1
|
Silva JF, Polk FD, Martin PE, Thai SH, Savu A, Gonzales M, Kath AM, Gee MT, Pires PW. Sex-specific mechanisms of cerebral microvascular BK Ca dysfunction in a mouse model of Alzheimer's disease. Alzheimers Dement 2025; 21:e14438. [PMID: 39698895 PMCID: PMC11848394 DOI: 10.1002/alz.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION Cerebrovascular dysfunction occurs in Alzheimer's disease (AD), impairing hemodynamic regulation. Large conductance Ca2+-activated K+ channels (BKCa) regulate cerebrovascular reactivity and are impaired in AD. BKCa activity depends on intracellular Ca2+ (Ca2+ sparks) and nitro-oxidative post-translational modifications. However, whether these mechanisms underlie BKCa impairment in AD remains unknown. METHODS Cerebral arteries from 5x-FAD and wild-type (WT) littermates were used for molecular biology, electrophysiology, ex vivo, and in vivo experiments. RESULTS Arterial BKCa activity is reduced in 5x-FAD via sex-dependent mechanisms: in males, there is lower BKα subunit expression and less Ca2+ sparks. In females, we observed reversible nitro-oxidative modification of BKCa. Further, BKCa is involved in hemodynamic regulation in WT mice, and its dysfunction is associated with vascular deficits in 5x-FAD. DISCUSSION Our data highlight the central role played by BKCa in cerebral hemodynamic regulation and that molecular mechanisms of its impairment diverge based on sex in 5x-FAD. HIGHLIGHTS Cerebral microvascular BKCa dysfunction occurs in both female and male 5x-FAD. Reduction in BKα subunit protein and Ca2+ sparks drive the dysfunction in males. Nitro-oxidative stress is present in females, but not males, 5x-FAD. Reversible nitro-oxidation of BKα underlies BKCa dysfunction in female 5x-FAD.
Collapse
Affiliation(s)
- Josiane F. Silva
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Felipe D. Polk
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Paige E. Martin
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Stephenie H. Thai
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Andrea Savu
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Matthew Gonzales
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Allison M. Kath
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Michael T. Gee
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Paulo W. Pires
- Department of PhysiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Sarver Heart CenterUniversity of Arizona College of MedicineTucsonArizonaUSA
- Bio5 InstituteUniversity of Arizona College of MedicineTucsonArizonaUSA
| |
Collapse
|
2
|
Liu B, Chen L, Gao M, Dai M, Zheng Y, Qu L, Zhang J, Gong G. A comparative study of the efficiency of mitochondria-targeted antioxidants MitoTEMPO and SKQ1 under oxidative stress. Free Radic Biol Med 2024; 224:117-129. [PMID: 39178922 DOI: 10.1016/j.freeradbiomed.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
MitoTEMPO (MT) and Visomitin (SKQ1) are regareded as mitochondria-targeted antioxidants, which inhibit production of mitochondrial reactive oxygen species (ROS). However, the differences in function between MT and SKQ1 remain unexplored. Herein, we investigated the differential potency of MT and SKQ1 in mitigating oxidative stress under different conditions. The results indicated that high levels of SKQ1 induced cell death. The appropriate concentrations of MT and SKQ1 can prevent or rescue cell damage triggered by hydrogen peroxide (H2O2) and menadione (MEN). MT and SKQ1 reduced ROS levels and reversed the down-regulation of antioxidant defence genes and enzymes. These effects can alleviate the damage to lipids, proteins, and deoxyribonucleic acid (DNA) caused by oxidative stress and restore adenosine 5' triphosphate (ATP) generation. Subsequently, we found that MT administration in ischemic reperfusion kidney injury in mice provided superior renal protection compared to SKQ1, as evidenced by reduced plasma levels of kidney injury markers, improved renal morphology, decreased apoptosis, restored mitochondrial function, and enhanced antioxidant capacity. Overall, our findings suggest that MT is safer and has greater potential than SKQ1 as a therapeutic agent to mitigate oxidative stress damage or oxidative renal injury.
Collapse
Affiliation(s)
- Bilin Liu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China; Institute of Biophysics, Chinese Academy of Science, Beijing 100101, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Lei Chen
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Meng Gao
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Mengting Dai
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Yejing Zheng
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Linke Qu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Junming Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Guohua Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Tongji University, Shanghai, 200120, PR China.
| |
Collapse
|
3
|
Kozlov AV, Javadov S, Sommer N. Cellular ROS and Antioxidants: Physiological and Pathological Role. Antioxidants (Basel) 2024; 13:602. [PMID: 38790707 PMCID: PMC11117742 DOI: 10.3390/antiox13050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen derivatives that include free radicals such as superoxide anion radical (O2•-) and hydroxyl radical (HO•), as well as non-radical molecules hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and hypochlorous acid (HOCl) [...].
Collapse
Affiliation(s)
- Andrey V. Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
4
|
da Silva JF, Polk FD, Martin PE, Thai SH, Savu A, Gonzales M, Kath AM, Gee MT, Pires PW. Sex-specific mechanisms of cerebral microvascular BK Ca dysfunction in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.06.543962. [PMID: 37333104 PMCID: PMC10274786 DOI: 10.1101/2023.06.06.543962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Cerebral microvascular dysfunction and nitro-oxidative stress are present in patients with Alzheimer's disease (AD) and may contribute to disease progression and severity. Large conductance Ca 2+ -activated K + channels (BK Ca ) play an essential role in vasodilatory responses and maintenance of myogenic tone in resistance arteries. BK Ca impairment can lead to microvascular dysfunction and hemodynamic deficits in the brain. We hypothesized that reduced BK Ca function in cerebral arteries mediates microvascular and neurovascular responses in the 5x-FAD model of AD. METHODS BK Ca activity in the cerebral microcirculation was assessed by patch clamp electrophysiology and pressure myography, in situ Ca 2+ sparks by spinning disk confocal microscopy, hemodynamics by laser speckle contrast imaging. Molecular and biochemical analyses were conducted by affinity-purification assays, qPCR, Western blots and immunofluorescence. RESULTS We observed that pial arteries from 5-6 months-old male and female 5x-FAD mice exhibited a hyper-contractile phenotype than wild-type (WT) littermates, which was linked to lower vascular BK Ca activity and reduced open probability. In males, BK Ca dysfunction is likely a consequence of an observed lower expression of the pore-forming subunit BKα and blunted frequency of Ca 2+ sparks, which are required for BK Ca activity. However, in females, impaired BK Ca function is, in part, a consequence of reversible nitro-oxidative changes in the BK α subunit, which reduces its open probability and regulation of vascular tone. We further show that BK Ca function is involved in neurovascular coupling in mice, and its dysfunction is linked to neurovascular dysfunction in the model. CONCLUSION These data highlight the central role played by BK Ca in cerebral microvascular and neurovascular regulation, as well as sex-dependent mechanisms underlying its dysfunction in a mouse model of AD.
Collapse
|
5
|
Hou FQ, Wu XY, Gong MX, Wei JJ, Yi Y, Wei Y, He ZX, Gong QH, Gao JM. Trilobatin rescues fulminant hepatic failure by targeting COX2: Involvement of ROS/TLR4/NLRP3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155059. [PMID: 37672856 DOI: 10.1016/j.phymed.2023.155059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Fulminant hepatic failure (FHF) lacks efficient therapies notwithstanding increased comprehending of the inflammatory response and oxidative stress play crucial roles in the pathogenesis of this type of hepatic damage. Trilobatin (TLB), a naturally occurring food additive, is endowed with anti-inflammation and antioxidant properties. PURPOSE In current study, we evaluated the effect of TLB on FHF with a mouse model with d-galactosamine/lipopolysaccharide (GalN/LPS)-induced FHF and LPS-stimulated Kupffer cells (KCs) injury. METHODS Mice were randomly divided into seven groups: control group, TLB 40 mg/kg + control group, GalN/LPS group, TLB 10 mg/kg + GalN/LPS group, TLB 20 mg/kg + GalN/LPS group, TLB 40 mg/kg + GalN/LPS group, bifendate 150 mg/kg + GalN/LPS group. The mice were administered intragastrically TLB (10, 20 and 40 mg/kg) for 7 days (twice a day) prior to injection of GalN (700 mg/kg)/LPS (100 µg/kg). The KCs were pretreated with TLB (2.5, 5, 10 μM) for 2 h or its analogue (10 μM) or COX2 inhibitor (10 μM), and thereafter challenged by LPS (1 μg/ml) for 24 h. RESULTS TLB effectively rescued GalN/LPS-induced FHF. Furthermore, TLB inhibited TLR 4/NLRP3/pyroptosis pathway, and caspase 3-dependent apoptosis pathway, along with reducing excessive cellular and mitochondrial ROS generation and enhancing mitochondrial biogenesis. Intriguingly, TLB directly bound to COX2 as reflected by transcriptomics, molecular docking technique and surface plasmon resonance assay. Furthermore, TLB failed to attenuate LPS-induced inflammation and oxidative stress in KCs in the absence of COX2. CONCLUSION Our findings discover a novel pharmacological effect of TLB: protecting against FHF-induced pyroptosis and apoptosis through mediating ROS/TLR4/NLRP3 signaling pathway and reducing inflammation and oxidative stress. TLB may be a promising agent with outstanding safety profile to treat FHF.
Collapse
Affiliation(s)
- Fang-Qin Hou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiao-Yu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Miao-Xian Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jia-Jia Wei
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yang Yi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhi-Xu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi medical University
| | - Qi-Hai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian-Mei Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
6
|
Skulachev VP, Vyssokikh MY, Chernyak BV, Mulkidjanian AY, Skulachev MV, Shilovsky GA, Lyamzaev KG, Borisov VB, Severin FF, Sadovnichii VA. Six Functions of Respiration: Isn't It Time to Take Control over ROS Production in Mitochondria, and Aging Along with It? Int J Mol Sci 2023; 24:12540. [PMID: 37628720 PMCID: PMC10454651 DOI: 10.3390/ijms241612540] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Cellular respiration is associated with at least six distinct but intertwined biological functions. (1) biosynthesis of ATP from ADP and inorganic phosphate, (2) consumption of respiratory substrates, (3) support of membrane transport, (4) conversion of respiratory energy to heat, (5) removal of oxygen to prevent oxidative damage, and (6) generation of reactive oxygen species (ROS) as signaling molecules. Here we focus on function #6, which helps the organism control its mitochondria. The ROS bursts typically occur when the mitochondrial membrane potential (MMP) becomes too high, e.g., due to mitochondrial malfunction, leading to cardiolipin (CL) oxidation. Depending on the intensity of CL damage, specific programs for the elimination of damaged mitochondria (mitophagy), whole cells (apoptosis), or organisms (phenoptosis) can be activated. In particular, we consider those mechanisms that suppress ROS generation by enabling ATP synthesis at low MMP levels. We discuss evidence that the mild depolarization mechanism of direct ATP/ADP exchange across mammalian inner and outer mitochondrial membranes weakens with age. We review recent data showing that by protecting CL from oxidation, mitochondria-targeted antioxidants decrease lethality in response to many potentially deadly shock insults. Thus, targeting ROS- and CL-dependent pathways may prevent acute mortality and, hopefully, slow aging.
Collapse
Affiliation(s)
- Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Mikhail Yu. Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | | | - Maxim V. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- Institute of Mitoengineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Gregory A. Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, 129226 Moscow, Russia
| | - Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Fedor F. Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (M.Y.V.); (B.V.C.); (M.V.S.); (G.A.S.); (K.G.L.); (F.F.S.)
| | - Victor A. Sadovnichii
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
7
|
Weidinger A, Meszaros AT, Dumitrescu S, Kozlov AV. Effect of mitoTEMPO on Redox Reactions in Different Body Compartments upon Endotoxemia in Rats. Biomolecules 2023; 13:biom13050794. [PMID: 37238664 DOI: 10.3390/biom13050794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial ROS (mitoROS) control many reactions in cells. Biological effects of mitoROS in vivo can be investigated by modulation via mitochondria-targeted antioxidants (mtAOX, mitoTEMPO). The aim of this study was to determine how mitoROS influence redox reactions in different body compartments in a rat model of endotoxemia. We induced inflammatory response by lipopolysaccharide (LPS) injection and analyzed effects of mitoTEMPO in blood, abdominal cavity, bronchoalveolar space, and liver tissue. MitoTEMPO decreased the liver damage marker aspartate aminotransferase; however, it neither influenced the release of cytokines (e.g., tumor necrosis factor, IL-4) nor decreased ROS generation by immune cells in the compartments examined. In contrast, ex vivo mitoTEMPO treatment substantially reduced ROS generation. Examination of liver tissue revealed several redox paramagnetic centers sensitive to in vivo LPS and mitoTEMPO treatment and high levels of nitric oxide (NO) in response to LPS. NO levels in blood were lower than in liver, and were decreased by in vivo mitoTEMPO treatment. Our data suggest that (i) inflammatory mediators are not likely to directly contribute to ROS-mediated liver damage and (ii) mitoTEMPO is more likely to affect the redox status of liver cells reflected in a redox change of paramagnetic molecules. Further studies are necessary to understand these mechanisms.
Collapse
Affiliation(s)
- Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Andras T Meszaros
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sergiu Dumitrescu
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| |
Collapse
|
8
|
Skulachev VP, Vyssokikh MY, Chernyak BV, Averina OA, Andreev-Andrievskiy AA, Zinovkin RA, Lyamzaev KG, Marey MV, Egorov MV, Frolova OJ, Zorov DB, Skulachev MV, Sadovnichii VA. Mitochondrion-targeted antioxidant SkQ1 prevents rapid animal death caused by highly diverse shocks. Sci Rep 2023; 13:4326. [PMID: 36922552 PMCID: PMC10017827 DOI: 10.1038/s41598-023-31281-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The response to stress involves the activation of pathways leading either to protection from the stress origin, eventually resulting in development of stress resistance, or activation of the rapid death of the organism. Here we hypothesize that mitochondrial reactive oxygen species (mtROS) play a key role in stress-induced programmed death of the organism, which we called "phenoptosis" in 1997. We demonstrate that the synthetic mitochondria-targeted antioxidant SkQ1 (which specifically abolishes mtROS) prevents rapid death of mice caused by four mechanistically very different shocks: (a) bacterial lipopolysaccharide (LPS) shock, (b) shock in response to intravenous mitochondrial injection, (c) cold shock, and (d) toxic shock caused by the penetrating cation C12TPP. Importantly, under all these stresses mortality was associated with a strong elevation of the levels of pro-inflammatory cytokines and administration of SkQ1 was able to switch off the cytokine storms. Since the main effect of SkQ1 is the neutralization of mtROS, this study provides evidence for the role of mtROS in the activation of innate immune responses mediating stress-induced death of the organism. We propose that SkQ1 may be used clinically to support patients in critical conditions, such as septic shock, extensive trauma, cooling, and severe infection by bacteria or viruses.
Collapse
Affiliation(s)
- V P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - M Yu Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991. .,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - O A Averina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - A A Andreev-Andrievskiy
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - R A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - K G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - M V Marey
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia, 117198
| | - M V Egorov
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - O J Frolova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - M V Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - V A Sadovnichii
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
9
|
Kozlov AV, Grillari J. Pathogenesis of Multiple Organ Failure: The Impact of Systemic Damage to Plasma Membranes. Front Med (Lausanne) 2022; 9:806462. [PMID: 35372390 PMCID: PMC8964500 DOI: 10.3389/fmed.2022.806462] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/09/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple organ failure (MOF) is the major cause of morbidity and mortality in intensive care patients, but the mechanisms causing this severe syndrome are still poorly understood. Inflammatory response, tissue hypoxia, immune and cellular metabolic dysregulations, and endothelial and microvascular dysfunction are the main features of MOF, but the exact mechanisms leading to MOF are still unclear. Recent progress in the membrane research suggests that cellular plasma membranes play an important role in key functions of diverse organs. Exploration of mechanisms contributing to plasma membrane damage and repair suggest that these processes can be the missing link in the development of MOF. Elevated levels of extracellular phospholipases, reactive oxygen and nitrogen species, pore-forming proteins (PFPs), and dysregulation of osmotic homeostasis occurring upon systemic inflammatory response are the major extracellular inducers of plasma membrane damage, which may simultaneously operate in different organs causing their profound dysfunction. Hypoxia activates similar processes, but they predominantly occur within the cells targeting intracellular membrane compartments and ultimately causing cell death. To combat the plasma membrane damage cells have developed several repair mechanisms, such as exocytosis, shedding, and protein-driven membrane remodeling. Analysis of knowledge on these mechanisms reveals that systemic damage to plasma membranes may be associated with potentially reversible MOF, which can be quickly recovered, if pathological stimuli are eliminated. Alternatively, it can be transformed in a non-resolving phase, if repair mechanisms are not sufficient to deal with a large damage or if the damage is extended to intracellular compartments essential for vital cellular functions.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, LBG, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Vienna, Austria.,Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, LBG, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Vienna, Austria.,Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
10
|
Shuker E, Farhood M, Al-Qudaihi G, Fouad D. Potential Effects of Boldine on Oxidative Stress, Apoptosis, and Inflammatory Changes Induced by the Methylprednisolone Hepatotoxicity in Male Wistar Rats. Dose Response 2022; 20:15593258221082877. [PMID: 35360456 PMCID: PMC8961387 DOI: 10.1177/15593258221082877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Synthetic glucocorticoid therapeutic agent methylprednisolone (MPL), when used for an extended period of time at high dose, promotes the development of reactive oxygen species (ROS)-induced liver toxicity. This study investigated the role of boldine, a natural antioxidant with anti-apoptotic and anti-inflammatory properties, against MPL-induced hepatoxicity in male Wistar rats. Methods 120 rats were divided into eight equal groups: G1 (control), G2, 3, and 4 (rats orally administered 5, 10, and 50 mg boldine/kg b.w./day; respectively, for 28 days), G5 (rats intramuscularly injected with 100 mg MPL/kg b.w. only on the last three days), G6, 7, and 8 (rats administered boldine + MPL). After the last MPL injection, rats were sacrificed at intervals of 1, 24, and 48 h. Results There was a significant decrease in WBCs, RBCs count, and HGB levels, as well as an increase in PLT count, ALT, AST, TG, and LDL levels, and a decrease in HDL level in serum. Oxidative stress markers levels increased at all times, and gene expression of antioxidant enzymes increased at 24h. Immunohistochemical analysis revealed that cytochrome c levels significantly increased after MPL treatment. The COMET assay revealed detectable DNA lesions. There was no immune reactivity of IL-6 expressions as an inflammatory response marker. Conclusions Oral administration of boldine has a modulatory protective, antioxidant, and anti-apoptotic effect against free radicals.
Collapse
Affiliation(s)
- Esraa Shuker
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal Farhood
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghofran Al-Qudaihi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, EinHelwan, Egypt
| |
Collapse
|
11
|
Systemic Effects of mitoTEMPO upon Lipopolysaccharide Challenge Are Due to Its Antioxidant Part, While Local Effects in the Lung Are Due to Triphenylphosphonium. Antioxidants (Basel) 2022; 11:antiox11020323. [PMID: 35204206 PMCID: PMC8868379 DOI: 10.3390/antiox11020323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 01/08/2023] Open
Abstract
Mitochondria-targeted antioxidants (mtAOX) are a promising treatment strategy against reactive oxygen species-induced damage. Reports about harmful effects of mtAOX lead to the question of whether these could be caused by the carrier molecule triphenylphosphonium (TPP). The aim of this study was to investigate the biological effects of the mtAOX mitoTEMPO, and TPP in a rat model of systemic inflammatory response. The inflammatory response was induced by lipopolysaccharide (LPS) injection. We show that mitoTEMPO reduced expression of inducible nitric oxide synthase in the liver, lowered blood levels of tissue damage markers such as liver damage markers (aspartate aminotransferase and alanine aminotransferase), kidney damage markers (urea and creatinine), and the general organ damage marker, lactate dehydrogenase. In contrast, TPP slightly, but not significantly, increased the LPS-induced effects. Surprisingly, both mitoTEMPO and TPP reduced the wet/dry ratio in the lung after 24 h. In the isolated lung, both substances enhanced the increase in pulmonary arterial pressure induced by LPS observed within 3 h after LPS treatments but did not affect edema formation at this time. Our data suggest that beneficial effects of mitoTEMPO in organs are due to its antioxidant moiety (TEMPO), except for the lung where its effects are mediated by TPP.
Collapse
|
12
|
Chernyak BV, Lyamzaev KG, Mulkidjanian AY. Innate Immunity as an Executor of the Programmed Death of Individual Organisms for the Benefit of the Entire Population. Int J Mol Sci 2021; 22:ijms222413480. [PMID: 34948277 PMCID: PMC8704876 DOI: 10.3390/ijms222413480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
In humans, over-activation of innate immunity in response to viral or bacterial infections often causes severe illness and death. Furthermore, similar mechanisms related to innate immunity can cause pathogenesis and death in sepsis, massive trauma (including surgery and burns), ischemia/reperfusion, some toxic lesions, and viral infections including COVID-19. Based on the reviewed observations, we suggest that such severe outcomes may be manifestations of a controlled suicidal strategy protecting the entire population from the spread of pathogens and from dangerous pathologies rather than an aberrant hyperstimulation of defense responses. We argue that innate immunity may be involved in the implementation of an altruistic programmed death of an organism aimed at increasing the well-being of the whole community. We discuss possible ways to suppress this atavistic program by interfering with innate immunity and suggest that combating this program should be a major goal of future medicine.
Collapse
Affiliation(s)
- Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Correspondence: (B.V.C.); (A.Y.M.)
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Armen Y. Mulkidjanian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Correspondence: (B.V.C.); (A.Y.M.)
| |
Collapse
|
13
|
Fock EM, Parnova RG. Protective Effect of Mitochondria-Targeted Antioxidants against Inflammatory Response to Lipopolysaccharide Challenge: A Review. Pharmaceutics 2021; 13:pharmaceutics13020144. [PMID: 33499252 PMCID: PMC7910823 DOI: 10.3390/pharmaceutics13020144] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is the most abundant proinflammatory agent. Considerable evidence indicates that LPS challenge inescapably causes oxidative stress and mitochondrial dysfunction, leading to cell and tissue damage. Increased mitochondrial reactive oxygen species (mtROS) generation triggered by LPS is known to play a key role in the progression of the inflammatory response. mtROS at excessive levels impair electron transport chain functioning, reduce the mitochondrial membrane potential, and initiate lipid peroxidation and oxidative damage of mitochondrial proteins and mtDNA. Over the past 20 years, a large number of mitochondria-targeted antioxidants (mito-AOX) of different structures that can accumulate inside mitochondria and scavenge free radicals have been synthesized. Their protective role based on the prevention of oxidative stress and the restoration of mitochondrial function has been demonstrated in a variety of common diseases and pathological states. This paper reviews the current data on the beneficial application of different mito-AOX in animal endotoxemia models, in either in vivo or in vitro experiments. The results presented in our review demonstrate the promising potential of approaches based on mito-AOX in the development of new treatment strategies against Gram-negative infections and LPS per se.
Collapse
|
14
|
Protective Effects of MitoTEMPO on Nonalcoholic Fatty Liver Disease via Regulating Myeloid-Derived Suppressor Cells and Inflammation in Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9329427. [PMID: 32802885 PMCID: PMC7414374 DOI: 10.1155/2020/9329427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
MitoTEMPO, a mitochondrial antioxidant, has protective effects on liver-related diseases. However, the role of MitoTEMPO on nonalcoholic fatty liver disease (NAFLD) and its possible mechanisms are largely unknown. Here, we investigated the effects of MitoTEMPO on NAFLD using high fat diet- (HFD-) induced obese mice as animal models. MitoTEMPO was intraperitoneally injected into HFD mice. Liver morphological changes were observed by H&E and Oil Red O staining, and the frequency of MDSCs in peripheral blood was analyzed by flow cytometry. Moreover, real-time quantitative PCR, western blot, and immunohistochemistry were conducted to detect the mRNA and protein expressions in the liver tissues. The results showed that the hepatic steatosis in liver tissues of HFD mice injected with MitoTEMPO was significantly ameliorated. Additionally, MitoTEMPO reduced the frequency of CD11b+Gr-1+ MDSCs in peripheral circulation and decreased Gr-1+ cell accumulation in the livers. Further studies demonstrated that MitoTEMPO administration suppressed the mRNA and protein expressions of MDSC-associated proinflammatory mediators, such as monocyte chemoattractant protein-1 (MCP-1), S100 calcium-binding protein A8 (S100A8), and S100 calcium-binding protein A9 (S100A9). Our results suggest that MitoTEMPO appears to be a potential chemical compound affecting certain immune cells and further ameliorates inflammation in obese-associated NAFLD.
Collapse
|
15
|
Sukhorukov VN, Khotina VA, Bagheri Ekta M, Ivanova EA, Sobenin IA, Orekhov AN. Endoplasmic Reticulum Stress in Macrophages: The Vicious Circle of Lipid Accumulation and Pro-Inflammatory Response. Biomedicines 2020; 8:biomedicines8070210. [PMID: 32668733 PMCID: PMC7400097 DOI: 10.3390/biomedicines8070210] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023] Open
Abstract
The endoplasmic reticulum (ER) stress is an important event in the pathogenesis of different human disorders, including atherosclerosis. ER stress leads to disturbance of cellular homeostasis, apoptosis, and in the case of macrophages, to foam cell formation and pro-inflammatory cytokines production. In atherosclerosis, several cell types can be affected by ER stress, including endothelial cells, vascular smooth muscular cells, and macrophages. Modified low-density lipoproteins (LDL) and cytokines, in turn, can provoke ER stress through different processes. The signaling cascades involved in ER stress initiation are complex and linked to other cellular processes, such as lysosomal biogenesis and functioning, autophagy, mitochondrial homeostasis, and energy production. In this review, we discuss the underlying mechanisms of ER stress formation and the interplay of lipid accumulation and pro-inflammatory response. We will specifically focus on macrophages, which are the key players in maintaining chronic inflammatory milieu in atherosclerotic lesions, and also a major source of lipid-accumulating foam cells.
Collapse
Affiliation(s)
- Vasily N. Sukhorukov
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
- Correspondence: (V.N.S.); (E.A.I.)
| | - Victoria A. Khotina
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | - Mariam Bagheri Ekta
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
| | - Ekaterina A. Ivanova
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (V.N.S.); (E.A.I.)
| | - Igor A. Sobenin
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Institute of Experimental Cardiology, 15-a 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Alexander N. Orekhov
- Research Institute of Human Morphology, Laboratory of Cellular and Molecular Pathology of Cardiovascular System, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (M.B.E.); (I.A.S.); (A.N.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| |
Collapse
|
16
|
Zinovkin RA, Zamyatnin AA. Mitochondria-Targeted Drugs. Curr Mol Pharmacol 2020; 12:202-214. [PMID: 30479224 PMCID: PMC6875871 DOI: 10.2174/1874467212666181127151059] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/05/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023]
Abstract
Background: Targeting of drugs to the subcellular compartments represents one of the modern trends in molecular pharmacology. The approach for targeting mitochondria was developed nearly 50 years ago, but only in the last decade has it started to become widely used for delivering drugs. A number of pathologies are associated with mitochondrial dysfunction, including cardiovascular, neurological, inflammatory and metabolic conditions. Objective: This mini-review aims to highlight the role of mitochondria in pathophysiological conditions and diseases, to classify and summarize our knowledge about targeting mitochondria and to review the most important preclinical and clinical data relating to the antioxidant lipophilic cations MitoQ and SkQ1. Methods: This is a review of available information in the PubMed and Clinical Trials databases (US National Library of Medicine) with no limiting period. Results and Conclusion: Mitochondria play an important role in the pathogenesis of many diseases and possibly in aging. Both MitoQ and SkQ1 have shown many beneficial features in animal models and in a few completed clinical trials. More clinical trials and research efforts are needed to understand the signaling pathways influenced by these compounds. The antioxidant lipophilic cations have great potential for the treatment of a wide range of pathologies.
Collapse
Affiliation(s)
- Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Institute of Mitoengineering, Moscow State University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russian Federation.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
17
|
Cannabidiol Protects Dopaminergic Neurons in Mesencephalic Cultures against the Complex I Inhibitor Rotenone Via Modulation of Heme Oxygenase Activity and Bilirubin. Antioxidants (Basel) 2020; 9:antiox9020135. [PMID: 32033040 PMCID: PMC7070382 DOI: 10.3390/antiox9020135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Phytocannabinoids protect neurons against stressful conditions, possibly via the heme oxygenase (HO) system. In cultures of primary mesencephalic neurons and neuroblastoma cells, we determined the capability of cannabidiol (CBD) and tetrahydrocannabinol (THC) to counteract effects elicited by complex I-inhibitor rotenone by analyzing neuron viability, morphology, gene expression of IL6, CHOP, XBP1, HO-1 (stress response), and HO-2, and in vitro HO activity. Incubation with rotenone led to a moderate stress response but massive degeneration of dopaminergic neurons (DN) in primary mesencephalic cultures. Both phytocannabinoids inhibited in-vitro HO activity, with CBD being more potent. Inhibition of the enzyme reaction was not restricted to neuronal cells and occurred in a non-competitive manner. Although CBD itself decreased viability of the DNs (from 100% to 78%), in combination with rotenone, it moderately increased survival from 28.6% to 42.4%. When the heme degradation product bilirubin (BR) was added together with CBD, rotenone-mediated degeneration of DN was completely abolished, resulting in approximately the number of DN determined with CBD alone (77.5%). Using N18TG2 neuroblastoma cells, we explored the neuroprotective mechanism underlying the combined action of CBD and BR. CBD triggered the expression of HO-1 and other cell stress markers. Co-treatment with rotenone resulted in the super-induction of HO-1 and an increased in-vitro HO-activity. Co-application of BR completely mitigated the rotenone-induced stress response. Our findings indicate that CBD induces HO-1 and increases the cellular capacity to convert heme when stressful conditions are met. Our data further suggest that CBD via HO may confer full protection against (oxidative) stress when endogenous levels of BR are sufficiently high.
Collapse
|
18
|
Anavi S, Tirosh O. iNOS as a metabolic enzyme under stress conditions. Free Radic Biol Med 2020; 146:16-35. [PMID: 31672462 DOI: 10.1016/j.freeradbiomed.2019.10.411] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Nitric oxide (NO) is a free radical acting as a cellular signaling molecule in many different biochemical processes. NO is synthesized from l-arginine through the action of the nitric oxide synthase (NOS) family of enzymes, which includes three isoforms: endothelial NOS (eNOS), neuronal NOS (nNOS) and inducible NOS (iNOS). iNOS-derived NO has been associated with the pathogenesis and progression of several diseases, including liver diseases, insulin resistance, obesity and diseases of the cardiovascular system. However, transient NO production can modulate metabolism to survive and cope with stress conditions. Accumulating evidence strongly imply that iNOS-derived NO plays a central role in the regulation of several biochemical pathways and energy metabolism including glucose and lipid metabolism during inflammatory conditions. This review summarizes current evidence for the regulation of glucose and lipid metabolism by iNOS during inflammation, and argues for the role of iNOS as a metabolic enzyme in immune and non-immune cells.
Collapse
Affiliation(s)
- Sarit Anavi
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel; Peres Academic Center, Rehovot, Israel
| | - Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
19
|
Sun Q, Sha W, Liu HP, Wang P, Liu ZB, Sun WW, Xiao HP. Genetic Polymorphisms in Antioxidant Enzymes Modulate the Susceptibility of Idiosyncratic Antituberculous Drug-Induced Liver Injury and Treatment Outcomes in Patients with Tuberculosis. Pharmacotherapy 2019; 40:4-16. [PMID: 31742742 DOI: 10.1002/phar.2349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The pathogenic mechanism of antituberculous drug-induced liver injury (ATDILI) is associated with antioxidant enzymes. The objective of the present study was to investigate the associations of ATDILI susceptibility with genetic polymorphisms of antioxidant enzyme genes including nitric oxide synthase 2 (NOS2), thioredoxin reductase 1 (TXNRD1), superoxide dismutase 2 (SOD2), BTB domain and CNC homolog 1 (BACH1), and MAF bZIP transcription factor K (MAFK). METHODS Thirty tag single nucleotide polymorphisms (tag-SNPs) from the all candidate genes were genotyped in a 2-stage cohort study including an initial discovery stage with 461 ATDILI patients and 466 controls and a replication stage with 216 ATDILI patients and 432 controls. The frequencies and distributions of genotypes and haplotypes were compared between the case and control groups. Three different genetic models including dominant, recessive, and additive models were used to determine the associations with susceptibility to ATDILI. RESULTS The SNPs rs9906835, rs944725, and rs3794764 of the NOS2 gene were significantly associated with an increased risk of ATDILI. The MAFK rs3735656 SNP was significantly associated with a decreased risk for ATDILI. The AAA haplotype of the NOS2 gene was associated with susceptibility to ATDILI. The treatment outcomes of patients with tuberculosis were further affected by genetic variants of the NOS2 and MAFK genes. CONCLUSIONS Genetic polymorphisms of NOS2 and MAFK are associated with ATDILI susceptibility in Chinese patients with tuberculosis. The variants in NOS2 and MAFK affect treatment outcomes of tuberculosis patients. Further studies are needed to better understand the molecular mechanisms of ATDILI susceptibility via regulation of the expression of ATDILI-susceptibility genes and proteins.
Collapse
Affiliation(s)
- Qin Sun
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Sha
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hai-Peng Liu
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Wang
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhi-Bin Liu
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Wen Sun
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - He-Ping Xiao
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Duvigneau JC, Luís A, Gorman AM, Samali A, Kaltenecker D, Moriggl R, Kozlov AV. Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases. Cytokine 2019; 124:154577. [DOI: 10.1016/j.cyto.2018.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
21
|
Mayorov V, Uchakin P, Amarnath V, Panov AV, Bridges CC, Uzhachenko R, Zackert B, Moore CS, Davies S, Dikalova A, Dikalov S. Targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammation. Redox Biol 2019; 26:101300. [PMID: 31437812 PMCID: PMC6831880 DOI: 10.1016/j.redox.2019.101300] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/09/2023] Open
Abstract
Inflammation is a major cause of morbidity and mortality in Western societies. Despite use of multiple drugs, both chronic and acute inflammation still represent major health burdens. Inflammation produces highly reactive dicarbonyl lipid peroxidation products such as isolevuglandins which covalently modify and cross-link proteins via lysine residues. Mitochondrial dysfunction has been associated with inflammation; however, its molecular mechanisms and pathophysiological role are still obscure. We hypothesized that inflammation-induced isolevuglandins contribute to mitochondrial dysfunction and mortality. To test this hypothesis, we have (a) investigated the mitochondrial dysfunction in response to synthetic 15-E2-isolevuglandin (IsoLG) and its adducts; (b) developed a new mitochondria-targeted scavenger of isolevuglandins by conjugating 2-hydroxybenzylamine to the lipophilic cation triphenylphosphonium, (4-(4-aminomethyl)-3-hydroxyphenoxy)butyl)-triphenylphosphonium (mito2HOBA); (c) tested if mito2HOBA protects from mitochondrial dysfunction and mortality using a lipopolysaccharide model of inflammation. Acute exposure to either IsoLG or IsoLG adducts with lysine, ethanolamine or phosphatidylethanolamine inhibits mitochondrial respiration and attenuates Complex I activity. Complex II function was much more resistant to IsoLG. We confirmed that mito2HOBA markedly accumulates in isolated mitochondria and it is highly reactive with IsoLGs. To test the role of mitochondrial IsoLGs, we studied the therapeutic potential of mito2HOBA in lipopolysaccharide mouse model of sepsis. Mito2HOBA supplementation in drinking water (0.1 g/L) to lipopolysaccharide treated mice increased survival by 3-fold, improved complex I-mediated respiration, and histopathological analyses supported mito2HOBA-mediated protection of renal cortex from cell injury. These data support the role of mitochondrial IsoLG in mitochondrial dysfunction and inflammation. We conclude that reducing mitochondrial IsoLGs may be a promising therapeutic target in inflammation and conditions associated with mitochondrial oxidative stress and dysfunction.
Collapse
Affiliation(s)
| | - Peter Uchakin
- Mercer University School of Medicine, Macon, GA, USA
| | | | - Alexander V Panov
- Institute of Molecular Biology & Biophysics, Novosibirsk, Russian Federation
| | | | | | - Bill Zackert
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Sean Davies
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna Dikalova
- Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sergey Dikalov
- Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
22
|
Banerjee A, Lindenmair A, Hennerbichler S, Steindorf P, Steinborn R, Kozlov AV, Redl H, Wolbank S, Weidinger A. Cellular and Site-Specific Mitochondrial Characterization of Vital Human Amniotic Membrane. Cell Transplant 2019; 27:3-11. [PMID: 29562784 PMCID: PMC6434485 DOI: 10.1177/0963689717735332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Over a century ago, clinicians started to use the human amniotic membrane for coverage of wounds and burn injuries. To date, literally thousands of different clinical applications exist for this biomaterial almost exclusively in a decellularized or denuded form. Recent reconsiderations for the use of vital human amniotic membrane for clinical applications would take advantage of the versatile cells of embryonic origin including the entirety of their cell organelles. Recently, more and more evidence was found, showing mitochondria to be involved in most fundamental cellular processes, such as differentiation and cell death. In this study, we focused on specific properties of mitochondria of vital human amniotic membrane and characterized bioenergetical parameters of 2 subregions of the human amniotic membrane, the placental and reflected amnion. We found significantly different levels of adenosine triphosphate (ATP) and extracellular reactive oxygen species, concentrations of succinate dehydrogenase, and lactate upon inhibition of ATP synthase in placental and reflected amnion. We also found significantly different rates of mitochondrial respiration in isolated human amniotic epithelial cells and human amniotic mesenchymal stromal cells, according to the subregions. Differences in metabolic activities were inversely related to mitochondrial DNA copy numbers in isolated cells of placental and reflected amnion. Based on significant differences of several key parameters of energy metabolism in 2 subregions of vital amnion, we propose that these metabolic differences of vital placental and reflected amnion could have critical impact on therapeutic applications. Inclusion of region-specific metabolic properties could optimize and fine-tune the clinical application of the human amniotic membrane and improve the outcome significantly.
Collapse
Affiliation(s)
- Asmita Banerjee
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andrea Lindenmair
- 2 Austrian Cluster for Tissue Regeneration, Vienna, Austria.,3 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA, Linz, Austria
| | - Simone Hennerbichler
- 2 Austrian Cluster for Tissue Regeneration, Vienna, Austria.,4 Red Cross Blood Transfusion Service for Upper Austria, Linz, Austria
| | - Philipp Steindorf
- 5 Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | - Ralf Steinborn
- 5 Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | - Andrey V Kozlov
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Adelheid Weidinger
- 1 Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria.,2 Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
23
|
Kakimoto PA, Chausse B, Caldeira da Silva CC, Donato Júnior J, Kowaltowski AJ. Resilient hepatic mitochondrial function and lack of iNOS dependence in diet-induced insulin resistance. PLoS One 2019; 14:e0211733. [PMID: 30716103 PMCID: PMC6361450 DOI: 10.1371/journal.pone.0211733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity-derived inflammation and metabolic dysfunction has been related to the activity of the inducible nitric oxide synthase (iNOS). To understand the interrelation between metabolism, obesity and NO., we evaluated the effects of obesity-induced NO. signaling on liver mitochondrial function. We used mouse strains containing mitochondrial nicotinamide transhydrogenase activity, while prior studies involved a spontaneous mutant of this enzyme, and are, therefore, more prone to oxidative imbalance. Wild-type and iNOS knockout mice were fed a high fat diet for 2, 4 or 8 weeks. iNOS knockout did not protect against diet-induced metabolic changes. However, the diet decreased fatty-acid oxidation capacity in liver mitochondria at 4 weeks in both wild-type and knockout groups; this was recovered at 8 weeks. Interestingly, other mitochondrial functional parameters were unchanged, despite significant modifications in insulin resistance in wild type and iNOS knockout animals. Overall, we found two surprising features of obesity-induced metabolic dysfunction: (i) iNOS does not have an essential role in obesity-induced insulin resistance under all experimental conditions and (ii) liver mitochondria are resilient to functional changes in obesity-induced metabolic dysfunction.
Collapse
Affiliation(s)
- Pamela A. Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| | - Bruno Chausse
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - José Donato Júnior
- Departamento de Fisiologia e Biofísica, Instituto de Ciência Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alicia J. Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Herminghaus A, Papenbrock H, Eberhardt R, Vollmer C, Truse R, Schulz J, Bauer I, Weidinger A, Kozlov AV, Stiban J, Picker O. Time-related changes in hepatic and colonic mitochondrial oxygen consumption after abdominal infection in rats. Intensive Care Med Exp 2019; 7:4. [PMID: 30623256 PMCID: PMC6325055 DOI: 10.1186/s40635-018-0219-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/25/2018] [Indexed: 11/18/2022] Open
Abstract
Background Evidence suggests that early adaptive responses of hepatic mitochondria occur in experimentally induced sepsis. Little is known about both colonic mitochondrial function during abdominal infection and long-term changes in mitochondrial function under inflammatory conditions. We hypothesize that hepatic and colonic mitochondrial oxygen consumption changes time-dependently after sterile laparotomy and in the course of abdominal infection. The aim of the present study was to investigate the hepatic and colonic mitochondrial respiration after sterile laparotomy and abdominal infection over up to 96 h. Methods After approval of the local Animal Care and Use Committee, 95 Wistar rats were randomized into 8 groups (n = 11–12): 1–4 sham (laparotomy only) and 5–8 colon ascendens stent peritonitis (CASP). Healthy, unoperated animals served as controls (n = 9). The mitochondrial respiration in colon and liver homogenates was assessed 24, 48, 72, and 96 h after surgery. Mitochondrial oxygen consumption was determined using a Clark-type electrode. State 2 (oxygen consumption in the presence of the substrates for complexes I and II) and state 3 respiration (ADP dependent) were assessed. The respiratory control ratio (RCR state 3/state 2) and ADP/O ratio (ADP added/oxygen consumed) were calculated for both complexes. Data are presented as means ± SD, two-way ANOVA followed by Tukey’s post hoc test. Results Hepatic RCR was initially (after 24 h) elevated in both operated groups; after 48 h only, the septic group was elevated compared to controls. In CASP groups, the hepatic ADP/O ratio for complex I was elevated after 24 h (vs. controls) and after 48 h (vs. sham) but declined after 72 h (vs. controls). The ADP/O ratio for complex II stayed unchanged over the time period until 96 h. The colonic RCR and ADP/O did not change over time after sham or CASP operation. Conclusion Hepatic, but not colonic, mitochondrial respiration is increased in the initial phase (until 48 h) and normalizes in the longer course of time (until 96 h) of abdominal infection. Electronic supplementary material The online version of this article (10.1186/s40635-018-0219-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Henrike Papenbrock
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Rebecca Eberhardt
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Christian Vollmer
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Richard Truse
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Jan Schulz
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200, Wien, Austria
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200, Wien, Austria
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, Birzeit, Ramallah, Palestine
| | - Olaf Picker
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
25
|
Banerjee A, Lindenmair A, Steinborn R, Dumitrescu SD, Hennerbichler S, Kozlov AV, Redl H, Wolbank S, Weidinger A. Oxygen Tension Strongly Influences Metabolic Parameters and the Release of Interleukin-6 of Human Amniotic Mesenchymal Stromal Cells In Vitro. Stem Cells Int 2018; 2018:9502451. [PMID: 30510589 PMCID: PMC6230389 DOI: 10.1155/2018/9502451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/18/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022] Open
Abstract
The human amniotic membrane (hAM) has been used for tissue regeneration for over a century. In vivo (in utero), cells of the hAM are exposed to low oxygen tension (1-4% oxygen), while the hAM is usually cultured in atmospheric, meaning high, oxygen tension (20% oxygen). We tested the influence of oxygen tensions on mitochondrial and inflammatory parameters of human amniotic mesenchymal stromal cells (hAMSCs). Freshly isolated hAMSCs were incubated for 4 days at 5% and 20% oxygen. We found 20% oxygen to strongly increase mitochondrial oxidative phosphorylation, especially in placental amniotic cells. Oxygen tension did not impact levels of reactive oxygen species (ROS); however, placental amniotic cells showed lower levels of ROS, independent of oxygen tension. In contrast, the release of nitric oxide was independent of the amniotic region but dependent on oxygen tension. Furthermore, IL-6 was significantly increased at 20% oxygen. To conclude, short-time cultivation at 20% oxygen of freshly isolated hAMSCs induced significant changes in mitochondrial function and release of IL-6. Depending on the therapeutic purpose, cultivation conditions of the cells should be chosen carefully for providing the best possible quality of cell therapy.
Collapse
Affiliation(s)
- Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andrea Lindenmair
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Garnisonstraße 21, 4020 Linz, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Sergiu Dan Dumitrescu
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Simone Hennerbichler
- Red Cross Blood Transfusion Service for Upper Austria, Krankenhausstraße 7, 4017 Linz, Austria
| | - Andrey V. Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
26
|
Liao Q, Li S, Siu SWI, Morlighem JÉRL, Wong CTT, Wang X, Rádis-Baptista G, Lee SMY. Novel neurotoxic peptides from Protopalythoa variabilis virtually interact with voltage-gated sodium channel and display anti-epilepsy and neuroprotective activities in zebrafish. Arch Toxicol 2018; 93:189-206. [DOI: 10.1007/s00204-018-2334-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
|
27
|
Mkrtchyan GV, Üçal M, Müllebner A, Dumitrescu S, Kames M, Moldzio R, Molcanyi M, Schaefer S, Weidinger A, Schaefer U, Hescheler J, Duvigneau JC, Redl H, Bunik VI, Kozlov AV. Thiamine preserves mitochondrial function in a rat model of traumatic brain injury, preventing inactivation of the 2-oxoglutarate dehydrogenase complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:925-931. [DOI: 10.1016/j.bbabio.2018.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023]
|
28
|
Müllebner A, Dorighello GG, Kozlov AV, Duvigneau JC. Interaction between Mitochondrial Reactive Oxygen Species, Heme Oxygenase, and Nitric Oxide Synthase Stimulates Phagocytosis in Macrophages. Front Med (Lausanne) 2018; 4:252. [PMID: 29404326 PMCID: PMC5786743 DOI: 10.3389/fmed.2017.00252] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Background Macrophages are cells of the innate immune system that populate every organ. They are required not only for defense against invading pathogens and tissue repair but also for maintenance of tissue homeostasis and iron homeostasis. Aim The aim of this study is to understand whether heme oxygenase (HO) and nitric oxide synthase (NOS) contribute to the regulation of nicotinamide adenine dinucleotide phosphate oxidase (NOX) activity and phagocytosis, two key components of macrophage function. Methods This study was carried out using resting J774A.1 macrophages treated with hemin or vehicle. Activity of NOS, HO, or NOX was inhibited using specific inhibitors. Reactive oxygen species (ROS) formation was determined by Amplex® red assay, and phagocytosis was measured using fluorescein isothiocyanate-labeled bacteria. In addition, we analyzed the fate of the intracellular heme by using electron spin resonance. Results We show that both enzymes NOS and HO are essential for phagocytic activity of macrophages. NOS does not directly affect phagocytosis, but stimulates NOX activity via nitric oxide-triggered ROS production of mitochondria. Treatment of macrophages with hemin results in intracellular accumulation of ferrous heme and an inhibition of phagocytosis. In contrast to NOS, HO products, including carbon monoxide, neither clearly affect NOX activity nor clearly affect phagocytosis, but phagocytosis is accelerated by HO-mediated degradation of heme. Conclusion Both enzymes contribute to the bactericidal activity of macrophages independently, by controlling different pathways.
Collapse
Affiliation(s)
- Andrea Müllebner
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Gabriel G Dorighello
- Department of Structural and Functional Biology, Biology Institute, University of Campinas, Campinas, Brazil
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - J Catharina Duvigneau
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
29
|
Duvigneau JC, Kozlov AV. Pathological Impact of the Interaction of NO and CO with Mitochondria in Critical Care Diseases. Front Med (Lausanne) 2017; 4:223. [PMID: 29312941 PMCID: PMC5743798 DOI: 10.3389/fmed.2017.00223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
The outcome of patients with critical care diseases (CCD) such as sepsis, hemorrhagic shock, or trauma is often associated with mitochondrial dysfunction. In turn, mitochondrial dysfunction is frequently induced upon interaction with nitric oxide (NO) and carbon monoxide (CO), two gaseous messengers formed in the body by NO synthase (NOS) and heme oxygenase (HO), respectively. Both, NOS and HO are upregulated in the majority of CCD. A multitude of factors that are associated with the pathology of CCD exert a potential to interfere with mitochondrial function or the effects of the gaseous messengers. From these, four major factors can be identified that directly influence the effects of NO and CO on mitochondria and which are defined by (i) local concentration of NO and/or CO, (ii) tissue oxygenation, (iii) redox status of cells in terms of facilitating or inhibiting reactive oxygen species formation, and (iv) the degree of tissue acidosis. The combination of these four factors in specific pathological situations defines whether effects of NO and CO are beneficial or deleterious.
Collapse
Affiliation(s)
- J Catharina Duvigneau
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
30
|
Stefanova NA, Muraleva NA, Maksimova KY, Rudnitskaya EA, Kiseleva E, Telegina DV, Kolosova NG. An antioxidant specifically targeting mitochondria delays progression of Alzheimer's disease-like pathology. Aging (Albany NY) 2017; 8:2713-2733. [PMID: 27750209 PMCID: PMC5191865 DOI: 10.18632/aging.101054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/18/2016] [Indexed: 12/29/2022]
Abstract
Mitochondrial aberrations are observed in human Alzheimer's disease (AD) and in medical conditions that increase the risk of this disorder, suggesting that mitochondrial dysfunction may contribute to pathophysiology of AD. Here, using OXYS rats that simulate key characteristics of sporadic AD, we set out to determine the role of mitochondria in the pathophysiology of this disorder. OXYS rats were treated with a mitochondria-targeted antioxidant SkQ1 from age 12 to 18 months, that is, during active progression of AD-like pathology in these animals. Dietary supplementation with SkQ1 caused this compound to accumulate in various brain regions, and it was localized mostly to neuronal mitochondria. Via improvement of structural and functional state of mitochondria, treatment with SkQ1 alleviated the structural neurodegenerative alterations, prevented the neuronal loss and synaptic damage, increased the levels of synaptic proteins, enhanced neurotrophic supply, and decreased amyloid-β1-42 protein levels and tau hyperphosphorylation in the hippocampus of OXYS rats, resulting in improvement of the learning ability and memory. Collectively, these data support that mitochondrial dysfunction may play a key role in the pathophysiology of AD and that therapies with target mitochondria are potent to normalize a wide range of cellular signaling processes and therefore slow the progression of AD.
Collapse
Affiliation(s)
| | | | | | | | - Elena Kiseleva
- Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia
| | - Darya V Telegina
- Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics SB RAS, 630090, Novosibirsk, Russia.,Novosibirsk State University, 630090, Novosibirsk, Russia
| |
Collapse
|
31
|
Jin L, Gao H, Wang J, Yang S, Wang J, Liu J, Yang Y, Yan T, Chen T, Zhao Y, He Y. Role and regulation of autophagy and apoptosis by nitric oxide in hepatic stellate cells during acute liver failure. Liver Int 2017; 37:1651-1659. [PMID: 28508586 DOI: 10.1111/liv.13476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 05/08/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS We previously found that hepatic stellate cell activation induced by autophagy maintains the liver architecture to prevent collapse during acute liver failure. Nitric oxide has shown to induce hepatic stellate cell apoptosis. Whether and how nitric oxide is involved in acute liver failure and autophagy remains unclear. METHODS Acute liver failure patients were recruited to investigate the correlation between plasma nitric oxide levels and clinical features. Liver tissues were collected from chronic hepatitis patients by biopsy and from acute liver failure patients who had undergone liver transplantation. The expression of nitric oxide synthases and hepatic stellate cell activation (alpha-SMA), and autophagic activity (LC3) were investigated by immunohistochemistry. Autophagy and apoptosis were investigated by immunoblot analysis, confocal microscopy, and flow cytometry in hepatic stellate cells treated with nitric oxide donors. RESULTS Plasma nitric oxide level was significantly increased in patients with acute liver failure compared to those with cirrhosis (53.60±19.74 μM vs 19.40±9.03 μM, Z=-7.384, P<.001) and positively correlated with MELD-Na score (r=.539, P<.001), implicating nitric oxide in acute liver failure. At least some Nitric oxide was produced by overexpression of inducible nitric oxide synthases and endothelial nitric oxide synthases, but not neuronal nitric oxide synthases in the liver tissue. In vivo observation revealed that autophagy was inhibited in hepatic stellate cells based on decreased LC3 immunostaining, and in vitro experiments demonstrated that Nitric oxide can inhibit autophagy. Moreover, nitric oxide promoted hepatic stellate cell apoptosis, which was rescued by an autophagy inducer. CONCLUSIONS Increased nitric oxide synthases/ nitric oxide promotes apoptosis through autophagy inhibition in hepatic stellate cells during acute liver failure, providing a novel strategy for the treatment of patients with acute liver failure.
Collapse
Affiliation(s)
- Li Jin
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - Heng Gao
- Xi'an Health School, Xi'an City, Shaanxi province, China
| | - JiuPing Wang
- Centre of Liver Diseases, Fourth Military Medical University, First Affiliated Teaching Hospital, Xi'an City, Shaanxi, China
| | - ShuJuan Yang
- Xi'an Eighth Hospital Affiliated to Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - Jing Wang
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - JingFeng Liu
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China.,Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - Yuan Yang
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China.,Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - TaoTao Yan
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China.,Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - Tianyan Chen
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China.,Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - Yingren Zhao
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China.,Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| | - Yingli He
- Institution of Hepatology, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China.,Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an City, Shaanxi province, China
| |
Collapse
|
32
|
Mitochondria-Targeted Antioxidants SkQ1 and MitoTEMPO Failed to Exert a Long-Term Beneficial Effect in Murine Polymicrobial Sepsis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6412682. [PMID: 29104729 PMCID: PMC5625755 DOI: 10.1155/2017/6412682] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/22/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022]
Abstract
Mitochondrial-derived reactive oxygen species have been deemed an important contributor in sepsis pathogenesis. We investigated whether two mitochondria-targeted antioxidants (mtAOX; SkQ1 and MitoTEMPO) improved long-term outcome, lessened inflammation, and improved organ homeostasis in polymicrobial murine sepsis. 3-month-old female CD-1 mice (n = 90) underwent cecal ligation and puncture (CLP) and received SkQ1 (5 nmol/kg), MitoTEMPO (50 nmol/kg), or vehicle 5 times post-CLP. Separately, 52 SkQ1-treated CLP mice were sacrificed at 24 h and 48 h for additional endpoints. Neither MitoTEMPO nor SkQ1 exerted any protracted survival benefit. Conversely, SkQ1 exacerbated 28-day mortality by 29%. CLP induced release of 10 circulating cytokines, increased urea, ALT, and LDH, and decreased glucose but irrespectively of treatment. Similar occurred for CLP-induced lymphopenia/neutrophilia and the NO blood release. At 48 h post-CLP, dying mice had approximately 100-fold more CFUs in the spleen than survivors, but this was not SkQ1 related. At 48 h, macrophage and granulocyte counts increased in the peritoneal lavage but irrespectively of SkQ1. Similarly, hepatic mitophagy was not altered by SkQ1 at 24 h. The absence of survival benefit of mtAOX may be due to the extended treatment and/or a relatively moderate-risk-of-death CLP cohort. Long-term effect of mtAOX in abdominal sepsis appears different to sepsis/inflammation models arising from other body compartments.
Collapse
|
33
|
Kozlov AV, Lancaster JR, Meszaros AT, Weidinger A. Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol 2017; 13:170-181. [PMID: 28578275 PMCID: PMC5458092 DOI: 10.1016/j.redox.2017.05.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023] Open
Abstract
Liver failure induced by systemic inflammatory response (SIRS) is often associated with mitochondrial dysfunction but the mechanism linking SIRS and mitochondria-mediated liver failure is still a matter of discussion. Current hypotheses suggest that causative events could be a drop in ATP synthesis, opening of mitochondrial permeability transition pore, specific changes in mitochondrial morphology, impaired Ca2+ uptake, generation of mitochondrial reactive oxygen species (mtROS), turnover of mitochondria and imbalance in electron supply to the respiratory chain. The aim of this review is to critically analyze existing hypotheses, in order to highlight the most promising research lines helping to prevent liver failure induced by SIRS. Evaluation of the literature shows that there is no consistent support that impaired Ca++ metabolism, electron transport chain function and ultrastructure of mitochondria substantially contribute to liver failure. Moreover, our analysis suggests that the drop in ATP levels has protective rather than a deleterious character. Recent data suggest that the most critical mitochondrial event occurring upon SIRS is the release of mtROS in cytoplasm, which can activate two specific intracellular signaling cascades. The first is the mtROS-mediated activation of NADPH-oxidase in liver macrophages and endothelial cells; the second is the acceleration of the expression of inflammatory genes in hepatocytes. The signaling action of mtROS is strictly controlled in mitochondria at three points, (i) at the site of ROS generation at complex I, (ii) the site of mtROS release in cytoplasm via permeability transition pore, and (iii) interaction with specific kinases in cytoplasm. The systems controlling mtROS-signaling include pro- and anti-inflammatory mediators, nitric oxide, Ca2+ and NADPH-oxidase. Analysis of the literature suggests that further research should be focused on the impact of mtROS on organ failure induced by inflammation and simultaneously providing a new theoretical basis for a targeted therapy of overwhelmed inflammatory response. Relationship between mitochondrial dysfunction and high lethality upon sepsis. Criteria to define critical for lethality mitochondrial dysfunction. ATP, calcium, mitochondrial ultrastructure and apoptosis, upon inflammation. Regulation of inflammatory processes by mitochondrial ROS.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingen Str. 13, 1200 Vienna, Austria.
| | - Jack R Lancaster
- University of Pittsburgh, Departments of Pharmacology & Chemical Biology, Surgery, and Medicine, 1341A Thomas E. Starzl Biomedical Science Tower, PA 15261, United States
| | - Andras T Meszaros
- University of Szeged, Institute of Surgical Research, 6720 Szeged, Hungary
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingen Str. 13, 1200 Vienna, Austria
| |
Collapse
|
34
|
Ding Z, Liu S, Wang X, Mathur P, Dai Y, Theus S, Deng X, Fan Y, Mehta JL. Cross-Talk Between PCSK9 and Damaged mtDNA in Vascular Smooth Muscle Cells: Role in Apoptosis. Antioxid Redox Signal 2016; 25:997-1008. [PMID: 27197615 DOI: 10.1089/ars.2016.6631] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS The present study was designed to investigate a possible interaction between vascular smooth muscle cell (SMC)-derived proprotein convertase subtilisin/kexin type 9 (PCSK9) and mitochondrial DNA (mtDNA) damage. RESULTS Treatment of cultured SMCs with the proinflammatory stimulus lipopolysaccharide (LPS) stimulated PCSK9 release and induced mtDNA damage. PCSK9 inhibition by its siRNA reduced, and its enhancement increased, mtDNA damage. Induction of mitochondria-derived reactive oxygen species (mtROS) (by rotenone, thenoyltrifluoroacetone, or antimycin A) enhanced mtDNA damage as well as PCSK9 release, suggesting a role of mtROS in PCSK9-mtDNA damage interplay. Induction of mtDNA damage (with the autophagy inhibitor, 3-methyladenine, or DNase II inhibition) enhanced PCSK9 expression, and inhibition of mtDNA damage (with the autophagy inducer, rapamycin) reduced PCSK9 expression, indicating bidirectional interplay between PCSK9 and mtDNA damage. Other studies showed that p38 MAPK is involved in PCSK9-induced mtDNA damage, and mammalian target of rapamycin activation plays a role in mtDNA damage-induced PCSK9 release. Functional impact of PCSK9-mtDNA damage cross-talk was evident in the form of SMC apoptosis, which was enhanced in cells treated with recombinant human PCSK9, but inhibited in cells treated with PCSK9 siRNA. Last, LPS administration in wild-type mice resulted in simultaneous PCSK9 release and mtDNA damage, but mtDNA damage was minimal in PCSK9-null mice given LPS. INNOVATION Vascular SMC-derived PCSK9 induces mtDNA damage, and damaged mtDNA fragments stimulate PCSK9 release mediated, at least in part, by mtROS. CONCLUSIONS These observations suggest positive feedback interplay between SMC-derived PCSK9 and mtDNA damage in the proinflammatory milieu involving mtROS. This interaction results in cellular injury, characterized by apoptosis-a hallmark of atherosclerosis. Antioxid. Redox Signal. 25, 997-1008.
Collapse
Affiliation(s)
- Zufeng Ding
- 1 Central Arkansas Veterans Healthcare System, The University of Arkansas for Medical Sciences , Little Rock, Arkansas.,2 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
| | - Shijie Liu
- 1 Central Arkansas Veterans Healthcare System, The University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Xianwei Wang
- 1 Central Arkansas Veterans Healthcare System, The University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Pankaj Mathur
- 1 Central Arkansas Veterans Healthcare System, The University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Yao Dai
- 1 Central Arkansas Veterans Healthcare System, The University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Sue Theus
- 1 Central Arkansas Veterans Healthcare System, The University of Arkansas for Medical Sciences , Little Rock, Arkansas
| | - Xiaoyan Deng
- 2 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
| | - Yubo Fan
- 2 Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing, China
| | - Jawahar L Mehta
- 1 Central Arkansas Veterans Healthcare System, The University of Arkansas for Medical Sciences , Little Rock, Arkansas
| |
Collapse
|
35
|
Zakharova VV, Pletjushkina OY, Zinovkin RA, Popova EN, Chernyak BV. Mitochondria-Targeted Antioxidants and Uncouplers of Oxidative Phosphorylation in Treatment of the Systemic Inflammatory Response Syndrome (SIRS). J Cell Physiol 2016; 232:904-912. [DOI: 10.1002/jcp.25626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Vlada V. Zakharova
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
- Faculty of Bioengineering and Bioinformatics; Lomonosov Moscow State University; Moscow Russia
| | - Olga Yu. Pletjushkina
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
| | - Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
| | - Ekaterina N. Popova
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University; Moscow Russia
| |
Collapse
|
36
|
Singh AK, Awasthi D, Dubey M, Nagarkoti S, Kumar A, Chandra T, Barthwal MK, Tripathi AK, Dikshit M. High oxidative stress adversely affects NFκB mediated induction of inducible nitric oxide synthase in human neutrophils: Implications in chronic myeloid leukemia. Nitric Oxide 2016; 58:28-41. [PMID: 27264783 DOI: 10.1016/j.niox.2016.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
Abstract
Increasing evidence support bimodal action of nitric oxide (NO) both as a promoter and as an impeder of oxygen free radicals in neutrophils (PMNs), however impact of high oxidative stress on NO generation is less explored. In the present study, we comprehensively investigated the effect of high oxidative stress on inducible nitric oxide synthase (iNOS) expression and NO generation in human PMNs. Our findings suggest that PMA or diamide induced oxidative stress in PMNs from healthy volunteers, and high endogenous ROS in PMNs of chronic myeloid leukemia (CML) patients attenuate basal as well as LPS/cytokines induced NO generation and iNOS expression in human PMNs. Mechanistically, we found that under high oxidative stress condition, S-glutathionylation of NFκB (p50 and p65 subunits) severely limits iNOS expression due to its reduced binding to iNOS promoter, which was reversed in presence of DTT. Furthermore, by using pharmacological inhibitors, scavengers and molecular approaches, we identified that enhanced ROS generation via NOX2 and mitochondria, reduced Grx1/2 expression and GSH level associated with NFκB S-glutathionylation in PMNs from CML patients. Altogether data obtained suggest that oxidative status act as an important regulator of NO generation/iNOS expression, and under enhanced oxidative stress condition, NOX2-mtROS-NFκB S-glutathionylation is a feed forward loop, which attenuate NO generation and iNOS expression in human PMNs.
Collapse
Affiliation(s)
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Megha Dubey
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sheela Nagarkoti
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ashutosh Kumar
- Department of Pathology, King George's Medical University, Lucknow, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King George's Medical University, Lucknow, India
| | | | - Anil Kumar Tripathi
- Department of Clinical Haematology & Medical Oncology, King George's Medical University, Lucknow, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
37
|
Cai SM, Yang RQ, Li Y, Ning ZW, Zhang LL, Zhou GS, Luo W, Li DH, Chen Y, Pan MX, Li X. Angiotensin-(1-7) Improves Liver Fibrosis by Regulating the NLRP3 Inflammasome via Redox Balance Modulation. Antioxid Redox Signal 2016; 24:795-812. [PMID: 26728324 DOI: 10.1089/ars.2015.6498] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Angiotensin II (Ang II) aggravates hepatic fibrosis by inducing NADPH oxidase (NOX)-dependent oxidative stress. Angiotensin-(1-7) [Ang-(1-7)], which counter-regulates Ang II, has been evidenced to protect against hepatic fibrosis. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, being activated by reactive oxygen species (ROS), is identified as a novel mechanism of liver fibrosis. However, whether the NLRP3 inflammasome involves in regulation of Ang II-induced hepatic fibrosis remains unclear. This study investigates the different effects of the Ang II and Ang-(1-7) on collagen synthesis by regulating the NLRP3 inflammasome/Smad pathway via redox balance modulation. RESULTS In vivo, Ang-(1-7) improved bile duct ligation-induced hepatic fibrosis, reduced H2O2 content, protein levels of NOX4, and the NLRP3 inflammasome, whereas it increased glutathione (GSH) and nuclear erythroid 2-related factor 2 (Nrf2) antioxidant response element (ARE). In vitro, Ang II treatment elevated NOX4 protein expression and ROS production in hepatic stellate cells (HSCs), whereas it inhibited GSH and Nrf2-ARE, resulting in the activation of the NLRP3 inflammasome in the mitochondria of HSCs. NLRP3 depletion inhibited Ang II-induced collagen synthesis. Furthermore, Ang II increased NLRP3 and pro-IL-1β levels by activating the Toll-like receptor 4 (TLR4)/MyD88/NF-κB pathway. Treatment with antioxidants, NOX4 small interference RNA (siRNA), or Nrf2 activator inhibited Ang II-induced NLRP3 inflammasome activation and collagen synthesis. In contrast, the action of Ang-(1-7) opposed the effects of Ang II. INNOVATION AND CONCLUSIONS Ang-(1-7) improved liver fibrosis by regulating NLRP3 inflammasome activation induced by Ang II-mediated ROS via redox balance modulation. Antioxid. Redox Signal. 24, 795-812.
Collapse
Affiliation(s)
- Shuang-Ming Cai
- 1 State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, the Southern Medical University , Guangzhou, China .,2 Department of Emergency Medicine, Nanfang Hospital, the Southern Medical University , Guangzhou, China
| | - Ren-Qiang Yang
- 2 Department of Emergency Medicine, Nanfang Hospital, the Southern Medical University , Guangzhou, China
| | - Yang Li
- 2 Department of Emergency Medicine, Nanfang Hospital, the Southern Medical University , Guangzhou, China
| | - Zuo-Wei Ning
- 3 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, the Southern Medical University , Guangzhou, China
| | - Li-Li Zhang
- 2 Department of Emergency Medicine, Nanfang Hospital, the Southern Medical University , Guangzhou, China
| | - Gao-Su Zhou
- 4 Department of Emergency Medicine, the Military General Hospital of Beijing PLA , Beijing, China
| | - Wei Luo
- 3 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, the Southern Medical University , Guangzhou, China
| | - Da-Huan Li
- 2 Department of Emergency Medicine, Nanfang Hospital, the Southern Medical University , Guangzhou, China
| | - Yan Chen
- 5 Department of Respiratory Diseases, Nanfang Hospital, the Southern Medical University , Guangzhou, China
| | - Miao-Xia Pan
- 5 Department of Respiratory Diseases, Nanfang Hospital, the Southern Medical University , Guangzhou, China
| | - Xu Li
- 1 State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, the Southern Medical University , Guangzhou, China .,3 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, the Southern Medical University , Guangzhou, China
| |
Collapse
|
38
|
Kleindienst A, Battault S, Belaidi E, Tanguy S, Rosselin M, Boulghobra D, Meyer G, Gayrard S, Walther G, Geny B, Durand G, Cazorla O, Reboul C. Exercise does not activate the β3 adrenergic receptor–eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice. Basic Res Cardiol 2016; 111:40. [DOI: 10.1007/s00395-016-0559-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/03/2016] [Indexed: 02/08/2023]
|
39
|
Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling. Inflammation 2016; 38:1406-14. [PMID: 25616905 PMCID: PMC7102291 DOI: 10.1007/s10753-015-0115-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.
Collapse
|
40
|
Ito H, Matsui H, Hirayama A, Indo HP, Majima HJ, Hyodo I. Reactive oxygen species induced by non-steroidal anti-inflammatory drugs enhance the effects of photodynamic therapy in gastric cancer cells. J Clin Biochem Nutr 2016; 58:180-5. [PMID: 27257342 PMCID: PMC4865595 DOI: 10.3164/jcbn.15-124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 01/23/2023] Open
Abstract
Photodynamic therapy is useful for the treatment of cancer because it is minimally invasive for patients. Certain porphyrin compounds and their derivatives have been used as the photosensitizer because they accumulate specifically in cancerous tissues. However, the detailed mechanism of this phenomenon has not been clarified. We previously reported that a proton-coupled folate transporter, HCP1, transported porphyrins and that regulation of the protein was associated with cancer-specific reactive oxygen species from mitochondria (mitROS). Therefore, over-generation of mitROS could increase HCP1 expression and the effect of photodynamic therapy. We investigated whether pretreatment with indomethacin influenced photodynamic therapy by using a rat normal gastric mucosal cell line, RGM1, its cancer-like mutated cell line, RGK1, and a manganese superoxide dismutase (MnSOD)-overexpressing RGK cell line, RGK-MnSOD. Indomethacin promotes the generation of cellular mitROS by inhibiting the electron transport chain, and MnSOD scavenges the mitROS. We elucidated that indomethacin enhanced cancer-specific mitROS generation and increased HCP1 expression. Furthermore, RGK1 cells showed higher cellular incorporation of hematoporphyrin and better therapeutic effect with indomethacin treatment whereas RGK-MnSOD cells did not show a difference. Thus, we concluded that indomethacin improved the effect of photodynamic therapy by inducing increased mitROS generation in cancer cells.
Collapse
Affiliation(s)
- Hiromu Ito
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| | - Hirofumi Matsui
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan; Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Aki Hirayama
- Center for Integrative Medicine, Tsukuba University of Technology, 4-12-7 Kasuga, Tsukuba 305-8521, Japan
| | - Hiroko P Indo
- Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hideyuki J Majima
- Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Ichinosuke Hyodo
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| |
Collapse
|
41
|
Critical role of c-jun N-terminal protein kinase in promoting mitochondrial dysfunction and acute liver injury. Redox Biol 2015; 6:552-564. [PMID: 26491845 PMCID: PMC4625008 DOI: 10.1016/j.redox.2015.09.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022] Open
Abstract
The mechanism by which c-Jun N-terminal protein kinase (JNK) promotes tissue injury is poorly understood. Thus we aimed at studying the roles of JNK and its phospho-target proteins in mouse models of acute liver injury. Young male mice were exposed to a single dose of CCl4 (50 mg/kg, IP) and euthanized at different time points. Liver histology, blood alanine aminotransferase, and other enzyme activities were measured in CCl4-exposed mice without or with the highly-specific JNK inhibitors. Phosphoproteins were purified from control or CCl4-exposed mice and analyzed by differential mass-spectrometry followed by further characterizations of immunoprecipitation and activity measurements. JNK was activated within 1 h while liver damage was maximal at 24 h post-CCl4 injection. Markedly increased phosphorylation of many mitochondrial proteins was observed between 1 and 8 h following CCl4 exposure. Pretreatment with the selective JNK inhibitor SU3327 or the mitochondria-targeted antioxidant mito-TEMPO markedly reduced the levels of p-JNK, mitochondrial phosphoproteins and liver damage in CCl4-exposed mice. Differential proteomic analysis identified many phosphorylated mitochondrial proteins involved in anti-oxidant defense, electron transfer, energy supply, fatty acid oxidation, etc. Aldehyde dehydrogenase, NADH-ubiquinone oxidoreductase, and α-ketoglutarate dehydrogenase were phosphorylated in CCl4-exposed mice but dephosphorylated after SU3327 pretreatment. Consistently, the suppressed activities of these enzymes were restored by SU3327 pretreatment in CCl4-exposed mice. These data provide a novel mechanism by which JNK, rapidly activated by CCl4, promotes mitochondrial dysfunction and acute hepatotoxicity through robust phosphorylation of numerous mitochondrial proteins. JNK was rapidly activated after carbon tetrachloride (CCl4) exposure. Activated JNK was translocated to mitochondria and phosphorylated many proteins. Many mitochondrial phosphoproteins were identified by mass-spec analysis. Mitochondrial ALDH2, α-KGDH, and complex I were inactivated by phosphorylation. JNK inhibition reduced phosphorylation of mitochondrial proteins and hepatotoxicity.
Collapse
|
42
|
Different metabolic activity in placental and reflected regions of the human amniotic membrane. Placenta 2015; 36:1329-32. [PMID: 26386652 DOI: 10.1016/j.placenta.2015.08.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 01/16/2023]
Abstract
Cells of the human amniotic membrane (hAM) have stem cell characteristics with low immunogenicity and anti-inflammatory properties. While hAM is an excellent source for tissue engineering, so far, its sub-regions have not been taken into account. We show that placental and reflected hAM differ distinctly in morphology and functional activity, as the placental region has significantly higher mitochondrial activity, however significantly less reactive oxygen species. Since mitochondria may participate in processes such as cell rescue, we speculate that amniotic sub-regions may have different potential for tissue regeneration, which may be crucial for clinical applications.
Collapse
|
43
|
Anti-Inflammatory Activity of Haskap Cultivars is Polyphenols-Dependent. Biomolecules 2015; 5:1079-98. [PMID: 26043379 PMCID: PMC4496711 DOI: 10.3390/biom5021079] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/22/2015] [Indexed: 02/01/2023] Open
Abstract
Haskap (Lonicera caerulea L.) berries have long been used for their health promoting properties against chronic conditions. The current study investigated the effect of Canadian haskap berry extracts on pro-inflammatory cytokines using a human monocytic cell line THP-1 derived macrophages stimulated by lipopolysaccharide. Methanol extracts of haskap from different growing locations in Canada were prepared and characterized for their total phenolic profile using colorimetric assays and liquid chromatography—Mass spectrometry (UPLC-MS/MS). Human THP-1 monocytes were seeded in 24-well plates (5 × 105/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1 μg/mL) for 48 h to induce macrophage differentiation. After 48 h, the differentiated macrophages were washed with Hank’s buffer and treated with various concentrations of test compounds for 4 h, followed by the lipopolysaccharide (LPS)-stimulation (18 h). Borealis cultivar showed the highest phenolic content, flavonoid content and anthocyanin content (p < 0.05). A negative correlation existed between the polyphenol concentration of the extracts and pro-inflammatory cytokines: Interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), prostaglandin (PGE2), and cyclooxygenase-2 (COX-2) enzyme. Borealis exhibited comparable anti-inflammatory effects to COX inhibitory drug, diclofenac. The results showed that haskap berry polyphenols has the potential to act as an effective inflammation inhibitor.
Collapse
|
44
|
Müllebner A, Moldzio R, Redl H, Kozlov AV, Duvigneau JC. Heme Degradation by Heme Oxygenase Protects Mitochondria but Induces ER Stress via Formed Bilirubin. Biomolecules 2015; 5:679-701. [PMID: 25942605 PMCID: PMC4496691 DOI: 10.3390/biom5020679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/08/2015] [Accepted: 04/16/2015] [Indexed: 01/16/2023] Open
Abstract
Heme oxygenase (HO), in conjunction with biliverdin reductase, degrades heme to carbon monoxide, ferrous iron and bilirubin (BR); the latter is a potent antioxidant. The induced isoform HO-1 has evoked intense research interest, especially because it manifests anti-inflammatory and anti-apoptotic effects relieving acute cell stress. The mechanisms by which HO mediates the described effects are not completely clear. However, the degradation of heme, a strong pro-oxidant, and the generation of BR are considered to play key roles. The aim of this study was to determine the effects of BR on vital functions of hepatocytes focusing on mitochondria and the endoplasmic reticulum (ER). The affinity of BR to proteins is a known challenge for its exact quantification. We consider two major consequences of this affinity, namely possible analytical errors in the determination of HO activity, and biological effects of BR due to direct interaction with protein function. In order to overcome analytical bias we applied a polynomial correction accounting for the loss of BR due to its adsorption to proteins. To identify potential intracellular targets of BR we used an in vitro approach involving hepatocytes and isolated mitochondria. After verification that the hepatocytes possess HO activity at a similar level as liver tissue by using our improved post-extraction spectroscopic assay, we elucidated the effects of increased HO activity and the formed BR on mitochondrial function and the ER stress response. Our data show that BR may compromise cellular metabolism and proliferation via induction of ER stress. ER and mitochondria respond differently to elevated levels of BR and HO-activity. Mitochondria are susceptible to hemin, but active HO protects them against hemin-induced toxicity. BR at slightly elevated levels induces a stress response at the ER, resulting in a decreased proliferative and metabolic activity of hepatocytes. However, the proteins that are targeted by BR still have to be identified.
Collapse
Affiliation(s)
- Andrea Müllebner
- Institute for Medical Biochemistry, Veterinary University Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Rudolf Moldzio
- Institute for Medical Biochemistry, Veterinary University Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1200 Vienna, Austria.
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstraße 13, 1200 Vienna, Austria.
| | - J Catharina Duvigneau
- Institute for Medical Biochemistry, Veterinary University Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
45
|
Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction. Biomolecules 2015; 5:472-84. [PMID: 25884116 PMCID: PMC4496681 DOI: 10.3390/biom5020472] [Citation(s) in RCA: 417] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/12/2022] Open
Abstract
In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity.
Collapse
|