1
|
Feng Y, Jiang Y, Yang L, Lu D, Li N, Zhang Q, Yang H, Qin H, Zhang J, Gou X, Jiang F. Interactions and communications in lung tumour microenvironment: chemo/radiotherapy resistance mechanisms and therapeutic targets. J Drug Target 2025; 33:817-836. [PMID: 39815747 DOI: 10.1080/1061186x.2025.2453730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The lung tumour microenvironment (TME) is composed of various cell types, including cancer cells, stromal and immune cells, as well as extracellular matrix (ECM). These cells and surrounding ECM create a stiff, hypoxic, acidic and immunosuppressive microenvironment that can augment the resistance of lung tumours to different forms of cell death and facilitate invasion and metastasis. This environment can induce chemo/radiotherapy resistance by inducing anti-apoptosis mediators such as phosphoinositide 3-kinase (PI3K)/Akt, signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B (NF-κB), leading to the exhaustion of antitumor immunity and further resistance to chemo/radiotherapy. In addition, lung tumour cells can resist chemo/radiotherapy by boosting multidrug resistance mechanisms and antioxidant defence systems within cancer cells and other TME components. In this review, we discuss the interactions and communications between these different components of the lung TME and also the effects of hypoxia, immune evasion and ECM remodelling on lung cancer resistance. Finally, we review the current strategies in preclinical and clinical studies, including the inhibition of checkpoint molecules, chemoattractants, cytokines, growth factors and immunosuppressive mediators such as programmed death 1 (PD-1), insulin-like growth factor 2 (IGF-2) for targeting the lung TME to overcome resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Yuan Feng
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ying Jiang
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Lin Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Danni Lu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Ning Li
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qun Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Haiyan Yang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Huiyuan Qin
- Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaxin Zhang
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyun Gou
- Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Jiang
- Science and Technology Department, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
2
|
Zhang Y, Song Y, Wang X, Shi M, Lin Y, Tao D, Han S. An NFAT1-C3a-C3aR Positive Feedback Loop in Tumor-Associated Macrophages Promotes a Glioma Stem Cell Malignant Phenotype. Cancer Immunol Res 2024; 12:363-376. [PMID: 38289255 DOI: 10.1158/2326-6066.cir-23-0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/15/2023] [Accepted: 12/19/2023] [Indexed: 03/06/2024]
Abstract
Extensive infiltration by tumor-associated macrophages (TAM) in combination with myeloid-derived suppressor cells constitute the immunosuppressive microenvironment and promote the malignant phenotype of gliomas. The aggressive mesenchymal (MES)-subtype glioma stem cells (GSC) are prominent in the immunosuppressive microenvironment of gliomas. However, the underlying immune-suppressive mechanisms are still unknown. The current study showed that the antitumor immune microenvironment was activated in glioma in Nfat1-/- mice, suggesting induction of the immune-suppressive microenvironment by nuclear factor of activated T cells-1 (NFAT1). In TAMs, NFAT1 could upregulate the transcriptional activity of complement 3 (C3) and increase the secretion of C3a, which could then bind to C3aR and promote M2-like macrophage polarization by activating TIM-3. Simultaneously, C3a/C3aR activated the Ca2+-NFAT1 pathway, forming a positive feedback loop for the M2-like polarization of TAMs, which further promoted the MES transition of GSCs. Finally, disruption of this feedback loop using a C3aR inhibitor significantly inhibited glioma growth both in vitro and in vivo. The current study demonstrated that a NFAT1-C3a-C3aR positive feedback loop induces M2-like TAMs and further promotes the malignant phenotype of GSCs, which might be the potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Yaochuan Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Xiaoliang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Mengwu Shi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Yibin Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Dongxia Tao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
3
|
Zhang W, Liu X, Cao S, Zhang Q, Chen X, Luo W, Tan J, Xu X, Tian J, Saw PE, Luo B. Multifunctional Redox-Responsive Nanoplatform with Dual Activation of Macrophages and T Cells for Antitumor Immunotherapy. ACS NANO 2023; 17:14424-14441. [PMID: 37498878 DOI: 10.1021/acsnano.2c12498] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
High expression of programmed death ligand 1 (PD-L1) and strong immune evasion ability of the tumor microenvironment (TME) are maintained through mutual regulation between different immune and stromal cells, which causes obstructions for cancer immunotherapy, especially immunosuppressive M2-like phenotype tumor-associated macrophages (TAMs). Repolarization of TAMs to the M1-like phenotype could secrete proinflammatory cytokines and reverse the immunosuppressive state of the TME. However, we found that reactive oxygen species (ROS) generated by repolarized TAMs could be a double-edged sword: ROS cause a stronger suppressive effect on CD8 T cells through an increased proportion of apoptotic regulatory T (Treg) cells. Thus, simply repolarizing TAMs while ignoring the suppressed function of T cells is insufficient for generating adequate antitumor immunity. Accordingly, we engineered multifunctional redox-responsive nanoplatform NPs (M+C+siPD-L1) with Toll-like receptor agonist (M), catalase (C), and siPD-L1 encased for coregulation of both TAMs and T cells to maximize cancer immunotherapy. Our results demonstrated that NPs (M+C+siPD-L1) showed superior biocompatibility and intratumor accumulation. For in vitro experiments, NPs (M+C+siPD-L1) simultaneously repolarized TAMs to the M1-like phenotype, hydrolyzed extra ROS, knocked down the expression of PD-L1 on tumor cells, and rescued the function of CD8 T cells suppressed by Treg cells. In both orthotopic Hepa1-6 and 4T1 tumor-bearing mouse models, NPs (M+C+siPD-L1) could effectively evoke active systemic antitumor immunity and inhibit tumor growth. The combination of repolarizing TAMs, hydrolyzing extra ROS, and knocking down the expression of PD-L1 proves to be a synergistic approach in cancer immunotherapy.
Collapse
Affiliation(s)
- Wenyue Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaodi Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shuwen Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaojiang Chen
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wanrong Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiabao Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaolin Xu
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jing Tian
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Baoming Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
4
|
Khan SU, Khan MU, Azhar Ud Din M, Khan IM, Khan MI, Bungau S, Hassan SSU. Reprogramming tumor-associated macrophages as a unique approach to target tumor immunotherapy. Front Immunol 2023; 14:1166487. [PMID: 37138860 PMCID: PMC10149956 DOI: 10.3389/fimmu.2023.1166487] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
In the last ten years, it has become increasingly clear that tumor-infiltrating myeloid cells drive not just carcinogenesis via cancer-related inflammatory processes, but also tumor development, invasion, and metastasis. Tumor-associated macrophages (TAMs) in particular are the most common kind of leucocyte in many malignancies and play a crucial role in establishing a favorable microenvironment for tumor cells. Tumor-associated macrophage (TAM) is vital as the primary immune cell subset in the tumor microenvironment (TME).In order to proliferate and spread to new locations, tumors need to be able to hide from the immune system by creating an immune-suppressive environment. Because of the existence of pro-tumoral TAMs, conventional therapies like chemotherapy and radiotherapy often fail to restrain cancer growth. These cells are also to blame for the failure of innovative immunotherapies premised on immune-checkpoint suppression. Understanding the series of metabolic changes and functional plasticity experienced by TAMs in the complex TME will help to use TAMs as a target for tumor immunotherapy and develop more effective tumor treatment strategies. This review summarizes the latest research on the TAMs functional status, metabolic changes and focuses on the targeted therapy in solid tumors.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Muhammad Azhar Ud Din
- Faculty of Pharmacy, Gomal University Dera Ismail Khan KPK, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering Fuyang Normal University, Fuyang, China
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Kuo CL, Chou HY, Lien HW, Yeh CA, Wang JR, Chen CH, Fan CC, Hsu CP, Kao TY, Ko TM, Lee AYL. A Fc-VEGF chimeric fusion enhances PD-L1 immunotherapy via inducing immune reprogramming and infiltration in the immunosuppressive tumor microenvironment. Cancer Immunol Immunother 2023; 72:351-369. [PMID: 35895109 PMCID: PMC9870840 DOI: 10.1007/s00262-022-03255-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Immunotherapy is an emerging cancer therapy with potential great success; however, immune checkpoint inhibitor (e.g., anti-PD-1) has response rates of only 10-30% in solid tumor because of the immunosuppressive tumor microenvironment (TME). This affliction can be solved by vascular normalization and TME reprogramming. METHODS By using the single-cell RNA sequencing (scRNAseq) approach, we tried to find out the reprogramming mechanism that the Fc-VEGF chimeric antibody drug (Fc-VFD) enhances immune cell infiltration in the TME. RESULTS In this work, we showed that Fc-VEGF121-VEGF165 (Fc-VEGF chimeric antibody drug, Fc-VFD) arrests excess angiogenesis and tumor growth through vascular normalization using in vitro and in vivo studies. The results confirmed that the treatment of Fc-VFD increases immune cell infiltration including cytotoxic T, NK, and M1-macrophages cells. Indeed, Fc-VFD inhibits Lon-induced M2 macrophages polarization that induces angiogenesis. Furthermore, Fc-VFD inhibits the secretion of VEGF-A, IL-6, TGF-β, or IL-10 from endothelial, cancer cells, and M2 macrophage, which reprograms immunosuppressive TME. Importantly, Fc-VFD enhances the synergistic effect on the combination immunotherapy with anti-PD-L1 in vivo. CONCLUSIONS In short, Fc-VFD fusion normalizes intratumor vasculature to reprogram the immunosuppressive TME and enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Han-Yu Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Hui-Wen Lien
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chia-An Yeh
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Jing-Rong Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chi-Chen Fan
- Department of research and development, Marker Exploration Corporation, Taipei, Taiwan
| | - Chih-Ping Hsu
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Ting-Yu Kao
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Tai-Ming Ko
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan.
- Department of Life Sciences, College of Life Science, National Central University, Taoyuan, 32031, Taiwan.
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
6
|
Yong T, Wei Z, Gan L, Yang X. Extracellular-Vesicle-Based Drug Delivery Systems for Enhanced Antitumor Therapies through Modulating the Cancer-Immunity Cycle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201054. [PMID: 35726204 DOI: 10.1002/adma.202201054] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Although immunotherapy harnessing activity of the immune system against tumors has made great progress, the treatment efficacy remains limited in most cancers. Current anticancer immunotherapy is primarily based on T-cell-mediated cellular immunity, which highly relies on efficiency of triggering the cancer-immunity cycle, namely, tumor antigen release, antigen presentation by antigen presenting cells, T cell activation, recruitment and infiltration of T cells into tumors, and recognition and killing of tumor cells by T cells. Unfortunately, these immunotherapies are restricted by inefficient drug delivery and acting on only a single step of the cancer-immunity cycle. Due to high biocompatibility, low immunogenicity, intrinsic cell targeting, and easy chemical and genetic manipulation, extracellular vesicle (EV)-based drug delivery systems are widely used to amplify anticancer immune responses by serving as an integrated platform for multiple drugs or therapeutic strategies to synergistically activate several steps of cancer-immunity cycle. This review summarizes various mechanisms related to affecting cancer-immunity cycle disorders. Meanwhile, preparation and application of EV-based drug delivery systems in modulating cancer-immunity cycle are introduced, especially in the improvement of T cell recruitment and infiltration into tumors. Finally, opportunities and challenges of EV-based drug delivery systems in translational clinical applications are briefly discussed.
Collapse
Affiliation(s)
- Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
7
|
Tanaka M, Ito A, Shiozawa S, Hara-Chikuma M. Anti-tumor effect of aquaporin 3 monoclonal antibody on syngeneic mouse tumor model. Transl Oncol 2022; 24:101498. [PMID: 35932594 PMCID: PMC9358462 DOI: 10.1016/j.tranon.2022.101498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Anti-AQP3 mAb suppressed tumor growth in syngeneic mouse tumor models. Administration of anti-AQP3 mAb to mice bearing carcinoma increased the M1/M2 ratio of TAMs. Administration of anti-AQP3 mAb improved the mitochondrial function of T cells in the TME. Anti-AQP3 mAb reduced carcinoma-mediated polarization of monocytes into M2-like TAMs.
Aquaporin-3 (AQP3), a water channel protein, has been found to be involved in cancer progression via water and small molecule transport function. However, drug development targeting AQP3 has not yet begun. Here, we showed that a recently established anti-AQP3 monoclonal antibody (mAb) suppresses tumor growth in allograft mouse colorectal tumor models produced using CT26 or MC38 cancer cells. Administration of the anti-AQP3 mAb to BALB/c mice with transplanted CT26 cells increased the M1/M2 ratio of tumor-associated macrophages (TAM) and improved the mitochondrial function of T cells in the tumor microenvironment (TME). Administration of anti-AQP3 mAb also restored the TAM-induced decrease in T cell proliferation. Macrophage depletion in wild-type mice counteracted the antitumor effect of anti-AQP3 mAb in the mouse tumor model, suggesting that one of the primary targets of anti-AQP3 mAb is macrophages. In in vitro studies using mice bone marrow monocytes and human monocyte THP-1 cells, anti-AQP3 mAb attenuated carcinoma cell-mediated polarization of monocytes into M2-like TAMs. These data suggest that anti-AQP3 mAb suppresses tumor growth by attenuating immunosuppressive M2-like TAMs, which in turn maintains the antitumor function of T cells in the TME. Thus, the anti-AQP3 mAb is a potential cancer therapy that functions by targeting TAMs.
Collapse
Affiliation(s)
- Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Anmi Ito
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Seiji Shiozawa
- Center for Integrated Medical Research, School of Medicine, Keio University,160-8582, Japan; Institute of Animal Experimentation, School of Medicine, Kurume University, 830-0011, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
8
|
Sun JX, Xu XH, Jin L. Effects of Metabolism on Macrophage Polarization Under Different Disease Backgrounds. Front Immunol 2022; 13:880286. [PMID: 35911719 PMCID: PMC9331907 DOI: 10.3389/fimmu.2022.880286] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophages are versatile immune cells associated with various diseases, and their phenotypes and functions change on the basis of the surrounding environments. Reprogramming of metabolism is required for the proper polarization of macrophages. This review will focus on basic metabolic pathways, the effects of key enzymes and specific products, relationships between cellular metabolism and macrophage polarization in different diseases and the potential prospect of therapy targeted key metabolic enzymes. In particular, the types and characteristics of macrophages at the maternal-fetal interface and their effects on a successful conception will be discussed.
Collapse
Affiliation(s)
| | | | - Liping Jin
- *Correspondence: Liping Jin, ; Xiang-Hong Xu,
| |
Collapse
|
9
|
Wu G, Chen M, Ren H, Sha X, He M, Ren K, Qi J, Lin F. AP3S1 is a Novel Prognostic Biomarker and Correlated With an Immunosuppressive Tumor Microenvironment in Pan-Cancer. Front Cell Dev Biol 2022; 10:930933. [PMID: 35874816 PMCID: PMC9304770 DOI: 10.3389/fcell.2022.930933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Adaptor-related protein complex 3, sigma one subunit (AP3S1) is one of the encoding subunits of the adaptor complex AP-3. However, its role in various tumor types and relationship with the tumor immune microenvironment (TIME) remains unclear.Methods: AP3S1 expression was analyzed using datasets from The Cancer Genome Atlas, Genotype-Tissue Expression, UALCAN, and HPA databases. Then, we performed a systematic analysis of the genetic alterations, clinical features, and prognostic value of AP3S1 in pan-cancer. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were used to identify the signaling pathways associated with AP3S1. The correlation between immune cell infiltration and AP3S1 expression was analyzed using immune cell infiltration data from the ImmuCellAI, TIMER2, and a previous study. Finally, we analyzed the association of AP3S1 with tumor mutational burden (TMB), microsatellite instability (MSI), and immune-related genes.Results: We found AP3S1 overexpression in most tumors and a significant association with low survival rates. GSEA and GSVA results show that AP3S1 is involved in tumor progression and associated with immune pathways in different tumor types. We also found that AP3S1 expression was positively correlated with the level of infiltration of immunosuppressive cells (tumor-associated macrophages, cancer-associated fibroblasts, Tregs) and negatively correlated with immune killer cells, including NK cells and CD8+ T cells, in pan-cancer. The expression of AP3S1 could affect TMB and MSI in various cancers. In addition, AP3S1 was positively correlated with most immunosuppressive genes, including PD-1, PD-L1, CTLA4, LAG3 and TIGIT in most cancer types.Conclusion: Our study reveals that AP3S1 is a potential pan-cancer oncogene and plays an essential role in tumorigenesis and cancer immunity. Elevated expression of AP3S1 indicates an immunosuppressive microenvironment and can be used as a potential prognostic biomarker and a target for immunotherapy.
Collapse
Affiliation(s)
- Gujie Wu
- Department of Urology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Mianxiong Chen
- Department of Urology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hefei Ren
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinyu Sha
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Min He
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Kuan Ren
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Juntao Qi
- Department of Urology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Juntao Qi, ; Feng Lin,
| | - Feng Lin
- Department of Urology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Juntao Qi, ; Feng Lin,
| |
Collapse
|
10
|
Joshi S, Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther 2022; 235:108114. [DOI: 10.1016/j.pharmthera.2022.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/09/2022]
|
11
|
Sheng J, Zhang J, Wang L, Tano V, Tang J, Wang X, Wu J, Song J, Zhao Y, Rong J, Cheng F, Wang J, Shen Y, Wen L, He J, Zhang H, Li T, Zhang Q, Bai X, Lu Z, Liang T. Topological analysis of hepatocellular carcinoma tumour microenvironment based on imaging mass cytometry reveals cellular neighbourhood regulated reversely by macrophages with different ontogeny. Gut 2022; 71:1176-1191. [PMID: 34253573 DOI: 10.1136/gutjnl-2021-324339] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) tumour microenvironment (TME) is highly complex with diverse cellular components organising into various functional units, cellular neighbourhoods (CNs). And we wanted to define CN of HCC while preserving the TME architecture, based on which, potential targets for novel immunotherapy could be identified. DESIGN A highly multiplexed imaging mass cytometry (IMC) panel was designed to simultaneously quantify 36 biomarkers of tissues from 134 patients with HCC and 7 healthy donors to generate 562 highly multiplexed histology images at single-cell resolution. Different function units were defined by topological analysis of TME. CN relevant to the patients' prognosis was identified as specific target for HCC therapy. Transgenic mouse models were used to validate the novel immunotherapy target for HCC. RESULTS Three major types of intratumour areas with distinct distribution patterns of tumorous, stromal and immune cells were identified. 22 cellular metaclusters and 16 CN were defined. CN composed of various types of cells formed regional function units and the regional immunity was regulated reversely by resident Kupffer cells and infiltrating macrophages with protumour and antitumour function, respectively. Depletion of Kupffer cells in mouse liver largely enhances the T cell response, reduces liver tumour growth and sensitises the tumour response to antiprogrammed cell death protein-1 treatment. CONCLUSION Our findings reveal for the first time the various topological function units of HCC TME, which also presents the largest depository of pathological landscape for HCC. This work highlights the potential of Kupffer cell-specific targeting rather than overall myeloid cell blocking as a novel immunotherapy for HCC treatment.
Collapse
Affiliation(s)
- Jianpeng Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Junlei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Lin Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Vincent Tano
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Jianghui Tang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Xun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jiangchao Wu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jinyuan Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yaxing Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jingxia Rong
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Fei Cheng
- Pathology Department, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jianfeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Liang Wen
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Junjun He
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Hui Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Taohong Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhimin Lu
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, People's Republic of China.,Institue of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
12
|
Liu Q, Sun W, Zhang H. Roles and new Insights of Macrophages in the Tumor Microenvironment of Thyroid Cancer. Front Pharmacol 2022; 13:875384. [PMID: 35479325 PMCID: PMC9035491 DOI: 10.3389/fphar.2022.875384] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022] Open
Abstract
Although most thyroid cancers have a good and predictable prognosis, the anaplastic, medullary, and refractory thyroid cancers still prone to recurrence and metastasis, resulting in poor prognosis. Although a number of newly developed targeted therapies have begun to be indicated for the above types of thyroid cancer in recent years, their ability to improve overall survival remain hindered by low efficacy. As the largest component of immune cells in tumor microenvironment, tumor-associated macrophages play a key role in the invasion and metastasis of thyroid cancer. There is much evidence that the immune system, tumor microenvironment and cancer stem cell interactions may revolutionize traditional therapeutic directions. Tumor-associated macrophages have been extensively studied in a variety of tumors, however, research on the relationship between thyroid cancer and macrophages is still insufficient. In this review, we summarize the functions of tumor-associated macrophages in different types of thyroid cancer, their cytokines or chemokines effect on thyroid cancer and the mechanisms that promote tumor proliferation and migration. In addition, we discuss the mechanisms by which tumor-associated macrophages maintain the stemness of thyroid cancer and potential strategies for targeting tumor-associated macrophages to treat thyroid cancer.
Collapse
Affiliation(s)
| | | | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Codrici E, Popescu ID, Tanase C, Enciu AM. Friends with Benefits: Chemokines, Glioblastoma-Associated Microglia/Macrophages, and Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms23052509. [PMID: 35269652 PMCID: PMC8910233 DOI: 10.3390/ijms23052509] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common primary intracranial tumor and has the greatest prevalence of all brain tumors. Treatment resistance and tumor recurrence in GBM are mostly explained by considerable alterations within the tumor microenvironment, as well as extraordinary cellular and molecular heterogeneity. Soluble factors, extracellular matrix components, tissue-resident cell types, resident or newly recruited immune cells together make up the GBM microenvironment. Regardless of many immune cells, a profound state of tumor immunosuppression is supported and developed, posing a considerable hurdle to cancer cells' immune-mediated destruction. Several studies have suggested that various GBM subtypes present different modifications in their microenvironment, although the importance of the microenvironment in treatment response has yet to be determined. Understanding the microenvironment and how it changes after therapies is critical because it can influence the remaining invasive GSCs and lead to recurrence. This review article sheds light on the various components of the GBM microenvironment and their roles in tumoral development, as well as immune-related biological processes that support the interconnection/interrelationship between different cell types. Also, we summarize the current understanding of the modulation of soluble factors and highlight the dysregulated inflammatory chemokine/specific receptors cascades/networks and their significance in tumorigenesis, cancer-related inflammation, and metastasis.
Collapse
Affiliation(s)
- Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Ionela-Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| |
Collapse
|
14
|
Benaiges E, Ceperuelo-Mallafré V, Madeira A, Bosch R, Núñez-Roa C, Ejarque M, Maymó-Masip E, Huber-Ruano I, Lejeune M, Vendrell J, Fernández-Veledo S. Survivin drives tumor-associated macrophage reprogramming: a novel mechanism with potential impact for obesity. Cell Oncol (Dordr) 2021; 44:777-792. [PMID: 33710603 PMCID: PMC8338861 DOI: 10.1007/s13402-021-00597-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Recent studies point to adipose-derived stem cells (ASCs) as a link between obesity and cancer. We aimed to determine whether survivin, which is highly secreted by ASCs from subjects with obesity, might drive a pro-tumoral phenotype in macrophages. METHODS The effect of ASC conditioned medium on the macrophage phenotype was assessed by expression studies. Survivin intracellular localization and internalization were examined by subcellular fractionation and immunofluorescence, respectively. Loss- and gain-of-function studies were performed using adenoviral vectors, and gene expression patterns, migration and invasion capacities of cancer cells were examined. Heterotypic cultures of ASCs, macrophages and cancer cells were established to mimic the tumor microenvironment. Survivin-blocking experiments were used to determine the impact of survivin on both macrophages and cancer cells. Immunohistochemical analysis of survivin was performed in macrophages from ascitic fluids of cancer patients and healthy controls. RESULTS We found that obese-derived ASCs induced a phenotypic switch in macrophages characterized by the expression of both pro- and anti-inflammatory markers. Macrophages were found to internalize extracellular survivin, generating hybrid macrophages with a tumor-associated phenotype that included secretion of survivin. Exogenous expression of survivin in macrophages generated a similar phenotype and enhanced the malignant characteristics of cancer cells by a mechanism dependent on survivin phosphorylation at threonine 34. Survivin secreted by both ASCs from subjects with obesity and tumor-associated macrophages synergistically boosted the malignancy of cancer cells. Importantly, survivin was mainly detected in ascites-associated macrophages from patients with a malignant diagnosis. CONCLUSION Our data indicate that survivin may serve as a molecular link between obesity and cancer and as a novel marker for tumor-associated macrophages.
Collapse
Affiliation(s)
- E Benaiges
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
- Rovira i Virgili University, 43003, Tarragona, Spain
| | - V Ceperuelo-Mallafré
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - A Madeira
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - R Bosch
- Grup de Recerca en Patologia Oncològica i Bioinformàtica, Molecular Biology and Research Section, Hospital de Tortosa Verge de la Cinta, IISPV, URV, 43500, Tortosa, Spain
| | - C Núñez-Roa
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - M Ejarque
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - E Maymó-Masip
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - I Huber-Ruano
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain
- Rovira i Virgili University, 43003, Tarragona, Spain
| | - M Lejeune
- Grup de Recerca en Patologia Oncològica i Bioinformàtica, Molecular Biology and Research Section, Hospital de Tortosa Verge de la Cinta, IISPV, URV, 43500, Tortosa, Spain
| | - J Vendrell
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
- Rovira i Virgili University, 43003, Tarragona, Spain.
| | - S Fernández-Veledo
- Institut d'Investigació Sanitària Pere Virgili, Endocrinology and Nutrition Service, Hospital Universitari de Tarragona Joan XXIII, 43007, Tarragona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain.
| |
Collapse
|
15
|
Pensado-López A, Fernández-Rey J, Reimunde P, Crecente-Campo J, Sánchez L, Torres Andón F. Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. NANOMATERIALS 2021; 11:nano11071784. [PMID: 34361170 PMCID: PMC8308170 DOI: 10.3390/nano11071784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of these nanomaterials has become of foremost importance for the proper progress of nanotechnology. Due to economical and ethical issues, in vitro and in vivo methods are encouraged for the testing of new compounds and/or nanoparticles, however in vivo models are still needed. In this scenario, zebrafish (Danio rerio) has demonstrated potential for toxicological and pharmacological screenings. Zebrafish presents an innate immune system, from early developmental stages, with conserved macrophage phenotypes and functions with respect to humans. This fact, combined with the transparency of zebrafish, the availability of models with fluorescently labelled macrophages, as well as a broad variety of disease models offers great possibilities for the testing of new nanoparticles. Thus, with a particular focus on macrophage-nanoparticle interaction in vivo, here, we review the studies using zebrafish for toxicological and biodistribution testing of nanoparticles, and also the possibilities for their preclinical evaluation in various diseases, including cancer and autoimmune, neuroinflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Juan Fernández-Rey
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Pedro Reimunde
- Department of Physiotherapy, Medicine and Biomedical Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain;
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Correspondence: (L.S.); (F.T.A.)
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Correspondence: (L.S.); (F.T.A.)
| |
Collapse
|
16
|
Moeini P, Niedźwiedzka-Rystwej P. Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. Int J Mol Sci 2021; 22:ijms22137239. [PMID: 34281293 PMCID: PMC8269174 DOI: 10.3390/ijms22137239] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages are one of the most important cells of the innate immune system and are known for their ability to engulf and digest foreign substances, including cellular debris and tumor cells. They can convert into tumor-associated macrophages (TAMs) when mature macrophages are recruited into the tumor microenvironment. Their role in cancer progression, metastasis, and therapy failure is of special note. The aim of this review is to understand how the presence of TAMs are both advantageous and disadvantageous in the immune system.
Collapse
Affiliation(s)
- Pedram Moeini
- Plant Virology Research Center, Shiraz University, Shiraz 71441-65186, Iran;
| | | |
Collapse
|
17
|
Zalfa C, Paust S. Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:633205. [PMID: 34025641 PMCID: PMC8133367 DOI: 10.3389/fimmu.2021.633205] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous environment composed of cancer cells, tumor stroma, a mixture of tissue-resident and infiltrating immune cells, secreted factors, and extracellular matrix proteins. Natural killer (NK) cells play a vital role in fighting tumors, but chronic stimulation and immunosuppression in the TME lead to NK cell exhaustion and limited antitumor functions. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of myeloid cells with potent immunosuppressive activity that gradually accumulate in tumor tissues. MDSCs interact with innate and adaptive immune cells and play a crucial role in negatively regulating the immune response to tumors. This review discusses MDSC-mediated NK cell regulation within the TME, focusing on critical cellular and molecular interactions. We review current strategies that target MDSC-mediated immunosuppression to enhance NK cell cytotoxic antitumor activity. We also speculate on how NK cell-based antitumor immunotherapy could be improved.
Collapse
Affiliation(s)
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
18
|
Liu X, Zheng S, Peng Y, Zhuang J, Yang Y, Xu Y, Guan G. Construction of the Prediction Model for Locally Advanced Rectal Cancer Following Neoadjuvant Chemoradiotherapy Based on Pretreatment Tumor-Infiltrating Macrophage-Associated Biomarkers. Onco Targets Ther 2021; 14:2599-2610. [PMID: 33880038 PMCID: PMC8053511 DOI: 10.2147/ott.s297263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose To assess the value of macrophage-related biomarkers (CD163, CD68, MCSF, and CCL2) for predicting the response to neo-chemoradiotherapy (NCRT) and the prognosis of locally advanced rectal cancer (LARC). Methods We enrolled 191 patients who underwent neoadjuvant chemoradiotherapy and radical resection between 2011 and 2015. Tumor tissues were collected before NCRT with a colonoscope and post-surgery and were subjected to immunohistochemical analysis. Results The expression levels of macrophage-related biomarkers (CD163, CD68, MCSF, and CCL2) were lower in the pathological complete response (pCR) group when compared with the non-pCR group (all P<0.05). Based on X-tile plots, we divided the tumors in two groups and found that lower pre-NCRT/post-surgical CD163, CD68, MCSF, CCL2 scores correlated with improved DFS. Cox regression analysis demonstrated that pre-NCRT CD163 (HR=1.008, 95% CI 1.003-1.013, P=0.003) and MCSF (HR=2.187, 95% CI 1.343-3.564, P=0.002) scores were independent predictors of DFS. Based on Cox multivariate analysis, we constructed a risk score model with a powerful ability to predict pCR in LARC patients. Moreover, COX regression analysis was performed to explore the role of the risk score in LARC patients. The results demonstrated that tumor size (HR=1.291, P=0.041), worse pathological TNM stage (HR=1.789, P=0.005, and higher risk score (HR=1.084, P<0.001) were significantly associated with impaired disease-free survival. Based on the above results, a nomogram and decision curve analysis were generated. Conclusion The expression levels of macrophage-related biomarkers CD163, CD68, MCSF, and CCL2 were associated with chemoradiotherapy resistance and prognosis in LARC patients following NCRT. A risk score model was constructed which could be used to predict LARC outcome.
Collapse
Affiliation(s)
- Xing Liu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Shuping Zheng
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yong Peng
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinfu Zhuang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Yuanfeng Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Yunlu Xu
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Guoxian Guan
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| |
Collapse
|
19
|
Decipher the Glioblastoma Microenvironment: The First Milestone for New Groundbreaking Therapeutic Strategies. Genes (Basel) 2021; 12:genes12030445. [PMID: 33804731 PMCID: PMC8003887 DOI: 10.3390/genes12030445] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Despite the combination of novel therapeutical approaches, it remains a deadly malignancy with an abysmal prognosis. GBM is a polymorphic tumour from both molecular and histological points of view. It consists of different malignant cells and various stromal cells, contributing to tumour initiation, progression, and treatment response. GBM’s microenvironment is multifaceted and is made up of soluble factors, extracellular matrix components, tissue-resident cell types (e.g., neurons, astrocytes, endothelial cells, pericytes, and fibroblasts) together with resident (e.g., microglia) or recruited (e.g., bone marrow-derived macrophages) immune cells. These latter constitute the so-called immune microenvironment, accounting for a substantial GBM’s tumour volume. Despite the abundance of immune cells, an intense state of tumour immunosuppression is promoted and developed; this represents the significant challenge for cancer cells’ immune-mediated destruction. Though literature data suggest that distinct GBM’s subtypes harbour differences in their microenvironment, its role in treatment response remains obscure. However, an in-depth investigation of GBM’s microenvironment may lead to novel therapeutic opportunities to improve patients’ outcomes. This review will elucidate the GBM’s microenvironment composition, highlighting the current state of the art in immunotherapy approaches. We will focus on novel strategies of active and passive immunotherapies, including vaccination, gene therapy, checkpoint blockade, and adoptive T-cell therapies.
Collapse
|
20
|
Chehrazi-Raffle A, Dorff TB, Pal SK, Lyou Y. Wnt/β-Catenin Signaling and Immunotherapy Resistance: Lessons for the Treatment of Urothelial Carcinoma. Cancers (Basel) 2021; 13:889. [PMID: 33672668 PMCID: PMC7924395 DOI: 10.3390/cancers13040889] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Urothelial cell carcinoma (UCC) is a significant public health burden. It accounts for approximately 90 percent of all bladder cancers with an estimated 200,000 annual deaths globally. Platinum based cytotoxic chemotherapy combinations are the current standard of care in the frontline setting for metastatic UCC. Even with these treatments the median overall survival is estimated to be about 15 months. Recently, immune checkpoint inhibitors (ICIs) have demonstrated superior clinical benefits compared to second line chemotherapy in UCC treatment. However only a minority of patients (~20%) respond to ICIs, which highlights the need to better understand the mechanisms behind resistance. In this review, we (i) examine the pathophysiology of Wnt/β-catenin signaling, (ii) discuss pre-clinical evidence that supports the combination of Wnt/β-catenin inhibitors and ICI, and (iii) propose future combination treatments that could be investigated through clinical trials.
Collapse
Affiliation(s)
| | | | | | - Yung Lyou
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (A.C.-R.); (T.B.D.); (S.K.P.)
| |
Collapse
|
21
|
Novel Photosensitizer β-Mannose-Conjugated Chlorin e6 as a Potent Anticancer Agent for Human Glioblastoma U251 Cells. Pharmaceuticals (Basel) 2020; 13:ph13100316. [PMID: 33081106 PMCID: PMC7602738 DOI: 10.3390/ph13100316] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
A photosensitizer is a molecular drug for photodynamic diagnosis and photodynamic therapy (PDT) against cancer. Many studies have developed photosensitizers, but improvements in their cost, efficacy, and side effects are needed for better PDT of patients. In the present study, we developed a novel photosensitizer β-mannose-conjugated chlorin e6 (β-M-Ce6) and investigated its PDT effects in human glioblastoma U251 cells. U251 cells were incubated with β-M-Ce6, followed by laser irradiation. Cell viability was determined using the Cell Counting Kit-8 assay. The PDT effects of β-M-Ce6 were compared with those of talaporfin sodium (TS) and our previously reported photosensitizer β-glucose-conjugated chlorin e6 (β-G-Ce6). Cellular uptake of each photosensitizer and subcellular distribution were analyzed by fluorescence microscopy. β-M-Ce6 showed 1000× more potent PDT effects than those of TS, and these were similar to those of β-G-Ce6. β-M-Ce6 accumulation in U251 cells was much faster than TS accumulation and distributed to several organelles such as the Golgi apparatus, mitochondria, and lysosomes. This rapid cellular uptake was inhibited by low temperature, which suggested that β-M-Ce6 uptake uses biological machinery. β-M-Ce6 showed potent PDT anti-cancer effects compared with clinically approved TS, which is a possible candidate as a next generation photosensitizer in cancer therapy.
Collapse
|
22
|
Targeting Tumor-Associated Macrophages in Anti-Cancer Therapies: Convincing the Traitors to Do the Right Thing. J Clin Med 2020; 9:jcm9103226. [PMID: 33050070 PMCID: PMC7600332 DOI: 10.3390/jcm9103226] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
In the last decade, it has been well-established that tumor-infiltrating myeloid cells fuel not only the process of carcinogenesis through cancer-related inflammation mechanisms, but also tumor progression, invasion, and metastasis. In particular, tumor-associated macrophages (TAMs) are the most abundant leucocyte subset in many cancers and play a major role in the creation of a protective niche for tumor cells. Their ability to generate an immune-suppressive environment is crucial to escape the immune system and to allow the tumor to proliferate and metastasize to distant sites. Conventional therapies, including chemotherapy and radiotherapy, are often not able to limit cancer growth due to the presence of pro-tumoral TAMs; these are also responsible for the failure of novel immunotherapies based on immune-checkpoint inhibition. Several novel therapeutic strategies have been implemented to deplete TAMs; however, more recent approaches aim to use TAMs themselves as weapons to fight cancer. Exploiting their functional plasticity, the reprogramming of TAMs aims to convert immunosuppressive and pro-tumoral macrophages into immunostimulatory and anti-tumor cytotoxic effector cells. This shift eventually leads to the reconstitution of a reactive immune landscape able to destroy the tumor. In this review, we summarize the current knowledge on strategies able to reprogram TAMs with single as well as combination therapies.
Collapse
|
23
|
Malfitano AM, Pisanti S, Napolitano F, Di Somma S, Martinelli R, Portella G. Tumor-Associated Macrophage Status in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12071987. [PMID: 32708142 PMCID: PMC7409350 DOI: 10.3390/cancers12071987] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent the most abundant innate immune cells in tumors. TAMs, exhibiting anti-inflammatory phenotype, are key players in cancer progression, metastasis and resistance to therapy. A high TAM infiltration is generally associated with poor prognosis, but macrophages are highly plastic cells that can adopt either proinflammatory/antitumor or anti-inflammatory/protumor features in response to tumor microenvironment stimuli. In the context of cancer therapy, many anticancer therapeutics, apart from their direct effect on tumor cells, display different effects on TAM activation status and density. In this review, we aim to evaluate the indirect effects of anticancer therapies in the modulation of TAM phenotypes and pro/antitumor activity.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
- Correspondence: (A.M.M.); (G.P.); Tel.: +39-081-746-3056 (G.P.)
| | - Simona Pisanti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, Baronissi, 84081 Salerno, Italy; (S.P.); (R.M.)
| | - Fabiana Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
| | - Sarah Di Somma
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
| | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, Baronissi, 84081 Salerno, Italy; (S.P.); (R.M.)
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
- Correspondence: (A.M.M.); (G.P.); Tel.: +39-081-746-3056 (G.P.)
| |
Collapse
|
24
|
Hoffmann EJ, Ponik SM. Biomechanical Contributions to Macrophage Activation in the Tumor Microenvironment. Front Oncol 2020; 10:787. [PMID: 32509583 PMCID: PMC7251173 DOI: 10.3389/fonc.2020.00787] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Alterations in extracellular matrix composition and organization are known to promote tumor growth and metastatic progression in breast cancer through interactions with tumor cells as well as stromal cell populations. Macrophages display a spectrum of behaviors from tumor-suppressive to tumor-promoting, and their function is spatially and temporally dependent upon integrated signals from the tumor microenvironment including, but not limited to, cytokines, metabolites, and hypoxia. Through years of investigation, the specific biochemical cues that recruit and activate tumor-promoting macrophage functions within the tumor microenvironment are becoming clear. In contrast, the impact of biomechanical stimuli on macrophage activation has been largely underappreciated, however there is a growing body of evidence that physical cues from the extracellular matrix can influence macrophage migration and behavior. While the complex, heterogeneous nature of the extracellular matrix and the transient nature of macrophage activation make studying macrophages in their native tumor microenvironment challenging, this review highlights the importance of investigating how the extracellular matrix directly and indirectly impacts tumor-associated macrophage activation. Additionally, recent advances in investigating macrophages in the tumor microenvironment and future directions regarding mechano-immunomodulation in cancer will also be discussed.
Collapse
Affiliation(s)
- Erica J. Hoffmann
- Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
25
|
Yu SJ, Greten TF. Deciphering and Reversing Immunosuppressive Cells in the Treatment of Hepatocellular Carcinoma. JOURNAL OF LIVER CANCER 2020; 20:1-16. [PMID: 37383056 PMCID: PMC10035699 DOI: 10.17998/jlc.20.1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 06/30/2023]
Abstract
Use of immune checkpoint inhibitors (ICIs) in hepatocellular carcinoma (HCC) has been partially successful. However, most HCC patients do not respond to immunotherapy. HCC has been shown to induce several immune suppressor mechanisms in patients. These suppressor mechanisms include involvement of myeloid-derived suppressor cells, regulatory T-cells, functionally impaired dendritic cells (DCs), neutrophils, monocytes, and tumor associated macrophages. The accumulation of immunosuppressive cells may lead to an immunosuppressive tumor microenvironment as well as the dense fibrotic stroma which may contribute to immune tolerance. Our laboratory has been investigating different cellular mechanisms of immune suppression in HCC patients. In vitro as well as in vivo studies have demonstrated that abrogation of the suppressor cells enhances or unmasks tumor-specific antitumor immune responses. Two or three effective systemic therapies including ICIs and/or molecular targeted therapies and the addition of innovative combination therapies targeting immune suppressor cells may lead to increased immune recognition with a greater tumor response. We reviewed the literature for the latest research on immune suppressor cells in HCC, and here we provide a comprehensive summary of the recent studies in this field.
Collapse
Affiliation(s)
- Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Tim F. Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
- NCI CCR Liver Cancer Program, Bethesda, USA
| |
Collapse
|
26
|
Pombo Antunes AR, Scheyltjens I, Duerinck J, Neyns B, Movahedi K, Van Ginderachter JA. Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. eLife 2020; 9:52176. [PMID: 32014107 PMCID: PMC7000215 DOI: 10.7554/elife.52176] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy by immune checkpoint blockade has proven its great potential by saving the lives of a proportion of late stage patients with immunogenic tumor types. However, even in these sensitive tumor types, the majority of patients do not sufficiently respond to the therapy. Furthermore, other tumor types, including glioblastoma, remain largely refractory. The glioblastoma immune microenvironment is recognized as highly immunosuppressive, posing a major hurdle for inducing immune-mediated destruction of cancer cells. Scattered information is available about the presence and activity of immunosuppressive or immunostimulatory cell types in glioblastoma tumors, including tumor-associated macrophages, tumor-infiltrating dendritic cells and regulatory T cells. These cell types are heterogeneous at the level of ontogeny, spatial distribution and functionality within the tumor immune compartment, providing insight in the complex cellular and molecular interplay that determines the immune refractory state in glioblastoma. This knowledge may also yield next generation molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ana Rita Pombo Antunes
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Scheyltjens
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Bart Neyns
- Department of Medical Oncology, UZ Brussels, Brussels, Belgium
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
27
|
Hu C, Pang B, Lin G, Zhen Y, Yi H. Energy metabolism manipulates the fate and function of tumour myeloid-derived suppressor cells. Br J Cancer 2020; 122:23-29. [PMID: 31819182 PMCID: PMC6964679 DOI: 10.1038/s41416-019-0644-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, a large number of studies have been carried out in the field of immune metabolism, highlighting the role of metabolic energy reprogramming in altering the function of immune cells. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells generated during a large array of pathological conditions, such as cancer, inflammation, and infection, and show remarkable ability to suppress T-cell responses. These cells can also change their metabolic pathways in response to various pathogen-derived or inflammatory signals. In this review, we focus on the roles of glucose, fatty acid (FA), and amino acid (AA) metabolism in the differentiation and function of MDSCs in the tumour microenvironment, highlighting their potential as targets to inhibit tumour growth and enhance tumour immune surveillance by the host. We further highlight the remaining gaps in knowledge concerning the mechanisms determining the plasticity of MDSCs in different environments and their specific responses in the tumour environment. Therefore, this review should motivate further research in the field of metabolomics to identify the metabolic pathways driving the enhancement of MDSCs in order to effectively target their ability to promote tumour development and progression.
Collapse
Affiliation(s)
- Cong Hu
- Central Laboratory, The First Hospital of Jilin University, 130031, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, 130021, Changchun, Jilin, China
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, 130021, Changchun, Jilin, China
| | - Bo Pang
- Central Laboratory, The First Hospital of Jilin University, 130031, Changchun, Jilin, China
- Department of Cardiology, The First Hospital of Jilin University, 130031, Changchun, Jilin, China
| | - Guangzhu Lin
- Department of Cardiology, The First Hospital of Jilin University, 130031, Changchun, Jilin, China
| | - Yu Zhen
- Department of Dermatology, The First Hospital of Jilin University, 130021, Changchun, Jilin, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, 130031, Changchun, Jilin, China.
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, 130021, Changchun, Jilin, China.
| |
Collapse
|
28
|
Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses. Cells 2019; 9:cells9010046. [PMID: 31878087 PMCID: PMC7017001 DOI: 10.3390/cells9010046] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
: Established evidence demonstrates that tumor-infiltrating myeloid cells promote rather than stop-cancer progression. Tumor-associated macrophages (TAMs) are abundantly present at tumor sites, and here they support cancer proliferation and distant spreading, as well as contribute to an immune-suppressive milieu. Their pro-tumor activities hamper the response of cancer patients to conventional therapies, such as chemotherapy or radiotherapy, and also to immunotherapies based on checkpoint inhibition. Active research frontlines of the last years have investigated novel therapeutic strategies aimed at depleting TAMs and/or at reprogramming their tumor-promoting effects, with the goal of re-establishing a favorable immunological anti-tumor response within the tumor tissue. In recent years, numerous clinical trials have included pharmacological strategies to target TAMs alone or in combination with other therapies. This review summarizes the past and current knowledge available on experimental tumor models and human clinical studies targeting TAMs for cancer treatment.
Collapse
|
29
|
Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 2019; 26:78. [PMID: 31629410 PMCID: PMC6800990 DOI: 10.1186/s12929-019-0568-z] [Citation(s) in RCA: 738] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022] Open
Abstract
In many solid tumor types, tumor-associated macrophages (TAMs) are important components of the tumor microenvironment (TME). Moreover, TAMs infiltration is strongly associated with poor survival in solid tumor patients. In this review, we describe the origins of TAMs and their polarization state dictated by the TME. We also specifically focus on the role of TAMs in promoting tumor growth, enhancing cancer cells resistance to chemotherapy and radiotherapy, promoting tumor angiogenesis, inducing tumor migration and invasion and metastasis, activating immunosuppression. In addition, we discuss TAMs can be used as therapeutic targets of solid tumor in clinics. The therapeutic strategies include clearing macrophages and inhibiting the activation of TAMs, promoting macrophage phagocytic activity, limiting monocyte recruitment and other targeted TAMs therapies.
Collapse
Affiliation(s)
- Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China.
| | - Yucen Song
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, 1 Jianshe Road East, Zhengzhou, 450052, Henan, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Longlong Gong
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China.
| |
Collapse
|
30
|
Bolli E, D'Huyvetter M, Murgaski A, Berus D, Stangé G, Clappaert EJ, Arnouk S, Pombo Antunes AR, Krasniqi A, Lahoutte T, Gonçalves A, Vuylsteke M, Raes G, Devoogdt N, Movahedi K, Van Ginderachter JA. Stromal-targeting radioimmunotherapy mitigates the progression of therapy-resistant tumors. J Control Release 2019; 314:1-11. [PMID: 31626860 DOI: 10.1016/j.jconrel.2019.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 09/17/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022]
Abstract
Radioimmunotherapy (RIT) aims to deliver a high radiation dose to cancer cells, while minimizing the exposure of normal cells. Typically, monoclonal antibodies are used to target the radionuclides to cancer cell surface antigens. However, antibodies face limitations due to their poor tumor penetration and suboptimal pharmacokinetics, while the expression of their target on the cancer cell surface may be gradually lost. In addition, most antigens are expressed in a limited number of tumor types. To circumvent these problems, we developed a Nanobody (Nb)-based RIT against a prominent stromal cell (stromal-targeting radioimmunotherapy or STRIT) present in nearly all tumors, the tumor-associated macrophage (TAM). Macrophage Mannose Receptor (MMR) functions as a stable molecular target on TAM residing in hypoxic areas, further allowing the delivery of a high radiation dose to the more radioresistant hypoxic tumor regions. Since MMR expression is not restricted to TAM, we first optimized a strategy to block extra-tumoral MMR to prevent therapy-induced toxicity. A 100-fold molar excess of unlabeled bivalent Nb largely blocks extra-tumoral binding of 177Lu-labeled anti-MMR Nb and prevents toxicity, while still allowing the intra-tumoral binding of the monovalent Nb. Interestingly, three doses of 177Lu-labeled anti-MMR Nb resulted in a significantly retarded tumor growth, thereby outcompeting the effects of anti-PD1, anti-VEGFR2, doxorubicin and paclitaxel in the TS/A mammary carcinoma model. Together, these data propose anti-MMR STRIT as a valid new approach for cancer treatment.
Collapse
Affiliation(s)
- Evangelia Bolli
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- In vivo Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Aleksandar Murgaski
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Danielle Berus
- Department of Radiation Protection, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium
| | - Geert Stangé
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emile J Clappaert
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sana Arnouk
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ana Rita Pombo Antunes
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- In vivo Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tony Lahoutte
- In vivo Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Amanda Gonçalves
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; VIB Bio Imaging Core Gent, Ghent, Belgium
| | | | - Geert Raes
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In vivo Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kiavash Movahedi
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
31
|
Abolarinwa BA, Ibrahim RB, Huang YH. Conceptual Development of Immunotherapeutic Approaches to Gastrointestinal Cancer. Int J Mol Sci 2019; 20:E4624. [PMID: 31540435 PMCID: PMC6769557 DOI: 10.3390/ijms20184624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer is one of the common causes of cancer-related death worldwide. Chemotherapy and/or immunotherapy are the current treatments, but some patients do not derive clinical benefits. Recently, studies from cancer molecular subtyping have revealed that tumor molecular biomarkers may predict the immunotherapeutic response of GI cancer patients. However, the therapeutic response of patients selected by the predictive biomarkers is suboptimal. The tumor immune-microenvironment apparently plays a key role in modulating these molecular-determinant predictive biomarkers. Therefore, an understanding of the development and recent advances in immunotherapeutic pharmacological intervention targeting tumor immune-microenvironments and their potential predictive biomarkers will be helpful to strengthen patient immunotherapeutic efficacy. The current review focuses on an understanding of how the host-microenvironment interactions and the predictive biomarkers can determine the efficacy of immune checkpoint inhibitors. The contribution of environmental pathogens and host immunity to GI cancer is summarized. A discussion regarding the clinical evidence of predictive biomarkers for clinical trial therapy design, current immunotherapeutic strategies, and the outcomes to GI cancer patients are highlighted. An understanding of the underlying mechanism can predict the immunotherapeutic efficacy and facilitate the future development of personalized therapeutic strategies targeting GI cancers.
Collapse
Affiliation(s)
- Bilikis Aderonke Abolarinwa
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ridwan Babatunde Ibrahim
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan.
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
32
|
Riera-Domingo C, Audigé A, Granja S, Cheng WC, Ho PC, Baltazar F, Stockmann C, Mazzone M. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiol Rev 2019; 100:1-102. [PMID: 31414610 DOI: 10.1152/physrev.00018.2019] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that metabolism is able to shape the immune response. Only recently we are gaining awareness that the metabolic crosstalk between different tumor compartments strongly contributes to the harsh tumor microenvironment (TME) and ultimately impairs immune cell fitness and effector functions. The major aims of this review are to provide an overview on the immune system in cancer; to position oxygen shortage and metabolic competition as the ground of a restrictive TME and as important players in the anti-tumor immune response; to define how immunotherapies affect hypoxia/oxygen delivery and the metabolic landscape of the tumor; and vice versa, how oxygen and metabolites within the TME impinge on the success of immunotherapies. By analyzing preclinical and clinical endeavors, we will discuss how a metabolic characterization of the TME can identify novel targets and signatures that could be exploited in combination with standard immunotherapies and can help to predict the benefit of new and traditional immunotherapeutic drugs.
Collapse
Affiliation(s)
- Carla Riera-Domingo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Annette Audigé
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Sara Granja
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Wan-Chen Cheng
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Ping-Chih Ho
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Fátima Baltazar
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Christian Stockmann
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium; Institute of Anatomy, University of Zurich, Zurich, Switzerland; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland; and Ludwig Cancer Research Institute, Epalinges, Switzerland
| |
Collapse
|
33
|
Umansky V, Adema GJ, Baran J, Brandau S, Van Ginderachter JA, Hu X, Jablonska J, Mojsilovic S, Papadaki HA, Pico de Coaña Y, Santegoets KCM, Santibanez JF, Serre K, Si Y, Sieminska I, Velegraki M, Fridlender ZG. Interactions among myeloid regulatory cells in cancer. Cancer Immunol Immunother 2019; 68:645-660. [PMID: 30003321 PMCID: PMC11028297 DOI: 10.1007/s00262-018-2200-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022]
Abstract
Mounting evidence has accumulated on the critical role of the different myeloid cells in the regulation of the cancerous process, and in particular in the modulation of the immune reaction to cancer. Myeloid cells are a major component of host cells infiltrating tumors, interacting with each other, with tumor cells and other stromal cells, and demonstrating a prominent plasticity. We describe here various myeloid regulatory cells (MRCs) in mice and human as well as their relevant therapeutic targets. We first address the role of the monocytes and macrophages that can contribute to angiogenesis, immunosuppression and metastatic dissemination. Next, we discuss the differential role of neutrophil subsets in tumor development, enhancing the dual and sometimes contradicting role of these cells. A heterogeneous population of immature myeloid cells, MDSCs, was shown to be generated and accumulated during tumor progression as well as to be an important player in cancer-related immune suppression. Lastly, we discuss the role of myeloid DCs, which can either contribute to effective anti-tumor responses or play a more regulatory role. We believe that MRCs play a critical role in cancer-related immune regulation and suggest that future anti-cancer therapies will focus on these abundant cells.
Collapse
Affiliation(s)
- Viktor Umansky
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany.
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jaroslaw Baran
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jo A Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Xiaoying Hu
- Skin Cancer Unit (G300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht Karl University of Heidelberg, Mannheim, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Slavko Mojsilovic
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Helen A Papadaki
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece
| | - Yago Pico de Coaña
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kim C M Santegoets
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Juan F Santibanez
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Karine Serre
- Faculty of Medicine, Institute of Molecular Medicine (IMM)-João Lobo Antunes, University of Lisbon, Lisbon, Portugal
| | - Yu Si
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Isabela Sieminska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Maria Velegraki
- Department of Hematology, School of Medicine, University of Crete, Heraklion, Greece
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
34
|
Preclinical and Clinical Therapeutic Strategies Affecting Tumor-Associated Macrophages in Hepatocellular Carcinoma. J Immunol Res 2018; 2018:7819520. [PMID: 30410942 PMCID: PMC6206557 DOI: 10.1155/2018/7819520] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) most often develops in patients with underlying liver disease characterized by chronic nonresolving inflammation. Tumor-associated macrophages (TAMs) are one of the most abundant immune cell populations within the tumoral microenvironment. As key actors of cancer-related inflammation, they promote tumor growth by suppression of effective anticancer immunity, stimulation of angiogenesis, and tissue remodeling. Therefore, they have become an attractive and promising target for immunotherapy. The heterogeneity of TAM subtypes and their origin and dynamic phenotype during the initiation and progression of HCC has been partially unraveled and forms the base for the development of therapeutic agents. Current approaches are aimed at decreasing the population of TAMs by depleting macrophages present in the tumor, blocking the recruitment of bone marrow-derived monocytes, and/or functionally reprogramming TAMs to antitumoral behavior. In this review, the preclinical evolution and hitherto clinical trials for TAM-targeted therapy in HCC will be highlighted.
Collapse
|
35
|
Redox-responsive self-assembly PEG nanoparticle enhanced triptolide for efficient antitumor treatment. Sci Rep 2018; 8:12968. [PMID: 30154488 PMCID: PMC6113257 DOI: 10.1038/s41598-018-29692-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy induces tumor cell death by directly damaging DNA or hindering cell mitosis. Some of the drawbacks of most chemotherapy are lack of target selectivity to tumor cells, and adverse drug reaction, which limit the treatment intensity and frequency. Herein, we synthesized the prodrug of triptolide (TP) coupled to vitamin E (VE) using dithiodiglycolic acid and co-dissolved with PEG2000- linoleic acid (MPEG200-LD) in ethanol. The PEGylated TP prodrug self-assembly nanoparticles (PTPPSN) were prepared via nanoprecipitation method. Besides, characterization, stability and in vitro release of the PEGylated nanometer prodrug were investigated. Furthermore, in vitro and in vivo antitumor efficacy of PTPPSN explored showed that the cytotoxicity of triptolide was significantly reduced in vitro preparation. However, in vitro and in vivo antitumor effect of PTPPSN was significantly improved compared to the original triptolide. In summary, the PEGylated nanoparticle successfully encapsulated triptolide yielded suitable cell microenvironment, and nanotechnology-related achievements. This study, therefore, provides a new method for antitumor research as well as an innovative technology for clinical treatment of malignant tumor.
Collapse
|
36
|
Samaniego R, Gutiérrez-Seijo A, Sánchez-Mateos P. Macrophages as prognostic biomarkers in human melanoma. Oncoscience 2018; 5:179-180. [PMID: 30035184 PMCID: PMC6049297 DOI: 10.18632/oncoscience.442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Rafael Samaniego
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Alba Gutiérrez-Seijo
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Paloma Sánchez-Mateos
- Unidad de Microscopía Confocal, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
37
|
Tcyganov E, Mastio J, Chen E, Gabrilovich DI. Plasticity of myeloid-derived suppressor cells in cancer. Curr Opin Immunol 2018; 51:76-82. [PMID: 29547768 DOI: 10.1016/j.coi.2018.03.009] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/25/2018] [Accepted: 03/01/2018] [Indexed: 01/12/2023]
Abstract
In recent years, myeloid-derived suppressor cells (MDSC) have emerged as one of the major inhibitors of immune effector cell function in cancer. MDSC represent a heterogeneous population of largely immature myeloid cells that are characterized by a pathological state of activation and display potent immune suppressive activity. Two major subsets of MDSC have been identified: monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC). PMN-MSDC share phenotypic and morphologic features with neutrophils, whereas M-MDSC are similar to monocytes and are characterized by high plasticity. Differentiation of M-MDSC to macrophages and dendritic cells is shaped by tumor microenvironment. In recent years, the mechanisms of this process start to emerge.
Collapse
Affiliation(s)
| | - Jerome Mastio
- The Wistar Institute, Philadelphia, PA 19104, United States
| | - Eric Chen
- University of Pennsylvania, Philadelphia, PA, United States
| | - Dmitry I Gabrilovich
- The Wistar Institute, Philadelphia, PA 19104, United States; University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
38
|
Kiss M, Van Gassen S, Movahedi K, Saeys Y, Laoui D. Myeloid cell heterogeneity in cancer: not a single cell alike. Cell Immunol 2018; 330:188-201. [PMID: 29482836 DOI: 10.1016/j.cellimm.2018.02.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/10/2018] [Accepted: 02/11/2018] [Indexed: 12/14/2022]
Abstract
Tumors of various histological origins show abundant infiltration of myeloid cells from early stages of disease progression. These cells have a profound impact on antitumor immunity and influence fundamental processes that underlie malignancy, including neoangiogenesis, sustained cancer cell proliferation, metastasis and therapy resistance. For these reasons, development of therapeutic approaches to deplete or reprogram myeloid cells in cancer is an emerging field of interest. However, knowledge about the heterogeneity of myeloid cells in tumors and their variability between patients and disease stages is still limited. In this review, we summarize the most recent advances in our understanding about how the phenotype of tumor-associated macrophages, monocytes, neutrophils, myeloid-derived suppressor cells and dendritic cells is dictated by their ontogeny, activation status and localization. We also outline major open questions that will only be resolved by applying high-dimensional single-cell technologies and systems biology approaches in the analysis of the tumor microenvironment.
Collapse
Affiliation(s)
- Mate Kiss
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium.
| | - Sofie Van Gassen
- IDLab, Department of Information Technology, Ghent University - IMEC, Ghent, Belgium; Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
| | - Kiavash Movahedi
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Damya Laoui
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium.
| |
Collapse
|
39
|
Van den Bossche J, Saraber DL. Metabolic regulation of macrophages in tissues. Cell Immunol 2018; 330:54-59. [PMID: 29395037 DOI: 10.1016/j.cellimm.2018.01.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/14/2018] [Indexed: 12/20/2022]
Abstract
Macrophages are innate immune cells that provide host defense and have tissue-specific roles in the maintenance of organ homeostasis and integrity. In most cases macrophages keep us healthy but when their balanced response to damage or homeostatic signals is perturbed, they can drive chronic inflammatory responses and pathology. To fulfil their broad range of functions, macrophages adopt a plethora of activation states. Understanding their regulation and phenotypic heterogeneity is crucial because macrophages are critical in many diseases. Consequently, macrophages have emerged as attractive targets for therapy of diseases in which they determine disease outcome, such as cardiovascular disease, cancer and other Western killer diseases. Recent advances in the flourishing field of immunometabolism highlight that the metabolic profile of macrophages directly regulates their activation status and associated functions. In this short review, we summarize how recent research on the metabolic regulation of macrophages has vividly improved our understanding of macrophage activation. Most of our existing knowledge results from in vitro studies with murine bone marrow-derived macrophages which can't fully grasp the complexity of (micro)environmental control of macrophages in tissues. We therefore highlight current weaknesses and missing links in macrophage immunometabolism research and provide future directions to make the step from the well-controlled plastic in vitro cell culture systems to the complex in vivo tissue environment.
Collapse
Affiliation(s)
- Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands; Department of Medical Biochemistry, Academic Medical Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| | - Doina L Saraber
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, De Boelelaan 1117, Amsterdam 1081 HV, The Netherlands; Department of Medical Biochemistry, Academic Medical Center, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
40
|
Na YR, Je S, Seok SH. Metabolic features of macrophages in inflammatory diseases and cancer. Cancer Lett 2018; 413:46-58. [PMID: 29100962 DOI: 10.1016/j.canlet.2017.10.044] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/17/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022]
|
41
|
Bonelli S, Geeraerts X, Bolli E, Keirsse J, Kiss M, Pombo Antunes AR, Van Damme H, De Vlaminck K, Movahedi K, Laoui D, Raes G, Van Ginderachter JA. Beyond the M-CSF receptor - novel therapeutic targets in tumor-associated macrophages. FEBS J 2017; 285:777-787. [PMID: 28834216 DOI: 10.1111/febs.14202] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/27/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAM) are by now established as important regulators of tumor progression by impacting on tumor immunity, angiogenesis, and metastasis. Hence, a multitude of approaches are currently pursued to intervene with TAM's protumor activities, the most advanced of which being a blockade of macrophage-colony stimulating factor (M-CSF)/M-CSF receptor (M-CSFR) signaling. M-CSFR signaling largely impacts on the differentiation of macrophages, including TAM, and hence strongly influences the numbers of these cells in tumors. However, a repolarization of TAM toward a more antitumor phenotype may be more elegant and may yield stronger effects on tumor growth. In this respect, several aspects of TAM behavior could be altered, such as their intratumoral localization, metabolism and regulatory pathways. Intervention strategies could include the use of small molecules but also new generations of biologicals which may complement the current success of immune checkpoint blockers. This review highlights current work on the search for new therapeutic targets in TAM.
Collapse
Affiliation(s)
- Stefano Bonelli
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Xenia Geeraerts
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Evangelia Bolli
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jiri Keirsse
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Mate Kiss
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Ana Rita Pombo Antunes
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Helena Van Damme
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Karen De Vlaminck
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Kiavash Movahedi
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Damya Laoui
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Geert Raes
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
42
|
Roman-Gonzalez A, Jimenez C. Malignant pheochromocytoma-paraganglioma: pathogenesis, TNM staging, and current clinical trials. Curr Opin Endocrinol Diabetes Obes 2017; 24:174-183. [PMID: 28234804 DOI: 10.1097/med.0000000000000330] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Pheochromocytomas and paragangliomas (PPGs) are rare neuroendocrine tumors. Over the last 15 years, substantial progress has been made toward understanding the clinical aspects and molecular origins of this disease. Nevertheless, predicting and managing malignancy remains the biggest challenge in clinical practice. The natural history of patients with malignant PPGs has not yet been described, and their prognosis varies. Currently, the diagnosis of malignant PPGs relies on the presence of metastases, by which time the disease is usually advanced. Better understanding of the clinical and molecular characteristics of patients with malignant PPGs has spurred several prospective clinical trials. RECENT FINDINGS Several molecular targeted therapies, a novel radiopharmaceutical medication that targets the catecholamine transporter, and immunotherapy are under evaluation for the treatment of patients with malignant PPGs. Furthermore, the identification of clinical predictors of malignancy and survival has led to the first TNM staging classification for PPGs. SUMMARY Prospective clinical trials are providing patients with therapeutic options beyond systemic chemotherapy. The knowledge derived from these trials and from the evaluation of the TNM staging in clinical practice will help to clarify how to most effectively treat malignant PPGs.
Collapse
Affiliation(s)
- Alejandro Roman-Gonzalez
- aDepartment of Endocrinology, Hospital Universitario San Vicente Fundacion-Universidad de Antioquia, Medellín, Colombia bDepartment of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
43
|
Van den Bossche J, O'Neill LA, Menon D. Macrophage Immunometabolism: Where Are We (Going)? Trends Immunol 2017; 38:395-406. [PMID: 28396078 DOI: 10.1016/j.it.2017.03.001] [Citation(s) in RCA: 795] [Impact Index Per Article: 99.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/21/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
A growing number of findings highlight the crucial role of metabolic reprogramming in macrophage activation. Metabolic pathways are closely interconnected and recent literature demonstrates the need for glucose metabolism in anti-inflammatory as well as inflammatory macrophages. Moreover, fatty acid oxidation (FAO) not only supports anti-inflammatory responses as described formerly but also drives inflammasome activation in inflammatory macrophages. Hence, defining glycolysis as proinflammatory and FAO as anti-inflammatory may be an oversimplification. Here we review how the rapid growth of the immunometabolism field has improved our understanding of macrophage activation and at the same time has led to an increase in the appearance of contradictory observations. To conclude we discuss current challenges in immunometabolism and present crucial areas for future research.
Collapse
Affiliation(s)
- Jan Van den Bossche
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Deepthi Menon
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
44
|
78495111110.1038/nrclinonc.2016.217" />
|
45
|
Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017; 14:399-416. [PMID: 28117416 DOI: 10.1038/nrclinonc.2016.217] [Citation(s) in RCA: 2787] [Impact Index Per Article: 348.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages are crucial drivers of tumour-promoting inflammation. Tumour-associated macrophages (TAMs) contribute to tumour progression at different levels: by promoting genetic instability, nurturing cancer stem cells, supporting metastasis, and taming protective adaptive immunity. TAMs can exert a dual, yin-yang influence on the effectiveness of cytoreductive therapies (chemotherapy and radiotherapy), either antagonizing the antitumour activity of these treatments by orchestrating a tumour-promoting, tissue-repair response or, instead, enhancing the overall antineoplastic effect. TAMs express molecular triggers of checkpoint proteins that regulate T-cell activation, and are targets of certain checkpoint-blockade immunotherapies. Other macrophage-centred approaches to anticancer therapy are under investigation, and include: inhibition of macrophage recruitment to, and/or survival in, tumours; functional re-education of TAMs to an antitumour, 'M1-like' mode; and tumour-targeting monoclonal antibodies that elicit macrophage-mediated extracellular killing, or phagocytosis and intracellular destruction of cancer cells. The evidence supporting these strategies is reviewed herein. We surmise that TAMs can provide tools to tailor the use of cytoreductive therapies and immunotherapy in a personalized medicine approach, and that TAM-focused therapeutic strategies have the potential to complement and synergize with both chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Alberto Mantovani
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy.,Humanitas University, Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Federica Marchesi
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20133 Milan, Italy
| | - Alberto Malesci
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20133 Milan, Italy
| | - Luigi Laghi
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| | - Paola Allavena
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Via A. Manzoni 113, 20089 Rozzano, Milan, Italy.,Humanitas University, Via A. Manzoni 113, 20089 Rozzano, Milan, Italy
| |
Collapse
|