1
|
Lin TK, Huang CR, Lin KJ, Hsieh YH, Chen SD, Lin YC, Chao AC, Yang DI. Potential Roles of Hypoxia-Inducible Factor-1 in Alzheimer's Disease: Beneficial or Detrimental? Antioxidants (Basel) 2024; 13:1378. [PMID: 39594520 PMCID: PMC11591038 DOI: 10.3390/antiox13111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The major pathological characteristics of Alzheimer's disease (AD) include senile plaques and neurofibrillary tangles (NFTs), which are mainly composed of aggregated amyloid-beta (Aβ) peptide and hyperphosphorylated tau protein, respectively. The excessive production of reactive oxygen species (ROS) and neuroinflammation are crucial contributing factors to the pathological mechanisms of AD. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor critical for tissue adaption to low-oxygen tension. Growing evidence has suggested HIF-1 as a potential therapeutic target for AD; conversely, other experimental findings indicate that HIF-1 induction contributes to AD pathogenesis. These previous findings thus point to the complex, even contradictory, roles of HIF-1 in AD. In this review, we first introduce the general pathogenic mechanisms of AD as well as the potential pathophysiological roles of HIF-1 in cancer, immunity, and oxidative stress. Based on current experimental evidence in the literature, we then discuss the possible beneficial as well as detrimental mechanisms of HIF-1 in AD; these sections also include the summaries of multiple chemical reagents and proteins that have been shown to exert beneficial effects in AD via either the induction or inhibition of HIF-1.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Kai-Jung Lin
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
| | - Yi-Heng Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - A-Ching Chao
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
2
|
The Neuroprotective Activities of the Novel Multi-Target Iron-Chelators in Models of Alzheimer's Disease, Amyotrophic Lateral Sclerosis and Aging. Cells 2023; 12:cells12050763. [PMID: 36899898 PMCID: PMC10001413 DOI: 10.3390/cells12050763] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
The concept of chelation therapy as a valuable therapeutic approach in neurological disorders led us to develop multi-target, non-toxic, lipophilic, brain-permeable compounds with iron chelation and anti-apoptotic properties for neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), age-related dementia and amyotrophic lateral sclerosis (ALS). Herein, we reviewed our two most effective such compounds, M30 and HLA20, based on a multimodal drug design paradigm. The compounds have been tested for their mechanisms of action using animal and cellular models such as APP/PS1 AD transgenic (Tg) mice, G93A-SOD1 mutant ALS Tg mice, C57BL/6 mice, Neuroblastoma × Spinal Cord-34 (NSC-34) hybrid cells, a battery of behavior tests, and various immunohistochemical and biochemical techniques. These novel iron chelators exhibit neuroprotective activities by attenuating relevant neurodegenerative pathology, promoting positive behavior changes, and up-regulating neuroprotective signaling pathways. Taken together, these results suggest that our multifunctional iron-chelating compounds can upregulate several neuroprotective-adaptive mechanisms and pro-survival signaling pathways in the brain and might function as ideal drugs for neurodegenerative disorders, such as PD, AD, ALS, and aging-related cognitive decline, in which oxidative stress and iron-mediated toxicity and dysregulation of iron homeostasis have been implicated.
Collapse
|
3
|
Asemi-Rad A, Moafi M, Aliaghaei A, Abbaszadeh HA, Abdollahifar MA, Ebrahimi MJ, Heidari MH, Sadeghi Y. The effect of dopaminergic neuron transplantation and melatonin co-administration on oxidative stress-induced cell death in Parkinson's disease. Metab Brain Dis 2022; 37:2677-2685. [PMID: 36074314 PMCID: PMC9668958 DOI: 10.1007/s11011-022-01021-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
Abstract
A gradual degeneration of the striatum and loss of nigral dopamine cells are characteristic of Parkinson's disease. Nowadays, combination therapy for neurodegenerative disease is considered. This study aimed to investigate the effects of melatonin and dopaminergic neurons derived from adipose tissue stem cells (ADSCs) in a rat model of Parkinson's disease. Parkinson's disease was induced in rats using neurotoxin 6-Hydroxydopamine. The treatment was performed using melatonin and dopaminergic neurons transplantation. Subsequently, behavioral tests, western blot analysis for Caspase-3 expression, GSH (Glutathione) content and stereology analysis for the volume and cell number of substantia nigra and striatum were performed. Treatment with melatonin and dopaminergic neuron transplantation increased the number of neurons in substantia nigra and striatum while the number of glial cell and the volume of substantia nigra and striatum did not show significant change between groups. Western blot analysis for caspase 3 indicated the significant differences between groups. The results also indicated the increased level of glutathione (GSH) content in treatment groups. this study showed that combination therapy with melatonin and dopaminergic neurons could greatly protect the neurons, reduce oxidative stress and improve the symptoms of PD.
Collapse
Affiliation(s)
- Azam Asemi-Rad
- Anatomy Department, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Maral Moafi
- Anatomy and Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Anatomy and Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Anatomy and Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Anatomy and Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Javad Ebrahimi
- Anatomy and Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Heidari
- Anatomy and Biology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Sadeghi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Anatomy and Neuroscience, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VlC, Australia.
| |
Collapse
|
4
|
Mossine VV, Waters JK, Gu Z, Sun GY, Mawhinney TP. Bidirectional Responses of Eight Neuroinflammation-Related Transcriptional Factors to 64 Flavonoids in Astrocytes with Transposable Insulated Signaling Pathway Reporters. ACS Chem Neurosci 2022; 13:613-623. [PMID: 35147416 DOI: 10.1021/acschemneuro.1c00750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is implicated in a variety of pathologies and is mechanistically linked to hyperactivation of glial cells in the central nervous system (CNS), predominantly in response to external stimuli. Multiple dietary factors were reported to alter neuroinflammation, but their actions on the relevant transcription factors in glia are not sufficiently understood. Here, an in vitro protocol employing cultured astroglial cells, which carry reporters of multiple signaling pathways associated with inflammation, was developed for screening environmental factors and synthetic drugs. Immortalized rat astrocyte line DI TNC1 was stably transfected with piggyBac transposon vectors containing a series of insulated reporters for the transcriptional activity of NF-κB, AP-1, signal transducer and activator of transcription 1 (STAT1), signal transducer and activator of transcription 3 (STAT3), aromatic hydrocarbon receptor (AhR), Nrf2, peroxisome proliferator-activated receptor γ (PPARγ), and HIF-1α, which is quantified via luciferase assay. Concatenated green fluorescent protein (GFP) expression was employed for simultaneous evaluation of cellular viability. Responses to a set of 64 natural and synthetic monomeric flavonoids representing six main structural classes (flavan-3-ols, flavanones, flavones, flavonols, isoflavones, and anthocyan(id)ins) were obtained at 10 and 50 μM concentrations. Except for HIF-1α, the activity of NF-κB and other transcription factors (TFs) in astrocytes was predominantly inhibited by flavan-3-ols and anthocyan(id)ins, while flavones and isoflavones generally activated these TFs. In addition, we obtained dose-response profiles for 11 flavonoids (apigenin, baicalein, catechin, cyanidin, epigallocatechin gallate, genistein, hesperetin, kaempferol, luteolin, naringenin, and quercetin) within the 1-100 μM range and in the presence of immune-stimulants and immune-suppressors. The flavonoid concentration profiles for TF-activation reveal biphasic response curves from the astrocytes. Apart from epigallocatechin gallate (EGCG), flavonoids failed to inhibit the NF-κB activation by proinflammatory agents [lipopolysaccharide (LPS), cytokines], but most of the tested polyphenols synergized with STAT3 inhibitors (stattic, ruxolitinib) against the activation of this TF in the astrocytes. We conclude that transposable insulated reporters of transcriptional activation represent a convenient neurochemistry tool in screening for activators/inhibitors of signaling pathways.
Collapse
Affiliation(s)
- Valeri V. Mossine
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - James K. Waters
- Agriculture Experiment Station Chemical Laboratories, University of Missouri, Columbia, Missouri 65211, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri 65211, United States
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Thomas P. Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Child Health, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
5
|
Folarin OR, Olopade FE, Olopade JO. Essential Metals in the Brain and the Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for their Detection. Niger J Physiol Sci 2021; 36:123-147. [PMID: 35947740 DOI: 10.54548/njps.v36i2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/15/2023]
Abstract
Metals are natural component of the ecosystem present throughout the layers of atmosphere; their abundant expression in the brain indicates their importance in the central nervous system (CNS). Within the brain tissue, their distribution is highly compartmentalized, the pattern of which is determined by their primary roles. Bio-imaging of the brain to reveal spatial distribution of metals within specific regions has provided a unique understanding of brain biochemistry and architecture, linking both the structures and the functions through several metal mediated activities. Bioavailability of essential trace metal is needed for normal brain function. However, disrupted metal homeostasis can influence several biochemical pathways in different fields of metabolism and cause characteristic neurological disorders with a typical disease process usually linked with aberrant metal accumulations. In this review we give a brief overview of roles of key essential metals (Iron, Copper and Zinc) including their molecular mechanisms and bio-distribution in the brain as well as their possible involvement in the pathogenesis of related neurodegenerative diseases. In addition, we also reviewed recent applications of Laser Ablation Inductively Couple Plasma Mass Spectrophotometry (LA-ICP-MS) in the detection of both toxic and essential metal dyshomeostasis in neuroscience research and other related brain diseases.
Collapse
|
6
|
Fedotcheva TA, Sheichenko OP, Fedotcheva NI. New Properties and Mitochondrial Targets of Polyphenol Agrimoniin as a Natural Anticancer and Preventive Agent. Pharmaceutics 2021; 13:pharmaceutics13122089. [PMID: 34959369 PMCID: PMC8703553 DOI: 10.3390/pharmaceutics13122089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
Agrimoniin is a polyphenol from the group of tannins with antioxidant and anticancer activities. It is assumed that the anticancer action of agrimoniin is associated with the activation of mitochondria-dependent apoptosis, but its mitochondrial targets have not been estimated. We examined the direct influence of agrimoniin on different mitochondrial functions, including the induction of the mitochondrial permeability transition pore (MPTP) as the primary mechanism of mitochondria-dependent apoptosis. Agrimoniin was isolated from Agrimonia pilosa Ledeb by multistep purification. The content of agrimoniin in the resulting substance reached 80%, as determined by NMR spectroscopy. The cytotoxic effect of purified agrimoniin was confirmed on the cultures of K562 and HeLa cancer cells by the MTT assay. When tested on isolated rat liver mitochondria, agrimoniin at a low concentration (10 µM) induced the low-amplitude swelling, which was inhibited by the MPTP inhibitors ADP and cyclosporine A, activated the opening of MPTP by calcium ions and stimulated the respiration supported by succinate oxidation. Also, agrimoniin reduced the electron acceptor DCPIP in a concentration-dependent manner and chelated iron ions. Owing to all these properties, agrimoniin can stimulate apoptosis or activate mitochondrial functions, which can be helpful in the prevention and elimination of stagnant pathological states.
Collapse
Affiliation(s)
- Tatiana A. Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia;
| | - Olga P. Sheichenko
- All-Russian Research Institute of Medicinal and Aromatic Plants, Gryna St. 7, Moscow 117216, Russia;
| | - Nadezhda I. Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str. 3, Pushchino142290, Russia
- Correspondence:
| |
Collapse
|
7
|
Lin B, Youdim MBH. The protective, rescue and therapeutic potential of multi-target iron-chelators for retinitis pigmentosa. Free Radic Biol Med 2021; 174:1-11. [PMID: 34324978 DOI: 10.1016/j.freeradbiomed.2021.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited diseases in which mutations result in the initial loss of night vision, followed by complete blindness. There is currently no effective therapeutic option for RP patients. Given the extremely heterogeneous nature of RP, any causative gene-specific therapy would be practical in a small fraction of patients with RP. Non-gene-specific therapeutics that is applicable to the majority of RP patients regardless of causative mutations may have an enormous impact on RP treatment. Several theories including apoptosis, oxidative stress and neuroinflammation have been proposed as possible underlying mechanisms for photoreceptor death in RP. We have designed and synthesized a series of iron-chelating compounds that possess diverse pharmacological properties and can act in a non-gene-specific manner on multiple pathological features ascribed to Alzheimer's disease, Parkinson's disease and RP. In this review, we discuss the multiple effects of several brain-permeable multi target iron-chelating compounds on photoreceptor degeneration in a mouse model of human RP. Specifically, we focus on the anti-apototic, neuroprotective and neurorescue effects of the compound VK28, M30 and VAR10303 on the histologic and functional preservation of photoreceptors in a mouse model of RP. We consider such drugs as potential therapeutic agents for RP patients.
Collapse
Affiliation(s)
- Bin Lin
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| | - Moussa B H Youdim
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
8
|
Kaur I, Behl T, Sehgal A, Singh S, Sharma N, Aleya L, Bungau S. Connecting the dots between mitochondrial dysfunction and Parkinson's disorder: focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37060-37081. [PMID: 34053042 DOI: 10.1007/s11356-021-14619-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Mitochondria are unique cell organelles, which exhibit multifactorial roles in numerous cell physiological processes, significantly preserving the integrity of neural synaptic interconnections, mediating ATP production, and regulating apoptotic signaling pathways and calcium homeostasis. Multiple neurological disorders occur as a consequence of impaired mitochondrial functioning, with greater sensitivity of dopaminergic (DA) neurons to mitochondrial dysfunction, due to oxidative nature and low mitochondrial mass, thus supporting the contribution of mitochondrial impairment in Parkinson's disorder (neuronal damage due to curbed dopamine levels). The pathophysiology of the second most common disorder, PD, is potentiated by various mitochondrial homeostasis regulating genes, as discussed in the review. The PD symptoms are known to be aggravated by multiple mitochondria-linked alterations, like reactive oxygen species (ROS) production, Ca2+ buffering, imbalanced mitochondrial dynamics (fission, fusion, mitophagy), biogenetic dysfunctions, disrupted mitochondrial membrane potential (MMP), protein aggregation, neurotoxins, and genetic mutations, which manifest the central involvement of unhealthy mitochondria in neurodegeneration, resulting in retarded DA neurons in region of substantia nigra pars compacta (SNpc), causing PD. Furthermore, the review tends to target altered mitochondrial components, like oxidative stress, inflammation, biogenetic alterations, impaired dynamics, uncontrolled homeostasis, and genetic mutations, to provide a sustainable and reliable alternative in PD therapeutics and to overcome the pitfalls of conventional therapeutic agents. Therefore, the authors elaborate the relationship between PD pathogenesis and mitochondrial dysfunctions, followed by a suitable mitochondria-targeting therapeutic portfolio, as well as future considerations, aiding the researchers to investigate novel strategies to mitigate the severity of the disease.
Collapse
Affiliation(s)
- Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
9
|
Uddin MS, Kabir MT, Rahman MM, Mathew B, Shah MA, Ashraf GM. TV 3326 for Alzheimer's dementia: a novel multimodal ChE and MAO inhibitors to mitigate Alzheimer's-like neuropathology. ACTA ACUST UNITED AC 2020; 72:1001-1012. [PMID: 32149402 DOI: 10.1111/jphp.13244] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders and a well-recognized cause of dementia with ageing. In this review, we have represented the ChE and MAO inhibitory potential of TV 3326 against AD based on current scientific evidence. KEY FINDINGS The aetiology of AD is quite complex and not completely understood. However, it has been observed that AD involves the deposition of abnormal amyloid beta (Aβ), along with hyperphosphorylation of tau, oxidative stress, low acetylcholine (ACh) level and biometal dyshomeostasis. Due to the complex nature of AD aetiology, active research is required in the areas of development of multitarget drugs with 2 or more complementary biological functions, as they might represent significant progress in the AD treatment. Interestingly, it has been found that TV 3326 (i.e. ladostigil) is regarded as a novel therapeutic agent since it has the potential to cause inhibition of monoamine oxidase (MAO) A and B, and acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the brain. Furthermore, it has the capacity to reverse memory impairments, which further suggests the ability of this drug to elevate cholinergic activity in the brain. SUMMARY TV 3326 can avert oxidative-nitrative stress and gliosis. It has also been confirmed that TV 3326 contains neuroprotective and anti-apoptotic properties. Therefore, this distinctive combined inhibition of ChE and MAO along with its neuroprotective property makes TV 3326 a useful drug in the treatment of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Md Motiar Rahman
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Karimi-Sales R, Ashiri M, Hafizi M, Kalanaky S, Maghsoudi AH, Fakharzadeh S, Maghsoudi N, Nazaran MH. Neuroprotective Effect of New Nanochelating-Based Nano Complex, ALZc3, Against Aβ (1-42)-Induced Toxicity in Rat: a Comparison with Memantine. Pharm Res 2020; 37:48. [PMID: 32020309 DOI: 10.1007/s11095-020-2773-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The current drugs for Alzheimer's disease (AD) are only used to slow or delay the progression of the pathology. So using a novel technology is a necessity to synthesize more effective medications to control this most common cause of dementia. In this study, using nanochelating technology, ALZc3 was synthesized and its therapeutic effects were evaluated in comparison with memantine on a well-known rat model of AD, which is based on Amyloid-βeta (Aβ) injection into the brain. MATERIALS AND METHODS Aβ (1-42) was injected bilaterally into the CA1 area of the hippocampus of male rats and then animals were treated daily by oral administration of Alz-C3, memantine or their vehicles. Activities of antioxidant enzymes catalase and superoxide dismutase (SOD), glutathione (GSH) and malondialdehyde (MDA) levels, as well as Bax/Bcl-2 ratio, caspase-3 activation, and TNF-α expression were evaluated 7 days after Aβ injection. Finally, learning and memory of the rats were assessed by Morris water maze test. RESULTS ALZc3 and memantine improved memory impairment and antioxidant activity and reduced TNF-α expression, caspase-3 activity and Bax/Bcl-2 ratio in the rat's hippocampus. The results showed a superiority of ALZC3 compared to memantine in reducing caspase-3, increasing CAT activity in Aβ (1-42)-injected groups and improving apoptosis factor in healthy mice. CONCLUSION These results indicated that ALZc3 could significantly prevent the memory impairment and Aβ (1-42) toxicity. Thus, ALZc3 could be a promising novel anti-AD agent.
Collapse
Affiliation(s)
- Ramin Karimi-Sales
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehrafarin Ashiri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Amir Hossein Maghsoudi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran.,Humer Daroo, TUMS pharmaceutical incubation center, Kargar Shomali, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
11
|
Tosato M, Di Marco V. Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules 2019; 9:E269. [PMID: 31324037 PMCID: PMC6681387 DOI: 10.3390/biom9070269] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present review reports a list of approximately 800 compounds which have been used, tested or proposed for Parkinson's disease (PD) therapy in the year range 2014-2019 (April): name(s), chemical structure and references are given. Among these compounds, approximately 250 have possible or established metal-chelating properties towards Cu(II), Cu(I), Fe(III), Fe(II), Mn(II), and Zn(II), which are considered to be involved in metal dyshomeostasis during PD. Speciation information regarding the complexes formed by these ions and the 250 compounds has been collected or, if not experimentally available, has been estimated from similar molecules. Stoichiometries and stability constants of the complexes have been reported; values of the cologarithm of the concentration of free metal ion at equilibrium (pM), and of the dissociation constant Kd (both computed at pH = 7.4 and at total metal and ligand concentrations of 10-6 and 10-5 mol/L, respectively), charge and stoichiometry of the most abundant metal-ligand complexes existing at physiological conditions, have been obtained. A rigorous definition of the reported amounts is given, the possible usefulness of this data is described, and the need to characterize the metal-ligand speciation of PD drugs is underlined.
Collapse
Affiliation(s)
- Marianna Tosato
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
12
|
Youdim MBH. Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases. J Neural Transm (Vienna) 2018; 125:1719-1733. [PMID: 30341696 DOI: 10.1007/s00702-018-1942-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
In early 1920s, tyramine oxidase was discovered that metabolized tyramine and in 1933 Blaschko demonstrated that this enzyme also metabolized adrenaline, noradrenaline and dopamine. Zeller gave it the name monoamine oxidase (MAO) to distinguish it from the enzyme that oxidatively deaminated diamines. MAO was recognized as an enzyme of crucial interest to pharmacologists because it catalyzed the major inactivation pathway for the catecholamines (and, later, 5-hydroxytryptamine, as well). Within the few decade, the inhibitors of MAO were discovered and introduced for the treatment of depressive illness which was established clinically. However, the first clinical use exposed serious side effects, pharmacological interest in, and investigation of, MAO continued, resulting in the characterization of two forms, distinct forms, MAO-A and -B, and selective inhibitors for them. Selective inhibitors of MAO-B (selegiline, rasagiline and safinamide) have found a therapeutic role in the treatment of Parkinson's disease and reversible inhibitors of MAO-A offered antidepressant activity without the serious side effects of the earlier nonselective MAO inhibitors. Subsequent molecular pharmacological have also generated the concept of neuroprotection, reflecting the possibility of slowing, halting and maybe reversing, neurodegeneration in Parkinson's or Alzheimer's diseases. Increased levels of oxidative stress through the accumulation of iron in the Parkinsonian and Alzheimer brains has been suggested to be critical for the initiation and progress of neurodegeneration. Selective inhibition of brain MAO could contribute importantly to lowering such stress, preventing the formation of hydrogen peroxide. Interaction of Iron with hydrogen peroxide and lead to Fenton reaction and production of the most reactive radical, namely hydroxyl radical. There are complex interactions between free iron levels in brain and MAO, and cascade of neurotoxic events may have practical outcomes for depressive disorders and neurodegenerative diseases. As consequence recent novel therapeutic drugs for neurodegenerative diseases has led to the development of multi target drugs, that possess selective brain MAO A and B inhibitory moiety, iron chelating and antioxidant activities and the ability to increase brain levels of endogenous neurotrophins, such as BDNF, GDNF VEGF and erythropoietin and induce mitochondrial biogenesis.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion-Bruce Rappaport Faculty of Medicine, Rappaport Family Research Institute, Haifa, Israel. .,, Yokneam, Israel.
| |
Collapse
|
13
|
The possibility of iron chelation therapy in the presence of different HPOs; a molecular approach to the non-covalent interactions and binding energies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Gao F, Wang B, Chang T, Li M, Fang W, Li ZH, Gao L. The iron pro-chelator BHAPI attenuates glutamate-induced oxidative stress via Wnt-β/catenin pathway in HT22 cells. Brain Res Bull 2018; 139:285-291. [PMID: 29588166 DOI: 10.1016/j.brainresbull.2018.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 01/07/2023]
Abstract
Disturbances in intracellular iron homeostasis are associated with brain damage under various neuropathological conditions. However, exposure of neuronal cells to classical iron chelators could interfere with physiological iron functions in the brain. Thus, iron pro-chelators represent a more advanced approach to exert strong free-iron binding capacity only under oxidative stress conditions. In the present study, we investigated the protective effects of an iron pro-chelator BHAPI [(E)-N'-(1-(2-((4- (4,4,5,5-tetramethyl-1,2,3-dioxoborolan-2-yl)benzyl)oxy)phenyl)ethylidene) isonicotino hydrazide] against glutamate-induced toxicity in neuronal HT22 cells. The results showed that BHAPI significantly increased cell viability, decreased lactate dehydrogenase (LDH) release, inhibited apoptotic cell death and reduced the activation of caspase-3 after glutamate treatment. This protection was accompanied by the preservation of mitochondrial function, as evidenced by reduced mitochondrial oxidative stress, attenuated lipid peroxidation and enhanced ATP generation. In addition, BHAPI promoted Wnt/β-catenin signaling, which was related to destabilization of β-catenin destruction complex. The Wnt/β-catenin signaling inhibitor JW74, but not IWP2, partially prevented the protective effects of BHAPI. In conclusion, our data suggested that BHAPI acted as a neuroprotective agent against glutamate-induced toxicity, and this protection might be mediated by preservation of mitochondrial function and regulation of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Fei Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Bao Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Tao Chang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Min Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Wei Fang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Zhi-Hong Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
15
|
Amit T, Bar-Am O, Mechlovich D, Kupershmidt L, Youdim MBH, Weinreb O. The novel multitarget iron chelating and propargylamine drug M30 affects APP regulation and processing activities in Alzheimer's disease models. Neuropharmacology 2017; 123:359-367. [PMID: 28571715 DOI: 10.1016/j.neuropharm.2017.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
In many of the neurodegenerative diseases, such as Alzheimer's disease (AD) and AD-related disorders, as well as in the regular ageing process, excessive generation of oxidative stress (OS) and accumulation of iron levels and deposition have been observed in specific affected-brain regions and thus, regarded as contributing factors to the pathogenesis of the diseases. In AD, iron promotes amyloid β (Aβ) neurotoxicity by producing free radical damage and OS in brain areas affected by neurodegeneration, presumably by facilitating the aggregation of Aβ. In addition, it was shown that iron modulates intracellular levels of the holo amyloid precursor protein (APP) by iron-responsive elements (IRE) RNA stem loops in the 5' untranslated region (5'UTR) of the APP transcript. As a consequence of these observations, iron chelation is one of the major new therapeutic strategies for the treatment of AD. This review describes the benefits and importance of the multimodal brain permeable chimeric iron-chelating/propargylamine drug M30, concerning its neuroprotective/neurorestorative inter-related activities relevant of the pathological features ascribed to AD, with a special focus on the effect of the drug on APP regulation and processing.
Collapse
Affiliation(s)
- Tamar Amit
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Orit Bar-Am
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Danit Mechlovich
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Lana Kupershmidt
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Moussa B H Youdim
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Orly Weinreb
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
16
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
17
|
Golko-Perez S, Amit T, Youdim MBH, Weinreb O. Beneficial Effects of Multitarget Iron Chelator on Central Nervous System and Gastrocnemius Muscle in SOD1(G93A) Transgenic ALS Mice. J Mol Neurosci 2016; 59:504-10. [PMID: 27173029 DOI: 10.1007/s12031-016-0763-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 12/14/2022]
Abstract
Accumulation of evidence has demonstrated high levels of iron in the central nervous system of both sporadic and familial amyotrophic lateral sclerosis (ALS) patients and in ALS mouse models. In accordance, iron chelation therapy was found to exert beneficial effects on ALS mice. Our group has designed and synthesized series of multifunctional non-toxic, brain permeable iron-chelating compounds for neurodegenerative diseases. Recent study has shown that co-administration of one of these drugs, VAR10303 with high calorie/energy-supplemented diet (VAR-ced), initiated after the appearance of disease symptoms improved motor performance, extended survival, and attenuated iron accumulation and motoneuron loss in SOD1(G93A) mice. Since VAR was found to exert diverse pharmacological properties associated with mitochondrial biogenesis in the gastrocnemius (GNS) muscle, we further assessed in the current study the impact of VAR-ced on additional neurorescue-associated molecular targets in the GNS and frontal cortex in SOD1(G93A) mice. The results show that VAR-ced treatment upregulated the expression of various HIF-1α-target glycolytic genes and elevated the levels of Bcl-2, neurotrophic factors, and AKT/GSK3β signaling in the GNS and frontal cortex of SOD1(G93A) mice, suggesting that these protective regulatory parameters regulated by VAR-ced treatment may be associated with the beneficial effects of the drug observed on ALS mice.
Collapse
Affiliation(s)
- Sagit Golko-Perez
- Eve Topf Center, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel
| | - Tamar Amit
- Eve Topf Center, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel
| | - Moussa B H Youdim
- Eve Topf Center, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel
| | - Orly Weinreb
- Eve Topf Center, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel.
| |
Collapse
|
18
|
Propargylamine as functional moiety in the design of multifunctional drugs for neurodegenerative disorders: MAO inhibition and beyond. Future Med Chem 2016; 7:609-29. [PMID: 25921401 DOI: 10.4155/fmc.15.12] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Much progress has been made in designing analogues that can potentially confer neuroprotection against debilitating neurodegenerative disorders, yet the multifactorial pathogenesis of this cluster of diseases remains a stumbling block for the successful design of an 'ultimate' drug. However, with the growing popularity of the "one drug, multiple targets" paradigm, many researchers have successfully synthesized and evaluated drug-like molecules incorporating a propargylamine function that shows potential to serve as multifunctional drugs or multitarget-directed ligands. It is the aim of this review to highlight the reported activities of these propargylamine derivatives and their prospect to serve as drug candidates for the treatment of neurodegenerative disorders.
Collapse
|
19
|
Eckshtain-Levi M, Lavi R, Yufit DS, Daniel B, Green O, Fleker O, Richman M, Rahimipour S, Gruzman A, Benisvy L. A versatile water-soluble chelating and radical scavenging platform. Chem Commun (Camb) 2016; 52:2350-3. [DOI: 10.1039/c5cc08198j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The reported water-soluble, non-cytotoxic phenol-diamide compound, 1OH, is capable of both, trapping ROS species and chelating Cu(ii)/Fe(iii) ions; thereby inducing a protective effect against ROS induced cell death.
Collapse
Affiliation(s)
| | - Ronit Lavi
- Department of Chemistry
- Bar-Ilan University
- Ramat Gan 52900
- Israel
| | | | - Bareket Daniel
- Department of Chemistry
- Bar-Ilan University
- Ramat Gan 52900
- Israel
| | - Omer Green
- Department of Chemistry
- Bar-Ilan University
- Ramat Gan 52900
- Israel
| | - Ohad Fleker
- Department of Chemistry
- Bar-Ilan University
- Ramat Gan 52900
- Israel
| | - Michal Richman
- Department of Chemistry
- Bar-Ilan University
- Ramat Gan 52900
- Israel
| | - Shai Rahimipour
- Department of Chemistry
- Bar-Ilan University
- Ramat Gan 52900
- Israel
| | - Arie Gruzman
- Department of Chemistry
- Bar-Ilan University
- Ramat Gan 52900
- Israel
| | - Laurent Benisvy
- Department of Chemistry
- Bar-Ilan University
- Ramat Gan 52900
- Israel
| |
Collapse
|
20
|
Weinreb O, Amit T, Bar-Am O, Youdim MBH. Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and β-amyloid in ageing and Alzheimer's disease. Br J Pharmacol 2015; 173:2080-94. [PMID: 26332830 DOI: 10.1111/bph.13318] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/20/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Alzheimer's disease (AD) is accepted nowadays as a complex neurodegenerative disorder with multifaceted cerebral pathologies, including extracellular deposition of amyloid β peptide-containing plaques, intracellular neurofibrillary tangles, progressive loss of cholinergic neurons, metal dyshomeostasis, mitochondrial dysfunction, neuroinflammation, glutamate excitoxicity, oxidative stress and increased MAO enzyme activity. This may explain why it is currently widely accepted that a more effective therapy for AD would result from the use of multifunctional drugs, which may affect more than one brain target involved in the disease pathology. The current review will discuss the potential benefits of novel multimodal neuroprotective, brain permeable drugs, recently developed by Youdim and collaborators, as a valuable therapeutic approach for AD treatment. The pharmacological and neuroprotective properties of these multitarget-directed ligands, which target MAO enzymes, the cholinergic system, iron accumulation and amyloid β peptide generation/aggregation are described, with a special emphasis on their potential therapeutic value for ageing and AD-associated cognitive functions. This review is conceived as a tribute to the broad neuropharmacology work of Professor Moussa Youdim, Professor Emeritus in the Faculty of Medicine and Director of Eve Topf Center of Excellence in Technion-Israel Institute of Technology, and Chief Scientific Officer of ABITAL Pharma Pipeline Ltd., at the occasion of his 75th birthday. LINKED ARTICLES This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,ABITAL Pharma Pipeline Ltd., Yokneam, Israel
| | - Tamar Amit
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,ABITAL Pharma Pipeline Ltd., Yokneam, Israel
| | - Orit Bar-Am
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,ABITAL Pharma Pipeline Ltd., Yokneam, Israel
| | - Moussa B H Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,ABITAL Pharma Pipeline Ltd., Yokneam, Israel
| |
Collapse
|
21
|
Zheng H, Fridkin M, Youdim M. New approaches to treating Alzheimer's disease. PERSPECTIVES IN MEDICINAL CHEMISTRY 2015; 7:1-8. [PMID: 25733799 PMCID: PMC4327405 DOI: 10.4137/pmc.s13210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/30/2014] [Accepted: 01/01/2015] [Indexed: 01/14/2023]
Abstract
To date, no truly efficacious drugs for Alzheimer’s disease (AD) have been developed; moreover, all new anti-AD drugs developed since 2003 have failed. To succeed where previous ones have failed in drug development, new approaches for AD therapy are needed. Here we discuss the potential application of network medicine as a new approach to AD treatment. Unlike traditional approaches focused on a single target/pathway, network medicine targets and restores disease-disrupted networks through simultaneous modulation of numerous proteins (targets)/pathways involved in AD pathogenesis. We consider several drug candidates under development for AD therapy, including Keap1–Nrf2 regulators, endogenous neurogenic agents, and hypoxia-inducible factor 1 (HIF-1) activators. These drug candidates are multi-target ligands with the potential to further develop as network medicines, since they act as master regulators to initiate a broad range of cellular defense mechanisms/cytoprotective genes that exert their efficacy in a holistic way. We also explore their diverse mechanisms of action and potential disease-modifying effects, which may have profound implications for drug discovery.
Collapse
Affiliation(s)
- Hailin Zheng
- Department of Medicinal Chemistry, Intra-cellular Therapies Inc., New York, NY, USA
| | - Mati Fridkin
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
22
|
Hydroxamic acid-based histone deacetylase (HDAC) inhibitors can mediate neuroprotection independent of HDAC inhibition. J Neurosci 2015; 34:14328-37. [PMID: 25339746 DOI: 10.1523/jneurosci.1010-14.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Histone deacetylase (HDAC) inhibition improves function and extends survival in rodent models of a host of neurological conditions, including stroke, and neurodegenerative diseases. Our understanding, however, of the contribution of individual HDAC isoforms to neuronal death is limited. In this study, we used selective chemical probes to assess the individual roles of the Class I HDAC isoforms in protecting Mus musculus primary cortical neurons from oxidative death. We demonstrated that the selective HDAC8 inhibitor PCI-34051 is a potent neuroprotective agent; and by taking advantage of both pharmacological and genetic tools, we established that HDAC8 is not critically involved in PCI-34051's mechanism of action. We used BRD3811, an inactive ortholog of PCI-34051, and showed that, despite its inability to inhibit HDAC8, it exhibits robust neuroprotective properties. Furthermore, molecular deletion of HDAC8 proved insufficient to protect neurons from oxidative death, whereas both PCI-34051 and BRD3811 were able to protect neurons derived from HDAC8 knock-out mice. Finally, we designed and synthesized two new, orthogonal negative control compounds, BRD9715 and BRD8461, which lack the hydroxamic acid motif and showed that they stably penetrate cell membranes but are not neuroprotective. These results indicate that the protective effects of these hydroxamic acid-containing small molecules are likely unrelated to direct epigenetic regulation via HDAC inhibition, but rather due to their ability to bind metals. Our results suggest that hydroxamic acid-based HDAC inhibitors may mediate neuroprotection via HDAC-independent mechanisms and affirm the need for careful structure-activity relationship studies when using pharmacological approaches.
Collapse
|
23
|
Tea Polyphenols in Parkinson’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:117-37. [DOI: 10.1007/978-3-319-18365-7_6] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Effects of selected dietary secondary metabolites on reactive oxygen species production caused by iron(II) autoxidation. Molecules 2014; 19:20023-33. [PMID: 25470272 PMCID: PMC4351905 DOI: 10.3390/molecules191220023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/22/2014] [Accepted: 11/24/2014] [Indexed: 11/16/2022] Open
Abstract
Iron is an essential co-factor for many enzymes that catalyze electron transfer reactions. It is well known that so-called “poorly liganded” iron can increase ROS concentrations and trigger oxidative stress that is capable of initiating apoptosis. Conversely, controlled ROS production has been recognized as an integral part of cellular signaling. Elevated ROS concentrations are associated with aging, inflammatory and degenerative diseases. Anti-aging properties have been attributed especially to antioxidant phenolic plant metabolites that represent food additives in our diet. Consequently, this study explores the effects of flavonoids (quercetin and rutin), several phenolic acids (caffeic, chlorogenic, and protocatechuic acid), and the alkaloid caffeine on iron(II) autoxidation and ROS production in comparison to the standard antioxidants ascorbic acid and Trolox. The iron(II) autoxidation assay was carried out in pH 6.0 (plant apoplast and inflamed human tissue) and 7.4 (cell cytoplasm and human blood plasma). The obtained results accentuate phenolic acids as the more specific antioxidants compared to ascorbic acid and Trolox. Flavonoid redox chemistry depends more on the chemical milieu, specifically on pH. In vivo, the presence of iron cannot be ruled out and “wrongly” or “poorly” complexed iron has been pointed out as causative agent of various age-related diseases.
Collapse
|
25
|
Youdim MBH, Kupershmidt L, Amit T, Weinreb O. Promises of novel multi-target neuroprotective and neurorestorative drugs for Parkinson's disease. Parkinsonism Relat Disord 2014; 20 Suppl 1:S132-6. [PMID: 24262165 DOI: 10.1016/s1353-8020(13)70032-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The cascade of neurotoxic events involved in neuronal degeneration suggests that it is naive to think mono-target drugs can induce disease modification by slowing the process of neurodegeneration in Parkinson's disease (PD). Employing the pharmacophore of rasagiline (N-propargyl-1-R-aminoindan), we have developed a series of novel multi-target neuroprotective drugs, including: (A) drugs [ladostigil, TV-3326 (N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate)] with both cholinesterase-butyrylesterase (Ch-BuE) and brain-selective monamine oxidase-AB (MAO-AB) inhibitory activities and (B) iron chelator-radical scavenging drugs (M30) possessing brain-selective MAO-AB inhibitor activity and the neuroprotective-neurorescue propargylamine moiety of rasagiline. This was considered to be valid since brain MAO and iron increase in PD and aging, which could lead to oxidative stress-dependent neurodegeneration. The multi-target iron chelator, M30, has all the properties of ladostigil, but is not an acetylcholinesterase (CHE) inhibitor. However, M30 has both neuroprotective and neurorestorative activities for nigrostriatal dopamine neurons in post-lesion MPTP, lactacystin and 6-hydroxydopamine animal models of PD. The neurorestorative activity has been identified as being related to the ability of the drug to activate hypoxia-inducible factor (HIF) by inhibiting prolyl-4-hydroxylase. M30 regulates cell cycle arrest and induces the neurotrophins brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), erythropoietin (EPO), as well as glia-derived neurotrophic factor (GDNF). These unique multiple actions of M30 make it potentially useful as a disease modifying drug for the treatment of PD.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion-Rappaport Faculty of Medicine, Eve Topf and NPF Centers of Excellence for Neurodegenerative Diseases, Haifa, Israel Abital Pharma Pipeline Ltd., Tel Aviv, Israel.
| | | | | | | |
Collapse
|
26
|
Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C, Jonneaux A, Ryckewaert G, Garçon G, Rouaix N, Duhamel A, Jissendi P, Dujardin K, Auger F, Ravasi L, Hopes L, Grolez G, Firdaus W, Sablonnière B, Strubi-Vuillaume I, Zahr N, Destée A, Corvol JC, Pöltl D, Leist M, Rose C, Defebvre L, Marchetti P, Cabantchik ZI, Bordet R. Targeting chelatable iron as a therapeutic modality in Parkinson's disease. Antioxid Redox Signal 2014; 21:195-210. [PMID: 24251381 PMCID: PMC4060813 DOI: 10.1089/ars.2013.5593] [Citation(s) in RCA: 478] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS The pathophysiological role of iron in Parkinson's disease (PD) was assessed by a chelation strategy aimed at reducing oxidative damage associated with regional iron deposition without affecting circulating metals. Translational cell and animal models provided concept proofs and a delayed-start (DS) treatment paradigm, the basis for preliminary clinical assessments. RESULTS For translational studies, we assessed the effect of oxidative insults in mice systemically prechelated with deferiprone (DFP) by following motor functions, striatal dopamine (HPLC and MRI-PET), and brain iron deposition (relaxation-R2*-MRI) aided by spectroscopic measurements of neuronal labile iron (with fluorescence-sensitive iron sensors) and oxidative damage by markers of protein, lipid, and DNA modification. DFP significantly reduced labile iron and biological damage in oxidation-stressed cells and animals, improving motor functions while raising striatal dopamine. For a pilot, double-blind, placebo-controlled randomized clinical trial, early-stage Parkinson's patients on stabilized dopamine regimens enrolled in a 12-month single-center study with DFP (30 mg/kg/day). Based on a 6-month DS paradigm, early-start patients (n=19) compared to DS patients (n=18) (37/40 completed) responded significantly earlier and sustainably to treatment in both substantia nigra iron deposits (R2* MRI) and Unified Parkinson's Disease Rating Scale motor indicators of disease progression (p<0.03 and p<0.04, respectively). Apart from three rapidly resolved neutropenia cases, safety was maintained throughout the trial. INNOVATION A moderate iron chelation regimen that avoids changes in systemic iron levels may constitute a novel therapeutic modality for PD. CONCLUSIONS The therapeutic features of a chelation modality established in translational models and in pilot clinical trials warrant comprehensive evaluation of symptomatic and/or disease-modifying potential of chelation in PD.
Collapse
Affiliation(s)
- David Devos
- 1 Department of Medical Pharmacology, Faculté de Médecine Lille2, Lille Nord de France University , CHU Lille, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bamm VV, Harauz G. "Back to the future" or iron in the MS brain - commentary on "perivascular iron deposits are associated with protein nitration in cerebral experimental autoimmune encephalomyelitis". Neurosci Lett 2014; 582:130-2. [PMID: 24942652 DOI: 10.1016/j.neulet.2014.05.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
28
|
Bamm VV, Harauz G. Hemoglobin as a source of iron overload in multiple sclerosis: does multiple sclerosis share risk factors with vascular disorders? Cell Mol Life Sci 2014; 71:1789-98. [PMID: 24504127 PMCID: PMC11113400 DOI: 10.1007/s00018-014-1570-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 12/12/2022]
Abstract
Although iron is known to be essential for the normal development and health of the central nervous system, abnormal iron deposits are found in and around multiple sclerosis (MS) lesions that themselves are closely associated with the cerebral vasculature. However, the origin of this excess iron is unknown, and it is not clear whether this is one of the primary causative events in the pathogenesis of MS, or simply another consequence of the long-lasting inflammatory conditions. Here, applying a systems biology approach, we propose an additional way for understanding the neurodegenerative component of the disease caused by chronic subclinical extravasation of hemoglobin, in combination with multiple other factors including, but not limited to, dysfunction of different cellular protective mechanisms against extracellular hemoglobin reactivity and oxidative stress. Moreover, such considerations could also shed light on and explain the higher susceptibility of MS patients to a wide range of cardiovascular disorders.
Collapse
Affiliation(s)
- Vladimir V. Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
29
|
Monoamine oxidase A and B substrates: probing the pathway for drug development. Future Med Chem 2014; 6:697-717. [DOI: 10.4155/fmc.14.23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drug-discovery and -development efforts focused on the MAOs have increased at an accelerated rate over the past decade. Since the first crystal structure of human MAO-B was solved in 2002, over 40 additional structures have been reported and have helped define new, or confirm speculative, binding modes of inhibitors. The detailed mechanism of the MAO-catalyzed oxidation of amine substrates has not been fully elucidated, but its significance is central in the development of new mechanism-based inactivators. Novel fungal MAO-N variants derived from directed evolution strategies are enabling the production of new chiral amine products. Robust assays have been established for measuring MAO status in tissue and cells, while improved MAO radioligands are being deployed for PET imaging studies. This review will attempt to highlight the more recent and salient aspects of MAO research in drug discovery and development, with emphasis on substrates 'probing the pathway'.
Collapse
|
30
|
Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, Beserra A, Suda S, Anbalagan C, Dev S, Mukhopadhyay CK, Singh A. Brain iron homeostasis: from molecular mechanisms to clinical significance and therapeutic opportunities. Antioxid Redox Signal 2014; 20:1324-63. [PMID: 23815406 PMCID: PMC3935772 DOI: 10.1089/ars.2012.4931] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron has emerged as a significant cause of neurotoxicity in several neurodegenerative conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), sporadic Creutzfeldt-Jakob disease (sCJD), and others. In some cases, the underlying cause of iron mis-metabolism is known, while in others, our understanding is, at best, incomplete. Recent evidence implicating key proteins involved in the pathogenesis of AD, PD, and sCJD in cellular iron metabolism suggests that imbalance of brain iron homeostasis associated with these disorders is a direct consequence of disease pathogenesis. A complete understanding of the molecular events leading to this phenotype is lacking partly because of the complex regulation of iron homeostasis within the brain. Since systemic organs and the brain share several iron regulatory mechanisms and iron-modulating proteins, dysfunction of a specific pathway or selective absence of iron-modulating protein(s) in systemic organs has provided important insights into the maintenance of iron homeostasis within the brain. Here, we review recent information on the regulation of iron uptake and utilization in systemic organs and within the complex environment of the brain, with particular emphasis on the underlying mechanisms leading to brain iron mis-metabolism in specific neurodegenerative conditions. Mouse models that have been instrumental in understanding systemic and brain disorders associated with iron mis-metabolism are also described, followed by current therapeutic strategies which are aimed at restoring brain iron homeostasis in different neurodegenerative conditions. We conclude by highlighting important gaps in our understanding of brain iron metabolism and mis-metabolism, particularly in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Neena Singh
- 1 Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Meyerstein D. Is Measuring OH.Radical Scavenging a Reasonable Measurement of Antioxidant Properties? Isr J Chem 2014. [DOI: 10.1002/ijch.201300123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Cabantchik ZI, Munnich A, Youdim MB, Devos D. Regional siderosis: a new challenge for iron chelation therapy. Front Pharmacol 2013; 4:167. [PMID: 24427136 PMCID: PMC3875873 DOI: 10.3389/fphar.2013.00167] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/15/2013] [Indexed: 01/01/2023] Open
Abstract
The traditional role of iron chelation therapy has been to reduce body iron burden via chelation of excess metal from organs and fluids and its excretion via biliary-fecal and/or urinary routes. In their present use for hemosiderosis, chelation regimens might not be suitable for treating disorders of iron maldistribution, as those are characterized by toxic islands of siderosis appearing in a background of normal or subnormal iron levels (e.g., sideroblastic anemias, neuro- and cardio-siderosis in Friedreich ataxia- and neurosiderosis in Parkinson's disease). We aimed at clearing local siderosis from aberrant labile metal that promotes oxidative damage, without interfering with essential local functions or with hematological iron-associated properties. For this purpose we introduced a conservative mode of iron chelation of dual activity, one based on scavenging labile metal but also redeploying it to cell acceptors or to physiological transferrin. The “scavenging and redeployment” mode of action was designed both for correcting aberrant iron distribution and also for minimizing/preventing systemic loss of chelated metal. We first examine cell models that recapitulate iron maldistribution and associated dysfunctions identified with Friedreich ataxia and Parkinson's disease and use them to explore the ability of the double-acting agent deferiprone, an orally active chelator, to mediate iron scavenging and redeployment and thereby causing functional improvement. We subsequently evaluate the concept in translational models of disease and finally assess its therapeutic potential in prospective double-blind pilot clinical trials. We claim that any chelator applied to diseases of regional siderosis, cardiac, neuronal or endocrine ought to preserve both systemic and regional iron levels. The proposed deferiprone-based therapy has provided a paradigm for treating regional types of siderosis without affecting hematological parameters and systemic functions.
Collapse
Affiliation(s)
- Zvi Ioav Cabantchik
- Department of Biological Chemistry, Adelina and Massimo Della Pergola Chair, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem Givat Ram, Jerusalem, Israel
| | - Arnold Munnich
- Clinical Research Unit, Medical Genetic Clinic and Research Unit INSERM 781, Hôpital Necker-Enfants Malades and Université Paris V René Descartes Paris, France
| | - Moussa B Youdim
- Technion-Rappaport Family Faculty of Medicine, Eve Topf Center of Excellence Haifa, Israel
| | - David Devos
- Department of Medical Pharmacology, EA1046, Faculty of Medicine, Lille Nord de France University and Lille University Medical Center Lille, France
| |
Collapse
|
33
|
Youdim MB, Oh YJ. Promise of neurorestoration and mitochondrial biogenesis in Parkinson's disease with multi target drugs: an alternative to stem cell therapy. Exp Neurobiol 2013; 22:167-72. [PMID: 24167412 PMCID: PMC3807004 DOI: 10.5607/en.2013.22.3.167] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 12/19/2022] Open
Abstract
There is an unmet need in progressive neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. The present therapeutics for these diseases at best is symptomatic and is not able to delay disease or possess disease modifying activity. Thus an approach to drug design should be made to slow or halt progressive course of a neurological disorder by interfering with a disease-specific pathogenetic process. This would entail the ability of the drug to protect neurons by blocking the common pathway for neuronal injury and cell death and the ability to promote regeneration of neurons and restoration of neuronal function. We have now developed a number of multi target drugs which possess neuroprotective, and neurorestorative activity as well as being able to active PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α), SIRT1 (NAD-dependent deacetylase protein) and NTF (mitochondrial transcription factor) that are intimately associated with mitochondrial biogenesis.
Collapse
Affiliation(s)
- Moussa Bh Youdim
- Abital Pharma Pipeline Ltd, 96 Yuval Alon St., 61500 Tel Aviv, Israel
| | | |
Collapse
|
34
|
Paracha UZ, Fatima K, Alqahtani M, Chaudhary A, Abuzenadah A, Damanhouri G, Qadri I. Oxidative stress and hepatitis C virus. Virol J 2013; 10:251. [PMID: 23923986 PMCID: PMC3751576 DOI: 10.1186/1743-422x-10-251] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/31/2013] [Indexed: 02/08/2023] Open
Abstract
The disproportionate imbalance between the systemic manifestation of reactive oxygen species and body's ability to detoxify the reactive intermediates is referred to as oxidative stress. Several biological processes as well as infectious agents, physiological or environmental stress, and perturbed antioxidant response can promote oxidative stress. Oxidative stress usually happens when cells are exposed to more electrically charged reactive oxygen species (ROS) such as H2O2 or O2-. The cells' ability to handle such pro-oxidant species is impeded by viral infections particularly within liver that plays an important role in metabolism and detoxification of harmful substances. During liver diseases (such as hepatocellular or cholestatic problems), the produced ROS are involved in transcriptional activation of a large number of cytokines and growth factors, and continued production of ROS and Reactive Nitrogen Species (RNS) feed into the vicious cycle. Many human viruses like HCV are evolved to manipulate this delicate pro- and antioxidant balance; thus generating the sustainable oxidative stress that not only causes hepatic damage but also stimulates the processes to reduce treatment of damage. In this review article, the oxidant and antioxidant pathways that are perturbed by HCV genes are discussed. In the first line of risk, the pathways of lipid metabolism present a clear danger in accumulation of viral induced ROS. Viral infection leads to decrease in cellular concentrations of glutathione (GSH) resulting in oxidation of important components of cells such as proteins, DNA and lipids as well as double strand breakage of DNA. These disorders have the tendency to lead the cells toward cirrhosis and hepatocellular carcinoma in adults due to constant insult. We have highlighted the importance of such pathways and revealed differences in the extent of oxidative stress caused by HCV infection.
Collapse
Affiliation(s)
| | - Kaneez Fatima
- IQ Institute of Infection and Immunity, Lahore, Punjab, Pakistan
| | - Mohammad Alqahtani
- Center of Excellence in Genomic Medicine, King Abdul Aziz University, PO Box 80216, Jeddah, 21589, Saudi Arabia
| | - Adeel Chaudhary
- Center of Excellence in Genomic Medicine, King Abdul Aziz University, PO Box 80216, Jeddah, 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdul Aziz University, PO Box 80216, Jeddah 21589, Saudi Arabia
| | - Adel Abuzenadah
- Faculty of Applied Medical Sciences, King Abdulaziz University, PO Box 80216, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdul Aziz University, PO Box 80216, Jeddah 21589, Saudi Arabia
| | - Ghazi Damanhouri
- King Fahd Medical Research Center, King Abdul Aziz University, PO Box 80216, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- King Fahd Medical Research Center, King Abdul Aziz University, PO Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
35
|
Abstract
Abnormal accumulation of brain iron has been detected in various neurodegenerative diseases, but the contribution of iron overload to pathology remains unclear. In a group of distinctive brain iron overload diseases known as 'neurodegeneration with brain iron accumulation' (NBIA) diseases, nine disease genes have been identified. Brain iron accumulation is observed in the globus pallidus and other brain regions in NBIA diseases, which are often associated with severe dystonia and gait abnormalities. Only two of these diseases, aceruloplasminaemia and neuroferritinopathy, are directly caused by abnormalities in iron metabolism, mainly in astrocytes and neurons, respectively. Understanding the early molecular pathophysiology of these diseases should aid insights into the role of iron and the design of specific therapeutic approaches.
Collapse
|
36
|
Liddell JR, Obando D, Liu J, Ganio G, Volitakis I, Mok SS, Crouch PJ, White AR, Codd R. Lipophilic adamantyl- or deferasirox-based conjugates of desferrioxamine B have enhanced neuroprotective capacity: implications for Parkinson disease. Free Radic Biol Med 2013; 60:147-56. [PMID: 23391576 DOI: 10.1016/j.freeradbiomed.2013.01.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 01/22/2013] [Accepted: 01/29/2013] [Indexed: 02/03/2023]
Abstract
Parkinson disease (PD) is a neurodegenerative disease characterized by death of dopaminergic neurons in the substantia nigra region of the brain. Iron content is also elevated in this region in PD and is implicated in the pathobiology of the disease. Desferrioxamine B (DFOB) is a high-affinity iron chelator and has shown efficacy in animal models of Parkinson disease. The high water solubility of DFOB, however, attenuates its ability to enter the brain. In this study, we have conjugated DFOB to derivatives of adamantane or the clinical iron chelator deferasirox to produce lipophilic compounds designed to increase the bioavailability of DFOB to brain cells. We found that the novel compounds are highly effective in preventing iron-mediated paraquat and hydrogen peroxide toxicity in neuronal-like BE2-M17 dopaminergic cells, primary neurons, and iron-loaded or glutathione-depleted primary astrocytes. The compounds also alleviated paraquat toxicity in BE2-M17 cells that express the PD-causing A30P mutation of α-synuclein. This protection was ∼66-fold more potent than DFOB alone and also more effective than other cell-permeative metal chelators, clioquinol and phenanthroline. These results demonstrate that increasing the bioavailability of DFOB through the conjugation of lipophilic fragments greatly enhances its protective capacity. These novel compounds have potential as therapeutics for the treatment of PD and other conditions of Fe dyshomeostasis.
Collapse
Affiliation(s)
- Jeffrey R Liddell
- Department of Pathology, University of Melbourne, and Mental Health Research Institute, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Heme oxygenase 1-generated carbon monoxide and biliverdin attenuate the course of experimental necrotizing pancreatitis. Pancreas 2013; 42:265-71. [PMID: 23000891 DOI: 10.1097/mpa.0b013e318264cc8b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The cytoprotective enzyme heme oxygenase 1 (HO-1) is highly up-regulated in acute pancreatitis (AP). In this study, we tested its metabolites as potential therapeutic agents for AP in rats. METHODS Acute necrotizing pancreatitis was induced by retrograde intraductal injection of sodium taurocholate in rats. Biliverdin hydrochloride (BV HCl) (50 μmol/kg subcutaneously), the carbon monoxide, donor methylene chloride (MC) (500 mg/kg orally), or iron-chelating desferrioxamine (DFO) (125 mg/kg subcutaneously) were administered in a therapeutic manner starting with the first dose 4 hours after taurocholate injection to mimic the effects of HO-1 metabolites. RESULTS Administration of BV HCl, MC, or DFO showed significant reduction of inflammatory activity in comparison to controls leading to lower myeloperoxidase activity in the pancreas, less edema, lower ascites volumes, and preservation of tissue integrity (P < 0.05). Administration of either BV HCl or MC markedly increased 5-day survival rate (70% and 75% vs 40%; P < 0.05), whereas DFO had no significant effect on survival (60%). When given in therapeutic manner, all 3 substances led to diminished nuclear factor κB activity in the pancreas (P < 0.05). CONCLUSIONS Therapeutic use of BV HCl and MC led to marked reduction of mortality in experimental pancreatitis. Thus, HO-1 metabolites may present a novel therapeutic approach in AP treatment.
Collapse
|
39
|
Ivanov AV, Bartosch B, Smirnova OA, Isaguliants MG, Kochetkov SN. HCV and oxidative stress in the liver. Viruses 2013; 5:439-469. [PMID: 23358390 PMCID: PMC3640510 DOI: 10.3390/v5020439] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/26/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is the etiological agent accounting for chronic liver disease in approximately 2-3% of the population worldwide. HCV infection often leads to liver fibrosis and cirrhosis, various metabolic alterations including steatosis, insulin and interferon resistance or iron overload, and development of hepatocellular carcinoma or non-Hodgkin lymphoma. Multiple molecular mechanisms that trigger the emergence and development of each of these pathogenic processes have been identified so far. One of these involves marked induction of a reactive oxygen species (ROS) in infected cells leading to oxidative stress. To date, markers of oxidative stress were observed both in chronic hepatitis C patients and in various in vitro systems, including replicons or stable cell lines expressing viral proteins. The search for ROS sources in HCV-infected cells revealed several mechanisms of ROS production and thus a number of cellular proteins have become targets for future studies. Furthermore, during last several years it has been shown that HCV modifies antioxidant defense mechanisms. The aim of this review is to summarize the present state of art in the field and to try to predict directions for future studies.
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, Moscow 119991, Russia; E-Mails: (A.I.); (O.S.); (S.K.)
| | - Birke Bartosch
- CRCL, INSERM U1052, CNRS 5286, Université de Lyon, 151, Cours A Thomas 69424 Lyon Cedex France; E-Mail:
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, Moscow 119991, Russia; E-Mails: (A.I.); (O.S.); (S.K.)
| | - Maria G. Isaguliants
- Department of Molecular Biology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16 17177 Stockholm, Sweden; E-Mail:
- D.I. Ivanovsky Institute of Virology, Gamaleya Str. 16, 123098 Moscow, Russia; E-Mail:
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, Moscow 119991, Russia; E-Mails: (A.I.); (O.S.); (S.K.)
| |
Collapse
|
40
|
Tesch H, Ihling C. Loss of Transfusion Dependency Following Deferasirox Treatment of Iron Overload in a Woman with Myelofibrosis and Spherocytosis - a Case Report. ACTA ACUST UNITED AC 2013; 36:205-8. [DOI: 10.1159/000349939] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Hauser DN, Hastings TG. Mitochondrial dysfunction and oxidative stress in Parkinson's disease and monogenic parkinsonism. Neurobiol Dis 2012; 51:35-42. [PMID: 23064436 DOI: 10.1016/j.nbd.2012.10.011] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 02/06/2023] Open
Abstract
The pathogenic mechanisms that underlie Parkinson's disease remain unknown. Here, we review evidence from both sporadic and genetic forms of Parkinson's disease that implicate both mitochondria and oxidative stress as central players in disease pathogenesis. A systemic deficiency in complex I of the mitochondrial electron transport chain is evident in many patients with the disease. Oxidative stress caused by reactive metabolites of dopamine and alterations in the levels of iron and glutathione in the substantia nigra accompany this mitochondrial dysfunction. Recent evidence from studies on the genetic forms of parkinsonism with particular stress on DJ-1, parkin, and PINK-1 also suggest the involvement of mitochondria and oxidative stress.
Collapse
Affiliation(s)
- David N Hauser
- Cell Biology and Gene Expression Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
42
|
Steck E, Boeuf S, Gabler J, Werth N, Schnatzer P, Diederichs S, Richter W. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J Mol Med (Berl) 2012; 90:1185-95. [PMID: 22527881 DOI: 10.1007/s00109-012-0895-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/19/2012] [Accepted: 03/23/2012] [Indexed: 01/16/2023]
Abstract
Cartilage degeneration in the course of osteoarthritis (OA) is associated with an alteration in chondrocyte metabolism. In order to identify molecules representing putative key regulators for diagnosis and therapeutic intervention, we analyzed gene expression and microRNA (miR) levels in OA and normal knee cartilage using a customized cartilage cDNA array and quantitative RT-PCR. Among newly identified candidate molecules, H19, IGF2, and ITM2A were significantly elevated in OA compared to normal cartilage. H19 is an imprinted maternally expressed gene influencing IGF2 expression, whose transcript is a long noncoding (lnc) RNA of unknown biological function harboring the miR-675. H19 and IGF2 mRNA levels did not correlate significantly within cartilage samples suggesting that deregulation by imprinting effects are unlikely. A significant correlation was, however, observed for H19, COL2A1, and miR-675 expression levels in OA tissue, and functional regulation of these candidate molecules was assessed under anabolic and catabolic conditions. Culture of chondrocytes under hypoxic signaling showed co-upregulation of H19, COL2A1, and miRNA-675 levels in close correlation. Proinflammatory cytokines IL-1β and TNF-α downregulated COL2A1, H19, and miR-675 significantly without close statistical correlation. In conclusion, this is the first report demonstrating deregulation of an lncRNA and its encoded miR in the context of OA-affected cartilage. Stress-induced regulation of H19 expression by hypoxic signaling and inflammation suggests that lncRNA H19 acts as a metabolic correlate in cartilage and cultured chondrocytes, while the miR-675 may indirectly influence COL2A1 levels. H19 may not only be an attractive marker for cell anabolism but also a potential target to stimulate cartilage recovery.
Collapse
Affiliation(s)
- Eric Steck
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Kupershmidt L, Amit T, Bar-Am O, Youdim MBH, Weinreb O. The novel multi-target iron chelating-radical scavenging compound M30 possesses beneficial effects on major hallmarks of Alzheimer's disease. Antioxid Redox Signal 2012; 17:860-77. [PMID: 22360429 DOI: 10.1089/ars.2011.4279] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIMS The aim of the present study was to evaluate the therapeutic effect of the novel neuroprotective multi-target nontoxic, lipophilic, brain permeable monoamine oxidase inhibitor and iron chelating-radical scavenging drug, M30, on the neuropathology and deficits of spatial learning and memory in amyloid precursor protein (APP) and presenilin 1 (PS1) double-transgenic (Tg) Alzheimer's disease (AD) mice. RESULTS Here, we report that systemic treatment of APP/PS1 Tg mice with M30 for 9 months, significantly attenuated cognitive impairments in a variety of tasks of spatial learning and memory retention, working memory, learning abilities, anxiety levels, and memory for novel food and nesting behavior. Furthermore, we found that M30 reduced cerebral iron accumulation accompanied by a marked decrease in several AD-like phenotypes, including cerebral APP levels, amyloid β (Aβ) levels and plaques, phospho-APP and phospho-tau. Signaling studies revealed that M30 markedly downregulated the levels of phosphorylated cyclin-dependent kinase 5 and increased protein kinase B and glycogen synthase kinase 3β phosphorylation. INNOVATION Accumulation and deposition of brain iron is central to various neuropathological processes in AD, including oxidative stress, amyloid deposition, and tau phosphorylation. Thus, the concept of iron chelation holds considerable promise as a therapeutic strategy for AD pathogenesis. Here, for the first time, we demonstrated that, when systemically administered to APP/PS1 Tg mice, our novel multifunctional iron chelating/radical scavenging compound, M30, effectively reduced Aβ accumulation and tau phosphorylation, and attenuated memory deficits. CONCLUSIONS These findings suggest that M30 is a potential therapeutic agent for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Lana Kupershmidt
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Haifa, Israel
| | | | | | | | | |
Collapse
|
44
|
Multi-target, Neuroprotective and Neurorestorative M30 Improves Cognitive Impairment and Reduces Alzheimer's-Like Neuropathology and Age-Related Alterations in Mice. Mol Neurobiol 2012; 46:217-20. [DOI: 10.1007/s12035-012-8304-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
|
45
|
Cao J, Geng Z, Ma X, Wen J, Yin Y, Wang Z. Evidence for inhibition of HIF-1α prolyl hydroxylase 3 activity by four biologically active tetraazamacrocycles. Org Biomol Chem 2012; 10:3913-23. [PMID: 22481471 DOI: 10.1039/c2ob07076f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hypoxia inducible factor 1 (HIF-1) is central to the hypoxic response in mammals. HIF-1α prolyl hydroxylase 3 (PHD3) degrades HIF through the hydroxylation of HIF-1α. Inhibition of PHD3 activity is crucial for up-regulating HIF-1α levels, thereby acting as HIF-dependent diseases therapy. Macrocyclic polyamines which display high stability on iron-chelating may well inhibit the enzyme activity. Thus inhibition and interaction on catalytic PHD3 by four biologically active tetraazamacrocycles (1-4), which have two types of parent rings to chelate iron(ii) dissimilarly, were studied. The apparent IC(50) values of 2.56, 1.91, 5.29 and 2.44 μM, respectively, showed good inhibition potency of the four compounds. K(I) values were 7.86, 3.69, 1.59 and 2.92 μM for 1-4, respectively. Different inhibition actions of the two groups of compounds were identified. Circular dichroism (CD) and fluorescence spectrometries proved that one type of compound has significant effects on protein conformation while another type does not. Computational methodology was constructed to employ the equilibrium geometry of enzyme active site with the presence of substrate competitive inhibitor. Iron(ii) coordination in the active site by inhibitors of this kind induces conformational change of the enzyme and blocks substrate binding.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P R China
| | | | | | | | | | | |
Collapse
|
46
|
Current therapies in ischemic stroke. Part B. Future candidates in stroke therapy and experimental studies. Drug Discov Today 2012; 17:671-84. [PMID: 22405898 DOI: 10.1016/j.drudis.2012.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/16/2011] [Accepted: 02/24/2012] [Indexed: 12/31/2022]
Abstract
Stroke still remains a major healthcare problem. The growing understanding of the mechanism of cell death in ischemia leads to new approaches in stroke treatment. The aim of neuroprotection is to reduce the post-stroke impairment and the overall costs that are accompanied in patients with severe disability. Despite encouraging data from experimental animal models, almost all neuroprotective therapies have, to date, not been established in clinical routine. In this part B of our review on stroke therapies we provide an overview on future candidates in stroke therapy and neuroprotective agents that are under investigation.
Collapse
|
47
|
Zhang Z, Yan J, Chang Y, ShiDu Yan S, Shi H. Hypoxia inducible factor-1 as a target for neurodegenerative diseases. Curr Med Chem 2012; 18:4335-43. [PMID: 21861815 DOI: 10.2174/092986711797200426] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 12/11/2022]
Abstract
Hypoxia inducible factor-1 (HIF-1) is a transcriptional factor responsible for cellular and tissue adaption to low oxygen tension. HIF-1, a heterodimer consisting of a constitutively expressed β subunit and an oxygen-regulated α subunit, regulates a series of genes that participate in angiogenesis, iron metabolism, glucose metabolism, and cell proliferation/survival. The activity of HIF-1 is controlled by post-translational modifications on different amino acid residues of its subunits, mainly the alpha subunit. Besides in ischemic stroke (see review [1]), emerging evidence has revealed that HIF-1 activity and expression of its down-stream genes, such as vascular endothelial growth factor and erythropoietin, are altered in a range of neurodegenerative diseases. At the same time, experimental and clinical evidence has demonstrated that regulating HIF-1 might ameliorate the cellular and tissue damage in the neurodegenerative diseases. These new findings suggest HIF-1 as a potential medicinal target for the neurodegenerative diseases. This review focuses on HIF-1α protein modifications and HIF-1's potential neuroprotective roles in Alzheimer's (AD), Parkinson's (PD), Huntington's diseases (HD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Z Zhang
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | |
Collapse
|
48
|
Chen YL, Barlow DJ, Kong XL, Ma YM, Hider RC. Prediction of 3-hydroxypyridin-4-one (HPO) log K1 values for Fe(iii). Dalton Trans 2012; 41:10784-91. [DOI: 10.1039/c2dt31254a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
49
|
Weinreb O, Amit T, Mandel S, Youdim MB. Novel Therapeutic Approach for Neurodegenerative Pathologies: Multitarget Iron-Chelating Drugs Regulating Hypoxia-Inducible Factor 1 Signal Transduction Pathway. NEURODEGENER DIS 2012; 10:112-5. [DOI: 10.1159/000332597] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/30/2011] [Indexed: 01/20/2023] Open
|
50
|
Texel SJ, Zhang J, Camandola S, Unger EL, Taub DD, Koehler RC, Harris ZL, Mattson MP. Ceruloplasmin deficiency reduces levels of iron and BDNF in the cortex and striatum of young mice and increases their vulnerability to stroke. PLoS One 2011; 6:e25077. [PMID: 21949858 PMCID: PMC3174999 DOI: 10.1371/journal.pone.0025077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/26/2011] [Indexed: 11/26/2022] Open
Abstract
Ceruloplasmin (Cp) is an essential ferroxidase that plays important roles in cellular iron trafficking. Previous findings suggest that the proper regulation and subcellular localization of iron are very important in brain cell function and viability. Brain iron dyshomeostasis is observed during normal aging, as well as in several neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases, coincident with areas more susceptible to insults. Because of their high metabolic demand and electrical excitability, neurons are particularly vulnerable to ischemic injury and death. We therefore set out to look for abnormalities in the brain of young adult mice that lack Cp. We found that iron levels in the striatum and cerebral cortex of these young animals are significantly lower than wild-type (WT) controls. Also mRNA levels of the neurotrophin brain derived neurotrophic factor (BDNF), known for its role in maintenance of cell viability, were decreased in these brain areas. Chelator-mediated depletion of iron in cultured neural cells resulted in reduced BDNF expression by a posttranscriptional mechanism, suggesting a causal link between low brain iron levels and reduced BDNF expression. When the mice were subjected to middle cerebral artery occlusion, a model of focal ischemic stroke, we found increased brain damage in Cp-deficient mice compared to WT controls. Our data indicate that lack of Cp increases neuronal susceptibility to ischemic injury by a mechanism that may involve reduced levels of iron and BDNF.
Collapse
Affiliation(s)
- Sarah J. Texel
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, United States of America
| | - Jian Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, United States of America
| | - Erica L. Unger
- Department of Nutrition Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dennis D. Taub
- Laboratories of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Z. Leah Harris
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mark P. Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|