1
|
Huang C, Zhang H, Wang J, Li J, Liu Q, Zong Q, Zhang Y, Wang Q, Zhou Q. Preliminary analysis of the role of small hepatitis B surface proteins mutations in the pathogenesis of occult hepatitis B infection via the endoplasmic reticulum stress-induced UPR-ERAD pathway. Open Life Sci 2025; 20:20220951. [PMID: 39926475 PMCID: PMC11806202 DOI: 10.1515/biol-2022-0951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 02/11/2025] Open
Abstract
A growing body of evidence has shown that hepatitis B surface antigen (HBsAg) mutations can influence the occurrence of occult hepatitis B infection (OBI), particularly amino acid substitutions in small hepatitis B surface proteins (SHBs). The mechanistic basis for these results, however, remains unclear. This study was designed to explore the potential impact and mechanisms of OBI-related SHBs mutations on serum HBsAg. Huh7 and HepG2 cells were transfected with plasmids encoding wild-type (WT) or OBI-related SHB mutation-containing sequences, after which a chemiluminescence approach was used to detect HBsAg levels in cell culture supernatants. Western blotting was further used to assess HBsAg and endoplasmic reticulum stress (ERS)-related protein levels in lysates prepared from these cells, while the localization of HBsAg within cells was assessed via immunofluorescent staining. Cells transfected with OBI-related SHB mutation-encoding plasmids exhibited lower supernatant HBsAg levels than cells transfected with WT plasmids. Intracellular and extracellular HBsAg levels in these mutant plasmid-transfected cells were lower relative to those for WT plasmid-transfected cells, and HBsAg accumulation within the ER was detected via immunofluorescent staining in cells transfected with OBI-related SHB mutation-encoding plasmids, ERS-related protein content was also significantly increased in mutant plasmid-transfected cells as compared to those in the WT group. These results suggest that proteins harboring OBI-related mutations may tend to accumulate in the ER, thereby triggering an ERS response and impairing the transcription and translation of HBsAg via the activation of the unfolded protein response and ER-associated protein degradation pathway. These effects ultimately reduce the overall assembly of HBV virions in the ER and their associated secretion.
Collapse
Affiliation(s)
- Chengrong Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, 246003, China
| | - Hao Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jing Wang
- Department of Clinical Laboratory, Nanjing Jiangning Hospital, Nanjing, 211100, China
| | - Jianfei Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Qian Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Qiyin Zong
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yunyun Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Qin Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Qiang Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| |
Collapse
|
2
|
Wang Y, Li J, Cao H, Li LF, Dai J, Cao M, Deng H, Zhong D, Luo Y, Li Y, Li M, Peng D, Sun Z, Gao X, Moon A, Tang L, Sun Y, Li S, Qiu HJ. African swine fever virus modulates the endoplasmic reticulum stress-ATF6-calcium axis to facilitate viral replication. Emerg Microbes Infect 2024; 13:2399945. [PMID: 39230190 PMCID: PMC11441038 DOI: 10.1080/22221751.2024.2399945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
African swine fever (ASF), caused by African swine fever virus (ASFV), is a devastating infectious disease of domestic pigs and wild boar, which threatens the global pig industry. Endoplasmic reticulum (ER) is a multifunctional signaling organelle in eukaryotic cells that is involved in protein synthesis, processing, posttranslational modification and quality control. As intracellular parasitic organisms, viruses have evolved several strategies to modulate ER functions to favor their life cycles. We have previously demonstrated that the differentially expressed genes associated with unfolded protein response (UPR), which represents a response to ER stress, are significantly enriched upon ASFV infection. However, the correlation between the ER stress or UPR and ASFV replication has not been illuminated yet. Here, we demonstrated that ASFV infection induces ER stress both in target cells and in vivo, and subsequently activates the activating transcription factor 6 (ATF6) branch of the UPR to facilitate viral replication. Mechanistically, ASFV infection disrupts intracellular calcium (Ca2+) homeostasis, while the ATF6 pathway facilitates ASFV replication by increasing the cytoplasmic Ca2+ level. More specifically, we demonstrated that ASFV infection triggers ER-dependent Ca2+ release via the inositol triphosphate receptor (IP3R) channel. Notably, we showed that the ASFV B117L protein plays crucial roles in ER stress and the downstream activation of the ATF6 branch, as well as the disruption of Ca2+ homeostasis. Taken together, our findings reveal for the first time that ASFV modulates the ER stress-ATF6-Ca2+ axis to facilitate viral replication, which provides novel insights into the development of antiviral strategies for ASFV.
Collapse
Affiliation(s)
- Yanjin Wang
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Jiaqi Li
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hongwei Cao
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jingwen Dai
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Mengxiang Cao
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hao Deng
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Dailang Zhong
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Meilin Li
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Dingkun Peng
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Zitao Sun
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiaowei Gao
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Assad Moon
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Lijie Tang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Su Li
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Prevention and Control, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| |
Collapse
|
3
|
Rivas A, Vidal RL, Hetz C. Targeting the unfolded protein response for disease intervention. Expert Opin Ther Targets 2015; 19:1203-18. [PMID: 26166159 DOI: 10.1517/14728222.2015.1053869] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The accumulation of misfolded proteins in the endoplasmic reticulum (ER) generates a stress condition that engages the unfolded protein response (UPR). The UPR is an adaptive reaction that aims to reestablish ER proteostasis by recovering the folding capacity of the cell. However, chronic ER stress results in apoptosis. AREAS COVERED This review focuses on discussing the emerging role of the UPR as a driver of several human pathologies including diabetes, neurodegenerative diseases and cancer. The involvement of specific UPR signaling components on different diseases is highlighted based on preclinical models and pharmacological and genetic manipulation of the pathway. EXPERT OPINION Therapeutic strategies directed to regulate the activity of different UPR signaling arms may reduce stress levels with a therapeutic gain. Recent drug discovery efforts have identified small molecules that target specific UPR components, providing protection on various disease models. However, important side effects are predicted in the chronic administration due to the fundamental role of the UPR in highly secretory organs such as liver and pancreas. To overcome these problems, we propose the use of combinatorial treatments of selected drugs with natural compounds that are known to modulate the ER proteostasis network.
Collapse
Affiliation(s)
- Alexis Rivas
- University of Chile, Biomedical Neuroscience Institute, Faculty of Medicine , Santiago , Chile
| | | | | |
Collapse
|
4
|
Baldassarre H, Deslauriers J, Neveu N, Bordignon V. Detection of endoplasmic reticulum stress markers and production enhancement treatments in transgenic goats expressing recombinant human butyrylcholinesterase. Transgenic Res 2011; 20:1265-72. [PMID: 21340524 DOI: 10.1007/s11248-011-9493-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 02/08/2011] [Indexed: 02/03/2023]
Abstract
Compromised lactation physiology has been observed in transgenic animals, possibly due to the excessive demand placed by the expression of complex recombinant glycoproteins in the mammary gland. In previous studies we described lactation parameters and milk composition characteristics of transgenic goats expressing recombinant human butyrylcholinesterase in milk, and we showed evidence suggesting that lactation cessation could be associated with endoplasmic reticulum stress. We now report data from immunohistochemistry studies targeting activation transcription factor 6 and caspase 12, two signal transducers associated with endoplasmic reticulum stress, designed to further elucidate potential mechanisms responsible for the disruption in mammary epithelium function previously described. We found strong evidence of endoplasmic reticulum stress associated with the premature cessation of lactation. In addition, we utilized previously generated knowledge to design and test two treatments for enhanced productivity in transgenic goats. Pre-partum treatment with reserpine and dexamethasone to stimulate mammary priming for lactation resulted in a significant increase in milk production on day 1 (573 ± 350 vs. 93 ± 92 mL; P < 0.01), first week (8,832 ± 2,286 vs. 5,946 ± 2,039; P < 0.01) and the first month of lactation (42.5 ± 10 vs. 34.9 ± 6 kg; P < 0.05) compared to untreated controls. Mammary infusions with inosine during the early stages of lactation to promote mammary stem-cell proliferation also resulted in significantly increased milk production volumes, ranging from 26 to 200% more milk, in the treated glands compared to placebo.
Collapse
|
5
|
Hanzlik RP, Fang J, Koen YM. Filling and mining the reactive metabolite target protein database. Chem Biol Interact 2008; 179:38-44. [PMID: 18823962 DOI: 10.1016/j.cbi.2008.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/22/2008] [Accepted: 08/26/2008] [Indexed: 12/13/2022]
Abstract
The post-translational modification of proteins is a well-known endogenous mechanism for regulating protein function and activity. Cellular proteins are also susceptible to post-translational modification by xenobiotic agents that possess, or whose metabolites possess, significant electrophilic character. Such non-physiological modifications to endogenous proteins are sometimes benign, but in other cases they are strongly associated with, and are presumed to cause, lethal cytotoxic consequences via necrosis and/or apoptosis. The Reactive Metabolite Target Protein Database (TPDB) is a searchable, freely web-accessible (http://tpdb.medchem.ku.edu:8080/protein_database/) resource that attempts to provide a comprehensive, up-to-date listing of known reactive metabolite target proteins. In this report we characterize the TPDB by reviewing briefly how the information it contains came to be known. We also compare its information to that provided by other types of "-omics" studies relevant to toxicology, and we illustrate how bioinformatic analysis of target proteins may help to elucidate mechanisms of cytotoxic responses to reactive metabolites.
Collapse
Affiliation(s)
- Robert P Hanzlik
- Department of Medicinal Chemistry and Bioinformatics Core Facility, University of Kansas, Lawrence, 66045-7582, USA.
| | | | | |
Collapse
|
6
|
Jian B, Hsieh CH, Chen J, Choudhry M, Bland K, Chaudry I, Raju R. Activation of endoplasmic reticulum stress response following trauma-hemorrhage. Biochim Biophys Acta Mol Basis Dis 2008; 1782:621-6. [PMID: 18801427 DOI: 10.1016/j.bbadis.2008.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 08/15/2008] [Accepted: 08/19/2008] [Indexed: 11/18/2022]
Abstract
Hemorrhagic trauma leads to organ dysfunction, sepsis and death. There is abnormal production of proinflammatory cytokines by Kupffer cells, tissue hypoxia and liver injury following trauma-hemorrhage. The physiological conditions consequent to trauma-hemorrhage are consistent with factors necessary to initiate endoplasmic reticulum (ER) stress and unfolded protein response. However, the contribution of ER stress to apoptosis and liver injury after trauma-hemorrhage is not known. In the present study ER stress was investigated in mice that underwent trauma-hemorrhage or sham operation. Expressions of endoplasmic reticulum stress proteins Bip, ATF6, PERK, IRE1alpha, and PDI were significantly elevated in the liver after trauma-hemorrhage compared to the controls. The ER stress associated proapoptotic transcription factor CHOP protein expression was also significantly elevated in trauma-hemorrhage group. Consistent with this, enhanced DNA fragmentation was observed, confirming apoptosis, in the liver following trauma-hemorrhage. These results demonstrate the initiation of ER stress and its role in apoptosis and liver injury, subsequent to hemorrhagic trauma.
Collapse
Affiliation(s)
- Bixi Jian
- Center for Surgical Research, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
RNAi screen of endoplasmic reticulum-associated host factors reveals a role for IRE1alpha in supporting Brucella replication. PLoS Pathog 2008; 4:e1000110. [PMID: 18654626 PMCID: PMC2453327 DOI: 10.1371/journal.ppat.1000110] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/24/2008] [Indexed: 11/20/2022] Open
Abstract
Brucella species are facultative intracellular bacterial pathogens that cause brucellosis, a global zoonosis of profound importance. Although recent studies have demonstrated that Brucella spp. replicate within an intracellular compartment that contains endoplasmic reticulum (ER) resident proteins, the molecular mechanisms by which the pathogen secures this replicative niche remain obscure. Here, we address this issue by exploiting Drosophila S2 cells and RNA interference (RNAi) technology to develop a genetically tractable system that recapitulates critical aspects of mammalian cell infection. After validating this system by demonstrating a shared requirement for phosphoinositide 3-kinase (PI3K) activities in supporting Brucella infection in both host cell systems, we performed an RNAi screen of 240 genes, including 110 ER-associated genes, for molecules that mediate bacterial interactions with the ER. We uncovered 52 evolutionarily conserved host factors that, when depleted, inhibited or increased Brucella infection. Strikingly, 29 of these factors had not been previously suggested to support bacterial infection of host cells. The most intriguing of these was inositol-requiring enzyme 1 (IRE1), a transmembrane kinase that regulates the eukaryotic unfolded protein response (UPR). We employed IRE1α−/− murine embryonic fibroblasts (MEFs) to demonstrate a role for this protein in supporting Brucella infection of mammalian cells, and thereby, validated the utility of the Drosophila S2 cell system for uncovering novel Brucella host factors. Finally, we propose a model in which IRE1α, and other ER-associated genes uncovered in our screen, mediate Brucella replication by promoting autophagosome biogenesis. Brucella spp. are facultative intracellular pathogens that cause brucellosis in a broad range of hosts, including humans. Brucella melitensis, B. abortus, and B. suis are highly infectious and can be readily transmitted in aerosolized form, and a human vaccine against brucellosis is unavailable. Therefore, these pathogens are recognized as potential bioterror agents. Because genetic systems for studying host–Brucella interactions have been unavailable, little is known about the host factors that mediate infection. Here, we demonstrate that a Drosophila S2 cell system and RNA interference can be exploited to study the role that evolutionarily conserved Brucella host proteins play in these processes. We also show that this system provides for the identification and characterization of host factors that mediate Brucella interactions with the host cell endoplasmic reticulum. In fact, we identified 52 host factors that, when depleted, inhibited or increased Brucella infection. Among the identified Brucella host factors, 29 have not been previously shown to support bacterial infection. Finally, we demonstrate that the novel host factor inositol-requiring enzyme 1 (IRE1) and its mammalian ortholog (IRE1α) are required for Brucella infection of Drosophila S2 and mammalian cells, respectively. Therefore, this work contributes to our understanding of host factors mediating Brucella infection.
Collapse
|
8
|
Ikehata K, Duzhak TG, Galeva NA, Ji T, Koen YM, Hanzlik RP. Protein targets of reactive metabolites of thiobenzamide in rat liver in vivo. Chem Res Toxicol 2008; 21:1432-42. [PMID: 18547066 PMCID: PMC2493440 DOI: 10.1021/tx800093k] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thiobenzamide (TB) is a potent hepatotoxin in rats, causing dose-dependent hyperbilirubinemia, steatosis, and centrolobular necrosis. These effects arise subsequent to and appear to result from the covalent binding of the iminosulfinic acid metabolite of TB to cellular proteins and phosphatidylethanolamine lipids [ Ji et al. ( 2007) Chem. Res. Toxicol. 20, 701- 708 ]. To better understand the relationship between the protein covalent binding and the toxicity of TB, we investigated the chemistry of the adduction process and the identity of the target proteins. Cytosolic and microsomal proteins isolated from the livers of rats treated with a hepatotoxic dose of [ carboxyl- (14)C]TB contained high levels of covalently bound radioactivity (25.6 and 36.8 nmol equiv/mg protein, respectively). These proteins were fractionated by two-dimensional gel electrophoresis, and radioactive spots (154 cytosolic and 118 microsomal) were located by phosphorimaging. Corresponding spots from animals treated with a 1:1 mixture of TB and TB- d 5 were similarly separated, the spots were excised, and the proteins were digested in gel with trypsin. Peptide mass mapping identified 42 cytosolic and 24 microsomal proteins, many of which appeared in more than one spot on the gel; however, only a few spots contained more than one identifiable protein. Eighty-six peptides carrying either a benzoyl or a benzimidoyl adduct on a lysine side chain were clearly recognized by their d 0/ d 5 isotopic signature (sometimes both in the same digest). Because model studies showed that benzoyl adducts do not arise by hydrolysis of benzimidoyl adducts, it was proposed that TB undergoes S-oxidation twice to form iminosulfinic acid 4 [PhC(NH)SO 2H], which either benzimidoylates a lysine side chain or undergoes hydrolysis to 9 [PhC(O)SO 2H] and then benzoylates a lysine side chain. The proteins modified by TB metabolites serve a range of biological functions and form a set that overlaps partly with the sets of proteins known to be modified by several other metabolically activated hepatotoxins. The relationship of the adduction of these target proteins to the cytotoxicity of reactive metabolites is discussed in terms of three currently popular mechanisms of toxicity: inhibition of enzymes important to the maintenance of cellular energy and homeostasis, the unfolded protein response, and interference with kinase-based signaling pathways that affect cell survival.
Collapse
Affiliation(s)
- Keisuke Ikehata
- Department of Medicinal Chemistry University of Kansas, Lawrence, KS 66045
| | - Tatyana G. Duzhak
- Department of Medicinal Chemistry University of Kansas, Lawrence, KS 66045
| | | | - Tao Ji
- Department of Medicinal Chemistry University of Kansas, Lawrence, KS 66045
| | - Yakov M. Koen
- Department of Medicinal Chemistry University of Kansas, Lawrence, KS 66045
| | - Robert P. Hanzlik
- Department of Medicinal Chemistry University of Kansas, Lawrence, KS 66045
| |
Collapse
|