1
|
Tahmasebi F, Asl ER, Vahidinia Z, Barati S. Stem Cell-Derived Exosomal MicroRNAs as Novel Potential Approach for Multiple Sclerosis Treatment. Cell Mol Neurobiol 2024; 44:44. [PMID: 38713302 PMCID: PMC11076329 DOI: 10.1007/s10571-024-01478-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation and demyelination of CNS neurons. Up to now, there are many therapeutic strategies for MS but they are only being able to reduce progression of diseases and have not got any effect on repair and remyelination. Stem cell therapy is an appropriate method for regeneration but has limitations and problems. So recently, researches were used of exosomes that facilitate intercellular communication and transfer cell-to-cell biological information. MicroRNAs (miRNAs) are a class of short non-coding RNAs that we can used to their dysregulation in order to diseases diagnosis. The miRNAs of microvesicles obtained stem cells may change the fate of transplanted cells based on received signals of injured regions. The miRNAs existing in MSCs may be displayed the cell type and their biological activities. Current studies show also that the miRNAs create communication between stem cells and tissue-injured cells. In the present review, firstly we discuss the role of miRNAs dysregulation in MS patients and miRNAs expression by stem cells. Finally, in this study was confirmed the relationship of microRNAs involved in MS and miRNAs expressed by stem cells and interaction between them in order to find appropriate treatment methods in future for limit to disability progression.
Collapse
Affiliation(s)
- Fatemeh Tahmasebi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elmira Roshani Asl
- Department of Biochemistry, Saveh University of Medical Sciences, Saveh, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran.
| |
Collapse
|
2
|
Huang H, Huang W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front Cardiovasc Med 2022; 9:896782. [PMID: 35677696 PMCID: PMC9167961 DOI: 10.3389/fcvm.2022.896782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of morbidity and mortality worldwide. Ischemia and hypoxia following myocardial infarction (MI) cause subsequent cardiomyocyte (CM) loss, cardiac remodeling, and heart failure. Endothelial progenitor cells (EPCs) are involved in vasculogenesis, angiogenesis and paracrine effects and thus have important clinical value in alternative processes for repairing damaged hearts. In fact, this study showed that the endogenous repair of EPCs may not be limited to a single cell type. EPC interactions with cardiac cell populations and mesenchymal stem cells (MSCs) in ischemic heart disease can attenuate cardiac inflammation and oxidative stress in a microenvironment, regulate cell survival and apoptosis, nourish CMs, enhance mature neovascularization, alleviate adverse ventricular remodeling after infarction and enhance ventricular function. In this review, we introduce the definition and discuss the origin and biological characteristics of EPCs and summarize the mechanisms of EPC recruitment in ischemic heart disease. We focus on the crosstalk between EPCs and endothelial cells (ECs), smooth muscle cells (SMCs), CMs, cardiac fibroblasts (CFs), cardiac progenitor cells (CPCs), and MSCs during cardiac remodeling and repair. Finally, we discuss the translation of EPC therapy to the clinic and treatment strategies.
Collapse
|
3
|
Su Y, Zhang T, Huang T, Gao J. Current advances and challenges of mesenchymal stem cells-based drug delivery system and their improvements. Int J Pharm 2021; 600:120477. [PMID: 33737099 DOI: 10.1016/j.ijpharm.2021.120477] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have recently emerged as a promising living carrier for targeted drug delivery. A wealth of literature has shown evidence for great advances in MSCs-based drug delivery system (MSCs-DDS) in the treatment of various diseases. Nevertheless, as this field of study rapidly advances, several challenges associated with this delivery strategy have arisen, mainly due to the inherent limitations of MSCs. To this end, several novel technologies are being developed in parallel to improve the efficiency or safety of this system. In this review, we introduce recent advances and summarize the present challenges of MSCs-DDS. We also highlight some potential technologies to improve MSCs-DDS, including nanotechnology, genome engineering technology, and biomimetic technology. Finally, prospects for application of artificially improved MSCs-DDS are addressed. The technologies summarized in this review provide a general guideline for the improvement of MSCs-DDS.
Collapse
Affiliation(s)
- Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Komici K, Faris P, Negri S, Rosti V, García-Carrasco M, Mendoza-Pinto C, Berra-Romani R, Cervera R, Guerra G, Moccia F. Systemic lupus erythematosus, endothelial progenitor cells and intracellular Ca2+ signaling: A novel approach for an old disease. J Autoimmun 2020; 112:102486. [DOI: 10.1016/j.jaut.2020.102486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023]
|
5
|
Dana D, Pathak SK. A Review of Small Molecule Inhibitors and Functional Probes of Human Cathepsin L. Molecules 2020; 25:E698. [PMID: 32041276 PMCID: PMC7038230 DOI: 10.3390/molecules25030698] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Human cathepsin L belongs to the cathepsin family of proteolytic enzymes with primarily an endopeptidase activity. Although its primary functions were originally thought to be only of a housekeeping enzyme that degraded intracellular and endocytosed proteins in lysosome, numerous recent studies suggest that it plays many critical and specific roles in diverse cellular settings. Not surprisingly, the dysregulated function of cathepsin L has manifested itself in several human diseases, making it an attractive target for drug development. Unfortunately, several redundant and isoform-specific functions have recently emerged, adding complexities to the drug discovery process. To address this, a series of chemical biology tools have been developed that helped define cathepsin L biology with exquisite precision in specific cellular contexts. This review elaborates on the recently developed small molecule inhibitors and probes of human cathepsin L, outlining their mechanisms of action, and describing their potential utilities in dissecting unknown function.
Collapse
Affiliation(s)
- Dibyendu Dana
- Chemistry and Biochemistry Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), 365 5th Ave, New York, NY 10016, USA
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
6
|
Li G, Yu H, Liu N, Zhang P, Tang Y, Hu Y, Zhang Y, Pan C, Deng H, Wang J, Li Q, Tang Z. Overexpression of CX3CR1 in Adipose-Derived Stem Cells Promotes Cell Migration and Functional Recovery After Experimental Intracerebral Hemorrhage. Front Neurosci 2019; 13:462. [PMID: 31133793 PMCID: PMC6517499 DOI: 10.3389/fnins.2019.00462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy has emerged as a new promising therapeutic strategy for intracerebral hemorrhage (ICH). However, the efficiency of stem cell therapy is partially limited by low retention and engraftment of the delivered cells. Therefore, it’s necessary to improve the migration ability of stem cells to the injured area in order to save the costs and duration of cell preparation. This study aimed to investigate whether overexpression of CX3CR1, the specific receptor of chemokine fractalkine (FKN), in adipose-derived stem cells (ADSCs) can stimulate the cell migration to the injured area in the brain, improve functional recovery and protect against cell death following experimental ICH. ADSCs were isolated from subcutaneous adipose tissues of rats. ICH was induced by means of an injection of collagenase type VII. ELISA showed that the expression levels of fractalkine/FKN were increased at early time points, with a peak at day 3 after ICH. And it was found that different passages of ADSCs could express the chemokine receptor CX3CR1. Besides, the chemotactic movements of ADSCs toward fractalkine have been verified by transwell migration assay. ADSCs overexpressing CX3CR1 were established through lentivirus transfection. We found that after overexpression of CX3CR1 receptor, the migration ability of ADSCs was increased both in vitro and in vivo. In addition, reduced cell death and improved sensory and motor functions were seen in the mice ICH model. Thus, ADSCs overexpression CX3CR1 might be taken as a promising therapeutic strategy for the treatment of ICH.
Collapse
Affiliation(s)
- Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haihan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Hu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Jiang X, Wang C, Fitch S, Yang F. Targeting Tumor Hypoxia Using Nanoparticle-engineered CXCR4-overexpressing Adipose-derived Stem Cells. Am J Cancer Res 2018; 8:1350-1360. [PMID: 29507625 PMCID: PMC5835941 DOI: 10.7150/thno.22736] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/28/2017] [Indexed: 01/01/2023] Open
Abstract
Hypoxia, a hallmark of malignant tumors, often correlates with increasing tumor aggressiveness and poor treatment outcomes. Due to a lack of vasculature, effective drug delivery to hypoxic tumor regions remains challenging. Signaling through the chemokine SDF-1α and its receptor CXCR4 plays a critical role in the homing of stem cells to ischemia for potential use as drug-delivery vehicles. To harness this mechanism for targeting tumor hypoxia, we developed polymeric nanoparticle-induced CXCR4-overexpressing human adipose-derived stem cells (hADSCs). Using glioblastoma multiforme (GBM) as a model tumor, we evaluated the ability of CXCR4-overexpressing hADSCs to target tumor hypoxia in vitro using a 2D migration assay and a 3D collagen hydrogel model. Compared to untransfected hADSCs, CXCR4-overexpressing hADSCs showed enhanced migration in response to hypoxia and penetrated the hypoxic core within tumor spheres. When injected in the contralateral brain in a mouse intracranial GBM xenograft, CXCR4-overexpressing hADSCs exhibited long-range migration toward GBM and preferentially penetrated the hypoxic tumor core. Intravenous injection also led to effective targeting of tumor hypoxia in a subcutaneous tumor model. Together, these results validate polymeric nanoparticle-induced CXCR4-overexpressing hADSCs as a potent cellular vehicle for targeting tumor hypoxia, which may be broadly useful for enhancing drug delivery to various cancer types.
Collapse
|
8
|
ARA290, a Specific Agonist of Erythropoietin/CD131 Heteroreceptor, Improves Circulating Endothelial Progenitors' Angiogenic Potential and Homing Ability. Shock 2018; 46:390-7. [PMID: 27172159 DOI: 10.1097/shk.0000000000000606] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alternate erythropoietin (EPO)-mediated signaling via the EPOR/CD131 heteromeric receptor exerts the tissue-protective actions of EPO in a wide spectrum of injuries, especially ischemic diseases. Circulating endothelial progenitor cells contribute to endothelial repair and post-natal angiogenesis after chronic ischemic injury. This work aims to investigate the effects of ARA290, a specific agonist of EPOR/CD131 complex, on a subpopulation of endothelial progenitor cells named endothelial colony-forming cells (ECFCs) and to characterize its contribution to ECFCs-induced angiogenesis after peripheral ischemia. METHODS ARA290 effects on ECFCs properties were studied using cell cultures in vitro. We injected ARA290 to mice undergoing chronic hindlimb ischemia (CLI) in combination with ECFC transplantation. The homing of transplanted ECFC to ischemic tissue in vivo was assessed by SPECT/CT imaging. RESULTS In vitro, ARA290 enhanced the proliferation, migration, and resistance to H2O2-induced apoptosis of ECFCs. After ECFC transplantation to mice with CLI, a single ARA290 injection enhanced the ischemic/non-ischemic ratio of hindlimb blood flow and capillary density after 28 days and the homing of radiolabeled transplanted cells to the ischemic leg 4 h after transplantation. Prior neutralization of platelet-endothelial cell adhesion molecule-1 (CD31) expressed by the transplanted cells inhibited ARA290-induced improvement of homing. DISCUSSION ARA290 induces specific improvement of the biological activity of ECFCs. ARA290 administration in combination with ECFCs has a synergistic effect on post-ischemic angiogenesis in vivo. This potentiation appears to rely, at least in part, on a CD31-dependent increase in homing of the transplanted cells to the ischemic tissue.
Collapse
|
9
|
Zuccolo E, Di Buduo C, Lodola F, Orecchioni S, Scarpellino G, Kheder DA, Poletto V, Guerra G, Bertolini F, Balduini A, Rosti V, Moccia F. Stromal Cell-Derived Factor-1α Promotes Endothelial Colony-Forming Cell Migration Through the Ca2+-Dependent Activation of the Extracellular Signal-Regulated Kinase 1/2 and Phosphoinositide 3-Kinase/AKT Pathways. Stem Cells Dev 2018; 27:23-34. [DOI: 10.1089/scd.2017.0114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Estella Zuccolo
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Christian Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
| | - Francesco Lodola
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology–Oncology, European Institute of Oncology, Milan, Italy
| | - Giorgia Scarpellino
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Dlzar Ali Kheder
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
- Department of Biology, Faculty of Science, University of Zakho, Zakho, Kurdistan-Region of Iraq
| | - Valentina Poletto
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences “Vincenzo Tiberio,” University of Molise, Campobasso, Italy
| | - Francesco Bertolini
- Laboratory of Hematology–Oncology, European Institute of Oncology, Milan, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Vittorio Rosti
- Laboratory of Biochemistry, Biotechnology, and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Matteo Foundation, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Goichberg P. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Rev Rep 2017; 12:421-37. [PMID: 27209167 DOI: 10.1007/s12015-016-9663-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advancements in the field of adult stem and progenitor cells grows the recognition that the motility of primitive cells is a pivotal aspect of their functionality. There is accumulating evidence that the recruitment of tissue-resident and circulating cells is critical for organ homeostasis and effective injury responses, whereas the pathobiology of degenerative diseases, neoplasm and aging, might be rooted in the altered ability of immature cells to migrate. Furthermore, understanding the biological machinery determining the translocation patterns of tissue progenitors is of great relevance for the emerging methodologies for cell-based therapies and regenerative medicine. The present article provides an overview of studies addressing the physiological significance and diverse modes of stem and progenitor cell trafficking in adult mammalian organs, discusses the major microenvironmental cues regulating cell migration, and describes the implementation of live imaging approaches for the exploration of stem cell movement in tissues and the factors dictating the motility of endogenous and transplanted cells with regenerative potential.
Collapse
Affiliation(s)
- Polina Goichberg
- Department Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Klotzsche-von Ameln A, Cremer S, Hoffmann J, Schuster P, Khedr S, Korovina I, Troullinaki M, Neuwirth A, Sprott D, Chatzigeorgiou A, Economopoulou M, Orlandi A, Hain A, Zeiher AM, Deussen A, Hajishengallis G, Dimmeler S, Chavakis T, Chavakis E. Endogenous developmental endothelial locus-1 limits ischaemia-related angiogenesis by blocking inflammation. Thromb Haemost 2017; 117:1150-1163. [PMID: 28447099 PMCID: PMC5502105 DOI: 10.1160/th16-05-0354] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/05/2017] [Indexed: 12/23/2022]
Abstract
We have recently identified endothelial cell-secreted developmental endothelial locus-1 (Del-1) as an endogenous inhibitor of β2-integrin-dependent leukocyte infiltration. Del-1 was previously also implicated in angiogenesis. Here, we addressed the role of endogenously produced Del-1 in ischaemia-related angiogenesis. Intriguingly, Del-1-deficient mice displayed increased neovascularisation in two independent ischaemic models (retinopathy of prematurity and hind-limb ischaemia), as compared to Del-1-proficient mice. On the contrary, angiogenic sprouting in vitro or ex vivo (aortic ring assay) and physiological developmental retina angiogenesis were not affected by Del-1 deficiency. Mechanistically, the enhanced ischaemic neovascularisation in Del-1-deficiency was linked to higher infiltration of the ischaemic tissue by CD45+ haematopoietic and immune cells. Moreover, Del-1-deficiency promoted β2-integrin-dependent adhesion of haematopoietic cells to endothelial cells in vitro, and the homing of hematopoietic progenitor cells and of immune cell populations to ischaemic muscles in vivo. Consistently, the increased hind limb ischaemia-related angiogenesis in Del-1 deficiency was completely reversed in mice lacking both Del-1 and the β2-integrin LFA-1. Additionally, enhanced retinopathy-associated neovascularisation in Del-1-deficient mice was reversed by LFA-1 blockade. Our data reveal a hitherto unrecognised function of endogenous Del-1 as a local inhibitor of ischaemia-induced angiogenesis by restraining LFA-1-dependent homing of pro-angiogenic haematopoietic cells to ischaemic tissues. Our findings are relevant for the optimisation of therapeutic approaches in the context of ischaemic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Emmanouil Chavakis
- Emmanouil Chavakis, MD, Dept. of Internal Medicine III, Goethe University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany, Tel.: +49 69 6301 4131, +49 69 6301 87965, Fax: +49 69 6301 83462, E-mail:
| |
Collapse
|
12
|
Li L, Chu L, Fang Y, Yang Y, Qu T, Zhang J, Yin Y, Gu J. Preconditioning of bone marrow-derived mesenchymal stromal cells by tetramethylpyrazine enhances cell migration and improves functional recovery after focal cerebral ischemia in rats. Stem Cell Res Ther 2017; 8:112. [PMID: 28499457 PMCID: PMC5429508 DOI: 10.1186/s13287-017-0565-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/23/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) is one of the new therapeutic strategies for treating ischemic stroke. However, the relatively poor migratory capacity of BMSCs toward infarcted regions limited the therapeutic potential of this approach. Pharmacological preconditioning can increase the expression of CXC chemokine receptor 4 (CXCR4) in BMSCs and enhance cell migration toward the injury site. In the present study, we investigated whether tetramethylpyrazine (TMP) preconditioning could enhance BMSCs migration to the ischemic brain and improve functional recovery through upregulating CXCR4 expression. Methods BMSCs were identified by flow cytometry analysis. BMSCs migration was evaluated in vitro by transwell migration assay, and CXCR4 expression was measured by quantitative reverse transcription-polymerase chain reaction and western blot analysis. In rats with focal cerebral ischemia, the neurological function was evaluated by the modified neurological severity score, the adhesive removal test and the corner test. The homing BMSCs and angiogenesis were detected by immunofluorescence, and expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 was measured by western blot analysis. Results Flow cytometry analysis demonstrated that BMSCs expressed CD29 and CD90, but not CD34 and CD45. TMP pretreatment dose-dependently induced BMSCs migration and CXCR4 expression in vitro, which was significantly inhibited by AMD3100, a CXCR4 antagonist. In rat stroke models, we found more TMP-preconditioned BMSCs homing toward the infarcted regions than nonpreconditioned cells, leading to improved neurological performance and enhanced angiogenesis. Moreover, TMP-preconditioned BMSCs significantly upregulated the protein expression of SDF-1 and CXCR4 in the ischemic boundary regions. These beneficial effects of TMP preconditioning were blocked by AMD3100. Conclusion TMP preconditioning enhances the migration and homing ability of BMSCs, increases CXCR4 expression, promotes angiogenesis, and improves neurological performance. Therefore, TMP preconditioning may be an effective strategy to improve the therapeutic potency of BMSCs for ischemic stroke due to enhanced BMSCs migration to ischemic regions.
Collapse
Affiliation(s)
- Lin Li
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lisheng Chu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yan Fang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Yang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tiebing Qu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianping Zhang
- Department of Anatomy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuanjun Yin
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingjing Gu
- Department of Pathology, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
13
|
Nitzsche F, Müller C, Lukomska B, Jolkkonen J, Deten A, Boltze J. Concise Review: MSC Adhesion Cascade-Insights into Homing and Transendothelial Migration. Stem Cells 2017; 35:1446-1460. [DOI: 10.1002/stem.2614] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Franziska Nitzsche
- Department of Ischemia Research; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Department of Radiology, McGowan Institute for Regenerative Medicine; University of Pittsburgh; Pittsburgh Pennsylvania USA
| | - Claudia Müller
- Department of Ischemia Research; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
| | - Barbara Lukomska
- NeuroRepair Department; Mossakowski Medical Research Centre; Warsaw Poland
| | - Jukka Jolkkonen
- Department of Neurology; Institute of Clinical Medicine, University of Eastern; Kuopio Finland
| | - Alexander Deten
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Johannes Boltze
- Department of Ischemia Research; Fraunhofer Institute for Cell Therapy and Immunology; Leipzig Germany
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
- Department of Translational Medicine and Cell Technology; Fraunhofer Research Institution for Marine Biotechnology and Institute for Medical and Marine Biotechnology, University of Lübeck; Lübeck Germany
| |
Collapse
|
14
|
Kang J, Hur J, Kang JA, Lee HS, Jung H, Choi JI, Lee H, Kim YS, Ahn Y, Kim HS. Priming mobilized peripheral blood mononuclear cells with the "activated platelet supernatant" enhances the efficacy of cell therapy for myocardial infarction of rats. Cardiovasc Ther 2017; 34:245-53. [PMID: 27214098 DOI: 10.1111/1755-5922.12194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIM Various methods are used to augment the efficacy of cell therapy in myocardial infarction (MI). In this study, we used the "activated platelet supernatant (APS)" to prime autologous "granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells ((mob) PBMCs)" and investigated the efficacy of cell-based therapy in MI. METHOD Rat (mob) PBMCs were isolated after daily subcutaneous injections of G-CSF at 100 μg/kg for 3 days. APS was isolated separately after activating rat platelets with thrombin 0.5 U/mL for 2 hours. Priming was performed with APS for 6 hours. To check the paracrine effect of primed (mob) PBMCs, we used the 36-hour culture supernatant of the primed cells. A rat MI model was used for an in vivo model. RESULT Cytokines such as IL-1β, IL-10, and TGFβ were 3.7±0.9-fold, 3.4±1.2-fold, and 1.2±0.1-fold higher in APS, respectively, compared with naïve platelet supernatant. By APS priming, (mob) PBMCs showed M2 polarization and upregulation of angiogenic molecules (i.e., TEK, IL-10, CXCL1, and CX3CR1). APS-primed (mob) PBMCs had a 2.3-fold increased adhesion ability, induced by upregulated integrins. Rat endothelial cells cultured in the 36-hour culture supernatant of APS-primed (mob) PBMCs showed a 1.6-fold augmented proliferation and capillary network formation. In vivo transplantation of APS-primed (mob) PBMCs into rat MI models showed a significant trend of reduction in fibrosis area (P=.001) and wall thinning (P=.030), which lead to improvement in cardiac function measured by echocardiography. CONCLUSION Our data reveal that APS priming can enhance the wound-healing potential of (mob) PBMCs. APS priming may be a promising method for cell-based therapy of MI.
Collapse
Affiliation(s)
- Jeehoon Kang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea.,Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Jin Hur
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea.,Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Jin-A Kang
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea.,Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Hak Seung Lee
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea.,Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Heewon Jung
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea.,Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Jae-Il Choi
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea.,Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Hwan Lee
- National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea.,Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yong Sook Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Korea
| | - Hyo-Soo Kim
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Korea.,Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea.,Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
15
|
Dopheide JF, Geissler P, Rubrech J, Trumpp A, Zeller GC, Bock K, Dorweiler B, Dünschede F, Münzel T, Radsak MP, Espinola-Klein C. Inflammation is associated with a reduced number of pro-angiogenic Tie-2 monocytes and endothelial progenitor cells in patients with critical limb ischemia. Angiogenesis 2016; 19:67-78. [PMID: 26462497 DOI: 10.1007/s10456-015-9489-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/04/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND Inflammation is the driving force in atherosclerosis. One central strategy in the treatment for PAD is the promotion of angiogenesis. Here, pro-angiogenic Tie-2-expressing monocytes (TEM) and endothelial progenitor cells (EPC) play a crucial role. Critical limb ischemia (CLI) is characterized by a severe, chronic inflammatory response; thus, progression of the disease might be related to the deleterious effects of inflammation on pro-angiogenic cells. METHODS Forty-five patients with intermittent claudication (IC) [three groups: Rutherford (R)-1, -2, or -3; each n = 15], 20 patients with CLI [n = 20; Rutherford 4 (15 %), 5 (40 %), and 6 (45 %)], and 20 healthy controls were included in the study. Analysis of TEM and EPC was performed from whole blood by flow cytometry. Treatment for IC patients was conservative, and CLI patients underwent surgical revascularization. Follow-up was performed after mean of 7.1 months. RESULTS In comparison with healthy controls, we found increased proportions of TEM and EPC in dependence of the severity of PAD, with the highest level in patients with severe claudication (R3) (p < 0.01). In contrast, for patients with CLI, we found a significantly reduced expression of both TEM and EPC in comparison with healthy controls (p < 0.05) or IC patients (R-1, R-2, and R-3) (all p < 0.001). At follow-up, TEM and EPC in CLI patients increased significantly (both p < 0.001). Serum levels of fibrinogen and CRP were significantly increased in CLI patients (all p < 0.001), but decreased at follow-up (all p < 0.05). TEM and EPC proportions correlated inversely with levels of fibrinogen [(TEM: r = −0.266; p < 0.01) (EPC: r = −0.297; p < 0.001)], CRP (TEM: r = −0.283; p < 0.01) (EPC: r = −0.260; p < 0.01). CONCLUSIONS We found a strong association of diverse inflammatory markers with a reduced proportion of pro-angiogenic TEM or EPC in patients with CLI, giving rise to the speculation that a severe chronic inflammation might lead to deleterious effects on TEM and EPC, possibly interfering with angiogenesis, thus promoting an aggravation of the disease.
Collapse
|
16
|
Varshney R, Ali Q, Wu C, Sun Z. Monocrotaline-Induced Pulmonary Hypertension Involves Downregulation of Antiaging Protein Klotho and eNOS Activity. Hypertension 2016; 68:1255-1263. [PMID: 27672025 DOI: 10.1161/hypertensionaha.116.08184] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle cell proliferation, likely by reducing inflammation and restoring SIRT1 levels and eNOS activity.
Collapse
Affiliation(s)
- Rohan Varshney
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Quaisar Ali
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Chengxiang Wu
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City.
| |
Collapse
|
17
|
Zhu K, Liu D, Lai H, Li J, Wang C. Developing miRNA therapeutics for cardiac repair in ischemic heart disease. J Thorac Dis 2016; 8:E918-E927. [PMID: 27747027 DOI: 10.21037/jtd.2016.08.93] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) families have been found to be powerful regulators in a wide variety of diseases, which enables the possible use of miRNAs in therapeutic strategies for cardiac repair after ischemic heart disease. This review provides some general insights into miRNAs modulation for development of current molecular and cellular therapeutics in cardiac repair, including endogenous regeneration, endogenous repair, stem cells transplantation, and reprogramming. We also review the delivery strategies for miRNAs modulation, and briefly summarize the current bench and clinical efforts that are being made to explore miRNAs as the future therapeutic target.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Dingqian Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;; Shanghai Institute of Cardiovascular Disease, Shanghai 200032, China
| |
Collapse
|
18
|
Hagenhoff A, Bruns CJ, Zhao Y, von Lüttichau I, Niess H, Spitzweg C, Nelson PJ. Harnessing mesenchymal stem cell homing as an anticancer therapy. Expert Opin Biol Ther 2016; 16:1079-92. [PMID: 27270211 DOI: 10.1080/14712598.2016.1196179] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Mesenchymal stromal cells (MSCs) are non-hematopoietic progenitor cells that have been exploited as vehicles for cell-based cancer therapy. The general approach is based on the innate potential of adoptively applied MSC to undergo facilitated recruitment to malignant tissue. MSC from different tissue sources have been engineered using a variety of therapy genes that have shown efficacy in solid tumor models. AREAS COVERED In this review we will focus on the current developments of MSC-based gene therapy, in particular the diverse approaches that have been used for MSCs-targeted tumor therapy. We also discuss some outstanding issues and general prospects for their clinical application. EXPERT OPINION The use of modified mesenchymal stem cells as therapy vehicles for the treatment of solid tumors has progressed to the first generation of clinical trials, but the general field is still in its infancy. There are many questions that need to be addressed if this very complex therapy approach is widely applied in clinical settings. More must be understood about the mechanisms underlying tumor tropism and we need to identify the optimal source of the cells used. Outstanding issues also include the therapy transgenes used, and which tumor types represent viable targets for this therapy.
Collapse
Affiliation(s)
- Anna Hagenhoff
- a Department of Pediatrics and Pediatric Oncology Center, Klinikum rechts der Isar , Technical University , Munich , Germany
| | - Christiane J Bruns
- b Department of Surgery , Otto-von-Guericke University , Magdeburg , Germany
| | - Yue Zhao
- b Department of Surgery , Otto-von-Guericke University , Magdeburg , Germany
| | - Irene von Lüttichau
- a Department of Pediatrics and Pediatric Oncology Center, Klinikum rechts der Isar , Technical University , Munich , Germany
| | - Hanno Niess
- c Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery , University of Munich , Munich , Germany
| | - Christine Spitzweg
- d Department of Internal Medicine II , University of Munich , Munich , Germany
| | - Peter J Nelson
- e Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV , University of Munich , Munich , Germany
| |
Collapse
|
19
|
Hordijk PL. Recent insights into endothelial control of leukocyte extravasation. Cell Mol Life Sci 2016; 73:1591-608. [PMID: 26794844 PMCID: PMC11108429 DOI: 10.1007/s00018-016-2136-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/30/2022]
Abstract
In the process of leukocyte migration from the circulation across the vascular wall, the crosstalk with endothelial cells that line the blood vessels is essential. It is now firmly established that in endothelial cells important signaling events are initiated upon leukocyte adhesion that impinge on the regulation of cell-cell contact and control the efficiency of transendothelial migration. In addition, several external factors such as shear force and vascular stiffness were recently identified as important regulators of endothelial signaling and, consequently, leukocyte transmigration. Here, I review recent insights into endothelial signaling events that are linked to leukocyte migration across the vessel wall. In this field, protein phosphorylation and Rho-mediated cytoskeletal dynamics are still widely studied using increasingly sophisticated mouse models. In addition, activation of tyrosine phosphatases, changes in endothelial cell stiffness as well as different vascular beds have all been established as important factors in endothelial signaling and leukocyte transmigration. Finally, I address less-well-studied but interesting components in the endothelium that also control transendothelial migration, such as the ephrins and their Eph receptors, that provide novel insights in the complexity associated with this process.
Collapse
Affiliation(s)
- Peter L Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, Swammerdam Institute for Life Sciences, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands.
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Dopheide JF, Geissler P, Rubrech J, Trumpp A, Zeller GC, Daiber A, Münzel T, Radsak MP, Espinola-Klein C. Influence of exercise training on proangiogenic TIE-2 monocytes and circulating angiogenic cells in patients with peripheral arterial disease. Clin Res Cardiol 2016; 105:666-676. [PMID: 26830098 DOI: 10.1007/s00392-016-0966-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/19/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Inflammation is the driving force in atherosclerosis. One central strategy in the treatment of peripheral arterial disease (PAD) is the promotion of angiogenesis. Here, proangiogenic Tie-2 expressing monocytes (TEM) and circulating angiogenic cells (CAC) play a crucial role. Exercise training (ET) is recommended in PAD patients at Fontaine stage II to promote angiogenesis. METHODS 40 patients with intermittend claudication (IC) [2 groups: supervised ET (SET) vs. non-supervised ET (nSET), each n = 20] and 20 healthy controls were included in the study. Analysis of TEM and CAC was performed from whole blood by flow-cytometry. TEM were identified via CD45, CD86, CD14, CD16 and analysed for the expression of Tie-2. CAC were identified via their expression of CD45 (CD45dim), CD34 and VEGF-R2 (CD309/KDR). Follow up was performed after mean of 7.65 ± 1.62 months. RESULTS In comparison to healthy controls, we found increased proportions of CAC (p < 0.0001) and similar TEM numbers in both ET groups. At follow-up (FU) TEM poroportions increased (p < 0.001) and CAC proportions decreased (p < 0.01), but both more significantly in SET (p < 0.001) than nSET (p = 0.01). Only in SET fibrinogen levels decreased and VEGF-A increased (both p < 0.05). Finally, we found in both ET groups a significant increase in absolute walking distance but with a higher individual increase in SET (p < 0.01). TEM and CAC proportions correlated inversely with the absolute walking distance (CAC: r = -0.296, p = 0.02; TEM: r = -0.270, p = 0.04) as well as with ABI (CAC: r = -0.394, p < 0.01; TEM: r = -0.382, p < 0.01). CONCLUSIONS ET influences the distribution of CAC and TEM proportions. nSET, although still effective in regard to an improved walking distance, is less effective in the influence of proangiogenic cells and inflammatory burden than SET. Our results indicate SET to be a more preferential exercise form, supporting the necessity to establish more SET programs.
Collapse
Affiliation(s)
- Jörn F Dopheide
- Center of Cardiology, University Medical Center, Johannes-Gutenberg University, Langenbeckstr Str. 1, D-55101, Mainz, Germany.
| | - Philipp Geissler
- Center of Cardiology, University Medical Center, Johannes-Gutenberg University, Langenbeckstr Str. 1, D-55101, Mainz, Germany
| | - Jennifer Rubrech
- Center of Cardiology, University Medical Center, Johannes-Gutenberg University, Langenbeckstr Str. 1, D-55101, Mainz, Germany
| | - Amelie Trumpp
- Center of Cardiology, University Medical Center, Johannes-Gutenberg University, Langenbeckstr Str. 1, D-55101, Mainz, Germany
| | - Geraldine C Zeller
- Department of Internal Medicine I, University Medical Center, Johannes-Gutenberg University, Langenbeckstr Str. 1, D-55101, Mainz, Germany
| | - Andreas Daiber
- Center of Cardiology, University Medical Center, Johannes-Gutenberg University, Langenbeckstr Str. 1, D-55101, Mainz, Germany
| | - Thomas Münzel
- Center of Cardiology, University Medical Center, Johannes-Gutenberg University, Langenbeckstr Str. 1, D-55101, Mainz, Germany
| | - Markus P Radsak
- Department of Internal Medicine III, University Medical Center, Johannes-Gutenberg University, Langenbeckstr Str. 1, D-55101, Mainz, Germany.,Institute for Immunology, University Medical Center, Johannes-Gutenberg University, Langenbeckstr Str. 1, D-55101, Mainz, Germany
| | - Christine Espinola-Klein
- Center of Cardiology, University Medical Center, Johannes-Gutenberg University, Langenbeckstr Str. 1, D-55101, Mainz, Germany
| |
Collapse
|
21
|
Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro. Sci Rep 2015; 5:12898. [PMID: 26250571 PMCID: PMC4528192 DOI: 10.1038/srep12898] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) are regarded as an attractive source of therapeutic stem cells for myocardial infarction. However, their limited self-renewal capacity, low migration capacity and poor viability after transplantation hamper the clinical use of MSC; thus, a strategy to enhance the biological functions of MSC is required. Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, exerts cell-protective effects on many types of cells. However, little information is available regarding the influence of Ex-4 on MSC. In our study, MSC were isolated from bone marrow and cultured in vitro. After treatment with Ex-4, MSC displayed a higher proliferative capacity, increased C-X-C motif receptor 4 (CXCR4) expression and an enhanced migration response. Moreover, in H2O2-induced apoptosis, Ex-4 preserved mitochondrial function through scavenging ROS and balancing the expression of anti- and pro-apoptotic proteins, leading to the inhibition of the mitochondria-dependent cell death pathways and increased cell survival. Moreover, higher phospho-Akt (p-Akt) expression was observed after Ex-4 intervention. However, blockade of the PI3K/Akt pathway with inhibitors suppressed the above cytoprotective effects of Ex-4, suggesting that the PI3K/Akt pathway is partly responsible for Ex-4-mediated MSC growth, mobilization and survival. These findings provide an attractive method of maximizing the effectiveness of MSC-based therapies in clinical applications.
Collapse
|
22
|
Melchiorri AJ, Hibino N, Yi T, Lee YU, Sugiura T, Tara S, Shinoka T, Breuer C, Fisher JP. Contrasting biofunctionalization strategies for the enhanced endothelialization of biodegradable vascular grafts. Biomacromolecules 2015; 16:437-46. [PMID: 25545620 PMCID: PMC4325601 DOI: 10.1021/bm501853s] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Indexed: 01/26/2023]
Abstract
Surface modification of biodegradable vascular grafts is an important strategy to improve the in situ endothelialization of tissue engineered vascular grafts (TEVGs) and prevent major complications associated with current synthetic grafts. Important strategies for improving endothelialization include increasing endothelial cell mobilization and increased endothelial cell capture through biofunctionalization of TEVGs. The objective of this study was to assess two biofunctionalization strategies for improving endothelialization of biodegradable polyester vascular grafts. These techniques consisted of cross-linking heparin to graft surfaces to immobilize vascular endothelial growth factor (VEGF) or antibodies against CD34 (anti-CD34Ab). To this end, heparin, VEGF, and anti-CD34Ab attachment and quantification assays confirmed the efficacy of the modification strategy. Cell attachment and proliferation on these groups were compared to unmodified grafts in vitro and in vivo. To assess in vivo graft functionality, the grafts were implanted as inferior vena cava interpositional conduits in mice. Modified vascular grafts displayed increased endothelial cell attachment and activity in vivo, according to microscopy techniques, histological results, and eNOS expression. Inner lumen diameter of the modified grafts was also better maintained than controls. Overall, while both functionalized grafts outperformed the unmodified control, grafts modified with anti-CD34Ab appeared to yield the most improved results compared to VEGF-loaded grafts.
Collapse
Affiliation(s)
- A. J. Melchiorri
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
| | - N. Hibino
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - T. Yi
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - Y. U. Lee
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - T. Sugiura
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - S. Tara
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - T. Shinoka
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - C. Breuer
- Tissue Engineering Program
and Surgical Research and Department of Cardiothoracic Surgery, Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - J. P. Fisher
- Fischell
Department of Bioengineering, University
of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
23
|
Salter MM, Seeto WJ, DeWitt BB, Hashimi SA, Schwartz DD, Lipke EA, Wooldridge AA. Characterization of endothelial colony-forming cells from peripheral blood samples of adult horses. Am J Vet Res 2015; 76:174-87. [DOI: 10.2460/ajvr.76.2.174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Zhou H, Yang J, Xin T, Zhang T, Hu S, Zhou S, Chen G, Chen Y. Exendin-4 enhances the migration of adipose-derived stem cells to neonatal rat ventricular cardiomyocyte-derived conditioned medium via the phosphoinositide 3-kinase/Akt-stromal cell-derived factor-1α/CXC chemokine receptor 4 pathway. Mol Med Rep 2015; 11:4063-72. [PMID: 25625935 PMCID: PMC4394957 DOI: 10.3892/mmr.2015.3243] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) are considered a suitable source of cells for the repair of tissue following acute myocardial infarction (AMI); however, the transplantation efficiency of ADSCs remains low. Therefore, identification of an efficient method to enhance the migration of engrafted cells to the target site is required. The present study used exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, to optimize the migratory capacity of ADSCs. The aim was to determine the effect and mechanisms of Ex-4 on the migration of ADSCs to neonatal rat ventricular cardiomyocyte-derived conditioned medium (NRVC-CM). The ADSCs and cardiomyocytes were cultured in vitro. Following incubation of the ADSCs with Ex-4, cell proliferation was measured using an MTT assay and the expression levels of CXC chemokine receptor 4 (CXCR4) were investigated by reverse transctiption quantitative polymerase chain reaction (RT-qPCR), western blot analysis and flow cytometry. In addition, the expression levels of stromal cell-derived factor-1α (SDF-1α) were evaluated in the NRVC-CM treated with Ex-4 by ELISA, RT-qPCR and western blot analysis. The migration of the ADSCs to the NRVC-CM was examined using a Transwell assay. Changes in the protein expression levels of phosphorylated (p−)Akt were examined in the two types of cell by western blot analysis. The results suggested that Ex-4 promoted the proliferation and expression of CXCR4 in the ADSCs, increased the secretion of SDF-1α in the cardiomyocytes and increased the expression levels of p-Akt in both cells. However, the alterations to the SDF-1α/C XC R4 cascade in the cells were abrogated following pretreatment with LY-294002, a phosphoinositide 3-kinase(PI3K) inhibitor. Furthermore, a Transwell migration assay revealed marked translocation of the ADSCs through the membranes, towards the NRVC-CM, following treatment with Ex-4. However, these effects were reduced significantly by pretreatment of the cells with the SDF-1α/CXCR4 cascade antagonist, AMD3100, and the PI3K inhibitor, LY-294002. These results indicated that Ex-4 augmented the SDF-1α/CXCR4 cascade by activating the PI3K/Akt pathways in the ADSCs and NRVCs. Furthermore, enhancement of the PI3K/Akt-SDF-1α/CXCR4 pathway may be important in the migratory response of ADSCs to NRVC-CM in vitro.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Cardiology, Chinese People's Liberty Army General Hospital, Beijing 100853, P.R. China
| | - Junjie Yang
- Department of Cardiology, Chinese People's Liberty Army General Hospital, Beijing 100853, P.R. China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Tao Zhang
- Department of Cardiology, Chinese People's Liberty Army General Hospital, Beijing 100853, P.R. China
| | - Shunyin Hu
- Department of Cardiology, Chinese People's Liberty Army General Hospital, Beijing 100853, P.R. China
| | - Shanshan Zhou
- Department of Cardiology, Chinese People's Liberty Army General Hospital, Beijing 100853, P.R. China
| | - Guanghui Chen
- Department of Cardiology, Chinese People's Liberty Army General Hospital, Beijing 100853, P.R. China
| | - Yundai Chen
- Department of Cardiology, Chinese People's Liberty Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
25
|
Abstract
Recent progress in using stem cells for tissue repair and functional restoration has aroused much attention due to its potential to provide a cue for many diseases such as myocardial infarction. Stem cell therapy for cardiovascular disease has been studied extensively at both experimental and clinical levels. Pluripotent stem cells and mesenchymal stem cells were proven to be effective for myocardial regeneration, angiogenesis, and cardiac functional restoration. In this review, we will concisely discuss advantages and disadvantages of currently-used stem cells for cardiovascular repair and regeneration. The limitations and uniqueness of some types of stem cells will also be discussed. Although substantial progress has been made over the last decade about stem cells in cardiovascular regeneration, many challenges lie ahead before the therapeutic potentials of stem cells can be fully recognized.
Collapse
|
26
|
Kokhuis TJA, Skachkov I, Naaijkens BA, Juffermans LJM, Kamp O, Kooiman K, van der Steen AFW, Versluis M, de Jong N. Intravital microscopy of localized stem cell delivery using microbubbles and acoustic radiation force. Biotechnol Bioeng 2014; 112:220-7. [PMID: 25088405 DOI: 10.1002/bit.25337] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/13/2014] [Accepted: 07/07/2014] [Indexed: 01/11/2023]
Abstract
The use of stem cells for the repair of damaged cardiac tissue after a myocardial infarction holds great promise. However, a common finding in experimental studies is the low number of cells delivered at the area at risk. To improve the delivery, we are currently investigating a novel delivery platform in which stem cells are conjugated with targeted microbubbles, creating echogenic complexes dubbed StemBells. These StemBells vibrate in response to incoming ultrasound waves making them susceptible to acoustic radiation force. The acoustic force can then be employed to propel circulating StemBells from the centerline of the vessel to the wall, facilitating localized stem cell delivery. In this study, we investigate the feasibility of manipulating StemBells acoustically in vivo after injection using a chicken embryo model. Bare stem cells or unsaturated stem cells (<5 bubbles/cell) do not respond to ultrasound application (1 MHz, peak negative acoustical pressure P_ = 200 kPa, 10% duty cycle). However, stem cells which are fully saturated with targeted microbubbles (>30 bubbles/cell) can be propelled toward and arrested at the vessel wall. The mean translational velocities measured are 61 and 177 μm/s for P- = 200 and 450 kPa, respectively. This technique therefore offers potential for enhanced and well-controlled stem cell delivery for improved cardiac repair after a myocardial infarction.
Collapse
Affiliation(s)
- T J A Kokhuis
- Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Muylaert DEP, Fledderus JO, Bouten CVC, Dankers PYW, Verhaar MC. Combining tissue repair and tissue engineering; bioactivating implantable cell-free vascular scaffolds. Heart 2014; 100:1825-30. [PMID: 25053725 DOI: 10.1136/heartjnl-2014-306092] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synthetic replacement grafts for heart valves and small-diameter blood vessels such as coronary arteries have the potential to circumvent many of the limitations of currently available autologous grafting materials. Cell-free material incorporating biologically active compounds may guide the formation of fully autologous new tissue in situ derived from host cells after implantation. Inspiration for such bioactive compounds and their dynamics can be found in in vivo repair processes. Molecules such as stromal cell-derived factor 1α (SDF1α) that can attract progenitor cells from the bloodstream and modulate immune responses may be able to improve neotissue development in cell-free vascular and valvular grafts. Advances in the development of fully synthetic molecules and scaffold materials allow the spatial and temporal control of biologically active factors, enabling tissue engineers to mimic complex cellular signalling. This review focuses on combining knowledge of the molecular dynamics of factors involved in in vivo damage repair with the possibilities offered by newly developed synthetic materials. This approach has lead to encouraging results in the field of in situ vascular tissue engineering, and can ultimately lead to the development of off-the-shelf available vascular and valvular replacement grafts.
Collapse
Affiliation(s)
- Dimitri E P Muylaert
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost O Fledderus
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Section Soft Tissue Biomechanics & Tissue Engineering, Eindhoven University of Technology, Utrecht, The Netherlands Institute for Complex Molecular Systems, Eindhoven University of Technology, Utrecht, The Netherlands
| | - Patricia Y W Dankers
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Utrecht, The Netherlands Institute for Complex Molecular Systems, Eindhoven University of Technology, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
28
|
Yao L, Heuser-Baker J, Herlea-Pana O, Iida R, Wang Q, Zou MH, Barlic-Dicen J. Bone marrow endothelial progenitors augment atherosclerotic plaque regression in a mouse model of plasma lipid lowering. Stem Cells 2013; 30:2720-31. [PMID: 23081735 DOI: 10.1002/stem.1256] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/14/2012] [Indexed: 12/30/2022]
Abstract
The major event initiating atherosclerosis is hypercholesterolemia-induced disruption of vascular endothelium integrity. In settings of endothelial damage, endothelial progenitor cells (EPCs) are mobilized from bone marrow into circulation and home to sites of vascular injury where they aid endothelial regeneration. Given the beneficial effects of EPCs in vascular repair, we hypothesized that these cells play a pivotal role in atherosclerosis regression. We tested our hypothesis in the atherosclerosis-prone mouse model in which hypercholesterolemia, one of the main factors affecting EPC homeostasis, is reversible (Reversa mice). In these mice, normalization of plasma lipids decreased atherosclerotic burden; however, plaque regression was incomplete. To explore whether endothelial progenitors contribute to atherosclerosis regression, bone marrow EPCs from a transgenic strain expressing green fluorescent protein (GFP) under the control of endothelial cell-specific Tie2 promoter (Tie2-GFP(+)) were isolated. These cells were then adoptively transferred into atheroregressing Reversa recipients where they augmented plaque regression induced by reversal of hypercholesterolemia. Advanced plaque regression correlated with engraftment of Tie2-GFP(+) EPCs into endothelium and resulted in an increase in atheroprotective nitric oxide and improved vascular relaxation. Similarly augmented plaque regression was also detected in regressing Reversa mice treated with the stem cell mobilizer AMD3100 which also mobilizes EPCs to peripheral blood. We conclude that correction of hypercholesterolemia in Reversa mice leads to partial plaque regression that can be augmented by AMD3100 treatment or by adoptive transfer of EPCs. This suggests that direct cell therapy or indirect progenitor cell mobilization therapy may be used in combination with statins to treat atherosclerosis.
Collapse
Affiliation(s)
- Longbiao Yao
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Seeger FH, Zeiher AM, Dimmeler S. MicroRNAs in Stem Cell Function and Regenerative Therapy of the Heart. Arterioscler Thromb Vasc Biol 2013; 33:1739-46. [DOI: 10.1161/atvbaha.113.300138] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
MicroRNAs are small noncoding RNAs that posttranscriptionally control gene expression by targeting mRNAs. Distinct microRNAs regulate stem and progenitor cell functions, thereby modulating cell survival and homing or controlling differentiation and maturation. Experimental studies additionally show that microRNAs regulate endogenous repair and might potentially be useful to enhance the regeneration of the heart. This review summarizes the current studies that address the use of microRNAs to either improve cellular therapies or that might be targeted for enhancing endogenous tissue repair and regeneration after myocardial infarction.
Collapse
Affiliation(s)
- Florian H. Seeger
- From the Department of Cardiology, Internal Medicine III (F.H.S., A.M.Z.) and Institute for Cardiovascular Regeneration, Centre of Molecular Medicine (S.D.), Goethe University Frankfurt, Frankfurt, Germany
| | - Andreas M. Zeiher
- From the Department of Cardiology, Internal Medicine III (F.H.S., A.M.Z.) and Institute for Cardiovascular Regeneration, Centre of Molecular Medicine (S.D.), Goethe University Frankfurt, Frankfurt, Germany
| | - Stefanie Dimmeler
- From the Department of Cardiology, Internal Medicine III (F.H.S., A.M.Z.) and Institute for Cardiovascular Regeneration, Centre of Molecular Medicine (S.D.), Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
30
|
Potential benefits of cell therapy in coronary heart disease. J Cardiol 2013; 62:267-76. [PMID: 23834957 DOI: 10.1016/j.jjcc.2013.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/21/2013] [Accepted: 05/24/2013] [Indexed: 12/31/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in the world. In recent years, there has been an increasing interest both in basic and clinical research regarding the field of cell therapy for coronary heart disease (CHD). Several preclinical models of CHD have suggested that regenerative properties of stem and progenitor cells might help restoring myocardial functions in the event of cardiac diseases. Here, we summarize different types of stem/progenitor cells that have been tested in experimental and clinical settings of cardiac regeneration, from embryonic stem cells to induced pluripotent stem cells. Then, we provide a comprehensive description of the most common cell delivery strategies with their major pros and cons and underline the potential of tissue engineering and injectable matrices to address the crucial issue of restoring the three-dimensional structure of the injured myocardial region. Due to the encouraging results from preclinical models, the number of clinical trials with cell therapy is continuously increasing and includes patients with CHD and congestive heart failure. Most of the already published trials have demonstrated safety and feasibility of cell therapies in these clinical conditions. Several studies have also suggested that cell therapy results in improved clinical outcomes. Numerous ongoing clinical trials utilizing this therapy for CHD will address fundamental issues concerning cell source and population utilized, as well as the use of imaging techniques to assess cell homing and survival, all factors that affect the efficacy of different cell therapy strategies.
Collapse
|
31
|
Lawton B, Boyette JR, Hu M, Lian TS. Selectin blockade decreases postischemic recruitment of bone marrow stromal cells. Laryngoscope 2013; 123:2993-5. [PMID: 23712829 DOI: 10.1002/lary.24217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/30/2013] [Accepted: 04/30/2013] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS Investigate the localization mechanisms of bone marrow stromal cells following transient ischemia-reperfusion injury in a murine flap model. STUDY DESIGN Controlled laboratory study. METHODS A cutaneous flap based on the inferior epigastric artery was elevated, and transient ischemia of 3.5 hours using a microvascular clamp was achieved. Fucoidan was injected intravenously 24 hours before the ischemic period. Following the period of ischemia, radiolabeled bone marrow stromal cells were injected intravenously, and radioactivity was determined postoperatively. RESULTS Attenuation of the uptake of bone marrow stromal cells into postischemic tissue was observed in those mice treated with fucoidan as indicated by gamma counts measured in the flaps when compared with controls (P < . 001). CONCLUSIONS Decreased uptake of radiolabeled bone marrow stromal cells into postischemic tissues pretreated with fucoidan indicates selectin-mediated bone-marrow stromal cell recruitment in a murine cutaneous flap model.
Collapse
Affiliation(s)
- Brian Lawton
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University-Shreveport Health Sciences Center, Shreveport, Louisiana, U.S.A
| | | | | | | |
Collapse
|
32
|
Tuche F, Menger MD, Körbel C, Nickels RM, Bouskela E, Schramm R. Progenitor cell homing in the postischemic myocardium: just an unmotivated pitstop in the microcirculation? Microcirculation 2013; 19:739-48. [PMID: 22827532 DOI: 10.1111/j.1549-8719.2012.00212.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/18/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We developed a model for direct assessment of BMC sequestration in the postischemic murine myocardium after direct antegrade intracoronary injection. METHODS Modified syngeneic heterotopic heart transplantation was used as a basic model for global myocardial I/R injury in a total of n = 29 animals. IVM was employed to analyze the right ventricular subepicardial coronary microcirculation and for tracking fluorescently labeled BMCs. RESULTS IVM allowed monitoring all segments of the coronary microcirculation including feeding arterioles, nutritive capillaries, and postcapillary venules. WI and generalized atherosclerosis induced profound reperfusion failure, particularly in nutritive myocardial capillaries. BMCs were found to exclusively sequester in myocardial capillaries, but not in coronary arterioles or postcapillary venules. The sequestration of BMCs in coronary capillaries occurred independent of WI, generalized atherosclerosis, or adhesion molecule function. CONCLUSIONS This is the first study allowing direct assessment of BMC homing to the postischemic myocardium. Heterotopic heart transplantation and IVM are proper means to study the myocardial sequestration of BMCs after direct antegrade intracoronary injection in vivo. We show for the first time that intracoronarily injected BMCs sequester exclusively in nutritive myocardial capillaries.
Collapse
Affiliation(s)
- Fabio Tuche
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Pak VM, Grandner MA, Pack AI. Circulating adhesion molecules in obstructive sleep apnea and cardiovascular disease. Sleep Med Rev 2013; 18:25-34. [PMID: 23618532 DOI: 10.1016/j.smrv.2013.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 01/04/2023]
Abstract
Over 20 years of evidence indicates a strong association between obstructive sleep apnea (OSA) and cardiovascular disease. Although inflammatory processes have been heavily implicated as an important link between the two, the mechanism for this has not been conclusively established. Atherosclerosis may be one of the mechanisms linking OSA to cardiovascular morbidity. This review addresses the role of circulating adhesion molecules in patients with OSA, and how these may be part of the link between cardiovascular disease and OSA. There is evidence for the role of adhesion molecules in cardiovascular disease risk. Some studies, albeit with small sample sizes, also show higher levels of adhesion molecules in patients with OSA compared to controls. There are also studies that show that levels of adhesion molecules diminish with continuous positive airway pressure therapy. Limitations of these studies include small sample sizes, cross-sectional sampling, and inconsistent control for confounding variables known to influence adhesion molecule levels. There are potential novel therapies to reduce circulating adhesion molecules in patients with OSA to diminish cardiovascular disease. Understanding the role of cell adhesion molecules generated in OSA will help elucidate one mechanistic link to cardiovascular disease in patients with OSA.
Collapse
Affiliation(s)
- Victoria M Pak
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Biobehavioral Health Sciences, University of Pennsylvania School of Nursing, Philadelphia, PA, USA.
| | - Michael A Grandner
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Allan I Pack
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
34
|
Abstract
BACKGROUND The role of bone marrow-derived cells in stimulating angiogenesis, vascular repair or remodelling has been well established, but the nature of the circulating angiogenic cells is still controversial. DESIGN The existing literature on different cell types that contribute to angiogenesis in multiple pathologies, most notably ischaemic and tumour angiogenesis, is reviewed, with a focus on subtypes of angiogenic mononuclear cells and their local recruitment and activation. RESULTS A large number of different cells of myeloid origin support angiogenesis without incorporating permanently into the newly formed vessel, which distinguishes these circulating angiogenic cells (CAC) from endothelial progenitor cells (EPC). Although CAC frequently express individual endothelial markers, they all share multiple characteristics of monocytes and only express a limited set of discriminative surface markers in the circulation. When cultured ex vivo, or surrounding the angiogenic vessel in vivo, however, many of them acquire similar additional markers, making their discrimination in situ difficult. CONCLUSION Different subsets of monocytes show angiogenic properties, but the distinct microenvironment, in vitro or in vivo, is needed for the development of their pro-angiogenic function.
Collapse
Affiliation(s)
- Julie Favre
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | | | | |
Collapse
|
35
|
Haynes T, Luz-Madrigal A, Reis ES, Echeverri Ruiz NP, Grajales-Esquivel E, Tzekou A, Tsonis PA, Lambris JD, Del Rio-Tsonis K. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration. Nat Commun 2013; 4:2312. [PMID: 23942241 PMCID: PMC3753547 DOI: 10.1038/ncomms3312] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/16/2013] [Indexed: 12/16/2022] Open
Abstract
Identifying the initiation signals for tissue regeneration in vertebrates is one of the major challenges in regenerative biology. Much of the research thus far has indicated that certain growth factors have key roles. Here we show that complement fragment C3a is sufficient to induce complete regeneration of the embryonic chick retina from stem/progenitor cells present in the eye, independent of fibroblast growth factor receptor signaling. Instead, C3a induces retina regeneration via STAT3 activation, which in turn activates the injury- and inflammation-responsive factors, IL-6, IL-8 and TNF-α. This activation sets forth regulation of Wnt2b, Six3 and Sox2, genes associated with retina stem and progenitor cells. Thus, our results establish a mechanism for retina regeneration based on injury and inflammation signals. Furthermore, our results indicate a unique function for complement anaphylatoxins that implicate these molecules in the induction and complete regeneration of the retina, opening new avenues of experimentation in the field.
Collapse
Affiliation(s)
- Tracy Haynes
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, Ohio 45056, USA
| | - Agustin Luz-Madrigal
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, Ohio 45056, USA
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, Ohio 45469, USA
| | - Edimara S. Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nancy P. Echeverri Ruiz
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, Ohio 45056, USA
| | - Erika Grajales-Esquivel
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, Ohio 45056, USA
| | - Apostolia Tzekou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Panagiotis A. Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, Ohio 45469, USA
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, Ohio 45056, USA
| |
Collapse
|
36
|
Salcedo L, Mayorga M, Damaser M, Balog B, Butler R, Penn M, Zutshi M. Mesenchymal stem cells can improve anal pressures after anal sphincter injury. Stem Cell Res 2012; 10:95-102. [PMID: 23147650 DOI: 10.1016/j.scr.2012.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 09/13/2012] [Accepted: 10/09/2012] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Fecal incontinence reduces the quality of life of many women but has no long-term cure. Research on mesenchymal stem cell (MSC)-based therapies has shown promising results. The primary aim of this study was to evaluate functional recovery after treatment with MSCs in two animal models of anal sphincter injury. METHODS Seventy virgin female rats received a sphincterotomy (SP) to model episiotomy, a pudendal nerve crush (PNC) to model the nerve injuries of childbirth, a sham SP, or a sham PNC. Anal sphincter pressures and electromyography (EMG) were recorded after injury but before treatment and 10 days after injury. Twenty-four hours after injury, each animal received either 0.2 ml saline or 2 million MSCs labelled with green fluorescing protein (GFP) suspended in 0.2 ml saline, either intravenously (IV) into the tail vein or intramuscularly (IM) into the anal sphincter. RESULTS MSCs delivered IV after SP resulted in a significant increase in resting anal sphincter pressure and peak pressure, as well as anal sphincter EMG amplitude and frequency 10 days after injury. MSCs delivered IM after SP resulted in a significant increase in resting anal sphincter pressure and anal sphincter EMG frequency but not amplitude. There was no improvement in anal sphincter pressure or EMG with in animals receiving MSCs after PNC. GFP-labelled cells were not found near the external anal sphincter in MSC-treated animals after SP. CONCLUSION MSC treatment resulted in significant improvement in anal pressures after SP but not after PNC, suggesting that MSCs could be utilized to facilitate recovery after anal sphincter injury.
Collapse
|
37
|
Prokoph S, Chavakis E, Levental KR, Zieris A, Freudenberg U, Dimmeler S, Werner C. Sustained delivery of SDF-1α from heparin-based hydrogels to attract circulating pro-angiogenic cells. Biomaterials 2012; 33:4792-800. [DOI: 10.1016/j.biomaterials.2012.03.039] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/10/2012] [Indexed: 10/28/2022]
|
38
|
Cencioni C, Capogrossi MC, Napolitano M. The SDF-1/CXCR4 axis in stem cell preconditioning. Cardiovasc Res 2012; 94:400-7. [PMID: 22451511 DOI: 10.1093/cvr/cvs132] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We review the pivotal role of the stromal derived factor (SDF)-1 chemokine in tissue ischaemia and how it orchestrates the rapid revascularization of injured, ischaemic, and regenerating tissues via the CXC chemokine receptors CXCR4 and CXCR7. Furthermore, we discuss the effects of preconditioning (PC), which is a well-known protective phenomenon for tissue ischaemia. The positive effect of both hypoxic and acidic PC on progenitor cell therapeutic potential is reviewed, while stressing the role of the SDF-1/CXCR4 axis in this process.
Collapse
Affiliation(s)
- Chiara Cencioni
- Laboratorio di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea 4, 20138 Milan, Italy
| | | | | |
Collapse
|
39
|
Wara AK, Foo S, Croce K, Sun X, Icli B, Tesmenitsky Y, Esen F, Lee JS, Subramaniam M, Spelsberg TC, Lev EI, Leshem-Lev D, Pande RL, Creager MA, Rosenzweig A, Feinberg MW. TGF-β1 signaling and Krüppel-like factor 10 regulate bone marrow-derived proangiogenic cell differentiation, function, and neovascularization. Blood 2011; 118:6450-60. [PMID: 21828131 PMCID: PMC3236126 DOI: 10.1182/blood-2011-06-363713] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/26/2011] [Indexed: 01/11/2023] Open
Abstract
Emerging evidence demonstrates that proangiogenic cells (PACs) originate from the BM and are capable of being recruited to sites of ischemic injury where they contribute to neovascularization. We previously determined that among hematopoietic progenitor stem cells, common myeloid progenitors (CMPs) and granulocyte-macrophage progenitor cells (GMPs) differentiate into PACs and possess robust angiogenic activity under ischemic conditions. Herein, we report that a TGF-β1-responsive Krüppel- like factor, KLF10, is strongly expressed in PACs derived from CMPs and GMPs, ∼ 60-fold higher than in progenitors lacking PAC markers. KLF10(-/-) mice present with marked defects in PAC differentiation, function, TGF-β responsiveness, and impaired blood flow recovery after hindlimb ischemia, an effect rescued by wild-type PACs, but not KLF10(-/-) PACs. Overexpression studies revealed that KLF10 could rescue PAC formation from TGF-β1(+/-) CMPs and GMPs. Mechanistically, KLF10 targets the VEGFR2 promoter in PACs which may underlie the observed effects. These findings may be clinically relevant because KLF10 expression was also found to be significantly reduced in PACs from patients with peripheral artery disease. Collectively, these observations identify TGF-β1 signaling and KLF10 as key regulators of functional PACs derived from CMPs and GMPs and may provide a therapeutic target during cardiovascular ischemic states.
Collapse
Affiliation(s)
- Akm Khyrul Wara
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Endothelial progenitor cells (EPCs) represent a heterogeneous population of cells with a pro-angiogenic potential that are derived not only from bone marrow but also from other tissues. Depending on the model and cell type used, the pro-angiogenic effect is a consequence of direct vascular integration, the paracrine release of growth factors and cytokines, or complex interactions with other cellular components like monocytes or platelets. The pro-angiogenic potential of EPCs is dependent on the particular type of EPC studied and modulated by the risk and life style factors of the patient as well as by local factors determining the homing to diseased tissue and the EPC proteome. In this Forum on EPCs these aspects will be covered in individual review articles, which are accompanied by two original research studies on the role of NADPH oxidases for EPC mobilization and the impact of organic nitrates on EPCs.
Collapse
Affiliation(s)
- Ralf P. Brandes
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin, Goethe-Universität, Frankfurt am Main, Germany
| | - Masuko Ushio-Fukai
- Department of Pharmacology, Center for Lung and Vascular Biology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|