1
|
Ulrich H, Glaser T, Thomas AP. Purinergic signaling in liver disease: calcium signaling and induction of inflammation. Purinergic Signal 2025; 21:69-81. [PMID: 39320433 PMCID: PMC11958897 DOI: 10.1007/s11302-024-10044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/15/2024] [Indexed: 09/26/2024] Open
Abstract
Purinergic signaling regulates many metabolic functions and is implicated in liver physiology and pathophysiology. Liver functionality is modulated by ionotropic P2X and metabotropic P2Y receptors, specifically P2Y1, P2Y2, and P2Y6 subtypes, which physiologically exert their influence through calcium signaling, a key second messenger controlling glucose and fat metabolism in hepatocytes. Purinergic receptors, acting through calcium signaling, play an important role in a range of liver diseases. Ionotropic P2X receptors, such as the P2X7 subtype, and certain metabotropic P2Y receptors can induce aberrant intracellular calcium transients that impact normal hepatocyte function and initiate the activation of other liver cell types, including Kupffer and stellate cells. These P2Y- and P2X-dependent intracellular calcium increases are particularly relevant in hepatic disease states, where stellate and Kupffer cells respond with innate immune reactions to challenges, such as excess fat accumulation, chronic alcohol abuse, or infections, and can eventually lead to liver fibrosis. This review explores the consequences of excessive extracellular ATP accumulation, triggering calcium influx through P2X4 and P2X7 receptors, inflammasome activation, and programmed cell death. In addition, P2Y2 receptors contribute to hepatic steatosis and insulin resistance, while inhibiting the expression of P2Y6 receptors can alleviate alcoholic liver steatosis. Adenosine receptors may also contribute to fibrosis through extracellular matrix production by fibroblasts. Thus, pharmacological modulation of P1 and P2 receptors and downstream calcium signaling may open novel therapeutic avenues.
Collapse
Affiliation(s)
- Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
2
|
Villanelo F, Minogue PJ, Maripillán J, Reyna-Jeldes M, Jensen-Flores J, García IE, Beyer EC, Pérez-Acle T, Berthoud VM, Martínez AD. Connexin channels and hemichannels are modulated differently by charge reversal at residues forming the intracellular pocket. Biol Res 2024; 57:31. [PMID: 38783330 PMCID: PMC11112876 DOI: 10.1186/s40659-024-00501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Members of the β-subfamily of connexins contain an intracellular pocket surrounded by amino acid residues from the four transmembrane helices. The presence of this pocket has not previously been investigated in members of the α-, γ-, δ-, and ε-subfamilies. We studied connexin50 (Cx50) as a representative of the α-subfamily, because its structure has been determined and mutations of Cx50 are among the most common genetic causes of congenital cataracts. METHODS To investigate the presence and function of the intracellular pocket in Cx50 we used molecular dynamics simulation, site-directed mutagenesis, gap junction tracer intercellular transfer, and hemichannel activity detected by electrophysiology and by permeation of charged molecules. RESULTS Employing molecular dynamics, we determined the presence of the intracellular pocket in Cx50 hemichannels and identified the amino acids participating in its formation. We utilized site-directed mutagenesis to alter a salt-bridge interaction that supports the intracellular pocket and occurs between two residues highly conserved in the connexin family, R33 and E162. Substitution of opposite charges at either position decreased formation of gap junctional plaques and cell-cell communication and modestly reduced hemichannel currents. Simultaneous charge reversal at these positions produced plaque-forming non-functional gap junction channels with highly active hemichannels. CONCLUSIONS These results show that interactions within the intracellular pocket influence both gap junction channel and hemichannel functions. Disruption of these interactions may be responsible for diseases associated with mutations at these positions.
Collapse
Affiliation(s)
- Felipe Villanelo
- Computational Biology Lab, Centro Basal Ciencia & Vida, Santiago, 8580702, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Recoleta, Santiago, Chile
| | - Peter J Minogue
- Department of Pediatrics, University of Chicago, Chicago, IL, 60637, USA
| | - Jaime Maripillán
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Mauricio Reyna-Jeldes
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Joaquin Jensen-Flores
- Computational Biology Lab, Centro Basal Ciencia & Vida, Santiago, 8580702, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Recoleta, Santiago, Chile
| | - Isaac E García
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
| | - Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL, 60637, USA
| | - Tomás Pérez-Acle
- Computational Biology Lab, Centro Basal Ciencia & Vida, Santiago, 8580702, Chile
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Recoleta, Santiago, Chile
| | - Viviana M Berthoud
- Department of Pediatrics, University of Chicago, Chicago, IL, 60637, USA.
| | - Agustín D Martínez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
3
|
Ribelayga CP, O’Brien J. When microscopy and electrophysiology meet connectomics-Steve Massey's contribution to unraveling the structure and function of the rod/cone gap junction. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1305131. [PMID: 38983007 PMCID: PMC11182179 DOI: 10.3389/fopht.2023.1305131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/31/2023] [Indexed: 07/11/2024]
Abstract
Electrical synapses, formed of gap junctions, are ubiquitous components of the central nervous system (CNS) that shape neuronal circuit connectivity and dynamics. In the retina, electrical synapses can create a circuit, control the signal-to-noise ratio in individual neurons, and support the coordinated neuronal firing of ganglion cells, hence, regulating signal processing at the network, single-cell, and dendritic level. We, the authors, and Steve Massey have had a long interest in gap junctions in retinal circuits, in general, and in the network of photoreceptors, in particular. Our combined efforts, based on a wide array of techniques of molecular biology, microscopy, and electrophysiology, have provided fundamental insights into the molecular structure and properties of the rod/cone gap junction. Yet, a full understanding of how rod/cone coupling controls circuit dynamics necessitates knowing its operating range. It is well established that rod/cone coupling can be greatly reduced or eliminated by bright-light adaptation or pharmacological treatment; however, the upper end of its dynamic range has long remained elusive. This held true until Steve Massey's recent interest for connectomics led to the development of a new strategy to assess this issue. The effort proved effective in establishing, with precision, the connectivity rules between rods and cones and estimating the theoretical upper limit of rod/cone electrical coupling. Comparing electrophysiological measurements and morphological data indicates that under pharmacological manipulation, rod/cone coupling can reach the theoretical maximum of its operating range, implying that, under these conditions, all the gap junction channels present at the junctions are open. As such, channel open probability is likely the main determinant of rod/cone coupling that can change momentarily in a time-of-day- and light-dependent manner. In this article we briefly review our current knowledge of the molecular structure of the rod/cone gap junction and of the mechanisms behind its modulation, and we highlight the recent work led by Steve Massey. Steve's contribution has been critical toward asserting the modulation depth of rod/cone coupling as well as elevating the rod/cone gap junction as one of the most suitable models to examine the role of electrical synapses and their plasticity in neural processing.
Collapse
Affiliation(s)
- Christophe P. Ribelayga
- Department of Vision Sciences, University of Houston College of Optometry, Houston, TX, United States
| | | |
Collapse
|
4
|
Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 2022; 13:1035387. [PMID: 36408244 PMCID: PMC9672938 DOI: 10.3389/fphar.2022.1035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
According to the World Health Organization, the neoplasm is one of the main reasons for morbidity and mortality worldwide. At the same time, application of cytostatic drugs like an independent type of cancer treatment and in combination with surgical methods, is often associated with the development of cardiovascular complications both in the early and in the delayed period of treatment. Doxorubicin (DOX) is the most commonly used cytotoxic anthracycline antibiotic. DOX can cause both acute and delayed side effects. The problem is still not solved, as evidenced by the continued activity of researchers in terms of developing approaches for the prevention and treatment of cardiovascular complications. It is known, the heart muscle consists of cardiomyocytes connected by intercalated discs (ID), which ensure the structural, electrical, metabolic unity of the heart. Various defects in the ID proteins can lead to the development of cardiovascular diseases of various etiologies, including DOX-induced cardiomyopathy. The search for ways to influence the functioning of ID proteins of the cardiac muscle can become the basis for the creation of new therapeutic approaches to the treatment and prevention of cardiac pathologies. SIRT1 may be an interesting cardioprotective variant due to its wide functional significance. SIRT1 activation triggers nuclear transcription programs that increase the efficiency of cellular, mitochondrial metabolism, increases resistance to oxidative stress, and promotes cell survival. It can be assumed that SIRT1 can not only provide a protective effect at the cardiomyocytes level, leading to an improvement in mitochondrial and metabolic functions, reducing the effects of oxidative stress and inflammatory processes, but also have a protective effect on the functioning of IDs structures of the cardiac muscle.
Collapse
|
5
|
Jang DG, Kwon KY, Kweon YC, Kim BG, Myung K, Lee HS, Young Park C, Kwon T, Park TJ. GJA1 depletion causes ciliary defects by affecting Rab11 trafficking to the ciliary base. eLife 2022; 11:81016. [PMID: 36004726 PMCID: PMC9448326 DOI: 10.7554/elife.81016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The gap junction complex functions as a transport channel across the membrane. Among gap junction subunits, gap junction protein α1 (GJA1) is the most commonly expressed subunit. A recent study showed that GJA1 is necessary for the maintenance of motile cilia; however, the molecular mechanism and function of GJA1 in ciliogenesis remain unknown. Here, we examined the functions of GJA1 during ciliogenesis in human retinal pigment epithelium-1 and Xenopus laevis embryonic multiciliated-cells. GJA1 localizes to the motile ciliary axonemes or pericentriolar regions beneath the primary cilium. GJA1 depletion caused malformation of both the primary cilium and motile cilia. Further study revealed that GJA1 depletion affected several ciliary proteins such as BBS4, CP110, and Rab11 in the pericentriolar region and basal body. Interestingly, CP110 removal from the mother centriole was significantly reduced by GJA1 depletion. Importantly, Rab11, a key regulator during ciliogenesis, was immunoprecipitated with GJA1, and GJA1 knockdown caused the mislocalization of Rab11. These findings suggest that GJA1 regulates ciliogenesis by interacting with the Rab11-Rab8 ciliary trafficking pathway.
Collapse
Affiliation(s)
- Dong Gil Jang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Keun Yeong Kwon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Yeong Cheon Kweon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Chan Young Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Tae Joo Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
6
|
Laird DW, Lampe PD. Cellular mechanisms of connexin-based inherited diseases. Trends Cell Biol 2022; 32:58-69. [PMID: 34429228 PMCID: PMC8688313 DOI: 10.1016/j.tcb.2021.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023]
Abstract
The 21-member connexin gene family exhibits distinct tissue expression patterns that can cause a diverse array of over 30 inherited connexin-linked diseases ranging from deafness to skin defects and blindness. Intriguingly, germline mutations can cause disease in one tissue while other tissues that abundantly express the mutant connexin remain disease free, highlighting the importance of the cellular context of mutant expression. Modeling connexin pathologies in genetically modified mice and tissue-relevant cells has informed extensively on no less than a dozen gain- and loss-of-function mechanisms that underpin disease. This review focuses on how a deeper molecular understanding of the over 930 mutations in 11 connexin-encoding genes is foundational for creating a framework for therapeutic interventions.
Collapse
Affiliation(s)
- Dale W. Laird
- Departments of Anatomy and Cell Biology, and Physiology and Pharmacology, University of Western Ontario, London, ON, CANADA
| | - Paul D. Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
7
|
Ray A, Mehta PP. Cysteine residues in the C-terminal tail of connexin32 regulate its trafficking. Cell Signal 2021; 85:110063. [PMID: 34146657 DOI: 10.1016/j.cellsig.2021.110063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
Gap junctions (GJs) are formed by the assembly of constituent transmembrane proteins called connexins (Cxs). Aberrations in this assembly of Cxs are observed in several genetic diseases as well as in cancers. Hence it becomes imperative to understand the molecular mechanisms underlying such assembly defect. The polarized cells in the epithelia express Connexin32 (Cx32). The C-terminal tail (CT) of Cx32 orchestrates several aspects of GJ dynamics, function and growth. The study here was aimed at determining if post-translational modifications, specifically, palmitoylation of cysteine residues, present in the CT of Cx32, has any effect on GJ assembly. The CT of Cx32 was found to harbor three cysteine residues, which are likely to be modified by palmitoylation. The study here has revealed for the first time that Cx32 is palmitoylated at cysteine 217 (C217) in cell line derived from prostate tumors. However, it was found that mutating C217 to alanine affected neither the trafficking nor the ability of Cx32 to assemble into GJs. Intriguingly, it was discovered that mutating cysteine 280 and 283, only in combination, blocked the trafficking of Cx32 from the trans-Golgi network to the cell surface. The mutants showed reduced stability due to enhanced lysosomal degradation. Overall, the findings reveal the importance of the two C-terminal cysteine residues of Cx32 in regulating its trafficking and stability and hence its ability to assemble into GJs.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Parmender P Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Kordowitzki P, Sokołowska G, Wasielak-Politowska M, Skowronska A, Skowronski MT. Pannexins and Connexins: Their Relevance for Oocyte Developmental Competence. Int J Mol Sci 2021; 22:ijms22115918. [PMID: 34072911 PMCID: PMC8199496 DOI: 10.3390/ijms22115918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
The oocyte is the major determinant of embryo developmental competence in all mammalian species. Although fundamental advances have been generated in the field of reproductive medicine and assisted reproductive technologies in the past three decades, researchers and clinicians are still trying to elucidate molecular factors and pathways, which could be pivotal for the oocyte’s developmental competence. The cell-to-cell and cell-to-matrix communications are crucial not only for oocytes but also for multicellular organisms in general. This latter mentioned communication is among others possibly due to the Connexin and Pannexin families of large-pore forming channels. Pannexins belong to a protein group of ATP-release channels, therefore of high importance for the oocyte due to its requirements of high energy supply. An increasing body of studies on Pannexins provided evidence that these channels not only play a role during physiological processes of an oocyte but also during pathological circumstances which could lead to the development of diseases or infertility. Connexins are proteins that form membrane channels and gap-junctions, and more precisely, these proteins enable the exchange of some ions and molecules, and therefore they do play a fundamental role in the communication between the oocyte and accompanying cells. Herein, the role of Pannexins and Connexins for the processes of oogenesis, folliculogenesis, oocyte maturation and fertilization will be discussed and, at the end of this review, Pannexin and Connexin related pathologies and their impact on the developmental competence of oocytes will be provided.
Collapse
Affiliation(s)
- Paweł Kordowitzki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Bydgoska Street 7, 10-243 Olsztyn, Poland;
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 7, 87-100 Torun, Poland
| | - Gabriela Sokołowska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Jana Kilińskiego Street 1, 15-089 Białystok, Poland;
| | - Marta Wasielak-Politowska
- Center of Gynecology, Endocrinology and Reproductive Medicine—Artemida, Jagiellońska Street 78, 10-357 Olsztyn, Poland;
| | - Agnieszka Skowronska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Warszawska Street 30, 10-357 Olsztyn, Poland;
| | - Mariusz T. Skowronski
- Department of Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 7, 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-566-112-231
| |
Collapse
|
9
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
10
|
Natha CM, Vemulapalli V, Fiori MC, Chang CWT, Altenberg GA. Connexin hemichannel inhibitors with a focus on aminoglycosides. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166115. [PMID: 33711451 DOI: 10.1016/j.bbadis.2021.166115] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/06/2021] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
Connexins are membrane proteins involved directly in cell-to-cell communication through the formation of gap-junctional channels. These channels result from the head-to-head docking of two hemichannels, one from each of two adjacent cells. Undocked hemichannels are also present at the plasma membrane where they mediate the efflux of molecules that participate in autocrine and paracrine signaling, but abnormal increase in hemichannel activity can lead to cell damage in disorders such as cardiac infarct, stroke, deafness, cataracts, and skin diseases. For this reason, connexin hemichannels have emerged as a valid therapeutic target. Know small molecule hemichannel inhibitors are not ideal leads for the development of better drugs for clinical use because they are not specific and/or have toxic effects. Newer inhibitors are more selective and include connexin mimetic peptides, anti-connexin antibodies and drugs that reduce connexin expression such as antisense oligonucleotides. Re-purposed drugs and their derivatives are also promising because of the significant experience with their clinical use. Among these, aminoglycoside antibiotics have been identified as inhibitors of connexin hemichannels that do not inhibit gap-junctional channels. In this review, we discuss connexin hemichannels and their inhibitors, with a focus on aminoglycoside antibiotics and derivatives of kanamycin A that inhibit connexin hemichannels, but do not have antibiotic effect.
Collapse
Affiliation(s)
- Cristina M Natha
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Varun Vemulapalli
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mariana C Fiori
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Cheng-Wei T Chang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
11
|
Solan JL, Lampe PD. Src Regulation of Cx43 Phosphorylation and Gap Junction Turnover. Biomolecules 2020; 10:biom10121596. [PMID: 33255329 PMCID: PMC7759836 DOI: 10.3390/biom10121596] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022] Open
Abstract
The gap junction protein Connexin43 (Cx43) is highly regulated by phosphorylation at over a dozen sites by probably at least as many kinases. This Cx43 “kinome” plays an important role in gap junction assembly and turnover. We sought to gain a better understanding of the interrelationship of these phosphorylation events particularly related to src activation and Cx43 turnover. Using state-of-the-art live imaging methods, specific inhibitors and many phosphorylation-status specific antibodies, we found phospho-specific domains in gap junction plaques and show evidence that multiple pathways of disassembly exist and can be regulated at the cellular and subcellular level. We found Src activation promotes formation of connexisomes (internalized gap junctions) in a process involving ERK-mediated phosphorylation of S279/282. Proteasome inhibition dramatically and rapidly restored gap junctions in the presence of Src and led to dramatic changes in the Cx43 phospho-profile including to increased Y247, Y265, S279/282, S365, and S373 phosphorylation. Lysosomal inhibition, on the other hand, nearly eliminated phosphorylation on Y247 and Y265 and reduced S368 and S373 while increasing S279/282 phosphorylation levels. We present a model of gap junction disassembly where multiple modes of disassembly are regulated by phosphorylation and can have differential effects on cellular signaling.
Collapse
Affiliation(s)
- Joell L. Solan
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Paul D. Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Global Health, Pathobiology Program, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
12
|
Dere D, Zlomuzica A, Dere E. Channels to consciousness: a possible role of gap junctions in consciousness. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0012/revneuro-2020-0012.xml. [PMID: 32853172 DOI: 10.1515/revneuro-2020-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
The neurophysiological basis of consciousness is still unknown and one of the most challenging questions in the field of neuroscience and related disciplines. We propose that consciousness is characterized by the maintenance of mental representations of internal and external stimuli for the execution of cognitive operations. Consciousness cannot exist without working memory, and it is likely that consciousness and working memory share the same neural substrates. Here, we present a novel psychological and neurophysiological framework that explains the role of consciousness for cognition, adaptive behavior, and everyday life. A hypothetical architecture of consciousness is presented that is organized as a system of operation and storage units named platforms that are controlled by a consciousness center (central executive/online platform). Platforms maintain mental representations or contents, are entrusted with different executive functions, and operate at different levels of consciousness. The model includes conscious-mode central executive/online and mental time travel platforms and semiconscious steady-state and preconscious standby platforms. Mental representations or contents are represented by neural circuits and their support cells (astrocytes, oligodendrocytes, etc.) and become conscious when neural circuits reverberate, that is, fire sequentially and continuously with relative synchronicity. Reverberatory activity in neural circuits may be initiated and maintained by pacemaker cells/neural circuit pulsars, enhanced electronic coupling via gap junctions, and unapposed hemichannel opening. The central executive/online platform controls which mental representations or contents should become conscious by recruiting pacemaker cells/neural network pulsars, the opening of hemichannels, and promoting enhanced neural circuit coupling via gap junctions.
Collapse
Affiliation(s)
- Dorothea Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| | - Armin Zlomuzica
- Faculty of Psychology, Behavioral and Clinical Neuroscience, University of Bochum, Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| |
Collapse
|
13
|
Abstract
Intercalated discs (ICDs) are highly orchestrated structures that connect neighboring cardiomyocytes in the heart. Three major complexes are distinguished in ICD: desmosome, adherens junction (AJ), and gap junction (GJ). Desmosomes are major cell adhesion junctions that anchor cell membrane to the intermediate filament network; AJs connect the actin cytoskeleton of adjacent cells; and gap junctions metabolically and electrically connect the cytoplasm of adjacent cardiomyocytes. All these complexes work as a single unit, the so-called area composita, interdependently rather than individually. Mutation or altered expression of ICD proteins results in various cardiac diseases, such as ARVC (arrhythmogenic right ventricular cardiomyopathy), dilated cardiomyopathy, and hypotrophy cardiomyopathy, eventually leading to heart failure. In this article, we first review the recent findings on the structural organization of ICD and their functions and then focus on the recent advances in molecular pathogenesis of the ICD-related heart diseases, which include two major areas: i) the ICD gene mutations in cardiac diseases, and ii) the involvement of ICD proteins in signal transduction pathways leading to myocardium remodeling and eventual heart failure. These major ICD-related signaling pathways include Wnt/β-catenin pathway, p38 MAPK cascade, Rho-dependent serum response factor (SRF) signaling, calcineurin/NFAT signaling, Hippo kinase cascade, etc., which are differentially regulated in pathological conditions.
Collapse
|
14
|
Acuña RA, Varas-Godoy M, Berthoud VM, Alfaro IE, Retamal MA. Connexin-46 Contained in Extracellular Vesicles Enhance Malignancy Features in Breast Cancer Cells. Biomolecules 2020; 10:E676. [PMID: 32353936 PMCID: PMC7277863 DOI: 10.3390/biom10050676] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Under normal conditions, almost all cell types communicate with their neighboring cells through gap junction channels (GJC), facilitating cellular and tissue homeostasis. A GJC is formed by the interaction of two hemichannels; each one of these hemichannels in turn is formed by six subunits of transmembrane proteins called connexins (Cx). For many years, it was believed that the loss of GJC-mediated intercellular communication was a hallmark in cancer development. However, nowadays this paradigm is changing. The connexin 46 (Cx46), which is almost exclusively expressed in the eye lens, is upregulated in human breast cancer, and is correlated with tumor growth in a Xenograft mouse model. On the other hand, extracellular vesicles (EVs) have an important role in long-distance communication under physiological conditions. In the last decade, EVs also have been recognized as key players in cancer aggressiveness. The aim of this work was to explore the involvement of Cx46 in EV-mediated intercellular communication. Here, we demonstrated for the first time, that Cx46 is contained in EVs released from breast cancer cells overexpressing Cx46 (EVs-Cx46). This EV-Cx46 facilitates the interaction between EVs and the recipient cell resulting in an increase in their migration and invasion properties. Our results suggest that EV-Cx46 could be a marker of cancer malignancy and open the possibility to consider Cx46 as a new therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Rodrigo A. Acuña
- Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
- Universidad del Desarrollo, Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Santiago 7780272, Chile
- Universidad del Desarrollo, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile;
| | - Manuel Varas-Godoy
- Cancer Cell Biology Lab., Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7780272, Chile;
| | | | - Ivan E. Alfaro
- Universidad del Desarrollo, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 7780272, Chile;
- Fundación Ciencia & Vida, Avenida Zañartu #1482, Ñuñoa, Santiago 7780272, Chile
| | - Mauricio A. Retamal
- Universidad del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
- Universidad del Desarrollo, Programa de Comunicación Celular en Cáncer, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Santiago 7780272, Chile
| |
Collapse
|
15
|
Connexins and Gap Junctions in Cancer of the Urinary Tract. Cancers (Basel) 2019; 11:cancers11050704. [PMID: 31121877 PMCID: PMC6563010 DOI: 10.3390/cancers11050704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
This review focuses on connexins and nexus or gap junctions in the genesis, progression, and therapy of carcinomas of the human urinary tract. Some decades ago, the idea was born that gap junctional intercellular communication might prevent both the onset and the progression of cancer. Later evidence indicated that, on the contrary, synthesis and the presence of connexins as a prerequisite for gap junctional intercellular communication might promote the occurrence of cancer and metastases. The research history of urinary bladder cancer is a good example of the development of scientific perception. So far, the role of gap junctional intercellular communication in carcinogenesis and cancer progression, as well as in therapeutical approaches, remains unclear.
Collapse
|
16
|
Cui L, Shen J, Fang L, Mao X, Wang H, Ye Y. Endothelin-1 promotes human germinal vesicle-stage oocyte maturation by downregulating connexin-26 expression in cumulus cells. Mol Hum Reprod 2019; 24:27-36. [PMID: 29126233 DOI: 10.1093/molehr/gax058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022] Open
Abstract
STUDY QUESTION Does endothelin-1 (ET-1) promote human oocyte maturation and by what mechanism? SUMMARY ANSWER Addition of ET-1 to the medium in which human germinal vesicle (GV)-stage immature oocytes are cultured enhances the GV breakdown (GVBD) rate; the resumption of meiosis may be initiated by ET-1 downregulating the expression of connexin-26 (Cx26) in cumulus cells via endothelin receptor type B (ETRB), leading to decreased cAMP levels in the oocyte. WHAT IS KNOWN ALREADY The paracrine factor ET-1 is secreted by ovarian somatic cells in pre-ovulatory follicles and regulates oocyte maturation in mice. Connexins, or gap junction proteins, form intercellular membrane channels that play important roles in the resumption of meiosis. STUDY DESIGN, SIZE, DURATION This laboratory study was conducted over a 1-year period. The effects of ET-1 on meiotic resumption were evaluated in human GV-stage cumulus-oocyte complexes (COCs; 70 oocytes/group). The transcriptome profiles of ET-1-treated or untreated cumulus cells were compared to explore the possible mechanisms by which ET-1 may regulate oocyte maturation. PARTICIPANTS/MATERIALS, SETTING, METHODS The ET-1, ETRA and ETRB expression levels in human cumulus cells from oocytes at different stages of maturation were evaluated using real-time quantitative PCR. Human GV-stage COCs collected from patients undergoing IVF at a university-affiliated infertility centre were cultured with or without ET-1, and cumulus cells were subsequently denuded using hyaluronidase and cultured in α-MEM. A GeneChip® Human Transcriptome Array was applied to explore differences in the whole-genome transcriptome profiles of cumulus cells treated with or without ET-1. Real-time quantitative PCR and Western blotting were used respectively to examine Cx26 mRNA and protein levels in cumulus cells. Changes in cAMP levels in both oocytes and cumulus cells after ET-1 treatment were measured using an enzyme-linked immunosorbent assay. MAIN RESULTS AND THE ROLE OF CHANCE Cumulus cells from MII-stage oocytes exhibited upregulated ET-1 expression, compared to those from GV-stage oocytes. The addition of ET-1 to the culture medium enhanced the GVBD rate of cumulus cell-enclosed human oocytes. Whole-genome transcriptome microarray analyses revealed significantly downregulated Cx26 expression in cumulus cells after ET-1 treatment, and this action was blocked by an ETRB antagonist. The involvement of Cx26 was further supported by the finding that ET-1 treatment led to decreased cAMP levels in oocytes but increased cAMP levels in cumulus cells. LARGE SCALE DATA Microarray data are published in the GEO database (GSE97684). LIMITATIONS, REASONS FOR CAUTION The heterogeneity of human COCs collected from patients undergoing IVF might affect the maturation results in vitro. Although we focused on the effects of ET-1 on human oocyte maturation in the present study, mammalian oocyte maturation is a complicated process involving many endocrine and paracrine factors. WIDER IMPLICATIONS OF THE FINDINGS Our present study suggests that in vitro, human GV-stage oocyte maturation could be enhanced by adding ET-1 to the culture medium. In the present study, we explored the molecular mechanisms by which ET-1 initiates the resumption of meiosis and demonstrated that ET-1 promotes oocyte maturation by downregulating the expression of the gap junction protein Cx26 in cumulus cells. These results expand our understanding of the molecular mechanisms underlying mammalian oocyte maturation and provide a basis for better in-vitro maturation strategies. STUDY FUNDING AND COMPETING INTERESTS This work was supported by grants from the China Natural Science Foundation (Grant Nos. 81170567 and 81370761). The authors declare that they have no conflicts of interest associated with this manuscript.
Collapse
Affiliation(s)
- Long Cui
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiajie Shen
- Key laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Li Fang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaodan Mao
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Hanzhi Wang
- Key laboratory, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
17
|
Abstract
The connexin family of channel-forming proteins is present in every tissue type in the human anatomy. Connexins are best known for forming clustered intercellular channels, structurally known as gap junctions, where they serve to exchange members of the metabolome between adjacent cells. In their single-membrane hemichannel form, connexins can act as conduits for the passage of small molecules in autocrine and paracrine signalling. Here, we review the roles of connexins in health and disease, focusing on the potential of connexins as therapeutic targets in acquired and inherited diseases as well as wound repair, while highlighting the associated clinical challenges.
Collapse
|
18
|
Castorena-Gonzalez JA, Zawieja SD, Li M, Srinivasan RS, Simon AM, de Wit C, de la Torre R, Martinez-Lemus LA, Hennig GW, Davis MJ. Mechanisms of Connexin-Related Lymphedema. Circ Res 2018; 123:964-985. [PMID: 30355030 PMCID: PMC6771293 DOI: 10.1161/circresaha.117.312576] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Mutations in GJC2 and GJA1, encoding Cxs (connexins) 47 and 43, respectively, are linked to lymphedema, but the underlying mechanisms are unknown. Because efficient lymph transport relies on the coordinated contractions of lymphatic muscle cells (LMCs) and their electrical coupling through Cxs, Cx-related lymphedema is proposed to result from dyssynchronous contractions of lymphatic vessels. OBJECTIVE To determine which Cx isoforms in LMCs and lymphatic endothelial cells are required for the entrainment of lymphatic contraction waves and efficient lymph transport. METHODS AND RESULTS We developed novel methods to quantify the spatiotemporal entrainment of lymphatic contraction waves and used optogenetic techniques to analyze calcium signaling within and between the LMC and the lymphatic endothelial cell layers. Genetic deletion of the major lymphatic endothelial cell Cxs (Cx43, Cx47, or Cx37) revealed that none were necessary for the synchronization of the global calcium events that triggered propagating contraction waves. We identified Cx45 in human and mouse LMCs as the critical Cx mediating the conduction of pacemaking signals and entrained contractions. Smooth muscle-specific Cx45 deficiency resulted in 10- to 18-fold reduction in conduction speed, partial-to-severe loss of contractile coordination, and impaired lymph pump function ex vivo and in vivo. Cx45 deficiency resulted in profound inhibition of lymph transport in vivo, but only under an imposed gravitational load. CONCLUSIONS Our results (1) identify Cx45 as the Cx isoform mediating the entrainment of the contraction waves in LMCs; (2) show that major endothelial Cxs are dispensable for the entrainment of contractions; (3) reveal a lack of coupling between lymphatic endothelial cells and LMCs, in contrast to arterioles; (4) point to lymphatic valve defects, rather than contraction dyssynchrony, as the mechanism underlying GJC2- or GJA1-related lymphedema; and (5) show that a gravitational load exacerbates lymphatic contractile defects in the intact mouse hindlimb, which is likely critical for the development of lymphedema in the adult mouse.
Collapse
Affiliation(s)
| | - Scott D. Zawieja
- Dept. of Medical Pharmacology and Physiology and University of Missouri School of Medicine
| | - Min Li
- Dept. of Medical Pharmacology and Physiology and University of Missouri School of Medicine
| | - R. Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City OK
| | | | - Cor de Wit
- Institute of Physiology, University of Luebeck, Luebeck Germany
| | | | - Luis A. Martinez-Lemus
- Dept. of Medical Pharmacology and Physiology and University of Missouri School of Medicine
| | | | - Michael J. Davis
- Dept. of Medical Pharmacology and Physiology and University of Missouri School of Medicine
| |
Collapse
|
19
|
Coronel-Cruz C, Sánchez I, Hernández-Tellez B, Rodríguez-Mata V, Pinzón-Estrada E, Castell-Rodríguez A, Pérez-Armendariz E. Connexin 30.2 is expressed in exocrine vascular endothelial and ductal epithelial cells throughout pancreatic postnatal development. Acta Histochem 2018; 120:558-565. [PMID: 30100173 DOI: 10.1016/j.acthis.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/10/2018] [Accepted: 06/29/2018] [Indexed: 02/08/2023]
Abstract
Previously we have demonstrated that the GJ protein connexin 30.2 (Cx30.2) is expressed in pancreatic beta cells and endothelial cells (ECs) of the islet. In the present study, we address whether Cx30.2 is expressed in the exocrine pancreas, including its vascular system. For this, adult mouse pancreatic sections were double labeled with specific antibodies against Cx30.2 and CD31, an endothelial cell marker, or with anti-α-actin smooth muscle, a smooth muscle cell (SMC) marker or anti-mucin-1, a marker of epithelial ductal cells, using immunofluorescence (IF) studies. Cx30.2-IF hot spots were found at junctional membranes of exocrine ECs and SMCs of blood vessels. Furthermore, Cx30.2 was localized in mucin-1 positive cells or epithelial ductal cells. Using immunohistochemistry (IHC) studies, it was found that in vessels and ducts of different diameters, Cx30.2 was also expressed in these cell types. In addition, it was found that Cx30.2 is already expressed in these cell types in pancreatic sections of 3, 14 and 21 days postpartum. Moreover, this cell specific pattern of expression was also found in the adult rat, hamster and guinea pig pancreas. Expression of Cx30.2 mRNA and protein in the pancreas of all these species was confirmed by RT-PCR and Western blot studies. Overall, our results suggest that intercellular coupling mediated by Cx30.2 intercellular channels may synchronize the functional activity of ECs and SMCs of vascular cells, as well as of epithelial ductal cells after birth.
Collapse
|
20
|
Taşdelen E, Durmaz CD, Karabulut HG. Autosomal Recessive Oculodentodigital Dysplasia: A Case Report and Review of the Literature. Cytogenet Genome Res 2018; 154:181-186. [PMID: 29902798 DOI: 10.1159/000489000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 11/19/2022] Open
Abstract
Oculodentodigital dysplasia (ODDD) is a rare condition characterized by a typical facial appearance and variable findings of the eyes, teeth, and fingers. ODDD is caused by mutations in the GJA1 gene in chromosome 6q22 and inherited in an autosomal dominant manner in the majority of the patients. However, in recent clinical reports, autosomal recessive ODDD cases due to by GJA1 mutations were also described. Here, we report on a 14-year-old boy with microphthalmia, microcornea, narrow nasal bridge, hypoplastic alae nasi, prominent columnella, hypodontia, dental caries, and partial syndactyly of the 2nd and 3rd toes. These clinical findings were concordant with the diagnosis of ODDD, and a novel homozygous mutation (c.442C>T, p.Arg148Ter) was determined in the GJA1 gene leading to a premature stop codon. His phenotypically normal parents were found to be carriers of the same mutation. This is the third family in the literature in which ODDD segregates in an autosomal recessive manner.
Collapse
|
21
|
Function of Connexins in the Interaction between Glial and Vascular Cells in the Central Nervous System and Related Neurological Diseases. Neural Plast 2018; 2018:6323901. [PMID: 29983707 PMCID: PMC6015683 DOI: 10.1155/2018/6323901] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 02/05/2023] Open
Abstract
Neuronal signaling together with synapse activity in the central nervous system requires a precisely regulated microenvironment. Recently, the blood-brain barrier is considered as a “neuro-glia-vascular unit,” a structural and functional compound composed of capillary endothelial cells, glial cells, pericytes, and neurons, which plays a pivotal role in maintaining the balance of the microenvironment in and out of the brain. Tight junctions and adherens junctions, which function as barriers of the blood-brain barrier, are two well-known kinds in the endothelial cell junctions. In this review, we focus on the less-concerned contribution of gap junction proteins, connexins in blood-brain barrier integrity under physio-/pathology conditions. In the neuro-glia-vascular unit, connexins are expressed in the capillary endothelial cells and prominent in astrocyte endfeet around and associated with maturation and function of the blood-brain barrier through a unique signaling pathway and an interaction with tight junction proteins. Connexin hemichannels and connexin gap junction channels contribute to the physiological or pathological progress of the blood-brain barrier; in addition, the interaction with other cell-cell-adhesive proteins is also associated with the maintenance of the blood-brain barrier. Lastly, we explore the connexins and connexin channels involved in the blood-brain barrier in neurological diseases and any programme for drug discovery or delivery to target or avoid the blood-brain barrier.
Collapse
|
22
|
García IE, Villanelo F, Contreras GF, Pupo A, Pinto BI, Contreras JE, Pérez-Acle T, Alvarez O, Latorre R, Martínez AD, González C. The syndromic deafness mutation G12R impairs fast and slow gating in Cx26 hemichannels. J Gen Physiol 2018; 150:697-711. [PMID: 29643172 PMCID: PMC5940247 DOI: 10.1085/jgp.201711782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 11/13/2017] [Accepted: 03/21/2018] [Indexed: 12/27/2022] Open
Abstract
Mutations in connexin 26 hemichannels that cause syndromic deafness have a gain-of-function phenotype that is poorly understood. García et al. show that one such mutation impairs fast and slow gating in these hemichannels because of an interaction between the N terminus and intracellular loop. Mutations in connexin 26 (Cx26) hemichannels can lead to syndromic deafness that affects the cochlea and skin. These mutations lead to gain-of-function hemichannel phenotypes by unknown molecular mechanisms. In this study, we investigate the biophysical properties of the syndromic mutant Cx26G12R (G12R). Unlike wild-type Cx26, G12R macroscopic hemichannel currents do not saturate upon depolarization, and deactivation is faster during hyperpolarization, suggesting that these channels have impaired fast and slow gating. Single G12R hemichannels show a large increase in open probability, and transitions to the subconductance state are rare and short-lived, demonstrating an inoperative fast gating mechanism. Molecular dynamics simulations indicate that G12R causes a displacement of the N terminus toward the cytoplasm, favoring an interaction between R12 in the N terminus and R99 in the intracellular loop. Disruption of this interaction recovers the fast and slow voltage-dependent gating mechanisms. These results suggest that the mechanisms of fast and slow gating in connexin hemichannels are coupled and provide a molecular mechanism for the gain-of-function phenotype displayed by the syndromic G12R mutation.
Collapse
Affiliation(s)
- Isaac E García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Laboratory of Molecular Physiology and Biophysics, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Villanelo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Computational Biology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Gustavo F Contreras
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Amaury Pupo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Bernardo I Pinto
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jorge E Contreras
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Tomás Pérez-Acle
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Computational Biology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Agustín D Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
23
|
Ray A, Katoch P, Jain N, Mehta PP. Dileucine-like motifs in the C-terminal tail of connexin32 control its endocytosis and assembly into gap junctions. J Cell Sci 2018; 131:jcs207340. [PMID: 29361528 PMCID: PMC5897717 DOI: 10.1242/jcs.207340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
Defects in assembly of gap junction-forming proteins, called connexins (Cxs), are observed in a variety of cancers. Connexin32 (Cx32; also known as GJB1) is expressed by the polarized cells in epithelia. We discovered two dileucine-based motifs, which govern the intracellular sorting and endocytosis of transmembrane proteins, in the C-terminal tail of Cx32 and explored their role in regulating its endocytosis and gap junction-forming abilities in pancreatic and prostate cancer cells. One motif, designated as LI, was located near the juxtamembrane domain, whereas the other, designated as LL, was located distally. We also discovered a non-canonical motif, designated as LR, in the C-terminal tail. Our results showed that rendering these motifs non-functional had no effect on the intracellular sorting of Cx32. However, rendering the LL or LR motif nonfunctional enhanced the formation of gap junctions by inhibiting Cx32 endocytosis by the clathrin-mediated pathway. Rendering the LI motif nonfunctional inhibited gap junction formation by augmenting the endocytosis of Cx32 via the LL and LR motifs. Our studies have defined distinct roles of these motifs in regulating the endocytosis of Cx32 and its gap junction-forming ability.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parul Katoch
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nimansha Jain
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parmender P Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
24
|
Hadizadeh M, Mohaddes Ardebili SM, Salehi M, Young C, Mokarian F, McClellan J, Xu Q, Kazemi M, Moazam E, Mahaki B, Ashrafian Bonab M. GJA4/Connexin 37 Mutations Correlate with Secondary Lymphedema Following Surgery in Breast Cancer Patients. Biomedicines 2018; 6:biomedicines6010023. [PMID: 29470392 PMCID: PMC5874680 DOI: 10.3390/biomedicines6010023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 01/20/2023] Open
Abstract
Lymphedema is a condition resulting from mutations in various genes essential for lymphatic development and function, which leads to obstruction of the lymphatic system. Secondary lymphedema is a progressive and incurable condition, most often manifesting after surgery for breast cancer. Although its causation appears complex, various lines of evidence indicate that genetic predisposition may play a role. Previous studies show that mutations in connexin 47 are associated with secondary lymphedema. We have tested the hypothesis that connexin 37 gene mutations in humans are associated with secondary lymphedema following breast cancer surgery. A total of 2211 breast cancer patients were screened and tested for reference single nucleotide polymorphisms (SNPs) of the GJA4 gene (gap junction protein alpha 4 gene). The results presented in this paper indicate that two SNPs in the 3’ UTR (the three prime untranslated region) of the GJA4 gene are associated with an increased risk of secondary lymphedema in patients undergoing breast cancer treatment. Our results provide evidence of a novel genetic biomarker for assessing the predisposition to secondary lymphedema in human breast cancer patients. Testing for the condition-associated alleles described here could assist and inform treatment and post-operative care plans of breast cancer patients, with potentially positive outcomes for the management of disease progression.
Collapse
Affiliation(s)
- Mahrooyeh Hadizadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran.
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan 81746753461, Iran.
| | | | - Mansoor Salehi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan 81746753461, Iran.
| | - Chris Young
- School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK.
| | - Fariborz Mokarian
- Cancer Prevention Research Centre, Isfahan University of Medical Sciences, Isfahan 8184917911, Iran.
| | - James McClellan
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK.
| | - Qin Xu
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK.
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan 81746753461, Iran.
| | - Elham Moazam
- Cancer Prevention Research Centre, Isfahan University of Medical Sciences, Isfahan 8184917911, Iran.
| | - Behzad Mahaki
- Department of Occupational Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | | |
Collapse
|
25
|
Esseltine JL, Shao Q, Brooks C, Sampson J, Betts DH, Séguin CA, Laird DW. Connexin43 Mutant Patient-Derived Induced Pluripotent Stem Cells Exhibit Altered Differentiation Potential. J Bone Miner Res 2017; 32:1368-1385. [PMID: 28177159 DOI: 10.1002/jbmr.3098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 01/06/2023]
Abstract
We present for the first time the generation of induced pluripotent stem cells (iPSCs) from a patient with a connexin-linked disease. The importance of gap junctional intercellular communication in bone homeostasis is exemplified by the autosomal dominant developmental disorder oculodentodigital dysplasia (ODDD), which is linked to mutations in the GJA1 (Cx43) gene. ODDD is characterized by craniofacial malformations, ophthalmic deficits, enamel hypoplasia, and syndactyly. In addition to harboring a Cx43 p.V216L mutation, ODDD iPSCs exhibit reduced Cx43 mRNA and protein abundance when compared to control iPSCs and display impaired channel function. Osteogenic differentiation involved an early, and dramatic downregulation of Cx43 followed by a slight upregulation during the final stages of differentiation. Interestingly, osteoblast differentiation was delayed in ODDD iPSCs. Moreover, Cx43 subcellular localization was altered during chondrogenic differentiation of ODDD iPSCs compared to controls and this may have contributed to the more compact cartilage pellet morphology found in differentiated ODDD iPSCs. These studies highlight the importance of Cx43 expression and function during osteoblast and chondrocyte differentiation, and establish a potential mechanism for how ODDD-associated Cx43 mutations may have altered cell lineages involved in bone and cartilage development. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jessica L Esseltine
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario. London, ON, Canada
| | - Qing Shao
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario. London, ON, Canada
| | - Courtney Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jacinda Sampson
- Department of Neurology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario. London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
26
|
Abstract
Gap junction channels facilitate the intercellular exchange of ions and small molecules, a process that is critical for the function of many different kinds of cells and tissues. Recent crystal structures of channels formed by one connexin isoform (connexin26) have been determined, and they have been subjected to molecular modeling. These studies have provided high-resolution models to gain insights into the mechanisms of channel conductance, molecular permeability, and gating. The models share similarities, but there are some differences in the conclusions reached by these studies. Many unanswered questions remain to allow an atomic-level understanding of intercellular communication mediated by connexin26. Because some domains of the connexin polypeptides are highly conserved (like the transmembrane regions), it is likely that some features of the connexin26 structure will apply to other members of the family of gap junction proteins. However, determination of high-resolution structures and modeling of other connexin channels will be required to account for the diverse biophysical properties and regulation conferred by the differences in their sequences.
Collapse
Affiliation(s)
- Eric C Beyer
- Department of Pediatrics, University of Chicago, Chicago, IL, 60637, USA
| | - Viviana M Berthoud
- Department of Pediatrics, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
27
|
Norris RP, Baena V, Terasaki M. Localization of phosphorylated connexin 43 by serial section immunogold electron microscopy. J Cell Sci 2017; 130:1333-1340. [DOI: 10.1242/jcs.198408] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/09/2017] [Indexed: 02/05/2023] Open
Abstract
Gap junction turnover occurs by the internalization of both plasma membranes of a gap junction plaque to form a double membrane-enclosed vesicle, or connexosome. Phosphorylation has a key role in regulation, but further progress requires clearly distinguishing gap junctions and connexosomes and precisely localizing proteins to them. We examined by electron microscopy serial sections of mouse preovulatory ovarian follicles collected with an automated tape collecting ultramicrotome (ATUM). We found connexosomes may form from adjacent cell bodies, from thin cell processes, or from the same cell. By immunolabeling serial sections, we found S368 of connexin 43 is phosphorylated on gap junctions and connexosomes, whereas S262 is phosphorylated only on some connexosomes. These data suggest that S262 phosphorylation contributes to connexosome formation or processing, and provide more precise evidence that phosphorylation has a key role in gap junction internalization. Serial section electron microscopy of immunogold-labeled tissues offers a new way for investigating the three-dimensional organization of cells in their native environment.
Collapse
Affiliation(s)
- Rachael P. Norris
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Valentina Baena
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
28
|
Batir Y, Bargiello TA, Dowd TL. Structural studies of N-terminal mutants of Connexin 26 and Connexin 32 using (1)H NMR spectroscopy. Arch Biochem Biophys 2016; 608:8-19. [PMID: 27378082 PMCID: PMC5051353 DOI: 10.1016/j.abb.2016.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022]
Abstract
Alterations in gap junctions underlie the etiologies of syndromic deafness (KID) and Charcot-Marie Tooth disease (CMTX). Functional gap junctions are composed of connexin molecules with N-termini containing a flexible turn around G12, inserting the N-termini into the channel pore allowing voltage gating. The loss of this turn correlates with loss of Connexin 32 (Cx32) function by impaired trafficking to the cell membrane. Using (1)H NMR we show the N-terminus of a syndromic deafness mutation Cx26G12R, producing "leaky channels", contains a turn around G12 which is less structured and more flexible than wild-type. In contrast, the N-terminal structure of the same mutation in Cx32 chimera, Cx32*43E1G12R shows a larger constricted turn and no membrane current expression but forms membrane inserted hemichannels. Their function was rescued by formation of heteromeric channels with wild type subunits. We suggest the inflexible Cx32G12R N-terminus blocks ion conduction in homomeric channels and this channel block is relieved by incorporation of wild type subunits. In contrast, the increased open probability of Cx26G12R hemichannels is likely due to the addition of positive charge in the channel pore changing pore electrostatics and impairing hemichannel regulation by Ca(2+). These results provide mechanistic information on aberrant channel activity observed in disease.
Collapse
Affiliation(s)
- Yuksel Batir
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States
| | - Thaddeus A Bargiello
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Terry L Dowd
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States; Ph.D. Program in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States.
| |
Collapse
|
29
|
Johnson RG, Le HC, Evenson K, Loberg SW, Myslajek TM, Prabhu A, Manley AM, O’Shea C, Grunenwald H, Haddican M, Fitzgerald PM, Robinson T, Cisterna BA, Sáez JC, Liu TF, Laird DW, Sheridan JD. Connexin Hemichannels: Methods for Dye Uptake and Leakage. J Membr Biol 2016; 249:713-741. [DOI: 10.1007/s00232-016-9925-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/22/2016] [Indexed: 01/18/2023]
|
30
|
Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers 2016; 4:e1154641. [PMID: 27141427 DOI: 10.1080/21688370.2016.1154641] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/05/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly complex and dynamic barrier. It is formed by an interdependent network of brain capillary endothelial cells, endowed with barrier properties, and perivascular cells (astrocytes and pericytes) responsible for inducing and maintaining those properties. One of the primary properties of the BBB is a strict regulation of paracellular permeability due to the presence of junctional complexes (tight, adherens and gap junctions) between the endothelial cells. Alterations in junction assembly and function significantly affect BBB properties, particularly barrier permeability. However, such alterations are also involved in remodeling the brain endothelial cell surface and regulating brain endothelial cell phenotype. This review summarizes the characteristics of brain endothelial tight, adherens and gap junctions and highlights structural and functional alterations in junctional proteins that may contribute to BBB dysfunction.
Collapse
Affiliation(s)
| | - Allison M Johnson
- Department of Pathology; University of Michigan Medical School ; Ann Arbor, MI USA
| | - Richard F Keep
- Department of Neurosurgery; University of Michigan Medical School; Ann Arbor, MI USA; Molecular and Integrative Physiology, University of Michigan Medical School; Ann Arbor, MI USA
| | - Anuska V Andjelkovic
- Department of Pathology; University of Michigan Medical School; Ann Arbor, MI USA; Department of Neurosurgery; University of Michigan Medical School; Ann Arbor, MI USA
| |
Collapse
|
31
|
Cell communication across gap junctions: a historical perspective and current developments. Biochem Soc Trans 2016; 43:450-9. [PMID: 26009190 DOI: 10.1042/bst20150056] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collaborative communication lies at the centre of multicellular life. Gap junctions (GJs) are surface membrane structures that allow direct communication between cells. They were discovered in the 1960s following the convergence of the detection of low-resistance electrical interactions between cells and anatomical studies of intercellular contact points. GJs purified from liver plasma membranes contained a 27 kDa protein constituent; it was later named Cx32 (connexin 32) after its full sequence was determined by recombinant technology. Identification of Cx43 in heart and later by a further GJ protein, Cx26 followed. Cxs have a tetraspan organization in the membrane and oligomerize during intracellular transit to the plasma membrane; these were shown to be hexameric hemichannels (connexons) that could interact end-to-end to generate GJs at areas of cell-to-cell contact. The structure of the GJ was confirmed and refined by a combination of biochemical and structural approaches. Progress continues towards obtaining higher atomic 3D resolution of the GJ channel. Today, there are 20 and 21 highly conserved members of the Cx family in the human and mouse genomes respectively. Model organisms such as Xenopus oocytes and zebra fish are increasingly used to relate structure to function. Proteins that form similar large pore membrane channels in cells called pannexins have also been identified in chordates. Innexins form GJs in prechordates; these two other proteins, although functionally similar, are very different in amino acid sequence to the Cxs. A time line tracing the historical progression of wide ranging research in GJ biology over 60 years is mapped out. The molecular basis of channel dysfunctions in disease is becoming evident and progress towards addressing Cx channel-dependent pathologies, especially in ischaemia and tissue repair, continues.
Collapse
|
32
|
Kinase programs spatiotemporally regulate gap junction assembly and disassembly: Effects on wound repair. Semin Cell Dev Biol 2015; 50:40-8. [PMID: 26706150 DOI: 10.1016/j.semcdb.2015.12.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 01/05/2023]
Abstract
Gap junctions are highly ordered plasma membrane domains that are constantly assembled, remodeled and turned over due to the short half-life of connexins, the integral membrane proteins that form gap junctions. Connexin 43 (Cx43), by far the most widely expressed connexin, is phosphorylated at multiple serine residues in the cytoplasmic, C-terminal region allowing for exquisite cellular control over gap junctional communication. This is evident during epidermal wounding where spatiotemporal changes in connexin expression occur as cells are instructed whether to die, proliferate or migrate to promote repair. Early gap junctional communication is required for initiation of keratinocyte migration, but accelerated Cx43 turnover is also critical for proper wound healing at later stages. These events are controlled via a "kinase program" where sequential phosphorylation of Cx43 leads to reductions in Cx43's half-life and significant depletion of gap junctions from the plasma membrane within several hours. The complex regulation of gap junction assembly and turnover affords several steps where intervention might speed wound healing.
Collapse
|
33
|
Manipulating Cx43 expression triggers gene reprogramming events in dermal fibroblasts from oculodentodigital dysplasia patients. Biochem J 2015; 472:55-69. [PMID: 26349540 DOI: 10.1042/bj20150652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023]
Abstract
Oculodentodigital dysplasia (ODDD) is primarily an autosomal dominant disorder linked to over 70 GJA1 gene [connexin43 (Cx43)] mutations. For nearly a decade, our laboratory has been investigating the relationship between Cx43 and ODDD by expressing disease-linked mutants in reference cells, tissue-relevant cell lines, 3D organ cultures and by using genetically modified mouse models of human disease. Although salient features of Cx43 mutants have been revealed, these models do not necessarily reflect the complexity of the human context. To further overcome these limitations, we have acquired dermal fibroblasts from two ODDD-affected individuals harbouring D3N and V216L mutations in Cx43, along with familial controls. Using these ODDD patient dermal fibroblasts, which naturally produce less GJA1 gene product, along with RNAi and RNA activation (RNAa) approaches, we show that manipulating Cx43 expression triggers cellular gene reprogramming. Quantitative RT-PCR, Western blot and immunofluorescent analysis of ODDD patient fibroblasts show unusually high levels of extracellular matrix (ECM)-interacting proteins, including integrin α5β1, matrix metalloproteinases as well as secreted ECM proteins collagen-I and laminin. Cx43 knockdown in familial control cells produces similar effects on ECM expression, whereas Cx43 transcriptional up-regulation using RNAa decreases production of collagen-I. Interestingly, the enhanced levels of ECM-associated proteins in ODDD V216L fibroblasts is not only a consequence of increased ECM gene expression, but also due to an apparent deficit in collagen-I secretion which may further contribute to impaired collagen gel contraction in ODDD fibroblasts. These findings further illuminate the altered function of Cx43 in ODDD-affected individuals and highlight the impact of manipulating Cx43 expression in human cells.
Collapse
|
34
|
Meens MJ, Alonso F, Le Gal L, Kwak BR, Haefliger JA. Endothelial Connexin37 and Connexin40 participate in basal but not agonist-induced NO release. Cell Commun Signal 2015; 13:34. [PMID: 26198171 PMCID: PMC4510910 DOI: 10.1186/s12964-015-0110-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/03/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Connexin37 (Cx37) and Cx40 are crucial for endothelial cell-cell communication and homeostasis. Both connexins interact with endothelial nitric oxide synthase (eNOS). The exact contribution of these interactions to the regulation of vascular tone is unknown. RESULTS Cx37 and Cx40 were expressed in close proximity to eNOS at cell-cell interfaces of mouse aortic endothelial cells. Absence of Cx37 did not affect expression of Cx40 and a 50 % reduction of Cx40 in Cx40(+/-) aortas did not affect the expression of Cx37. However, absence of Cx40 was associated with reduced expression of Cx37. Basal NO release and the sensitivity for ACh were decreased in Cx37(-/-) and Cx40(-/-) aortas but not in Cx40(+/-) aortas. Moreover, ACh-induced release of constricting cyclooxygenase products was present in WT, Cx40(-/-) and Cx40(+/-) aortas but not in Cx37(-/-) aortas. Finally, agonist-induced NO-dependent relaxations and the sensitivity for exogenous NO were not affected by genotype. CONCLUSIONS Cx37 is more markedly involved in basal NO release, release of cyclooxygenase products and the regulation of the sensitivity for ACh as compared to Cx40.
Collapse
Affiliation(s)
- Merlijn J Meens
- Department of Pathology and Immunology, University of Geneva, 6th floor, 1 Rue Michel-Servet, 1211, Geneva, Switzerland.
- Department of Medical Specialties - Cardiology, University of Geneva, Geneva, Switzerland.
| | - Florian Alonso
- Department of Medicine, University Hospital, CHUV, Lausanne, Switzerland
| | - Loïc Le Gal
- Department of Medicine, University Hospital, CHUV, Lausanne, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, 6th floor, 1 Rue Michel-Servet, 1211, Geneva, Switzerland
- Department of Medical Specialties - Cardiology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
35
|
M Kidder G, Winterhager E. Physiological roles of connexins in labour and lactation. Reproduction 2015; 150:R129-36. [PMID: 26150552 DOI: 10.1530/rep-15-0134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/06/2015] [Indexed: 01/08/2023]
Abstract
The connexin family of proteins are best known as oligomerizing to form intercellular membrane channels (gap junctions) that metabolically and ionically couple cells to allow for coordinated cellular function. Nowhere in the body is this role better illustrated than in the uterine smooth muscle during parturition, where gap junctions conduct the contraction wave throughout the tissue to deliver the baby. Parturition is followed by the onset of lactation with connexins contributing to both the dramatic reorganization of mammary gland tissue leading up to lactation and the smooth muscle contraction of the myoepithelial cells which extrudes the milk. This review summarizes what is known about the expression and roles of individual connexin family members in the uterus during labour and in the mammary glands during development and lactation. Connexin loss or malfunction in mammary glands and the uterus can have serious implications for the health of both the mother and the newborn baby.
Collapse
Affiliation(s)
- Gerald M Kidder
- Department of Physiology and PharmacologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, CanadaInstitute of Molecular BiologyUniversity of Duisburg-Essen, University Clinics, 45211 Essen, Germany
| | - Elke Winterhager
- Department of Physiology and PharmacologySchulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, CanadaInstitute of Molecular BiologyUniversity of Duisburg-Essen, University Clinics, 45211 Essen, Germany
| |
Collapse
|
36
|
Katoch P, Mitra S, Ray A, Kelsey L, Roberts BJ, Wahl JK, Johnson KR, Mehta PP. The carboxyl tail of connexin32 regulates gap junction assembly in human prostate and pancreatic cancer cells. J Biol Chem 2015; 290:4647-4662. [PMID: 25548281 PMCID: PMC4335205 DOI: 10.1074/jbc.m114.586057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Connexins, the constituent proteins of gap junctions, are transmembrane proteins. A connexin (Cx) traverses the membrane four times and has one intracellular and two extracellular loops with the amino and carboxyl termini facing the cytoplasm. The transmembrane and the extracellular loop domains are highly conserved among different Cxs, whereas the carboxyl termini, often called the cytoplasmic tails, are highly divergent. We have explored the role of the cytoplasmic tail of Cx32, a Cx expressed in polarized and differentiated cells, in regulating gap junction assembly. Our results demonstrate that compared with the full-length Cx32, the cytoplasmic tail-deleted Cx32 is assembled into small gap junctions in human pancreatic and prostatic cancer cells. Our results further document that the expression of the full-length Cx32 in cells, which express the tail-deleted Cx32, increases the size of gap junctions, whereas the expression of the tail-deleted Cx32 in cells, which express the full-length Cx32, has the opposite effect. Moreover, we show that the tail is required for the clustering of cell-cell channels and that in cells expressing the tail-deleted Cx32, the expression of cell surface-targeted cytoplasmic tail alone is sufficient to enhance the size of gap junctions. Our live-cell imaging data further demonstrate that gap junctions formed of the tail-deleted Cx32 are highly mobile compared with those formed of full-length Cx32. Our results suggest that the cytoplasmic tail of Cx32 is not required to initiate the assembly of gap junctions but for their subsequent growth and stability. Our findings suggest that the cytoplasmic tail of Cx32 may be involved in regulating the permeability of gap junctions by regulating their size.
Collapse
Affiliation(s)
- Parul Katoch
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Shalini Mitra
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Anuttoma Ray
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Linda Kelsey
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Brett J Roberts
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - James K Wahl
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Keith R Johnson
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Parmender P Mehta
- From the Department of Biochemistry and Molecular Biology, Department of Oral Biology, Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|
37
|
Winterhager E, Kidder GM. Gap junction connexins in female reproductive organs: implications for women's reproductive health. Hum Reprod Update 2015; 21:340-52. [PMID: 25667189 DOI: 10.1093/humupd/dmv007] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/20/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Connexins comprise a family of ~20 proteins that form intercellular membrane channels (gap junction channels) providing a direct route for metabolites and signalling molecules to pass between cells. This review provides a critical analysis of the evidence for essential roles of individual connexins in female reproductive function, highlighting implications for women's reproductive health. METHODS No systematic review has been carried out. Published literature from the past 35 years was surveyed for research related to connexin involvement in development and function of the female reproductive system. Because of the demonstrated utility of genetic manipulation for elucidating connexin functions in various organs, much of the cited information comes from research with genetically modified mice. In some cases, a distinction is drawn between connexin functions clearly related to the formation of gap junction channels and those possibly linked to non-channel roles. RESULTS AND CONCLUSIONS Based on work with mice, several connexins are known to be required for female reproductive functions. Loss of connexin43 (CX43) causes an oocyte deficiency, and follicles lacking or expressing less CX43 in granulosa cells exhibit reduced growth, impairing fertility. CX43 is also expressed in human cumulus cells and, in the context of IVF, has been correlated with pregnancy outcome, suggesting that this connexin may be a determinant of oocyte and embryo quality in women. Loss of CX37, which exclusively connects oocytes with granulosa cells in the mouse, caused oocytes to cease growing without acquiring meiotic competence. Blocking of CX26 channels in the uterine epithelium disrupted implantation whereas loss or reduction of CX43 expression in the uterine stroma impaired decidualization and vascularization in mouse and human. Several connexins are important in placentation and, in the human, CX43 is a key regulator of the fusogenic pathway from the cytotrophoblast to the syncytiotrophoblast, ensuring placental growth. CX40, which characterizes the extravillous trophoblast (EVT), supports proliferation of the proximal EVTs while preventing them from differentiating into the invasive pathway. Furthermore, women with recurrent early pregnancy loss as well as those with endometriosis exhibit reduced levels of CX43 in their decidua. The antimalaria drug mefloquine, which blocks gap junction function, is responsible for increased risk of early pregnancy loss and stillbirth, probably due to inhibition of intercellular communication in the decidua or between trophoblast layers followed by an impairment of placental growth. Gap junctions also play a critical role in regulating uterine blood flow, contributing to the adaptive response to pregnancy. Given that reproductive impairment can result from connexin mutations in mice, it is advised that women suffering from somatic disease symptoms associated with connexin gene mutations be additionally tested for impacts on reproductive function. Better knowledge of these essential connexin functions in human female reproductive organs is important for safeguarding women's reproductive health.
Collapse
Affiliation(s)
- Elke Winterhager
- Institute of Molecular Biology, University of Duisburg-Essen, University Clinics, 45211 Essen, Germany
| | - Gerald M Kidder
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario and Children's Health Research Institute, London, Ontario N6C 2V5, Canada
| |
Collapse
|
38
|
Lübkemeier I, Bosen F, Kim JS, Sasse P, Malan D, Fleischmann BK, Willecke K. Human Connexin43E42K Mutation From a Sudden Infant Death Victim Leads to Impaired Ventricular Activation and Neonatal Death in Mice. ACTA ACUST UNITED AC 2015; 8:21-9. [DOI: 10.1161/circgenetics.114.000793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Sudden infant death syndrome (SIDS) describes the sudden, unexplained death of a baby during its first year of age and is the third leading cause of infant mortality. It is assumed that ≤20% of all SIDS cases are because of cardiac arrhythmias resulting from mutations in ion channel proteins. Besides ion channels also cardiac gap junction channels are important for proper conduction of cardiac electric activation. In the mammalian heart Connexin43 (Cx43) is the major gap junction protein expressed in ventricular cardiomyocytes. Recently, a novel Connexin43 loss-of-function mutation (Cx43E42K) was identified in a 2-month-old SIDS victim.
Methods and Results—
We have generated Cx43E42K-expressing mice as a model for SIDS. Heterozygous cardiac-restricted Cx43E42K-mutated mice die neonatally without major cardiac morphological defects. Electrocardiographic recordings of embryonic Cx43+/E42K mice reveal severely disturbed ventricular activation, whereas immunohistochemical analyses show normal localization and expression patterns of gap junctional Connexin43 protein in the Cx43E42K-mutated newborn mouse heart.
Conclusions—
Because we did not find heterogeneous gap junction loss in Cx43E42K mouse hearts, we conclude that the Cx43E42K gap junction channel creates an arrhythmogenic substrate leading to lethal ventricular arrhythmias. The strong cardiac phenotype of Cx43E42K expressing mice supports the association between the human Cx43E42K mutation and SIDS and indicates that Connexin43 mutations should be considered in future studies when SIDS cases are to be molecularly explained.
Collapse
Affiliation(s)
- Indra Lübkemeier
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| | - Felicitas Bosen
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| | - Jung-Sun Kim
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| | - Philipp Sasse
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| | - Daniela Malan
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| | - Bernd K. Fleischmann
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| | - Klaus Willecke
- From the Life and Medical Sciences (LIMES) Institute, Molecular Genetics (I.L., F.B., K.W.) and Institute of Physiology I, Life and Brain Center (P.S., D.M., B.K.F.), University of Bonn, Bonn, Germany; and Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (J.-S.K.)
| |
Collapse
|
39
|
Qin Y, Mohandessi S, Gordon L, Wadehra M. Regulation of FAK Activity by Tetraspan Proteins: Potential Clinical Implications in Cancer. Crit Rev Oncog 2015; 20:391-405. [PMID: 27279237 PMCID: PMC5390008 DOI: 10.1615/critrevoncog.v20.i5-6.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that regulates multiple cell signaling pathways in both physiological and pathological conditions. Overexpression and activation of FAK is associated with many advanced stage cancers through promoting cancer cell tumorigenicity and progression as well as by regulating the tumor microenvironment. FAK has multiple binding partners through which FAK exerts its functions including RhoGEF, Src family, talin, cortactin, and paxilin. Over the last few years, it has been proposed that a novel group of four transmembrane proteins can interact with FAK and regulate its activity. These include select tetraspanins such as CD151 and CD9 as well as the GAS3 family members epithelial membrane protein-2 (EMP2) and peripheral myelin protein-22 (PMP22). In this review, we discuss the current knowledge of the interaction between FAK and tetraspan proteins in physiological and pathological conditions, with an emphasis on the potential of tetraspan family members as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yu Qin
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Shabnam Mohandessi
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Lynn Gordon
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Madhuri Wadehra
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
| |
Collapse
|
40
|
Kang M, Lin N, Li C, Meng Q, Zheng Y, Yan X, Deng J, Ou Y, Zhang C, He J, Luo D. Cx43 phosphorylation on S279/282 and intercellular communication are regulated by IP3/IP3 receptor signaling. Cell Commun Signal 2014; 12:58. [PMID: 25262337 PMCID: PMC4195880 DOI: 10.1186/s12964-014-0058-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 09/11/2014] [Indexed: 11/17/2022] Open
Abstract
Background Inositol 1,4,5-trisphosphate receptor (IP3R) plays a pivotal role in the Ca2+ release process in a variety of cell types. Additionally, IP3R is distributed in ventricular intercalated discs, but its function(s) in this particular site remains unknown. Connexin (Cx43), the predominant gap junction (GJ) protein in ventricular myocardium, is linked to several signaling pathways that regulate Cx43 properties by (de)phosphorylation on multiple residues. Here, we investigated the regulatory role of IP3R in cell-cell communication and the mechanism(s) underlying this effect. Results In neonatal rat and adult mouse ventricular myocytes IP3R co-localized and co-immunoprecipitated with Cx43 in GJ plaques detected by immunostaining and western blot assays. Blocking IP3R with antagonists or silencing pan-IP3R expression with shRNA hindered the 6-carboxyfluorescein (6-CFDA) diffusion through GJs and desynchronized Ca2+ transients among confluent neonatal myocytes in culture, whereas stimulation of IP3R with IP3 ester or ATP exerted the opposite effect. Likewise, 6-CFDA propagation through GJs was modulated by IP3R activation or inhibition in cell pairs of isolated adult cardiomyocytes. Furthermore, IP3R activation or IP3R suppression promoted or suppressed, respectively, Cx43 phosphorylation on S279/282. Site-directed mutagenesis indicated that expression of a mutant Cx43-S282A (alanine) inhibited S279/282 phosphorylation and GJ permeability, while the S279A mutant showed the opposite effect in ventricular myocytes. Expression of these mutants in HEK293 cells revealed that cells with a dual S279/282 mutation failed to express exogenous Cx43, whereas cells with a single S279 or S282 mutation displayed Cx43 overexpression with increased phosphorylation of S279/282 and promotion of intercellular communication. Conclusions These results demonstrated, for the first time, that IP3R physically interacts with Cx43 and participates in the regulation of Cx43 phosphorylation on S279/282, thereby affecting GJ intercellular communication in ventricular myocytes. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0058-6) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Molica F, Meens MJP, Morel S, Kwak BR. Mutations in cardiovascular connexin genes. Biol Cell 2014; 106:269-93. [PMID: 24966059 DOI: 10.1111/boc.201400038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/20/2014] [Indexed: 12/25/2022]
Abstract
Connexins (Cxs) form a family of transmembrane proteins comprising 21 members in humans. Cxs differ in their expression patterns, biophysical properties and ability to combine into homomeric or heteromeric gap junction channels between neighbouring cells. The permeation of ions and small metabolites through gap junction channels or hemichannels confers a crucial role to these proteins in intercellular communication and in maintaining tissue homeostasis. Among others, Cx37, Cx40, Cx43, Cx45 and Cx47 are found in heart, blood and lymphatic vessels. Mutations or polymorphisms in the genes coding for these Cxs have not only been implicated in cardiovascular pathologies but also in a variety of other disorders. While mutations in Cx43 are mostly linked to oculodentodigital dysplasia, Cx47 mutations are associated with Pelizaeus-Merzbacher-like disease and lymphoedema. Cx40 mutations are principally linked to atrial fibrillation. Mutations in Cx37 have not yet been described, but polymorphisms in the Cx37 gene have been implicated in the development of arterial disease. This review addresses current knowledge on gene mutations in cardiovascular Cxs systematically and links them to alterations in channel properties and disease.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Department of Medical Specializations - Cardiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
42
|
Gebicke-Haerter PJ. Engram formation in psychiatric disorders. Front Neurosci 2014; 8:118. [PMID: 24904262 PMCID: PMC4036307 DOI: 10.3389/fnins.2014.00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/02/2014] [Indexed: 01/17/2023] Open
Abstract
Environmental factors substantially influence beginning and progression of mental illness, reinforcing or reducing the consequences of genetic vulnerability. Often initiated by early traumatic events, “engrams” or memories are formed that may give rise to a slow and subtle progression of psychiatric disorders. The large delay between beginning and time of onset (diagnosis) may be explained by efficient compensatory mechanisms observed in brain metabolism that use optional pathways in highly redundant molecular interactions. To this end, research has to deal with mechanisms of learning and long-term memory formation, which involves (a) epigenetic changes, (b) altered neuronal activities, and (c) changes in neuron-glia communication. On the epigenetic level, apparently DNA-methylations are more stable than histone modifications, although both closely interact. Neuronal activities basically deliver digital information, which clearly can serve as basis for memory formation (LTP). However, research in this respect has long time neglected the importance of glia. They are more actively involved in the control of neuronal activities than thought before. They can both reinforce and inhibit neuronal activities by transducing neuronal information from frequency-encoded to amplitude and frequency-modulated calcium wave patterns spreading in the glial syncytium by use of gap junctions. In this way, they serve integrative functions. In conclusion, we are dealing with two concepts of encoding information that mutually control each other and synergize: a digital (neuronal) and a wave-like (glial) computing, forming neuron-glia functional units with inbuilt feedback loops to maintain balance of excitation and inhibition. To better understand mental illness, we have to gain more insight into the dynamics of adverse environmental impact on those cellular and molecular systems. This report summarizes existing knowledge and draws some outline about further research in molecular psychiatry.
Collapse
Affiliation(s)
- Peter J Gebicke-Haerter
- Medical Faculty Mannheim, Central Institute of Mental Health, Institute of Psychopharmacology, Heidelberg University Mannheim, Germany ; Progrs. de Farmacología y Inmunología, Facultad de Medicina, Universidad de Chile Santiago, Chile
| |
Collapse
|
43
|
Chen J, Chen J, Zhu Y, Liang C, Zhao HB. Deafness induced by Connexin 26 (GJB2) deficiency is not determined by endocochlear potential (EP) reduction but is associated with cochlear developmental disorders. Biochem Biophys Res Commun 2014; 448:28-32. [PMID: 24732355 DOI: 10.1016/j.bbrc.2014.04.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Abstract
Connexin 26 (Cx26, GJB2) mutations are the major cause of hereditary deafness and are responsible for >50% of nonsyndromic hearing loss. Mouse models show that Cx26 deficiency can cause congenital deafness with cochlear developmental disorders, hair cell degeneration, and the reduction of endocochlear potential (EP) and active cochlear amplification. However, the underlying deafness mechanism still remains undetermined. Our previous studies revealed that hair cell degeneration is not a primary cause of hearing loss. In this study we investigated the role of EP reduction in Cx26 deficiency-induced deafness. We found that the EP reduction is not associated with congenital deafness in Cx26 knockout (KO) mice. The threshold of auditory brainstem response (ABR) in Cx26 KO mice was even greater than 110 dB SPL, demonstrating complete hearing loss. However, the EP in Cx26 KO mice varied and not completely abolished. In some cases, the EP could still remain at higher levels (>70 mV). We further found that the deafness in Cx26 KO mice is associated with cochlear developmental disorders. Deletion of Cx26 in the cochlea before postnatal day 5 (P5) could cause congenital deafness. The cochlea had developmental disorders and the cochlear tunnel was not open. However, no congenital deafness was found when Cx26 was deleted after P5. The cochlea also displayed normal development and the cochlear tunnel was open normally. These data suggest that congenital deafness induced by Cx26 deficiency is not determined by EP reduction and may result from cochlear developmental disorders.
Collapse
Affiliation(s)
- Jin Chen
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, USA.; Department of Otolaryngology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jing Chen
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, USA
| | - Yan Zhu
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, USA
| | - Chun Liang
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, USA
| | - Hong-Bo Zhao
- Dept. of Otolaryngology, University of Kentucky Medical School, Lexington, KY 40536, USA..
| |
Collapse
|
44
|
Grek CL, Rhett JM, Ghatnekar GS. Cardiac to cancer: connecting connexins to clinical opportunity. FEBS Lett 2014; 588:1349-64. [PMID: 24607540 DOI: 10.1016/j.febslet.2014.02.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 12/26/2022]
Abstract
Gap junctions and their connexin components are indispensable in mediating the cellular coordination required for tissue and organ homeostasis. The critical nature of their existence mandates a connection to disease while at the same time offering therapeutic potential. Therapeutic intervention may be offered through the pharmacological and molecular disruption of the pathways involved in connexin biosynthesis, gap junction assembly, stabilization, or degradation. Chemical inhibitors aimed at closing connexin channels, peptide mimetics corresponding to short connexin sequences, and gene therapy approaches have been incredibly useful molecular tools in deciphering the complexities associated with connexin biology. Recently, therapeutic potential in targeting connexins has evolved from basic research in cell-based models to clinical opportunity in the form of human trials. Clinical promise is particularly evident with regards to targeting connexin43 in the context of wound healing. The following review is aimed at highlighting novel advances where the pharmacological manipulation of connexin biology has proven beneficial in animals or humans.
Collapse
Affiliation(s)
- Christina L Grek
- FirstString Research, Inc., 300 W. Coleman Blvd., Suite 203, Mount Pleasant, SC, United States
| | - J Matthew Rhett
- Department of Surgery, Division of General Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Gautam S Ghatnekar
- FirstString Research, Inc., 300 W. Coleman Blvd., Suite 203, Mount Pleasant, SC, United States.
| |
Collapse
|
45
|
Zonta F, Buratto D, Cassini C, Bortolozzi M, Mammano F. Molecular dynamics simulations highlight structural and functional alterations in deafness-related M34T mutation of connexin 26. Front Physiol 2014; 5:85. [PMID: 24624091 PMCID: PMC3941013 DOI: 10.3389/fphys.2014.00085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/12/2014] [Indexed: 11/22/2022] Open
Abstract
Mutations of the GJB2 gene encoding the connexin 26 (Cx26) gap junction protein, which is widely expressed in the inner ear, are the primary cause of hereditary non-syndromic hearing loss in several populations. The deafness–associated single amino acid substitution of methionine 34 (M34) in the first transmembrane helix (TM1) with a threonine (T) ensues in the production of mutant Cx26M34T channels that are correctly synthesized and assembled in the plasma membrane. However, mutant channels overexpressed in HeLa cells retain only 11% of the wild type unitary conductance. Here we extend and rationalize those findings by comparing wild type Cx26 (Cx26WT) and Cx26M34T mutant channels in silico, using molecular dynamics simulations. Our results indicate that the quaternary structure of the Cx26M34T hemichannel is altered at the level of the pore funnel due to the disruption of the hydrophobic interaction between M34 and tryptophan 3 (W3) in the N–terminal helix (NTH). Our simulations also show that external force stimuli applied to the NTHs can detach them from the inner wall of the pore more readily in the mutant than in the wild type hemichannel. These structural alterations significantly increase the free energy barrier encountered by permeating ions, correspondingly decreasing the unitary conductance of the Cx26M34T hemichannel. Our results accord with the proposal that the mutant resides most of the time in a low conductance state. However, the small displacement of the NTHs in our Cx26M34T hemichannel model is not compatible with the formation of a pore plug as in the related Cx26M34A mutant.
Collapse
Affiliation(s)
- Francesco Zonta
- Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova Padova, Italy
| | - Damiano Buratto
- Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova Padova, Italy
| | - Chiara Cassini
- Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova Padova, Italy
| | - Mario Bortolozzi
- Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova Padova, Italy ; Istituto Veneto di Medicina Molecolare, Fondazione per la Ricerca Biomedica Avanzata Padova, Italy
| | - Fabio Mammano
- Dipartimento di Fisica e Astronomia "G. Galilei", Università degli Studi di Padova Padova, Italy ; Istituto Veneto di Medicina Molecolare, Fondazione per la Ricerca Biomedica Avanzata Padova, Italy ; Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche Padova, Italy
| |
Collapse
|
46
|
Solan JL, Lampe PD. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett 2014; 588:1423-9. [PMID: 24508467 DOI: 10.1016/j.febslet.2014.01.049] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
Gap junctions, composed of proteins from the connexin gene family, are highly dynamic structures that are regulated by kinase-mediated signaling pathways and interactions with other proteins. Phosphorylation of Connexin43 (Cx43) at different sites controls gap junction assembly, gap junction size and gap junction turnover. Here we present a model describing how Akt, mitogen activated protein kinase (MAPK) and src kinase coordinate to regulate rapid turnover of gap junctions. Specifically, Akt phosphorylates Cx43 at S373 eliminating interaction with zona occludens-1 (ZO-1) allowing gap junctions to enlarge. Then MAPK and src phosphorylate Cx43 to initiate turnover. We integrate published data with new data to test and refine this model. Finally, we propose that differential coordination of kinase activation and Cx43 phosphorylation controls the specific routes of disassembly, e.g., annular junction formation or gap junctions can potentially "unzip" and be internalized/endocytosed into the cell that produced each connexin.
Collapse
Affiliation(s)
- Joell L Solan
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Paul D Lampe
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States.
| |
Collapse
|
47
|
Meens MJ, Sabine A, Petrova TV, Kwak BR. Connexins in lymphatic vessel physiology and disease. FEBS Lett 2014; 588:1271-7. [PMID: 24457200 DOI: 10.1016/j.febslet.2014.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
Connexins are transmembrane proteins that form gap junction- and hemi-channels. Once inserted into the membrane, hemi-channels (connexons) allow for diffusion of ions and small molecules (<1 kDa) between the extracellular space and the cytosol. Gap junction channels allow diffusion of similar molecules between the cytoplasms of adjacent cells. The expression and function of connexins in blood vessels has been intensely studied in the last few decades. In contrast, only a few studies paid attention to lymphatic vessels; convincing in vivo data with respect to expression patterns of lymphatic connexins and their functional roles have only recently begun to emerge. Interestingly, mutations in connexin genes have been linked to diseases of lymphatic vasculature, most notably primary and secondary lymphedema. This review summarizes the available data regarding lymphatic connexins. More specifically it addresses (i) early studies aimed at presence of gap junction-like structures in lymphatic vessels, (ii) more recent studies focusing on lymphatic connexins using genetically engineered mice, and (iii) results of clinical studies that have reported lymphedema-linked mutations in connexin genes.
Collapse
Affiliation(s)
- Merlijn J Meens
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; Department of Internal Medicine - Cardiology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Amélie Sabine
- Department of Oncology, University Hospital of Lausanne, 1066 Epalinges, Switzerland; Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University Hospital of Lausanne, 1066 Epalinges, Switzerland; Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; Department of Internal Medicine - Cardiology, University of Geneva, CH-1211 Geneva, Switzerland.
| |
Collapse
|
48
|
Syndromic and non-syndromic disease-linked Cx43 mutations. FEBS Lett 2014; 588:1339-48. [PMID: 24434540 DOI: 10.1016/j.febslet.2013.12.022] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/30/2013] [Indexed: 01/05/2023]
Abstract
There are now at least 14 distinct diseases linked to germ line mutations in the 21 genes that encode the connexin (Cx) family of gap junction proteins. This review focuses on the links between germ-line mutations in the gene encoding Cx43 (GJA1) and the human disease termed oculodentodigital dysplasia (ODDD). This disease is clinically characterized by soft tissue fusion of the digits, abnormal craniofacial bone development, small eyes and loss of tooth enamel. However, the disease is considerably more complex and somewhat degenerative as patients often suffer from other syndromic effects that include incontinence, glaucoma, skin diseases and neuropathies that become more pronounced during aging. The challenge continues to be understanding how distinct Cx43 gene mutations cause such a diverse range of tissue phenotypes and pathophysiological changes while other Cx43-rich organs are relatively unaffected. This review will provide an overview of many of these studies and distill some themes and outstanding questions that need to be addressed in the coming years.
Collapse
|
49
|
Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou NH. Gap junctions. Compr Physiol 2013; 2:1981-2035. [PMID: 23723031 DOI: 10.1002/cphy.c110051] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease.
Collapse
Affiliation(s)
- Morten Schak Nielsen
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
50
|
Pérez-Armendariz EM. Connexin 36, a key element in pancreatic beta cell function. Neuropharmacology 2013; 75:557-66. [PMID: 23973309 DOI: 10.1016/j.neuropharm.2013.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 12/01/2022]
Abstract
The prevalence of diabetes at a global scale has markedly increased during the last three decades. Diabetes is a chronic disease that includes a group of metabolic disorders, in which high serum glucose levels is a common factor. Insulin is the only hormone that decreases serum glucose levels. Therefore, it is relevant to deepen our understanding of cell mechanisms that regulate insulin production and release. Insulin is produced in pancreatic islet beta cells. They are excitable cells and most of them are electrically coupled through gap junction channels. Connexin 36 (Cx36) has been identified at junctional membranes of islet beta cells in both rodents and humans. Co-localization of Cx36 with Cx30.2 has been recently identified. Functional studies in Cx36 deficient mice have provided direct evidence that Cx36 gap junction channels are necessary for the synchronization of [Ca(2+)]i oscillations in islet beta cells. The latter allows for the generation of insulin pulses in a single perfused islet. Moreover, Cx36 deficient mice were found to have altered serum insulin pulse dynamics and to be glucose intolerant. In addition, Cx36 has been recently identified as an early gene that is specifically expressed in embryonic beta cells, whose transcript and protein are upregulated in unison with the main wave of beta cell differentiation. In conclusion, Cx36 is critical for endocrine pancreatic function and may represent a molecular target for future prevention and treatment of diabetes. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
Affiliation(s)
- E Martha Pérez-Armendariz
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Torre de Investigación 5to piso, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, UNAM, México D.F. 04510, Mexico; Hospital General de México, Hospital General de México/Unidad de Medicina Experimental, Facultad de Medicina, UNAM, Dr Balmis 148, Colonia Doctores, Delegación Cuahutémoc, CP 06726 Ciudad de México, Mexico; Departamento of Biología Celular yTisular, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Interior, Ciudad Universitaria, UNAM, Mexico D.F. 04510, Mexico.
| |
Collapse
|