1
|
Green DJ, Hopman MTE, Padilla J, Laughlin MH, Thijssen DHJ. Vascular Adaptation to Exercise in Humans: Role of Hemodynamic Stimuli. Physiol Rev 2017; 97:495-528. [PMID: 28151424 DOI: 10.1152/physrev.00014.2016] [Citation(s) in RCA: 477] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
On the 400th anniversary of Harvey's Lumleian lectures, this review focuses on "hemodynamic" forces associated with the movement of blood through arteries in humans and the functional and structural adaptations that result from repeated episodic exposure to such stimuli. The late 20th century discovery that endothelial cells modify arterial tone via paracrine transduction provoked studies exploring the direct mechanical effects of blood flow and pressure on vascular function and adaptation in vivo. In this review, we address the impact of distinct hemodynamic signals that occur in response to exercise, the interrelationships between these signals, the nature of the adaptive responses that manifest under different physiological conditions, and the implications for human health. Exercise modifies blood flow, luminal shear stress, arterial pressure, and tangential wall stress, all of which can transduce changes in arterial function, diameter, and wall thickness. There are important clinical implications of the adaptation that occurs as a consequence of repeated hemodynamic stimulation associated with exercise training in humans, including impacts on atherosclerotic risk in conduit arteries, the control of blood pressure in resistance vessels, oxygen delivery and diffusion, and microvascular health. Exercise training studies have demonstrated that direct hemodynamic impacts on the health of the artery wall contribute to the well-established decrease in cardiovascular risk attributed to physical activity.
Collapse
Affiliation(s)
- Daniel J Green
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Maria T E Hopman
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - M Harold Laughlin
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Dick H J Thijssen
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, Western Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Physiology, Nijmegen, The Netherlands; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Department of Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
2
|
Abstract
The aorta is a blood vessel that provides a low-resistance path for blood flow directed from the heart to peripheral organs and tissues. However, the aorta has another central hemodynamic function, whereby the elastic nature of the aortic wall provides a significant biomechanical buffering capacity complementing the pulsatile cardiac blood flow, and this is often referred to as Windkessel function. Stiffening of the arterial wall leads to fundamental alterations in central hemodynamics, with widespread detrimental implications for organ function. In this Recent Highlights article, we describe recent contributions in ATVB that have highlighted the novel mechanisms and consequences of arterial stiffness and the clinical conditions in which arterial stiffness occurs, with a focus on advancements in the field.
Collapse
Affiliation(s)
- Alicia N. Lyle
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Uwe Raaz
- Molecular and Translational Vascular Medicine, Department of Cardiology and Pneumology, Heart Center at the University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Yang X, Hondur G, Tezel G. Antioxidant Treatment Limits Neuroinflammation in Experimental Glaucoma. Invest Ophthalmol Vis Sci 2016; 57:2344-54. [PMID: 27127934 PMCID: PMC4855827 DOI: 10.1167/iovs.16-19153] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose Besides primary neurotoxicity, oxidative stress may compromise the glial immune regulation and shift the immune homeostasis toward neurodegenerative inflammation in glaucoma. We tested this hypothesis through the analysis of neuroinflammatory and neurodegenerative outcomes in mouse glaucoma using two experimental paradigms of decreased or increased oxidative stress. Methods The first experimental paradigm tested the effects of Tempol, a multifunctional antioxidant, given through osmotic mini-pumps for drug delivery by constant infusion. Following a 6-week treatment period after microbead/viscoelastic injection-induced ocular hypertension, retina and optic nerve samples were analyzed for markers of oxidative stress and cytokine profiles using specific bioassays. We also analyzed a redox-sensitive transcriptional regulator of neuroinflammation, namely NF-κB. The second paradigm included a similar analysis of the effects of overloaded oxidative stress on retina and optic nerve inflammation in mice knockout for a major antioxidant enzyme (SOD1−/−). Results Increased antioxidant capacity and decreased protein carbonyls and HNE adducts with Tempol treatment verified the drug delivery and biological function. Among a range of cytokines measured, proinflammatory cytokines, including IL-1, IL-2, IFN-γ, and TNF-α, exhibited more than 2-fold decreased titers in Tempol-treated ocular hypertensive eyes. Antioxidant treatment also resulted in a prominent decrease in NF-κB activation in the ocular hypertensive retina and optic nerve. Although pharmacological treatment limiting the oxidative stress resulted in decreased neuroinflammation, ocular hypertension–induced neuroinflammatory responses were increased in SOD1−/− mice with defective antioxidant response. Conclusions These findings support the oxidative stress–related mechanisms of neuroinflammation and the potential of antioxidant treatment as an immunomodulation strategy for neuroprotection in glaucoma.
Collapse
|
4
|
Prunty MC, Aung MH, Hanif AM, Allen RS, Chrenek MA, Boatright JH, Thule PM, Kundu K, Murthy N, Pardue MT. In Vivo Imaging of Retinal Oxidative Stress Using a Reactive Oxygen Species-Activated Fluorescent Probe. Invest Ophthalmol Vis Sci 2015; 56:5862-70. [PMID: 26348635 DOI: 10.1167/iovs.15-16810] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE In vivo methods for detecting oxidative stress in the eye would improve screening and monitoring of the leading causes of blindness: diabetic retinopathy, glaucoma, and age-related macular degeneration. METHODS To develop an in vivo biomarker for oxidative stress in the eye, we tested the efficacy of a reactive oxygen species (ROS)-activated, near-infrared hydrocyanine-800CW (H-800CW) fluorescent probe in light-induced retinal degeneration (LIRD) mouse models. After intravitreal delivery in LIRD rats, fluorescent microscopy was used to confirm that the oxidized H-800CW appeared in the same retinal layers as an established ROS marker (dichlorofluorescein). RESULTS Dose-response curves of increasing concentrations of intravenously injected H-800CW demonstrated linear increases in both intensity and total area of fundus hyperfluorescence in LIRD mice, as detected by scanning laser ophthalmoscopy. Fundus hyperfluorescence also correlated with the duration of light damage and functional deficits in vision after LIRD. In LIRD rats with intravitreal injections of H-800CW, fluorescent labeling was localized to photoreceptor inner segments, similar to dichlorofluorescein. CONCLUSIONS Hydrocyanine-800CW detects retinal ROS in vivo and shows potential as a novel biomarker for ROS levels in ophthalmic diseases.
Collapse
Affiliation(s)
- Megan C Prunty
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Moe H Aung
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Adam M Hanif
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta, Georgia, United States
| | - Rachael S Allen
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta, Georgia, United States
| | - Micah A Chrenek
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jeffrey H Boatright
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States 2Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta, Georgia, United States
| | - Peter M Thule
- Biomedical Research, Atlanta VA Medical Center, Atlanta, Georgia, United States 4Department of Medicine, Emory University, Atlanta, Georgia, United States
| | | | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, California, United States
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States 2Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Atlanta, Georgia, United States
| |
Collapse
|
5
|
Cao Y, Roursgaard M, Danielsen PH, Møller P, Loft S. Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production. PLoS One 2014; 9:e106711. [PMID: 25184212 PMCID: PMC4153655 DOI: 10.1371/journal.pone.0106711] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 08/08/2014] [Indexed: 11/24/2022] Open
Abstract
Exposure to nanoparticles (NPs) may cause vascular effects including endothelial dysfunction and foam cell formation, with oxidative stress and inflammation as supposed central mechanisms. We investigated oxidative stress, endothelial dysfunction and lipid accumulation caused by nano-sized carbon black (CB) exposure in cultured human umbilical vein endothelial cells (HUVECs), THP-1 (monocytes) and THP-1 derived macrophages (THP-1a). The proliferation of HUVECs or co-cultures of HUVECs and THP-1 cells were unaffected by CB exposure, whereas there was increased cytotoxicity, assessed by the LDH and WST-1 assays, especially in THP-1 and THP-1a cells. The CB exposure decreased the glutathione (GSH) content in THP-1 and THP-1a cells, whereas GSH was increased in HUVECs. The reactive oxygen species (ROS) production was increased in all cell types after CB exposure. A reduction of the intracellular GSH concentration by buthionine sulfoximine (BSO) pre-treatment further increased the CB-induced ROS production in THP-1 cells and HUVECs. The expression of adhesion molecules ICAM-1 and VCAM-1, but not adhesion of THP-1 to HUVECs or culture dishes, was elevated by CB exposure, whereas these effects were unaffected by BSO pre-treatment. qRT-PCR showed increased VCAM1 expression, but no change in GCLM and HMOX1 expression in CB-exposed HUVECs. Pre-exposure to CB induced lipid accumulation in THP-1a cells, which was not affected by the presence of the antioxidant N-acetylcysteine. In addition, the concentrations of CB to induce lipid accumulation were lower than the concentrations to promote intracellular ROS production in THP-1a cells. In conclusion, exposure to nano-sized CB induced endothelial dysfunction and foam cell formation, which was not dependent on intracellular ROS production.
Collapse
Affiliation(s)
- Yi Cao
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Pernille Høgh Danielsen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Raaz U, Toh R, Maegdefessel L, Adam M, Nakagami F, Emrich FC, Spin JM, Tsao PS. Hemodynamic regulation of reactive oxygen species: implications for vascular diseases. Antioxid Redox Signal 2014; 20:914-28. [PMID: 23879326 PMCID: PMC3924901 DOI: 10.1089/ars.2013.5507] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Arterial blood vessels functionally and structurally adapt to altering hemodynamic forces in order to accommodate changing needs and to provide stress homeostasis. This ability is achieved at the cellular level by converting mechanical stimulation into biochemical signals (i.e., mechanotransduction). Physiological mechanical stress helps maintain vascular structure and function, whereas pathologic or aberrant stress may impair cellular mechano-signaling, and initiate or augment cellular processes that drive disease. RECENT ADVANCES Reactive oxygen species (ROS) may represent an intriguing class of mechanically regulated second messengers. Chronically enhanced ROS generation may be induced by adverse mechanical stresses, and is associated with a multitude of vascular diseases. Although a causal relationship has clearly been demonstrated in large numbers of animal studies, an effective ROS-modulating therapy still remains to be established by clinical studies. CRITICAL ISSUES AND FUTURE DIRECTIONS This review article focuses on the role of various mechanical forces (in the form of laminar shear stress, oscillatory shear stress, or cyclic stretch) as modulators of ROS-driven signaling, and their subsequent effects on vascular biology and homeostasis, as well as on specific diseases such as arteriosclerosis, hypertension, and abdominal aortic aneurysms. Specifically, it highlights the significance of the various NADPH oxidase (NOX) isoforms as critical ROS generators in the vasculature. Directed targeting of defined components in the complex network of ROS (mechano-)signaling may represent a key for successful translation of experimental findings into clinical practice.
Collapse
Affiliation(s)
- Uwe Raaz
- 1 Division of Cardiovascular Medicine, Stanford University School of Medicine , Stanford, California
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Blood pressure regulation VIII: resistance vessel tone and implications for a pro-atherogenic conduit artery endothelial cell phenotype. Eur J Appl Physiol 2013; 114:531-44. [PMID: 23860841 DOI: 10.1007/s00421-013-2684-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
Dysfunction of the endothelium is proposed as the primary initiator of atherosclerotic peripheral artery disease, which occurs mainly in medium- to large-sized conduit arteries of the lower extremities (e.g., iliac, femoral, popliteal arteries). In this review article, we propose the novel concept that conduit artery endothelial cell phenotype is determined, in part, by microvascular tone in skeletal muscle resistance arteries through both changes in arterial blood pressure as well as upstream conduit artery shear stress patterns. First, we summarize the literature supporting the involvement of sympathetic nerve activity (SNA) and nitric oxide (NO) in the modulation of microvascular tone and arterial blood pressure. We then focus on the role of elevated blood pressure and shear stress profiles in modulating conduit artery endothelial cell phenotype. Last, we discuss findings from classic and emerging studies indicating that increased vascular resistance, as it occurs in the context of increased SNA and/or reduced NO bioavailability, is associated with greater oscillatory shear stress (e.g., increased retrograde shear) in upstream conduit arteries. The ideas put forth in this review set the stage for a new paradigm concerning the mechanistic link between increased microvascular tone and development of conduit artery endothelial dysfunction and thus increased risk for peripheral artery disease. Indeed, a vast amount of evidence supports the notion that excessive blood pressure and oscillatory shear stress are potent pro-atherogenic signals to the endothelium.
Collapse
|
8
|
Seneviratne A, Hulsmans M, Holvoet P, Monaco C. Biomechanical factors and macrophages in plaque stability. Cardiovasc Res 2013; 99:284-93. [DOI: 10.1093/cvr/cvt097] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
9
|
Jenkins NT, Martin JS, Laughlin MH, Padilla J. Exercise-induced Signals for Vascular Endothelial Adaptations: Implications for Cardiovascular Disease. CURRENT CARDIOVASCULAR RISK REPORTS 2012; 6:331-346. [PMID: 22844545 PMCID: PMC3404842 DOI: 10.1007/s12170-012-0241-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article reviews recent advances in our understanding of hemodynamic signals, external/compressive forces, and circulating factors that mediate exercise training-induced vascular adaptations, with particular attention to the roles of these signals in prevention and treatment of endothelial dysfunction and cardiovascular (CV) diseases.
Collapse
Affiliation(s)
| | | | - M. Harold Laughlin
- Biomedical Sciences, University of Missouri, Columbia, MO
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Jaume Padilla
- Biomedical Sciences, University of Missouri, Columbia, MO
| |
Collapse
|
10
|
Abstract
Shear stress plays a critical role in the regulation of vascular biology and diseases, such as atherosclerosis, via modulation of signal transduction and redox balance. Atherosclerosis preferentially occurs in a site-specific manner linked to disturbed flow. In this Forum on Vascular Shear Stress, emerging role of redox-dependent molecular mechanisms by which shear stress regulates pro- and antiatherogenic responses in endothelial cells both in vitro and in vivo are reviewed in depth by experts. This Forum also provides comprehensive reviews regarding experimental apparatus and in vivo, ex vivo, and in vitro systems used for shear stress studies.
Collapse
Affiliation(s)
- Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia
- Department of Bioinspired Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|