei Yang
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
22
|
Persistent mitochondrial dysfunction and oxidative stress hinder neuronal cell recovery from reversible proteasome inhibition. Apoptosis 2008; 13:588-99. [DOI: 10.1007/s10495-008-0182-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Kabuta T, Setsuie R, Mitsui T, Kinugawa A, Sakurai M, Aoki S, Uchida K, Wada K. Aberrant molecular properties shared by familial Parkinson’s disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1. Hum Mol Genet 2008; 17:1482-96. [DOI: 10.1093/hmg/ddn037] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
24
|
Kinyamu HK, Jefferson WN, Archer TK. Intersection of nuclear receptors and the proteasome on the epigenetic landscape. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:83-95. [PMID: 18095329 PMCID: PMC2482603 DOI: 10.1002/em.20360] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nuclear receptors (NRs) represent a class of transcription factors that associate with both positive and negative chromatin modifying complexes to activate or repress gene transcription. The 26S proteasome plays a major role in NR-regulated gene transcription by tightly regulating the levels of the receptor and coregulator complexes. Recent evidence suggests a robust nonproteolytic role for specific proteasome subunits in gene transcription mediated via alterations in specific histone modifications. The involvement of nuclear receptors and the proteasome with chromatin modifying complexes or proteins, particularly those that modify DNA and histone proteins, provides an opportunity to review two critical epigenetic mechanisms that control gene expression and heritable biological processes. Both nuclear receptors and the proteasome are targets of environmental factors including some which lead to epigenetic changes that can influence human diseases such as cancer. In this review, we will explore molecular mechanisms by which NR-mediated gene expression, under the control of the proteasome, can result in altered epigenetic landscapes.
Collapse
Affiliation(s)
| | | | - Trevor K. Archer
- Correspondence to: Trevor K. Archer, Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, 111 Alexander Drive, P.O. Box 12233 (MD C4−06), Research Triangle Park, NC 27709, USA. E-mail:
| |
Collapse
|
25
|
Dalle-Donne I. Familial amyotrophic lateral sclerosis (FALS): Emerging hints from redox proteomics. Highlight commentary on: "Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis". Free Radic Biol Med 2007; 43:157-9. [PMID: 17603924 DOI: 10.1016/j.freeradbiomed.2007.03.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 03/12/2007] [Accepted: 03/19/2007] [Indexed: 11/16/2022]
Affiliation(s)
- Isabella Dalle-Donne
- Department of Biology, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| |
Collapse
|
26
|
Calabrese V. Highlight Commentary on "Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice--a model of familial amyotrophic lateral sclerosis". Free Radic Biol Med 2007; 43:160-2. [PMID: 17603925 DOI: 10.1016/j.freeradbiomed.2007.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 11/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease characterized by rapid degeneration of and loss of function in the motor cortex, brain stem, and spinal cord, particularly the anterior horn cells. Since the pioneering work of Brown and colleagues, more than 100 mutations in Cu,Zn superoxide dismutase (SOD1) have been described (P. Pasinelli, R. H. Brown, Nat. Rev. Neurosci.7, 710-723, 2006). There are toxic gain-of-function alterations in SOD1, because the enzymatic activity of this protein is not different in ALS from that of controls. The paper by Butterfield and colleagues reporting the use of redox proteomics to identify oxidatively modified proteins in the spinal cord in the G93A-SOD1 mouse model of familial amyotrophic lateral sclerosis was identified by the SCOPUS science literature information system to be one of the top 20 downloaded papers for 2005-2006 in Free Radical Biology and Medicine. Here my thoughts on the importance and impact of this paper are reported.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, University of Catania, Viale Andrea Doria 6, Catania 95125, Italy.
| |
Collapse
|
27
|
Tang SY, Gruber J, Wong KP, Halliwell B. Psoralea corylifolia L. inhibits mitochondrial complex I and proteasome activities in SH-SY5Y cells. Ann N Y Acad Sci 2007; 1100:486-96. [PMID: 17460213 DOI: 10.1196/annals.1395.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growing interest in alternative medicines, including traditional medicinal plants, has caused some health concerns due to poor awareness in the general population of the possible side effects from inappropriate practices. Psoralea corylifolia L. has been used in Chinese and Indian traditional medicine for the treatment of various inflammatory diseases of the skin and to improve vitality. Our data show that the extract obtained from the seeds of Psoralea corylifolia L. decreased mitochondrial complex I and proteasome activities; and oxidative stress might be an early event.
Collapse
Affiliation(s)
- Soon Yew Tang
- National University of Singapore, University Hall, Lee Kong Chian Wing, UHL 05-02G, 21 Lower Kent Ridge Road, Singapore.
| | | | | | | |
Collapse
|
28
|
Abstract
'Reactive species' (RS) of various types are formed in vivo and many are powerful oxidizing agents, capable of damaging DNA and other biomolecules. Increased formation of RS can promote the development of malignancy, and the 'normal' rates of RS generation may account for the increased risk of cancer development in the aged. Indeed, knockout of various antioxidant defence enzymes raises oxidative damage levels and promotes age-related cancer development in animals. In explaining this, most attention has been paid to direct oxidative damage to DNA by certain RS, such as hydroxyl radical (OH*). However, increased levels of DNA base oxidation products such as 8OHdg (8-hydroxy-2'-deoxyguanosine) do not always lead to malignancy, although malignant tumours often show increased levels of DNA base oxidation. Hence additional actions of RS must be important, possibly their effects on p53, cell proliferation, invasiveness and metastasis. Chronic inflammation predisposes to malignancy, but the role of RS in this is likely to be complex because RS can sometimes act as anti-inflammatory agents.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7 Level 2 Singapore 117597.
| |
Collapse
|
29
|
|