1
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2025; 298:123-184. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Denjalli I, Knieper M, Uthoff J, Vogelsang L, Kumar V, Seidel T, Dietz KJ. The centrality of redox regulation and sensing of reactive oxygen species in abiotic and biotic stress acclimatization. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4494-4511. [PMID: 38329465 DOI: 10.1093/jxb/erae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
During land plant evolution, the number of genes encoding for components of the thiol redox regulatory network and the generator systems of reactive oxygen species (ROS) expanded, tentatively indicating that they have a role in tailored environmental acclimatization. This hypothesis has been validated both experimentally and theoretically during the last few decades. Recent developments of dynamic redox-sensitive GFP (roGFP)-based in vivo sensors for H2O2 and the redox potential of the glutathione pool have paved the way for dissecting the kinetics changes that occur in these crucial parameters in response to environmental stressors. The versatile cellular redox sensory and response regulatory system monitors alterations in redox metabolism and controls the activity of redox target proteins, and thereby affects most, if not all, cellular processes ranging from transcription to translation and metabolism. This review uses examples to describe the role of the redox- and ROS-dependent regulatory network in realising the appropriate responses to diverse environmental stresses. The selected case studies concern different environmental challenges, namely excess excitation energy, the heavy metal cadmium and the metalloid arsenic, nitrogen or phosphate shortages as examples for nutrient deficiency, wounding, and nematode infestation. Each challenge affects the redox-regulatory and ROS network, but our present state of knowledge also points toward pressing questions that remain open in relation to the translation of redox regulation to environmental acclimatization.
Collapse
Affiliation(s)
- Ibadete Denjalli
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Madita Knieper
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Jana Uthoff
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
4
|
Pedre B. A guide to genetically-encoded redox biosensors: State of the art and opportunities. Arch Biochem Biophys 2024; 758:110067. [PMID: 38908743 DOI: 10.1016/j.abb.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Genetically-encoded redox biosensors have become invaluable tools for monitoring cellular redox processes with high spatiotemporal resolution, coupling the presence of the redox-active analyte with a change in fluorescence signal that can be easily recorded. This review summarizes the available fluorescence recording methods and presents an in-depth classification of the redox biosensors, organized by the analytes they respond to. In addition to the fluorescent protein-based architectures, this review also describes the recent advances on fluorescent, chemigenetic-based redox biosensors and other emerging chemigenetic strategies. This review examines how these biosensors are designed, the biosensors sensing mechanism, and their practical advantages and disadvantages.
Collapse
Affiliation(s)
- Brandán Pedre
- Biochemistry, Molecular and Structural Biology Unit, Department of Chemistry, KU Leuven, Belgium.
| |
Collapse
|
5
|
Kostyuk AI, Rapota DD, Morozova KI, Fedotova AA, Jappy D, Semyanov AV, Belousov VV, Brazhe NA, Bilan DS. Modern optical approaches in redox biology: Genetically encoded sensors and Raman spectroscopy. Free Radic Biol Med 2024; 217:68-115. [PMID: 38508405 DOI: 10.1016/j.freeradbiomed.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/10/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The objective of the current review is to summarize the current state of optical methods in redox biology. It consists of two parts, the first is dedicated to genetically encoded fluorescent indicators and the second to Raman spectroscopy. In the first part, we provide a detailed classification of the currently available redox biosensors based on their target analytes. We thoroughly discuss the main architecture types of these proteins, the underlying engineering strategies for their development, the biochemical properties of existing tools and their advantages and disadvantages from a practical point of view. Particular attention is paid to fluorescence lifetime imaging microscopy as a possible readout technique, since it is less prone to certain artifacts than traditional intensiometric measurements. In the second part, the characteristic Raman peaks of the most important redox intermediates are listed, and examples of how this knowledge can be implemented in biological studies are given. This part covers such fields as estimation of the redox states and concentrations of Fe-S clusters, cytochromes, other heme-containing proteins, oxidative derivatives of thiols, lipids, and nucleotides. Finally, we touch on the issue of multiparameter imaging, in which biosensors are combined with other visualization methods for simultaneous assessment of several cellular parameters.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Diana D Rapota
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Kseniia I Morozova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anna A Fedotova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia
| | - Alexey V Semyanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia; Sechenov First Moscow State Medical University, Moscow, 119435, Russia; College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, China
| | - Vsevolod V Belousov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow, 143025, Russia
| | - Nadezda A Brazhe
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Dmitry S Bilan
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| |
Collapse
|
6
|
Fichman Y, Rowland L, Nguyen TT, Chen SJ, Mittler R. Propagation of a rapid cell-to-cell H 2O 2 signal over long distances in a monolayer of cardiomyocyte cells. Redox Biol 2024; 70:103069. [PMID: 38364687 PMCID: PMC10878107 DOI: 10.1016/j.redox.2024.103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Cell-to-cell communication plays a cardinal role in the biology of multicellular organisms. H2O2 is an important cell-to-cell signaling molecule involved in the response of mammalian cells to wounding and other stimuli. We previously identified a signaling pathway that transmits wound-induced cell-to-cell H2O2 signals within minutes over long distances, measured in centimeters, in a monolayer of cardiomyocytes. Here we report that this long-distance H2O2 signaling pathway is accompanied by enhanced accumulation of cytosolic H2O2 and altered redox state in cells along its path. We further show that it requires the production of superoxide, as well as the function of gap junctions, and that it is accompanied by changes in the abundance of hundreds of proteins in cells along its path. Our findings highlight the existence of a unique and rapid long-distance H2O2 signaling pathway that could play an important role in different inflammatory responses, wound responses/healing, cardiovascular disease, and/or other conditions.
Collapse
Affiliation(s)
- Yosef Fichman
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Linda Rowland
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65201, USA
| | - Thi Thao Nguyen
- Gehrke Proteomics Center, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| | - Ron Mittler
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65201, USA.
| |
Collapse
|
7
|
Fichman Y, Rowland L, Nguyen TT, Chen SJ, Mittler R. Propagation of a rapid cell-to-cell H 2 O 2 signal over long distances in a monolayer of cardiomyocyte cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572374. [PMID: 38187741 PMCID: PMC10769217 DOI: 10.1101/2023.12.19.572374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cell-to-cell communication plays a cardinal role in the biology of multicellular organisms. H 2 O 2 is an important cell-to-cell signaling molecule involved in the response of mammalian cells to wounding and other stimuli. We previously identified a signaling pathway that transmits wound-induced cell-to-cell H 2 O 2 signals within minutes over long distances, measured in centimeters, in a monolayer of cardiomyocytes. Here we report that this long-distance H 2 O 2 signaling pathway is accompanied by enhanced accumulation of cytosolic H 2 O 2 and altered redox state in cells along its path. We further show that it requires the production of superoxide, as well as the function of gap junctions, and that it is accompanied by changes in the abundance of hundreds of proteins in cells along its path. Our findings highlight the existence of a unique and rapid long-distance H 2 O 2 signaling pathway that could play an important role in different inflammatory responses, wound responses/healing, cardiovascular disease, and/or other conditions. Highlights Wounding induces an H 2 O 2 cell-to-cell signal in a monolayer of cardiomyocytes. The cell-to-cell signal requires H 2 O 2 and O 2 · - accumulation along its path. The signal propagates over several centimeters changing the redox state of cells.Changes in the abundance of hundreds of proteins accompanies the signal.The cell-to-cell signal requires paracrine and juxtacrine signaling.
Collapse
|
8
|
Marchetti M, Ronda L, Cozzi M, Bettati S, Bruno S. Genetically Encoded Biosensors for the Fluorescence Detection of O 2 and Reactive O 2 Species. SENSORS (BASEL, SWITZERLAND) 2023; 23:8517. [PMID: 37896609 PMCID: PMC10611200 DOI: 10.3390/s23208517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
The intracellular concentrations of oxygen and reactive oxygen species (ROS) in living cells represent critical information for investigating physiological and pathological conditions. Real-time measurement often relies on genetically encoded proteins that are responsive to fluctuations in either oxygen or ROS concentrations. The direct binding or chemical reactions that occur in their presence either directly alter the fluorescence properties of the binding protein or alter the fluorescence properties of fusion partners, mostly consisting of variants of the green fluorescent protein. Oxygen sensing takes advantage of several mechanisms, including (i) the oxygen-dependent hydroxylation of a domain of the hypoxia-inducible factor-1, which, in turn, promotes its cellular degradation along with fluorescent fusion partners; (ii) the naturally oxygen-dependent maturation of the fluorophore of green fluorescent protein variants; and (iii) direct oxygen binding by proteins, including heme proteins, expressed in fusion with fluorescent partners, resulting in changes in fluorescence due to conformational alterations or fluorescence resonance energy transfer. ROS encompass a group of highly reactive chemicals that can interconvert through various chemical reactions within biological systems, posing challenges for their selective detection through genetically encoded sensors. However, their general reactivity, and particularly that of the relatively stable oxygen peroxide, can be exploited for ROS sensing through different mechanisms, including (i) the ROS-induced formation of disulfide bonds in engineered fluorescent proteins or fusion partners of fluorescent proteins, ultimately leading to fluorescence changes; and (ii) conformational changes of naturally occurring ROS-sensing domains, affecting the fluorescence properties of fusion partners. In this review, we will offer an overview of these genetically encoded biosensors.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Monica Cozzi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| |
Collapse
|
9
|
Belmas T, Liesa M, Shum M. Quantifying mitochondrial redox and bilirubin content in intact primary hepatocytes of obese mice using fluorescent reporters. STAR Protoc 2023; 4:102408. [PMID: 37393613 PMCID: PMC10336327 DOI: 10.1016/j.xpro.2023.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Assessing the physiological role of H2O2 requires sensitive techniques to quantify H2O2 and antioxidants in live cells. Here, we present a protocol to assess the mitochondrial redox state and unconjugated bilirubin levels in intact live primary hepatocytes from obese mice. We described steps to quantify H2O2, GSSG/GSH, and bilirubin content in the mitochondrial matrix and the cytosol using the fluorescent reporters roGFP2-ORP1, GRX1-roGFP2, and UnaG, respectively. We detail hepatocyte isolation, plating, and transduction and live-cell imaging using a high-content imaging reader. For complete details on the use and execution of this protocol, please refer to Shum et al.1.
Collapse
Affiliation(s)
- Thomas Belmas
- Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marc Liesa
- Institut de Biología Molecular de Barcelona, IBMB, CSIC, Barcelona, Catalonia, Spain; Department of Medicine, Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michaël Shum
- Endocrinology - Nephrology Research Axis, CHU de Québec-Université Laval Research Center, Québec, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
10
|
Tamás SX, Roux BT, Vámosi B, Dehne FG, Török A, Fazekas L, Enyedi B. A genetically encoded sensor for visualizing leukotriene B4 gradients in vivo. Nat Commun 2023; 14:4610. [PMID: 37528073 PMCID: PMC10393954 DOI: 10.1038/s41467-023-40326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
Leukotriene B4 (LTB4) is a potent lipid chemoattractant driving inflammatory responses during host defense, allergy, autoimmune and metabolic diseases. Gradients of LTB4 orchestrate leukocyte recruitment and swarming to sites of tissue damage and infection. How LTB4 gradients form and spread in live tissues to regulate these processes remains largely elusive due to the lack of suitable tools for monitoring LTB4 levels in vivo. Here, we develop GEM-LTB4, a genetically encoded green fluorescent LTB4 biosensor based on the human G-protein-coupled receptor BLT1. GEM-LTB4 shows high sensitivity, specificity and a robust fluorescence increase in response to LTB4 without affecting downstream signaling pathways. We use GEM-LTB4 to measure ex vivo LTB4 production of murine neutrophils. Transgenic expression of GEM-LTB4 in zebrafish allows the real-time visualization of both exogenously applied and endogenously produced LTB4 gradients. GEM-LTB4 thus serves as a broadly applicable tool for analyzing LTB4 dynamics in various experimental systems and model organisms.
Collapse
Affiliation(s)
- Szimonetta Xénia Tamás
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Benoit Thomas Roux
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Boldizsár Vámosi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
| | - Fabian Gregor Dehne
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Anna Török
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - László Fazekas
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Balázs Enyedi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary.
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary.
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary.
| |
Collapse
|
11
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
12
|
Sousa T, Gouveia M, Travasso RD, Salvador A. How abundant are superoxide and hydrogen peroxide in the vasculature lumen, how far can they reach? Redox Biol 2022; 58:102527. [PMID: 36335761 PMCID: PMC9640316 DOI: 10.1016/j.redox.2022.102527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Paracrine superoxide (O2•−) and hydrogen peroxide (H2O2) signaling critically depends on these substances' concentrations, half-lives and transport ranges in extracellular media. Here we estimated these parameters for the lumen of human capillaries, arterioles and arteries using reaction-diffusion-advection models. These models considered O2•− and H2O2 production by endothelial cells and uptake by erythrocytes and endothelial cells, O2•− dismutation, O2•− and H2O2 diffusion and advection by the blood flow. Results show that in this environment O2•− and H2O2 have half-lives <60. ms and <40. ms, respectively, the former determined by the plasma SOD3 activity, the latter by clearance by endothelial cells and erythrocytes. H2O2 concentrations do not exceed the 10 nM scale. Maximal O2•− concentrations near vessel walls exceed H2O2's several-fold when the latter results solely from O2•− dismutation. Cytosolic dismutation of inflowing O2•− may thus significantly contribute to H2O2 delivery to cells. O2•− concentrations near vessel walls decay to 50% of maximum 12 μm downstream from O2•− production sites. H2O2 concentrations in capillaries decay to 50% of maximum 22 μm (6.0 μm) downstream from O2•− (H2O2) production sites. Near arterioles' (arteries') walls, they decay by 50% within 6.0 μm (4. μm) of H2O2 production sites. However, they reach maximal values 50 μm (24 μm) downstream from O2•− production sites and decrease by 50% over 650 μm (500 μm). Arterial/olar endothelial cells might thus signal over a mm downstream through O2•−-derived H2O2, though this requires nM-sensitive H2O2 transduction mechanisms. Physiological local H2O2 concentrations in vasculature lumen are up to 10's of μM. H2O2 transport range in capillaries is just ≈20 μm. Faster blood flow in arteri(ol)es transports O2•−-derived H2O2 over 100's of μm Similar H2O2 abundances and distribution near arterioles' and arteries' walls, likewise for O2•−. Inflowing O2•− may significantly feed H2O2 to the cytosol of endothelial cells
Collapse
|
13
|
Márta K, Booth D, Csordás G, Hajnóczky G. Fluorescent protein transgenic mice for the study of Ca 2+ and redox signaling. Free Radic Biol Med 2022; 181:241-250. [PMID: 35158029 PMCID: PMC8988923 DOI: 10.1016/j.freeradbiomed.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/10/2022] [Indexed: 01/29/2023]
Abstract
Many unanswered questions of physiology and medicine require in vivo studies of cellular processes in murine models. These processes commonly depend on intracellular Ca2+ and redox alterations. Fluorescent dyes have succeeded in real-time intracellular monitoring of Ca2+, redox and the different Reactive Oxygen Species (ROS) in single cells, but have seldomly been applied in vivo. The advance in Fluorescent Protein (FP) technology has created alternative tools for the same task, which can be delivered with viruses or genomic integration strategies into mice. With the availability of several color options for both Ca2+ and redox reporting FP, multiparameter measurements have also become feasible: measuring different species, and the same parameter at different locations using organelle-specific targeting sequences at the same time. We, here, focus on mice with genomic integration of Ca2+ and redox reporters, provide a list of the available models and summarize the strategies of their generation and utilization. We also describe a novel Calcium DoubleSpy mouse model that conditionally expresses both RCaMP in the cytoplasm and GEM-GECO1 in the mitochondrial matrix, allowing the study of mitochondrial Ca2+ related physiology and pathogenesis simultaneously in two distinct intracellular compartments.
Collapse
Affiliation(s)
- Katalin Márta
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - David Booth
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - György Csordás
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
14
|
Erdogan YC, Altun HY, Secilmis M, Ata BN, Sevimli G, Cokluk Z, Zaki AG, Sezen S, Akgul Caglar T, Sevgen İ, Steinhorn B, Ai H, Öztürk G, Belousov VV, Michel T, Eroglu E. Complexities of the chemogenetic toolkit: Differential mDAAO activation by d-amino substrates and subcellular targeting. Free Radic Biol Med 2021; 177:132-142. [PMID: 34687864 PMCID: PMC8639799 DOI: 10.1016/j.freeradbiomed.2021.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023]
Abstract
A common approach to investigate oxidant-regulated intracellular pathways is to add exogenous H2O2 to living cells or tissues. However, the addition of H2O2 to the culture medium of cells or tissues approach does not accurately replicate intracellular redox-mediated cell responses. d-amino acid oxidase (DAAO)-based chemogenetic tools represent informative methodological advances that permit the generation of H2O2 on demand with a high spatiotemporal resolution by providing or withdrawing the DAAO substrate d-amino acids. Much has been learned about the intracellular transport of H2O2 through studies using DAAO, yet these valuable tools remain incompletely characterized in many cultured cells. In this study, we describe and characterize in detail the features of a new modified variant of DAAO (termed mDAAO) with improved catalytic activities. We tested mDAAO functionality in several cultured cell lines employing live-cell imaging techniques. Our imaging experiments show that mDAAO is suitable for the generation of H2O2 under hypoxic conditions imaged with the novel ultrasensitive H2O2 sensor (HyPer7). Moreover, this approach was suitable for generating H2O2 in a reversible and concentration-dependent manner in subcellular locales. Furthermore, we show that the choice of d-amino acids differentially affects mDAAO-dependent intracellular H2O2 generation. When paired with the hydrogen sulfide (H2S) sensor hsGFP, administration of the sulfur-containing amino acid d-cysteine to cells expressing mDAAO generates robust H2S signals. We also show that chemogenetic H2O2 generation in different cell types yields distinct HyPer7 profiles. These studies fully characterize the new mDAAO as a novel chemogenetic tool and provide multiparametric approaches for cell manipulation that may open new lines of investigations for redox biochemists to dissect the role of ROS signaling pathways with high spatial and temporal precision.
Collapse
Affiliation(s)
- Yusuf C Erdogan
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Hamza Y Altun
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Melike Secilmis
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Busra N Ata
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Gulsah Sevimli
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Zeynep Cokluk
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Asal Ghaffari Zaki
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Serap Sezen
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Tuba Akgul Caglar
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - İlker Sevgen
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Benjamin Steinhorn
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huiwang Ai
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gürkan Öztürk
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Physiology Department, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Vsevelod V Belousov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia; Institute of Cardiovascular Physiology, Universitätsmedizin Göttingen, 37073, Göttingen, Germany
| | - Thomas Michel
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Emrah Eroglu
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey; Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Austria; Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.
| |
Collapse
|
15
|
Waldeck-Weiermair M, Yadav S, Spyropoulos F, Krüger C, Pandey AK, Michel T. Dissecting in vivo and in vitro redox responses using chemogenetics. Free Radic Biol Med 2021; 177:360-369. [PMID: 34752919 PMCID: PMC8639655 DOI: 10.1016/j.freeradbiomed.2021.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Hydrogen peroxide (H2O2) is the most abundant reactive oxygen species (ROS) within mammalian cells. At low concentrations, H2O2 serves as a versatile cell signaling molecule that mediates vital physiological functions. Yet at higher concentrations, H2O2 can be a toxic molecule by promoting pathological oxidative stress in cells and tissues. Within normal cells, H2O2 is differentially distributed in a variety of subcellular locales. Moreover, many redox-active enzymes and their substrates are themselves differentially distributed within cells. Numerous reports have described the biological and biochemical consequences of adding exogenous H2O2 to cultured cells and tissues, but many of these observations are difficult to interpret: the effects of exogenous H2O2 do not necessarily replicate the cellular responses to endogenous H2O2. In recent years, chemogenetic approaches have been developed to dynamically regulate the abundance of H2O2 in specific subcellular locales. Chemogenetic approaches have been applied in multiple experimental systems, ranging from in vitro studies on the intracellular transport and metabolism of H2O2, all the way to in vivo studies that generate oxidative stress in specific organs in living animals. These chemogenetic approaches have exploited a yeast-derived d-amino acid oxidase (DAAO) that synthesizes H2O2 only in the presence of its d-amino acid substrate. DAAO can be targeted to various subcellular locales, and can be dynamically activated by the addition or withdrawal of its d-amino acid substrate. In addition, recent advances in the development of highly sensitive genetically encoded H2O2 biosensors are providing a better understanding of both physiological and pathological oxidative pathways. This review highlights several applications of DAAO as a chemogenetic tool across a wide range of biological systems, from analyses of subcellular H2O2 metabolism in cells to the development of new disease models caused by oxidative stress in vivo.
Collapse
Affiliation(s)
- Markus Waldeck-Weiermair
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA; Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Shambhu Yadav
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Fotios Spyropoulos
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA; Department of Pediatric Newborn Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, USA
| | - Christina Krüger
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Thomas Michel
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Pang Y, Zhang H, Ai HW. Genetically Encoded Fluorescent Redox Indicators for Unveiling Redox Signaling and Oxidative Toxicity. Chem Res Toxicol 2021; 34:1826-1845. [PMID: 34284580 DOI: 10.1021/acs.chemrestox.1c00149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Redox-active molecules play essential roles in cell homeostasis, signaling, and other biological processes. Dysregulation of redox signaling can lead to toxic effects and subsequently cause diseases. Therefore, real-time tracking of specific redox-signaling molecules in live cells would be critical for deciphering their functional roles in pathophysiology. Fluorescent protein (FP)-based genetically encoded redox indicators (GERIs) have emerged as valuable tools for monitoring the redox states of various redox-active molecules from subcellular compartments to live organisms. In the first section of this review, we overview the background, focusing on the sensing mechanisms of various GERIs. Next, we review a list of selected GERIs according to their analytical targets and discuss their key biophysical and biochemical properties. In the third section, we provide several examples which applied GERIs to understanding redox signaling and oxidative toxicology in pathophysiological processes. Lastly, a summary and outlook section is included.
Collapse
Affiliation(s)
- Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hao Zhang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22908, United States.,Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States.,The UVA Cancer Center, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
17
|
Smolyarova DD, Podgorny OV, Bilan DS, Belousov VV. A guide to genetically encoded tools for the study of H 2 O 2. FEBS J 2021; 289:5382-5395. [PMID: 34173331 DOI: 10.1111/febs.16088] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/23/2021] [Accepted: 06/24/2021] [Indexed: 01/09/2023]
Abstract
Cell metabolism heavily relies on the redox reactions that inevitably generate reactive oxygen species (ROS). It is now well established that ROS fluctuations near basal levels coordinate numerous physiological processes in living organisms, thus exhibiting regulatory functions. Hydrogen peroxide, the most long-lived ROS, is a key contributor to ROS-dependent signal transduction in the cell. H2 O2 is known to impact various targets in the cell; therefore, the question of how H2 O2 modulates physiological processes in a highly specific manner is central in redox biology. To resolve this question, novel genetic tools have recently been created for detecting H2 O2 and emulating its generation in living organisms with unmatched spatiotemporal resolution. Here, we review H2 O2 -sensitive genetically encoded fluorescent sensors and opto- and chemogenetic tools for controlled H2 O2 generation.
Collapse
Affiliation(s)
- Daria D Smolyarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Russia
| | - Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Experimental Oncology, Pirogov Russian National Research Medical University, Moscow, Russia.,Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, Moscow, Russia.,Institute for Cardiovascular Physiology, Georg August University Göttingen, Germany
| |
Collapse
|
18
|
Bengtson C, Bogaerts A. The Quest to Quantify Selective and Synergistic Effects of Plasma for Cancer Treatment: Insights from Mathematical Modeling. Int J Mol Sci 2021; 22:ijms22095033. [PMID: 34068601 PMCID: PMC8126141 DOI: 10.3390/ijms22095033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Cold atmospheric plasma (CAP) and plasma-treated liquids (PTLs) have recently become a promising option for cancer treatment, but the underlying mechanisms of the anti-cancer effect are still to a large extent unknown. Although hydrogen peroxide (H2O2) has been recognized as the major anti-cancer agent of PTL and may enable selectivity in a certain concentration regime, the co-existence of nitrite can create a synergistic effect. We develop a mathematical model to describe the key species and features of the cellular response toward PTL. From the numerical solutions, we define a number of dependent variables, which represent feasible measures to quantify cell susceptibility in terms of the H2O2 membrane diffusion rate constant and the intracellular catalase concentration. For each of these dependent variables, we investigate the regimes of selective versus non-selective, and of synergistic versus non-synergistic effect to evaluate their potential role as a measure of cell susceptibility. Our results suggest that the maximal intracellular H2O2 concentration, which in the selective regime is almost four times greater for the most susceptible cells compared to the most resistant cells, could be used to quantify the cell susceptibility toward exogenous H2O2. We believe our theoretical approach brings novelty to the field of plasma oncology, and more broadly, to the field of redox biology, by proposing new ways to quantify the selective and synergistic anti-cancer effect of PTL in terms of inherent cell features.
Collapse
|
19
|
Ultra-Sensitive Hydrogen Peroxide Sensor Based on Peroxiredoxin and Fluorescence Resonance Energy Transfer. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, a fluorescence resonance energy transfer (FRET)-based sensor for ultra-sensitive detection of H2O2 was developed by utilizing the unique enzymatic properties of peroxiredoxin (Prx) to H2O2. Cyan and yellow fluorescent protein (CFP and YFP) were fused to Prx and mutant thioredoxin (mTrx), respectively. In the presence of H2O2, Prx was oxidized into covalent homodimer through disulfide bonds, which were further reduced by mTrx to form a stable mixed disulfide bond intermediate between CFP-Prx and mTrx-YFP, inducing FRET. A linear quantification range of 10–320 nM was obtained according to the applied protein concentrations and the detection limit (LOD) was determined to be as low as 4 nM. By the assistance of glucose oxidase to transform glucose into H2O2, the CFP-Prx/mTrx-YFP system (CPmTY) was further exploited for the detection of glucose in real sample with good performance, suggesting this CPmTY protein sensor is highly practical.
Collapse
|
20
|
Abstract
The superoxide (O2·-)-generating NADPH oxidase complex of phagocytes comprises a membrane-associated heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of NOX2 and p22phox) and four cytosolic regulatory proteins, p47phox, p67phox, p40phox, and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2·- generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome, a process known as NADPH oxidase assembly. A consequent conformational change in NOX2 initiates the electron flow along a redox gradient, from NADPH to molecular oxygen (O2), leading to the one-electron reduction of O2 to O2·-. Historically, methodological difficulties in the study of the assembled complex derived from stimulated cells, due to its lack of stability, led to the design of "cell-free" systems (also known as "broken cells" or in vitro systems). In a major paradigm shift, the cell-free systems have as their starting point NADPH oxidase components derived from resting (unstimulated) phagocytes, or as in the predominant method at present, recombinant proteins representing the components of the NADPH oxidase complex. In cell-free systems, membrane receptor stimulation and the signal transduction sequence are absent, the accent being placed on the actual process of assembly, all of which takes place in vitro. Thus, a mixture of the individual components of the NADPH oxidase is exposed in vitro to an activating agent, the most common being anionic amphiphiles, resulting in the formation of a complex between cytochrome b 558 and the cytosolic components and O2·- generation in the presence of NADPH. Alternative activating pathways require posttranslational modification of oxidase components or modifying the phospholipid milieu surrounding cytochrome b 558. Activation is commonly quantified by measuring the primary product of the reaction, O2·-, trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of rates of O2·- production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the performance of structure-function studies, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
|
21
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
22
|
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is a powerful effector of redox signaling. It is able to oxidize cysteine residues, metal ion centers, and lipids. Understanding H2O2-mediated signaling requires, to some extent, measurement of H2O2 level. Recent Advances: Chemically and genetically encoded fluorescent probes for the detection of H2O2 are currently the most sensitive and popular. Novel probes are constantly being developed, with the latest progress particular with boronates and genetically encoded probes. CRITICAL ISSUES All currently available probes display limitations in terms of sensitivity, local and temporal resolution, and specificity in the detection of low H2O2 concentrations. In this review, we discuss the power of fluorescent probes and the systems in which they have been successfully employed. Moreover, we recommend approaches for overcoming probe limitations and for the avoidance of artifacts. FUTURE DIRECTIONS Constant improvements will lead to the generation of probes that are not only more sensitive but also specifically tailored to individual cellular compartments. Antioxid. Redox Signal. 29, 585-602.
Collapse
Affiliation(s)
- Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| |
Collapse
|
23
|
Fradin T, Bechor E, Berdichevsky Y, Dahan I, Pick E. Binding of p67phoxto Nox2 is stabilized by disulfide bonds between cysteines in the369Cys-Gly-Cys371triad in Nox2 and in p67phox. J Leukoc Biol 2018; 104:1023-1039. [DOI: 10.1002/jlb.4a0418-173r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/09/2018] [Accepted: 06/23/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Tanya Fradin
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology; Sackler School of Medicine, Tel Aviv University; Tel Aviv Israel
| | - Edna Bechor
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology; Sackler School of Medicine, Tel Aviv University; Tel Aviv Israel
| | - Yevgeny Berdichevsky
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology; Sackler School of Medicine, Tel Aviv University; Tel Aviv Israel
| | - Iris Dahan
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology; Sackler School of Medicine, Tel Aviv University; Tel Aviv Israel
| | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology; Sackler School of Medicine, Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
24
|
Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á, Hernández LE. Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med 2018; 122:202-220. [PMID: 29627452 DOI: 10.1016/j.freeradbiomed.2018.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are by-products of aerobic metabolism, and excessive production can result in oxidative stress and cell damage. In addition, ROS function as cellular messengers, working as redox regulators in a multitude of biological processes. Understanding ROS signalling and stress responses requires methods for precise imaging and quantification to monitor local, subcellular and global ROS dynamics with high selectivity, sensitivity and spatiotemporal resolution. In this review, we summarize the present knowledge for in vivo plant ROS imaging and detection, using both chemical probes and fluorescent protein-based biosensors. Certain characteristics of plant tissues, for example high background autofluorescence in photosynthetic organs and the multitude of endogenous antioxidants, can interfere with ROS and redox potential detection, making imaging extra challenging. Novel methods and techniques to measure in vivo plant ROS and redox changes with better selectivity, accuracy, and spatiotemporal resolution are therefore desirable to fully acknowledge the remarkably complex plant ROS signalling networks.
Collapse
Affiliation(s)
- Cristina Ortega-Villasante
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Alfonso Blázquez-Castro
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ángel Barón-Sola
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis E Hernández
- Fisiología Vegetal, Departamento de Biología, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
25
|
Pak O, Sydykov A, Kosanovic D, Schermuly RT, Dietrich A, Schröder K, Brandes RP, Gudermann T, Sommer N, Weissmann N. Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:195-225. [PMID: 29047088 DOI: 10.1007/978-3-319-63245-2_12] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lung ischaemia-reperfusion injury (LIRI) occurs in many lung diseases and during surgical procedures such as lung transplantation. The re-establishment of blood flow and oxygen delivery into the previously ischaemic lung exacerbates the ischaemic injury and leads to increased microvascular permeability and pulmonary vascular resistance as well as to vigorous activation of the immune response. These events initiate the irreversible damage of the lung with subsequent oedema formation that can result in systemic hypoxaemia and multi-organ failure. Alterations in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been suggested as crucial mediators of such responses during ischaemia-reperfusion in the lung. Among numerous potential sources of ROS/RNS within cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, nitric oxide synthases and mitochondria have been investigated during LIRI. Against this background, we aim to review here the extensive literature about the ROS-mediated cellular signalling during LIRI, as well as the effectiveness of antioxidants as treatment option for LIRI.
Collapse
Affiliation(s)
- Oleg Pak
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
26
|
Acevedo A, González-Billault C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med 2018; 116:101-113. [PMID: 29330095 DOI: 10.1016/j.freeradbiomed.2018.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 02/08/2023]
Abstract
The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement. Remarkably, another event that is completely different from those related to actin regulation has the same relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX). Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoskeleton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover, on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX. How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions. Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions) are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality.
Collapse
Affiliation(s)
- Alejandro Acevedo
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
| | - Christian González-Billault
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024, Chile; The Buck Institute for Research on Aging, Novato, USA.
| |
Collapse
|
27
|
Erard M, Dupré-Crochet S, Nüße O. Biosensors for spatiotemporal detection of reactive oxygen species in cells and tissues. Am J Physiol Regul Integr Comp Physiol 2018; 314:R667-R683. [PMID: 29341828 DOI: 10.1152/ajpregu.00140.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Redox biology has become a major issue in numerous areas of physiology. Reactive oxygen species (ROS) have a broad range of roles from signal transduction to growth control and cell death. To understand the nature of these roles, accurate measurement of the reactive compounds is required. An increasing number of tools for ROS detection is available; however, the specificity and sensitivity of these tools are often insufficient. Furthermore, their specificity has been rarely evaluated in complex physiological conditions. Many ROS probes are sensitive to environmental conditions in particular pH, which may interfere with ROS detection and cause misleading results. Accurate detection of ROS in physiology and pathophysiology faces additional challenges concerning the precise localization of the ROS and the timing of their production and disappearance. Certain ROS are membrane permeable, and certain ROS probes move across cells and organelles. Targetable ROS probes such as fluorescent protein-based biosensors are required for accurate localization. Here we analyze these challenges in more detail, provide indications on the strength and weakness of current tools for ROS detection, and point out developments that will provide improved ROS detection methods in the future. There is no universal method that fits all situations in physiology and cell biology. A detailed knowledge of the ROS probes is required to choose the appropriate method for a given biological problem. The knowledge of the shortcomings of these probes should also guide the development of new sensors.
Collapse
Affiliation(s)
- Marie Erard
- Université Paris-Sud, Université Paris-Saclay , Orsay , France.,Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique , Orsay , France
| | - Sophie Dupré-Crochet
- Université Paris-Sud, Université Paris-Saclay , Orsay , France.,Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique , Orsay , France
| | - Oliver Nüße
- Centre National de la Recherche Scientifique, Laboratoire de Chimie Physique , Orsay , France
| |
Collapse
|
28
|
Bilan DS, Belousov VV. New tools for redox biology: From imaging to manipulation. Free Radic Biol Med 2017; 109:167-188. [PMID: 27939954 DOI: 10.1016/j.freeradbiomed.2016.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/12/2022]
Abstract
Redox reactions play a key role in maintaining essential biological processes. Deviations in redox pathways result in the development of various pathologies at cellular and organismal levels. Until recently, studies on transformations in the intracellular redox state have been significantly hampered in living systems. The genetically encoded indicators, based on fluorescent proteins, have provided new opportunities in biomedical research. The existing indicators already enable monitoring of cellular redox parameters in different processes including embryogenesis, aging, inflammation, tissue regeneration, and pathogenesis of various diseases. In this review, we summarize information about all genetically encoded redox indicators developed to date. We provide the description of each indicator and discuss its advantages and limitations, as well as points that need to be considered when choosing an indicator for a particular experiment. One chapter is devoted to the important discoveries that have been made by using genetically encoded redox indicators.
Collapse
Affiliation(s)
- Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | | |
Collapse
|
29
|
Wound redox gradients revisited. Semin Cell Dev Biol 2017; 80:13-16. [PMID: 28751250 DOI: 10.1016/j.semcdb.2017.07.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/20/2022]
Abstract
Evidence emerges that redox gradients regulate morphogenesis, inflammation, regeneration, and healing of tissues. At the example of redox signaling during the zebrafish wound response, I briefly discuss current ideas on how such patterns might be sensed and spatially regulated to guide physiological processes over distances in animals.
Collapse
|
30
|
|
31
|
Nault L, Bouchab L, Dupré-Crochet S, Nüße O, Erard M. Environmental Effects on Reactive Oxygen Species Detection-Learning from the Phagosome. Antioxid Redox Signal 2016; 25:564-76. [PMID: 27225344 DOI: 10.1089/ars.2016.6747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) fulfill numerous roles in biology ranging from signal transduction to the induction of cell death. To advance our understanding of these sometimes contradictory roles, quantitative, specific, and sensitive ROS measurements are required. RECENT ADVANCES Several organic or genetically encoded probes were successfully developed for ROS detection. CRITICAL ISSUES In some cases, ROS production occurs in a harsh environment such as low pH or high concentration of proteases. However, the ROS sensor may be sensitive to such environmental conditions and therefore becomes inaccurate. While the sensitivity of many ROS sensors to pH is known, many other environmental conditions remain unexplored. This article illustrates the interference between ROS sensors and their environment using the phagosome as an example. In the phagosome, pH changes, high concentration of ROS, and the presence of many proteases generate a hostile and rapidly changing environment. FUTURE DIRECTIONS Difficulties due to cell movement and continuous formation of new phagosomes can be reduced by ratio measurements, if appropriate dyes are identified. For detection in live cells and subcellular locations, fluorescent proteins (FPs) offer several advantages and are used to create biosensors for ROS. Some FPs are directly sensitive to certain ROS as shown here. Although this may compromise their use in an environment with high levels of ROS, it can also be exploited for ROS measurement directly with the FPs themselves. For all types of ROS detection, we suggest a set of basic guidelines for testing the environmental sensitivity of an ROS sensor. Antioxid. Redox Signal. 25, 564-576.
Collapse
Affiliation(s)
- Laurent Nault
- Laboratoire de Chimie Physique, Université Paris-Sud, CNRS UMR 8000, Université Paris Saclay , Orsay, France
| | - Leïla Bouchab
- Laboratoire de Chimie Physique, Université Paris-Sud, CNRS UMR 8000, Université Paris Saclay , Orsay, France
| | - Sophie Dupré-Crochet
- Laboratoire de Chimie Physique, Université Paris-Sud, CNRS UMR 8000, Université Paris Saclay , Orsay, France
| | - Oliver Nüße
- Laboratoire de Chimie Physique, Université Paris-Sud, CNRS UMR 8000, Université Paris Saclay , Orsay, France
| | - Marie Erard
- Laboratoire de Chimie Physique, Université Paris-Sud, CNRS UMR 8000, Université Paris Saclay , Orsay, France
| |
Collapse
|
32
|
Huang BK, Ali S, Stein KT, Sikes HD. Interpreting Heterogeneity in Response of Cells Expressing a Fluorescent Hydrogen Peroxide Biosensor. Biophys J 2016; 109:2148-58. [PMID: 26588573 DOI: 10.1016/j.bpj.2015.08.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/09/2015] [Accepted: 08/24/2015] [Indexed: 10/22/2022] Open
Abstract
Fluorescent, genetically encoded sensors of hydrogen peroxide have enabled visualization of perturbations to the intracellular level of this signaling molecule with subcellular and temporal resolution. Ratiometric sensors hold the additional promise of meaningful quantification of intracellular hydrogen peroxide levels as a function of time, a longstanding goal in the field of redox signaling. To date, studies that have connected the magnitudes of observed ratios with peroxide concentrations have either examined suspensions of cells or small numbers of adherent cells (∼10). In this work, we examined the response of all cells in several microscopic fields of view to an identical perturbation and observed a striking degree of heterogeneity of fluorescence ratios from individual cells. The expression level of the probe and phase within the cell cycle were each examined as potential contributors to the observed heterogeneity. Higher ratiometric responses correlated with greater expression levels of the probe and phase in the cell cycle were also shown to influence the magnitude of response. To aid in the interpretation of experimental observations, we incorporated the reaction of the reduced probe with peroxide and the reactions of the oxidized probe with glutathione and glutaredoxin into a larger kinetic model of peroxide metabolism. The predictions of the kinetic model suggest possible explanations for the experimental observations. This work highlights the importance of a systems-level approach to understanding the output of genetically encoded sensors that function via redox reactions involving thiol and disulfide groups.
Collapse
Affiliation(s)
- Beijing K Huang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sohail Ali
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kassi T Stein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
33
|
Booth DM, Joseph SK, Hajnóczky G. Subcellular ROS imaging methods: Relevance for the study of calcium signaling. Cell Calcium 2016; 60:65-73. [PMID: 27209367 DOI: 10.1016/j.ceca.2016.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022]
Abstract
Recent advances in genetically encoded fluorescent probes have dramatically increased the toolkit available for imaging the intracellular environment. Perhaps the biggest improvements have been made in sensing specific reactive oxygen species (ROS) and redox changes under physiological conditions. The new generation of probes may be targeted to a wide range of subcellular environments. By targeting such probes to compartments and organelle surfaces they may be exposed to environments, which support local signal transduction and regulation. The close apposition of the endoplasmic reticulum (ER) with mitochondria and other organelles forms such a local environment where Ca(2+) dynamics are greatly enhanced compared to the bulk cytosol. We describe here how newly developed genetically encoded redox indicators (GERIs) might be used to monitor ROS and probe their interaction with Ca(2+) at both global and local level.
Collapse
Affiliation(s)
- David M Booth
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Suresh K Joseph
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Bilan DS, Lukyanov SA, Belousov VV. [Genetically Encoded Fluorescent Redox Sensors]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:259-74. [PMID: 26502603 DOI: 10.1134/s106816201502003x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Redox processes play a key role in cells of all.organisms. These processes imply directed flows of electrons via so-called redox pairs: substances that exist in both reduced and oxidized states simultaneously within the cell. Examples of redox pairs are NAD+/NADH, NADP+/NADPH, GSSG/2GSH. Until recently, studies of redox processes in the living cells were challenged by the lack of suitable methods. Genetically encoded fluorescent biosensors provide a new way to study biological processes including redox ones. Biosensors allow real-time detection of messengers, metabolites and enzymatic activities in living systems of different complexity from cultured cells to transgenic animals. In this review, we describe the main types of known redox biosensors with examples of their use.
Collapse
|
35
|
Vlaski-Lafarge M, Ivanovic Z. Reliability of ROS and RNS detection in hematopoietic stem cells − potential issues with probes and target cell population. J Cell Sci 2015; 128:3849-60. [DOI: 10.1242/jcs.171496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Many studies have provided evidence for the crucial role of the reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the regulation of differentiation and/or self-renewal, and the balance between quiescence and proliferation of hematopoietic stem cells (HSCs). Several metabolic regulators have been implicated in the maintenance of HSC redox homeostasis; however, the mechanisms that are regulated by ROS and RNS, as well as their downstream signaling are still elusive. This is partially owing to a lack of suitable methods that allow unequivocal and specific detection of ROS and RNS. In this Opinion, we first discuss the limitations of the commonly used techniques for detection of ROS and RNS, and the problem of heterogeneity of the cell population used in redox studies, which, together, can result in inaccurate conclusions regarding the redox biology of HSCs. We then propose approaches that are based on single-cell analysis followed by a functional test to examine ROS and RNS levels specifically in HSCs, as well as methods that might be used in vivo to overcome these drawbacks, and provide a better understanding of ROS and RNS function in stem cells.
Collapse
Affiliation(s)
- Marija Vlaski-Lafarge
- Etablissement Français du Sang Aquitaine-Limousin, 33075 Bordeaux, France
- UMR 5164 CNRS/Université Bordeaux Segalen, 33000 Bordeaux, France
| | - Zoran Ivanovic
- Etablissement Français du Sang Aquitaine-Limousin, 33075 Bordeaux, France
- UMR 5164 CNRS/Université Bordeaux Segalen, 33000 Bordeaux, France
| |
Collapse
|
36
|
Mattila H, Khorobrykh S, Havurinne V, Tyystjärvi E. Reactive oxygen species: Reactions and detection from photosynthetic tissues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:176-214. [PMID: 26498710 DOI: 10.1016/j.jphotobiol.2015.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have long been recognized as compounds with dual roles. They cause cellular damage by reacting with biomolecules but they also function as agents of cellular signaling. Several different oxygen-containing compounds are classified as ROS because they react, at least with certain partners, more rapidly than ground-state molecular oxygen or because they are known to have biological effects. The present review describes the typical reactions of the most important ROS. The reactions are the basis for both the detection methods and for prediction of reactions between ROS and biomolecules. Chemical and physical methods used for detection, visualization and quantification of ROS from plants, algae and cyanobacteria will be reviewed. The main focus will be on photosynthetic tissues, and limitations of the methods will be discussed.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
37
|
NADPH oxidases—do they play a role in TRPC regulation under hypoxia? Pflugers Arch 2015; 468:23-41. [DOI: 10.1007/s00424-015-1731-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022]
|
38
|
Panieri E, Santoro MM. ROS signaling and redox biology in endothelial cells. Cell Mol Life Sci 2015; 72:3281-303. [PMID: 25972278 PMCID: PMC11113497 DOI: 10.1007/s00018-015-1928-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/29/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
The purpose of this review is to provide an overview of redox mechanisms, sources and antioxidants that control signaling events in ECs. In particular, we describe which molecules are involved in redox signaling and how they influence the relationship between ECs and other vascular component with regard to angiogenesis. Recent and new tools to investigate physiological ROS signaling will be also discussed. Such findings are providing an overview of the ROS biology relevant for endothelial cells in the context of normal and pathological angiogenic conditions.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Massimo M. Santoro
- Laboratory of Endothelial Molecular Biology, Vesalius Research Center, VIB, 3000 Leuven, Belgium
- Laboratory of Endothelial Molecular Biology, Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
39
|
Hultqvist M, Olofsson P, Wallner FK, Holmdahl R. Pharmacological Potential of NOX2 Agonists in Inflammatory Conditions. Antioxid Redox Signal 2015; 23:446-59. [PMID: 24359237 DOI: 10.1089/ars.2013.5788] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE New insights into the role of reactive oxygen species (ROS) show that activators of the phagocyte NADPH oxidase 2 (NOX2) complex have the potential to be therapeutic in autoimmune and inflammatory conditions. It is, however, essential to elucidate the consequence of targeting the NOX2 complex, as it might lead to different outcomes depending on disease context and specificity, dose, and timing of ROS production. RECENT ADVANCES Increasing evidence is suggesting that the role of the NOX2 complex is far more complex than previously anticipated. In addition to the well-described antimicrobial response, ROS also have immune and inflammatory regulatory effects. Compounds increasing NOX2-dependent ROS production have been shown to be effective both in preventing and in treating inflammatory manifestations in animal models of autoimmune diseases. Altogether, these results suggest the possibility of activating the NOX2 complex for the treatment of autoimmune inflammatory diseases while restoring and maintaining a balanced ROS regulation. CRITICAL ISSUES The complexity of the NOX system and the derived ROS is important and must be considered when designing the programs for the development of NOX2-activating drugs, as well as for validation of selected hits, to successfully identify substances effective in treating inflammatory and autoimmune conditions. In addition, it is important to consider the complex downstream immunological effects and safety for drugs that increase the production of ROS. FUTURE DIRECTIONS There is a strong potential for the development of ROS-inducing drugs, targeting the NOX2 complex, which are effective and safe, for the treatment of inflammatory autoimmune disorders. In such drug development, one must carefully investigate the pharmaceutical properties, including both efficacy and safety of the drugs. In addition, the immunological pathways of this new treatment strategy need careful examination.
Collapse
Affiliation(s)
| | | | | | - Rikard Holmdahl
- 2 Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
40
|
Breckwoldt MO, Wittmann C, Misgeld T, Kerschensteiner M, Grabher C. Redox imaging using genetically encoded redox indicators in zebrafish and mice. Biol Chem 2015; 396:511-22. [DOI: 10.1515/hsz-2014-0294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/26/2015] [Indexed: 12/28/2022]
Abstract
Abstract
Redox signals have emerged as important regulators of cellular physiology and pathology. The advent of redox imaging in vertebrate systems now provides the opportunity to dynamically visualize redox signaling during development and disease. In this review, we summarize recent advances in the generation of genetically encoded redox indicators (GERIs), introduce new redox imaging strategies, and highlight key publications in the field of vertebrate redox imaging. We also discuss the limitations and future potential of in vivo redox imaging in zebrafish and mice.
Collapse
|
41
|
Zhang X, Gao F. Imaging mitochondrial reactive oxygen species with fluorescent probes: current applications and challenges. Free Radic Res 2015; 49:374-82. [PMID: 25789762 DOI: 10.3109/10715762.2015.1014813] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) is a key element in the regulation of several physiological functions and in the development or progression of multiple pathological events. A key task in the study of mitochondrial ROS is to establish reliable methods for measuring the ROS level in mitochondria with high selectivity, sensitivity, and spatiotemporal resolution. Over the last decade, imaging tools with fluorescent indicators from either small-molecule dyes or genetically encoded probes that can be targeted to mitochondria have been developed, which provide a powerful method to visualize and even quantify mitochondrial ROS level not only in live cells, but also in live animals. These innovative tools that have bestowed exciting new insights in mitochondrial ROS biology have been further promoted with the invention of new techniques in indicator design and fluorescent detection. However, these probes present some limitations in terms of specificity, sensitivity, and kinetics; failure to recognize these limitations often results in inappropriate interpretations of data. This review evaluates the recent advances in mitochondrial ROS imaging approaches with emphasis on their proper application and limitations, and highlights the future perspectives in the development of novel fluorescent probes for visualizing all species of ROS.
Collapse
Affiliation(s)
- X Zhang
- Department of Aerospace Medicine, Fourth Military Medical University , Xi'an , P. R. China
| | | |
Collapse
|
42
|
Bechor E, Dahan I, Fradin T, Berdichevsky Y, Zahavi A, Federman Gross A, Rafalowski M, Pick E. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67 (phox.). Front Chem 2015; 3:3. [PMID: 25699251 PMCID: PMC4316792 DOI: 10.3389/fchem.2015.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/09/2015] [Indexed: 11/28/2022] Open
Abstract
The superoxide (O(·-) 2)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b 558 (a heterodimer of Nox2 and p22 (phox) ), and four cytosolic components, p47 (phox) , p67 (phox) , p40 (phox) , and Rac. The catalytic component, responsible for O(·-) 2 generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67 (phox) . Using a peptide-protein binding assay, we found that Nox2 peptides containing a (369)CysGlyCys(371) triad (CGC) bound p67 (phox) with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67 (phox) only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67 (phox) via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: (1) Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; (2) Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; (3) Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; (4) Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; (5) A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; (6) p67 (phox) , in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67 (phox) to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
| |
Collapse
|
43
|
Hydrogen peroxide administered into the rat spinal cord at the level elevated by contusion spinal cord injury oxidizes proteins, DNA and membrane phospholipids, and induces cell death: attenuation by a metalloporphyrin. Neuroscience 2014; 285:81-96. [PMID: 25451281 DOI: 10.1016/j.neuroscience.2014.10.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 01/23/2023]
Abstract
We previously demonstrated that hydrogen peroxide concentration ([H2O2]) significantly increases after spinal cord injury (SCI). The present study explored (1) whether SCI-elevated [H2O2] is sufficient to induce oxidation and cell death, (2) if apoptosis is a pathway of H2O2-induced cell death, and (3) whether H2O2-induced oxidation and cell death could be reversed by treatment with the catalytic antioxidant Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP). H2O2 was perfused through a microcannula into the uninjured rat spinal cord to mimic the conditions induced by SCI. Protein and DNA oxidation, membrane phospholipids peroxidation (MLP), cell death and apoptosis were characterized by histochemical and immunohistochemical staining with antibodies against markers of oxidation and apoptosis. Stained cells were quantified in sections of H2O2-, or artificial cerebrospinal fluid (ACSF)-exposed with vehicle-, or MnTBAP-treated groups. Compared with ACSF-exposed animals, SCI-elevated [H2O2] significantly increased intracellular protein and DNA oxidation by threefold and MLP by eightfold in neurons, respectively. H2O2-elevated extracellular malondialdehyde was measured by microdialysis sampling. We demonstrated that SCI-elevated [H2O2] significantly increased extracellular malondialdehyde above pre-injury levels. H2O2 also significantly increased cell loss and the numbers of terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate-(dUTP)-biotin nick end labeling (TUNEL)-positive and active caspase-3-positive neurons by 2.3-, 2.8-, and 5.6-fold compared to ACSF controls, respectively. Our results directly and unequivocally demonstrate that SCI-elevated [H2O2] contributes to post-SCI MLP, protein, and DNA oxidation to induce cell death. Therefore, we conclude that (1) the role of H2O2 in secondary SCI is pro-oxidation and pro-cell death, (2) apoptosis is a pathway for SCI-elevated [H2O2] to induce cell death, (3) caspase activation is a mechanism of H2O2-induced apoptosis after SCI, and (4) MnTBAP treatment significantly decreased H2O2-induced oxidation, cell loss, and apoptosis to the levels of ACSF controls, further supporting MnTBAP's ability to scavenge H2O2 by in vivo evidence.
Collapse
|
44
|
Pouvreau S. Genetically encoded reactive oxygen species (ROS) and redox indicators. Biotechnol J 2014; 9:282-93. [PMID: 24497389 DOI: 10.1002/biot.201300199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/10/2013] [Accepted: 11/06/2013] [Indexed: 12/17/2022]
Abstract
Redox processes are increasingly being recognized as key elements in the regulation of cellular signaling cascades. They are frequently encountered at the frontier between physiological functions and pathological events. The biological relevance of intracellular redox changes depends on the subcellular origin, the spatio-temporal distribution and the redox couple involved. Thus, a key task in the elucidation of the role of redox reactions is the specific and quantitative measurement of redox conditions with high spatio-temporal resolution. Unfortunately, until recently, our ability to perform such measurements was limited by the lack of adequate technology. Over the last 10 years, promising imaging tools have been developed from fluorescent proteins. Genetically encoded reactive oxygen species (ROS) and redox indicators (GERRIs) have the potential to allow real-time and pseudo-quantitative monitoring of specific ROS and thiol redox state in subcellular compartments or live organisms. Redox-sensitive yellow fluorescent proteins (rxYFP family), redox-sensitive green fluorescent proteins (roGFP family), HyPer (a probe designed to measure H2 O2 ), circularly permuted YFP and others have been used in several models and sufficient information has been collected to highlight their main characteristics. This review is intended to be a tour guide of the main types of GERRIs, their origins, properties, advantages and pitfalls.
Collapse
Affiliation(s)
- Sandrine Pouvreau
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.
| |
Collapse
|
45
|
Abstract
SIGNIFICANCE Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling mechanism triggered by Ca2+ depletion of the endoplasmic reticulum (ER) and by a variety of cellular stresses. Reactive oxygen species (ROS) are often concomitantly produced in response to these stresses, however, the relationship between redox signaling and SOCE is not completely understood. Various cardiovascular, neurological, and immune diseases are associated with alterations in both Ca2+ signaling and ROS production, and thus understanding this relationship has therapeutic implications. RECENT ADVANCES Several reactive cysteine modifications in stromal interaction molecule (STIM) and Orai proteins comprising the core SOCE machinery were recently shown to modulate SOCE in a redox-dependent manner. Moreover, STIM1 and Orai1 expression levels may reciprocally regulate and be affected by responses to oxidative stress. ER proteins involved in oxidative protein folding have gained increased recognition as important sources of ROS, and the recent discovery of their accumulation in contact sites between the ER and mitochondria provides a further link between ROS production and intracellular Ca2+ handling. CRITICAL ISSUES AND FUTURE DIRECTIONS Future research should aim to establish the complete set of SOCE controlling molecules, to determine their redox-sensitive residues, and to understand how intracellular Ca2+ stores dynamically respond to different types of stress. Mapping the precise nature and functional consequence of key redox-sensitive components of the pre- and post-translational control of SOCE machinery and of proteins regulating ER calcium content will be pivotal in advancing our understanding of the complex cross-talk between redox and Ca2+ signaling.
Collapse
Affiliation(s)
- Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva , Geneva, Switzerland
| | | |
Collapse
|
46
|
Kaludercic N, Deshwal S, Di Lisa F. Reactive oxygen species and redox compartmentalization. Front Physiol 2014; 5:285. [PMID: 25161621 PMCID: PMC4130307 DOI: 10.3389/fphys.2014.00285] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/11/2014] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatio-temporal manner. This makes ROS signaling similar to that of Ca(2+) or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes) whereas others are more reducing (mitochondria, nuclei). Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatio-temporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases.
Collapse
Affiliation(s)
- Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova Padova, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council of Italy (CNR) Padova, Italy ; Department of Biomedical Sciences, University of Padova Padova, Italy
| |
Collapse
|
47
|
Donkó Á, Morand S, Korzeniowska A, Boudreau HE, Zana M, Hunyady L, Geiszt M, Leto TL. Hypothyroidism-associated missense mutation impairs NADPH oxidase activity and intracellular trafficking of Duox2. Free Radic Biol Med 2014; 73:190-200. [PMID: 24853759 PMCID: PMC4111973 DOI: 10.1016/j.freeradbiomed.2014.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 04/10/2014] [Accepted: 05/12/2014] [Indexed: 01/06/2023]
Abstract
In the thyroid gland Duox2-derived H2O2 is essential for thyroid hormone biosynthesis. Several patients were identified with partial or severe iodide organification defects caused by mutation in the gene for Duox2 or its maturation factor, DuoxA2. A Duox2-deficient (Duox2(thyd)) mouse model enabled in vivo investigation of its critical function in thyroid tissues, but its roles proposed in host defense or other innate responses in nonthyroid tissues remain less certain. These mice carry a spontaneous DUOX2 missense mutation, a T→G transversion, in exon 16 that changes the highly conserved valine 674 to glycine and results in severe congenital hypothyroidism. The exact mechanism underlying the effects of the V674G mutation has not been elucidated at the molecular or cellular level. To determine how the V674G mutation leads to congenital hypothyroidism, we introduced the same mutation into human Duox2 or Duox1 cDNAs and expressed them in HEK-293 cells stably expressing the corresponding DuoxA proteins. We found that the valine→glycine mutant Duox proteins fail to produce H2O2, lose their plasma membrane localization pattern, and are retained within the endoplasmic reticulum. The Duox2 mutant binds to DuoxA2, but appears to be unstable owing to this retention. Immunohistochemical staining of Duox2 in murine salivary gland ducts showed that Duox2 in mutant mice loses its condensed apical plasma membrane localization pattern characteristic of wild-type Duox2 and accumulates in punctate vesicular structures within cells. Our findings demonstrate that changing the highly conserved valine 674 in Duox2 leads to impaired subcellular targeting and reactive oxygen species release required for hormonogenesis, resulting in congenital hypothyroidism.
Collapse
Affiliation(s)
- Ágnes Donkó
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Department of Physiology, Semmelweis University, Budapest, Hungary; "Lendület" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Stanislas Morand
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Agnieszka Korzeniowska
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Howard E Boudreau
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Melinda Zana
- Department of Physiology, Semmelweis University, Budapest, Hungary; "Lendület" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, Budapest, Hungary; "Lendület" Peroxidase Enzyme Research Group of the Semmelweis University and the Hungarian Academy of Sciences, Budapest, Hungary
| | - Thomas L Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
48
|
Ezeriņa D, Morgan B, Dick TP. Imaging dynamic redox processes with genetically encoded probes. J Mol Cell Cardiol 2014; 73:43-9. [DOI: 10.1016/j.yjmcc.2013.12.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 12/13/2022]
|
49
|
Hogan D, Wheeler RT. The complex roles of NADPH oxidases in fungal infection. Cell Microbiol 2014; 16:1156-67. [PMID: 24905433 DOI: 10.1111/cmi.12320] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 12/21/2022]
Abstract
NADPH oxidases play key roles in immunity and inflammation that go beyond the production of microbicidal reactive oxygen species (ROS). The past decade has brought a new appreciation for the diversity of roles played by ROS in signalling associated with inflammation and immunity. NADPH oxidase activity affects disease outcome during infections by human pathogenic fungi, an important group of emerging and opportunistic pathogens that includes Candida, Aspergillus and Cryptococcus species. Here we review how alternative roles of NADPH oxidase activity impact fungal infection and how ROS signalling affects fungal physiology. Particular attention is paid to roles for NADPH oxidase in immune migration, immunoregulation in pulmonary infection, neutrophil extracellular trap formation, autophagy and inflammasome activity. These recent advances highlight the power and versatility of spatiotemporally controlled redox regulation in the context of infection, and point to a need to understand the molecular consequences of NADPH oxidase activity in the cell.
Collapse
Affiliation(s)
- Deborah Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | | |
Collapse
|
50
|
De Deken X, Corvilain B, Dumont JE, Miot F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 2014; 20:2776-93. [PMID: 24161126 DOI: 10.1089/ars.2013.5602] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Among the NADPH oxidases, the dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially called thyroid oxidases, based on their high level of expression in thyroid tissue. Genetic alterations causing inherited hypothyroidism clearly demonstrate their physiological implication in thyroid hormonogenesis. However, a growing list of biological functions triggered by DUOX-dependent reactive oxygen species (ROS) in highly differentiated mucosae have recently emerged. RECENT ADVANCES A role of DUOX enzymes as ROS providers for lactoperoxidase-mediated killing of invading pathogens has been well established and a role in bacteria chemorepulsion has been proposed. Control of DUOX expression and activity by inflammatory molecules and immune receptor activation consolidates their contributions to innate immune defense of mucosal surfaces. Recent studies conducted in ancestral organisms have identified effectors of DUOX redox signaling involved in wound healing including epithelium regeneration and leukocyte recruitment. Moreover, local generation of hydrogen peroxide (H2O2) by DUOX has also been suggested to constitute a positive feedback loop to promote receptor signaling activation. CRITICAL ISSUES A correct balance between H2O2 generation and detoxification mechanisms must be properly maintained to avoid oxidative damages. Overexpression of DUOX genes has been associated with an increasing number of chronic inflammatory diseases. Furthermore, H2O2-mediated DNA damage supports a mutagenic function promoting tumor development. FUTURE DIRECTIONS Despite the high sequence similarity shared between DUOX1 and DUOX2, the two isoforms present distinct regulations, tissue expression and catalytic functions. The phenotypic characterization of novel DUOX/DUOXA invalidated animal models will be very useful for defining their medical importance in pathological conditions.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | | | | | | |
Collapse
|