1
|
Kang CH, Jung ES, Jung SJ, Han YH, Chae SW, Jeong DY, Kim BC, Lee SO, Yoon SJ. Pasteurized Akkermansia muciniphila HB05 (HB05P) Improves Muscle Strength and Function: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2024; 16:4037. [PMID: 39683431 PMCID: PMC11643799 DOI: 10.3390/nu16234037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Sarcopenia, a condition marked by muscle wasting due to aging or inactivity, severely affects older populations. We previously showed that pasteurized Akkermansia muciniphila HB05 (HB05P), sourced from the breast milk of healthy Korean women, could mitigate muscle wasting in a dexamethasone-induced rat model. Here, we explored whether the oral administration of HB05P can enhance muscle strength and functionality in elderly individuals. Our objective was to determine if HB05P supplementation could benefit muscle performance in aging adults. METHODS We conducted a 12-week, double-blind, placebo-controlled clinical trial involving 100 individuals aged 60 and above, randomly assigned to receive either HB05P (1.0 × 1010 cells/day) or a placebo. RESULTS The HB05P group showed significant improvements in peak torque and peak torque per body weight of the left leg extensor muscles compared to the placebo group (p = 0.0103 and p = 0.0052). Furthermore, HB05P notably elevated follistatin levels, which counteract myostatin, relative to the placebo group (p = 0.0063). No notable safety concerns arose between the groups. CONCLUSIONS HB05P is a promising postbiotic derived from Akkermansia muciniphila that may enhance muscle strength and be used as a safe postbiotic ingredient of Akkermansia muciniphila to improve muscle health.
Collapse
Affiliation(s)
- Chang-Ho Kang
- HealthBiome, Co., Ltd., 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (C.-H.K.); (D.Y.J.); (B.-C.K.)
| | - Eun-Soo Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-J.J.); (S.-W.C.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-J.J.); (S.-W.C.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Yeon-Hee Han
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
- Department of Nuclear Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
- Department of Nuclear Medicine, Jeonbuk National University Hospital, Jeonju 54896, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-J.J.); (S.-W.C.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
| | - Do Yeun Jeong
- HealthBiome, Co., Ltd., 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (C.-H.K.); (D.Y.J.); (B.-C.K.)
| | - Byoung-Chan Kim
- HealthBiome, Co., Ltd., 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; (C.-H.K.); (D.Y.J.); (B.-C.K.)
| | - Seung-Ok Lee
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-J.J.); (S.-W.C.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
- Department of Gastroenterology and Hepatology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Sun-Jung Yoon
- Clinical Trial Center for Functional Foods, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-J.J.); (S.-W.C.)
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea;
- Department of Orthopedic Surgery, Jeonbuk National University Medical School, 567 Baekje-daero, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Blottner D, Moriggi M, Trautmann G, Furlan S, Block K, Gutsmann M, Torretta E, Barbacini P, Capitanio D, Rittweger J, Limper U, Volpe P, Gelfi C, Salanova M. Nitrosative Stress in Astronaut Skeletal Muscle in Spaceflight. Antioxidants (Basel) 2024; 13:432. [PMID: 38671880 PMCID: PMC11047620 DOI: 10.3390/antiox13040432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Long-duration mission (LDM) astronauts from the International Space Station (ISS) (>180 ISS days) revealed a close-to-normal sarcolemmal nitric oxide synthase type-1 (NOS1) immunoexpression in myofibers together with biochemical and quantitative qPCR changes in deep calf soleus muscle. Nitro-DIGE analyses identified functional proteins (structural, metabolic, mitochondrial) that were over-nitrosylated post- vs. preflight. In a short-duration mission (SDM) astronaut (9 ISS days), s-nitrosylation of a nodal protein of the glycolytic flux, specific proteins in tricarboxylic acid (TCA) cycle, respiratory chain, and over-nitrosylation of creatine kinase M-types as signs of impaired ATP production and muscle contraction proteins were seen. S-nitrosylation of serotransferrin (TF) or carbonic anhydrase 3 (CA3b and 3c) represented signs of acute response microgravity muscle maladaptation. LDM nitrosoprofiles reflected recovery of mitochondrial activity, contraction proteins, and iron transporter TF as signs of muscle adaptation to microgravity. Nitrosated antioxidant proteins, alcohol dehydrogenase 5/S-nitrosoglutathione reductase (ADH5/GSNOR), and selenoprotein thioredoxin reductase 1 (TXNRD1) levels indicated signs of altered redox homeostasis and reduced protection from nitrosative stress in spaceflight. This work presents a novel spaceflight-generated dataset on s-nitrosylated muscle protein signatures from astronauts that helps both to better understand the structural and molecular networks associated to muscular nitrosative stress and to design countermeasures to dysfunction and impaired performance control in human spaceflight missions.
Collapse
Affiliation(s)
- Dieter Blottner
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
- NeuroMuscular System and Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Gabor Trautmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Sandra Furlan
- C.N.R. Neuroscience Institute, I-35121 Padova, Italy;
| | - Katharina Block
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Martina Gutsmann
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (J.R.); (U.L.)
| | - Ulrich Limper
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (J.R.); (U.L.)
- Anesthesiology and Intensive Care Medicine, Merheim Medical Center, Witten/Herdecke University, 51109 Cologne, Germany
| | - Pompeo Volpe
- Department of Biomedical Sciences, Università di Padova, I-35121 Padova, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.M.); (P.B.); (D.C.); (C.G.)
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Michele Salanova
- Institute of Integrative Neuroanatomy, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10115 Berlin, Germany; (G.T.); (K.B.); (M.G.); (M.S.)
- NeuroMuscular System and Signaling Group, Center of Space Medicine and Extreme Environments, 10115 Berlin, Germany
| |
Collapse
|
3
|
Fan RF, Chen XW, Cui H, Fu HY, Xu WX, Li JZ, Lin H. Selenoprotein K knockdown induces apoptosis in skeletal muscle satellite cells via calcium dyshomeostasis-mediated endoplasmic reticulum stress. Poult Sci 2023; 102:103053. [PMID: 37716231 PMCID: PMC10507440 DOI: 10.1016/j.psj.2023.103053] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023] Open
Abstract
Skeletal muscle satellite cells (SMSCs), known as muscle stem cells, play an important role in muscle embryonic development, post-birth growth, and regeneration after injury. Selenoprotein K (SELENOK), an endoplasmic reticulum (ER) resident selenoprotein, is known to regulate calcium ion (Ca2+) flux and ER stress (ERS). SELENOK deficiency is involved in dietary selenium deficiency-induced muscle injury, but the regulatory mechanisms of SELENOK in SMSCs development remain poorly explored in chicken. Here, we established a SELENOK deficient model to explore the role of SELENOK in SMSCs. SELENOK knockdown inhibited SMSCs proliferation and differentiation by regulating the protein levels of paired box 7 (Pax7), myogenic factor 5 (Myf5), CyclinD1, myogenic differentiation (MyoD), and Myf6. Further analysis exhibited that SELENOK knockdown markedly activated the ERS signaling pathways, which ultimately induced apoptosis in SMSCs. SELENOK knockdown-induced ERS is related with ER Ca2+ ([Ca2+]ER) overload via decreasing the protein levels of STIM2, Orai1, palmitoylation of inositol 1,4,5-trisphosphate receptor 1 (IP3R1), phospholamban (PLN), and plasma membrane Ca2+-ATPase (PMCA) while increasing the protein levels of sarco/endoplasmic Ca2+-ATPase 1 (SERCA1) and Na+/Ca2+ exchanger 1 (NCX1). Moreover, thimerosal, an activator of IP3R1, reversed the overload of [Ca2+]ER, ERS, and subsequent apoptosis caused by SELENOK knockdown. These findings indicated that SELENOK knockdown triggered ERS driven by intracellular Ca2+ dyshomeostasis and further induced apoptosis, which ultimately inhibited SMSCs proliferation and differentiation.
Collapse
Affiliation(s)
- Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Han Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Hong-Yu Fu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Wan-Xue Xu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Jiu-Zhi Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; State Key Laboratory of Crop Biology, College of Life Sciences, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
4
|
Tsitkanou S, Morena da Silva F, Cabrera AR, Schrems ER, Murach KA, Washington TA, Rosa-Caldwell ME, Greene NP. Biological sex divergence in transcriptomic profiles during the onset of hindlimb unloading-induced atrophy. Am J Physiol Cell Physiol 2023; 325:C1276-C1293. [PMID: 37746697 PMCID: PMC10861149 DOI: 10.1152/ajpcell.00352.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Disuse-induced muscle atrophy is a common clinical problem observed mainly in older adults, intensive care units patients, or astronauts. Previous studies presented biological sex divergence in progression of disuse-induced atrophy along with differential changes in molecular mechanisms possibly underlying muscle atrophy. The aim of this study was to perform transcriptomic profiling of male and female mice during the onset and progression of unloading disuse-induced atrophy. Male and female mice underwent hindlimb unloading (HU) for 24, 48, 72, and 168 h (n = 8/group). Muscles were weighed for each cohort and gastrocnemius was used for RNA-sequencing analysis. Females exhibited muscle loss as early as 24 h of HU, whereas males after 168 h of HU. In males, pathways related to proteasome degradation were upregulated throughout 168 h of HU, whereas in females these pathways were upregulated up to 72 h of HU. Lcn2, a gene contributing to regulation of myogenesis, was upregulated by 6.46- to 19.86-fold across all time points in females only. A reverse expression of Fosb, a gene related to muscle degeneration, was observed between males (4.27-fold up) and females (4.57-fold down) at 24-h HU. Mitochondrial pathways related to tricarboxylic acid (TCA) cycle were highly downregulated at 168 h of HU in males, whereas in females this downregulation was less pronounced. Collagen-related pathways were consistently downregulated throughout 168 h of HU only in females, suggesting a potential biological sex-specific protective mechanism against disuse-induced fibrosis. In conclusion, females may have protection against HU-induced skeletal muscle mitochondrial degeneration and fibrosis through transcriptional mechanisms, although they may be more vulnerable to HU-induced muscle wasting compared with males.NEW & NOTEWORTHY Herein, we have assessed the transcriptomic response across biological sexes during the onset and progression of unloading disuse-induced atrophy in mice. We have demonstrated an inverse expression of Fosb between males and females, as well as differentially timed patterns of expressing atrophy-related pathways between sexes that are concomitant to the accelerated atrophy in females. We also identified in females signs of mechanisms to combat disuse-induced mitochondrial degeneration and fibrosis.
Collapse
Affiliation(s)
- Stavroula Tsitkanou
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Ana Regina Cabrera
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Eleanor R Schrems
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| | - Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
5
|
Farahzadi R, Hejazi MS, Molavi O, Pishgahzadeh E, Montazersaheb S, Jafari S. Clinical Significance of Carnitine in the Treatment of Cancer: From Traffic to the Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9328344. [PMID: 37600065 PMCID: PMC10435298 DOI: 10.1155/2023/9328344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 03/23/2023] [Indexed: 08/22/2023]
Abstract
Metabolic reprogramming is a common hallmark of cancer cells. Cancer cells exhibit metabolic flexibility to maintain high proliferation and survival rates. In other words, adaptation of cellular demand is essential for tumorigenesis, since a diverse supply of nutrients is required to accommodate tumor growth and progression. Diversity of carbon substrates fueling cancer cells indicate metabolic heterogeneity, even in tumors sharing the same clinical diagnosis. In addition to the alteration of glucose and amino acid metabolism in cancer cells, there is evidence that cancer cells can alter lipid metabolism. Some tumors rely on fatty acid oxidation (FAO) as the primary energy source; hence, cancer cells overexpress the enzymes involved in FAO. Carnitine is an essential cofactor in the lipid metabolic pathways. It is crucial in facilitating the transport of long-chain fatty acids into the mitochondria for β-oxidation. This role and others played by carnitine, especially its antioxidant function in cellular processes, emphasize the fine regulation of carnitine traffic within tissues and subcellular compartments. The biological activity of carnitine is orchestrated by specific membrane transporters that mediate the transfer of carnitine and its derivatives across the cell membrane. The concerted function of carnitine transporters creates a collaborative network that is relevant to metabolic reprogramming in cancer cells. Here, the molecular mechanisms relevant to the role and expression of carnitine transporters are discussed, providing insights into cancer treatment.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Pishgahzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Rosa-Caldwell ME, Mortreux M, Wadhwa A, Kaiser UB, Sung DM, Bouxsein ML, Rutkove SB. Influence of gonadectomy on muscle health in micro- and partial-gravity environments in rats. J Appl Physiol (1985) 2023; 134:1438-1449. [PMID: 37102698 PMCID: PMC10228673 DOI: 10.1152/japplphysiol.00023.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023] Open
Abstract
Gonadal hormones, such as testosterone and estradiol, modulate muscle size and strength in males and females. However, the influence of sex hormones on muscle strength in micro- and partial-gravity environments (e.g., the Moon or Mars) is not fully understood. The purpose of this study was to determine the influence of gonadectomy (castration/ovariectomy) on progression of muscle atrophy in both micro- and partial-gravity environments in male and female rats. Male and female Fischer rats (n = 120) underwent castration/ovariectomy (CAST/OVX) or sham surgery (SHAM) at 11 wk of age. After 2 wk of recovery, rats were exposed to hindlimb unloading (0 g), partial weight bearing at 40% of normal loading (0.4 g, Martian gravity), or normal loading (1.0 g) for 28 days. In males, CAST did not exacerbate body weight loss or other metrics of musculoskeletal health. In females, OVX animals tended to have greater body weight loss and greater gastrocnemius loss. Within 7 days of exposure to either microgravity or partial gravity, females had detectable changes to estrous cycle, with greater time spent in low-estradiol phases diestrus and metestrus (∼47% in 1 g vs. 58% in 0 g and 72% in 0.4 g animals, P = 0.005). We conclude that in males testosterone deficiency at the initiation of unloading has little effect on the trajectory of muscle loss. In females, initial low estradiol status may result in greater musculoskeletal losses.NEW & NOTEWORTHY We find that removal of gonadal hormones does not exacerbate muscle loss in males or females during exposure to either simulated microgravity or partial-gravity environments. However, simulated micro- and partial gravity did affect females' estrous cycles, with more time spent in low-estrogen phases. Our findings provide important data on the influence of gonadal hormones on the trajectory of muscle loss during unloading and will help inform NASA for future crewed missions to space and other planets.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
- Department of Nutrition and Food Sciences, University of Rhode Island, Kingston, Rhode Island, United States
| | - Anna Wadhwa
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Dong-Min Sung
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Clemente-Suárez VJ, Ramírez-Goerke MI, Redondo-Flórez L, Beltrán-Velasco AI, Martín-Rodríguez A, Ramos-Campo DJ, Navarro-Jiménez E, Yáñez-Sepúlveda R, Tornero-Aguilera JF. The Impact of Anorexia Nervosa and the Basis for Non-Pharmacological Interventions. Nutrients 2023; 15:2594. [PMID: 37299557 PMCID: PMC10255390 DOI: 10.3390/nu15112594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Anorexia nervosa is a psychiatric disorder with an unknown etiology that is characterized by an individual's preoccupation with their weight and body structure while denying the severity of their low body weight. Due to the fact that anorexia nervosa is multifaceted and may indicate the coexistence of genetic, social, hormonal, and psychiatric disorders, a description of non-pharmacological interventions can be used to ameliorate or reduce the symptoms of this condition. Consequently, the purpose of the present narrative review is to describe the profile's context in the anorexic person as well as the support they would require from their family and environment. In addition, it is aimed at examining preventative and non-pharmacological interventions, such as nutritional interventions, physical activity interventions, psychological interventions, psychosocial interventions, and physical therapy interventions. To reach the narrative review aims, a critical review was conducted utilizing both primary sources, such as scientific publications, and secondary sources, such as bibliographic indexes, web pages, and databases. Nutritional interventions include nutritional education and an individualized treatment for each patient, physical activity interventions include allowing patients to perform controlled physical activity, psychological interventions include family therapy and evaluation of the existence of other psychological disorders, psychosocial interventions include management of the relationship between the patient and social media and physical therapy interventions include relaxation massages and exercises to relieve pain. All these non-pharmacological interventions need to be individualized based on each patient's needs.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (M.I.R.-G.); (J.F.T.-A.)
| | - Maria Isabel Ramírez-Goerke
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (M.I.R.-G.); (J.F.T.-A.)
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain;
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (M.I.R.-G.); (J.F.T.-A.)
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (M.I.R.-G.); (J.F.T.-A.)
| |
Collapse
|
8
|
Cao H, Zhang J, Sun Z, Wu J, Hao C, Wang W. Frailty in kidney transplant candidates and recipients: pathogenesis and intervention strategies. Chin Med J (Engl) 2023; 136:1026-1036. [PMID: 37052144 PMCID: PMC10228484 DOI: 10.1097/cm9.0000000000002312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Indexed: 04/14/2023] Open
Abstract
ABSTRACT With the rapid aging of the global population posing a serious problem, frailty, a non-specific state that reflects physiological senescence rather than aging in time, has become more widely addressed by researchers in various medical fields. A high prevalence of frailty is found among kidney transplant (KT) candidates and recipients. Therefore, their frailty has become a research hotspot in the field of transplantation. However, current studies mainly focus on the cross-sectional survey of the incidence of frailty among KT candidates and recipients and the relationship between frailty and transplantation. Research on the pathogenesis and intervention is scattered, and relevant review literature is scarce. Exploring the pathogenesis of frailty in KT candidates and recipients and determining effective intervention measures may reduce waiting list mortality and improve the long-term quality of life of KT recipients. Therefore, this review explains the pathogenesis and intervention measures for frailty in KT candidates and recipients to provide a reference for the formulation of effective intervention strategies.
Collapse
Affiliation(s)
- Huawei Cao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiandong Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zejia Sun
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiyue Wu
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Changzhen Hao
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chao-yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
9
|
Rosa-Caldwell ME, Eddy KT, Rutkove SB, Breithaupt L. Anorexia nervosa and muscle health: A systematic review of our current understanding and future recommendations for study. Int J Eat Disord 2023; 56:483-500. [PMID: 36529682 DOI: 10.1002/eat.23878] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Conduct a systematic review on muscle size and strength in individuals with anorexia nervosa (AN). METHOD In accordance with PRISMA guidelines, we searched Pubmed for articles published between 1995 and 2022 using a combination of search terms related to AN and muscle size, strength, or metabolism. After two authors screened articles and extracted data, 30 articles met inclusion criteria. Data were coded, and a risk bias was conducted for each study. RESULTS The majority of studies focused on muscle size/lean mass (60%, n = 18) and energy expenditure (33%, n = 9), with few studies (17%, n = 5) investigating muscle function or possible mechanisms underlying muscle size (20%, n = 6). Studies supported that individuals with AN have smaller muscle size and reduced energy expenditure relative to controls. In some studies (33%, n = 10) recovery from AN was not sufficient to restore muscle mass or function. Mechanisms underlying short and long-term musculoskeletal alterations have not been thoroughly explored. DISCUSSION Muscle mass and strength loss may be an unexplored component of physiological deterioration during and after AN. More research is necessary to understand intramuscular alterations during AN and interventions to facilitate muscle mass and functional gain following weight restoration in AN. PUBLIC SIGNIFICANCE Muscle health is important for optimal health and is reduced in individuals with AN. However, we do not understand how muscle is altered at the cellular level throughout the course of AN. Here we review what is currently known regarding muscle health during AN and with weight restoration.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kamryn T Eddy
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren Breithaupt
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
10
|
The Credible Role of Curcumin in Oxidative Stress-Mediated Mitochondrial Dysfunction in Mammals. Biomolecules 2022; 12:biom12101405. [PMID: 36291614 PMCID: PMC9599178 DOI: 10.3390/biom12101405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/20/2022] Open
Abstract
Oxidative stress and mitochondrial dysfunction are associated with the pathogenesis of several human diseases. The excessive generation of reactive oxygen species (ROS) and/or lack of adequate antioxidant defenses causes DNA mutations in mitochondria, damages the mitochondrial respiratory chain, and alters membrane permeability and mitochondrial defense mechanisms. All these alterations are linked to the development of numerous diseases. Curcumin, an active ingredient of turmeric plant rhizomes, exhibits numerous biological activities (i.e., antioxidant, anti-inflammatory, anticancer, and antimicrobial). In recent years, many researchers have shown evidence that curcumin has the ability to reduce the oxidative stress- and mitochondrial dysfunction-associated diseases. In this review, we discuss curcumin’s antioxidant mechanism and significance in oxidative stress reduction and suppression of mitochondrial dysfunction in mammals. We also discuss the research gaps and give our opinion on how curcumin research in mammals should proceed moving forward.
Collapse
|
11
|
Zhang X, Zhao Y, Liang X, Zhang L, Li K, Sun Z, Zhao YF. α-Lipoic acid upregulates gene expression but reduces protein levels of fibroblast growth factor 21 in HepG2 Cells. Basic Clin Pharmacol Toxicol 2022; 131:270-281. [PMID: 35838000 DOI: 10.1111/bcpt.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a metabolism-regulating hepatokine, and its expression is finely controlled by the nutrients and cellular stressors. α-Lipoic acid (ALA) regulates fuel metabolism as a nutrient, but it also arouses mitochondrial and endoplasmic reticulum (ER) stress as well as oxidative stress in hepatocytes. However, the role of cellular stress in ALA-regulated FGF21 expression has not been demonstrated as yet. The present study found that ALA upregulated FGF21 gene expression while it reduced FGF21 protein levels in HepG2 cells, which was accompanied by mitochondrial damage that was shown by ATP reduction and ROS elevation. ALA led to mitochondrial stress and ER stress as shown by the increased expression of HSP60, ATF6 and ATF4. Inhibition of ER stress by 4-PBA significantly attenuated ALA-stimulated FGF21 gene expression while it did not influence the reduction of FGF21 protein levels. H2 O2 -induced oxidative stress reduced FGF21 protein levels in HepG2 cells, and anti-oxidation by Tempol blocked ALA-induced reduction of FGF21 proteins. In conclusion, ALA upregulates FGF21 gene expression through the stimulation of mitochondrial and ER stress while it reduces FGF21 protein levels through the induction of oxidative stress in HepG2 cells. Further studies are needed to demonstrate the in vivo effect of ALA on hepatic FGF21 expression.
Collapse
Affiliation(s)
- Xiaochun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yanyan Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Xiangyan Liang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Lijun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Ke Li
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Zhuo Sun
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Yu-Feng Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| |
Collapse
|
12
|
Rosa-Caldwell ME, Lim S, Haynie WS, Brown JL, Lee DE, Dunlap KR, Jansen LT, Washington TA, Wiggs MP, Greene NP. Mitochondrial aberrations during the progression of disuse atrophy differentially affect male and female mice. J Cachexia Sarcopenia Muscle 2021; 12:2056-2068. [PMID: 34585846 PMCID: PMC8718086 DOI: 10.1002/jcsm.12809] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Disuse decreases muscle size and is predictive of mortality across multiple pathologies. Detriments to mitochondrial function are hypothesized to underlie disuse-induced muscle atrophy. Little data exist on early mechanisms contributing to onset of these pathologies, nor is it known how they differ between sexes. The purpose of this study was to examine differential and conserved responses to mitochondrial quality control in male and female mice during the development and progression of disuse-induced atrophy. METHODS One hundred C57BL/6J mice (50 male and 50 female) were hindlimb unloaded to induce disuse atrophy for 0 (con), 24, 48, 72, or 168 h. At designated time-points, extensor digitorum longus, gastrocnemius, and soleus muscles were collected for analysis of mitochondrial quality control markers. RESULTS One hundred sixty-eight hours of disuse resulted in ~25% lower oxidative muscle fibre CSA in both male (P = 0.003) and female (P = 0.02) mice without any differences due to disuse in glycolytic fibres. In male mice, 48 h of unloading was sufficient to result in ~67% greater mitochondrial oxidative stress as assessed by the reporter gene pMitoTimer compared with 0 h (P = 0.002), this mitochondrial stress preceded detectable muscle loss. However in female mice, mitochondrial oxidative stress did not occur until 168 h of disuse (~40% greater mitochondrial oxidative stress in 168 h compared with 0 h of disuse, P < 0.0001). Blunted oxidative stress in female mice appeared to coincide with greater inductions of autophagy and mitophagy in female mice (~3-fold greater BNIP3 and ~6-fold greater LC3II/I ratio P < 0.0001 and P = 0.038 respectively). Male mice overall had greater reactive oxygen species (ROS) production compared with female mice. Female mice had a greater induction of ROS within 24 h of disuse (~4-fold greater compared with 0 h, P < 0.0001); whereas male mice did not have greater ROS production until 168 h of disuse (~2-fold greater, P < 0.0001). Although all muscle types exhibited some alterations to mitochondrial quality control, such as increased markers of mitophagy and fission, the soleus muscle in both male and female mice exhibited consistent alterations to various markers of mitochondrial quality. Markers of mitochondrial translation were approximately 30-50% lower within 24 h of unloading in both male and female soleus muscle (P value ranges: <0.0001-0.03). CONCLUSIONS Disuse negatively affects mitochondria differentially between sexes during development of muscle wasting. Acutely, female mice may forgo muscle mass to maintain mitochondrial quality compared with male mice. These differences may contribute to divergent clinical manifestations of atrophy.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Jacob L Brown
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - David E Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kirsten R Dunlap
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Lisa T Jansen
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Michael P Wiggs
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
13
|
Chen L, Luo G, Liu Y, Lin H, Zheng C, Xie D, Zhu Y, Chen L, Huang X, Hu D, Xie J, Chen Z, Liao W, Bin J, Wang Q, Liao Y. Growth differentiation factor 11 attenuates cardiac ischemia reperfusion injury via enhancing mitochondrial biogenesis and telomerase activity. Cell Death Dis 2021; 12:665. [PMID: 34215721 PMCID: PMC8253774 DOI: 10.1038/s41419-021-03954-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022]
Abstract
It has been reported that growth differentiation factor 11 (GDF11) protects against myocardial ischemia/reperfusion (IR) injury, but the underlying mechanisms have not been fully clarified. Considering that GDF11 plays a role in the aging/rejuvenation process and that aging is associated with telomere shortening and cardiac dysfunction, we hypothesized that GDF11 might protect against IR injury by activating telomerase. Human plasma GDF11 levels were significantly lower in acute coronary syndrome patients than in chronic coronary syndrome patients. IR mice with myocardial overexpression GDF11 (oe-GDF11) exhibited a significantly smaller myocardial infarct size, less cardiac remodeling and dysfunction, fewer apoptotic cardiomyocytes, higher telomerase activity, longer telomeres, and higher ATP generation than IR mice treated with an adenovirus carrying a negative control plasmid. Furthermore, mitochondrial biogenesis-related proteins and some antiapoptotic proteins were significantly upregulated by oe-GDF11. These cardioprotective effects of oe-GDF11 were significantly antagonized by BIBR1532, a specific telomerase inhibitor. Similar effects of oe-GDF11 on apoptosis and mitochondrial energy biogenesis were observed in cultured neonatal rat cardiomyocytes, whereas GDF11 silencing elicited the opposite effects to oe-GDF11 in mice. We concluded that telomerase activation by GDF11 contributes to the alleviation of myocardial IR injury through enhancing mitochondrial biogenesis and suppressing cardiomyocyte apoptosis.
Collapse
MESH Headings
- Aminobenzoates/pharmacology
- Animals
- Apoptosis
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Case-Control Studies
- Cells, Cultured
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Growth Differentiation Factors/genetics
- Growth Differentiation Factors/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/genetics
- Mitochondria, Heart/pathology
- Myocardial Infarction/enzymology
- Myocardial Infarction/genetics
- Myocardial Infarction/pathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Naphthalenes/pharmacology
- Organelle Biogenesis
- Rats
- Signal Transduction
- Telomerase/antagonists & inhibitors
- Telomerase/metabolism
- Mice
Collapse
Affiliation(s)
- Lin Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guangjin Luo
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yameng Liu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Dongxiao Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lu Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxia Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Donghong Hu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiahe Xie
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhenhuan Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiancheng Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Kim S, Kim K, Park J, Jun W. Curcuma longa L. Water Extract Improves Dexamethasone-Induced Sarcopenia by Modulating the Muscle-Related Gene and Oxidative Stress in Mice. Antioxidants (Basel) 2021; 10:1000. [PMID: 34201533 PMCID: PMC8300838 DOI: 10.3390/antiox10071000] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022] Open
Abstract
Dexamethasone (DEX) promotes proteolysis, which causes muscle atrophy. Muscle atrophy is connected to sarcopenia. We evaluated the effect of Curcuma longa L. water extract (CLW) on DEX-induced muscle atrophy. ICR mice were divided into three groups (eight mice per group) to investigate the capability of CLW in inhibiting muscle atrophy. The control group (Ex-CON) was administered distilled water (DW) by gavage and subjected to exercise; the muscle atrophy group (Ex-DEX) was administered DW by gavage, an injection of DEX (1 mg/kg body weight/day) intraperitoneally (IP), and subjected to exercise; and the treatment group (Ex-CLW) was administered CLW (1 g/kg body weight/day) by gavage, DEX IP injection, and subjected to exercise. Following the injection of DEX, the expression levels of myostatin, MuRF-1, and Atrogin-1 were increased. However, these expression levels were decreased in the Ex-CLW group, thereby leading to the conclusion that CLW inhibits muscle atrophy. ROS (that was overproduced by DEX) decreased antioxidant enzyme activity and increased malondialdehyde (MDA) levels, which led to muscle atrophy. When CLW was ingested, the antioxidant enzyme activities increased while the MDA levels decreased. These findings suggest that CLW could serve as a natural product for the prevention of muscle atrophy by modulating muscle atrophy-related genes and increasing antioxidant potential.
Collapse
Affiliation(s)
- Shintae Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju 61187, Korea;
| | - Kyungmi Kim
- Department of Biofood Analysis, Korea Bio Polytechnic, Ganggyung 32946, Korea;
| | - Jeongjin Park
- Division of Food and Nutrition, Chonnam National University, Gwangju 61187, Korea;
- Research Institute for Human Ecology, Chonnam National University, Gwangju 61187, Korea
| | - Woojin Jun
- Division of Food and Nutrition, Chonnam National University, Gwangju 61187, Korea;
- Research Institute for Human Ecology, Chonnam National University, Gwangju 61187, Korea
| |
Collapse
|
15
|
Rosa-Caldwell ME, Lim S, Haynie WA, Brown JL, Deaver JW, Morena Da Silva F, Jansen LT, Lee DE, Wiggs MP, Washington TA, Greene NP. Female mice may have exacerbated catabolic signalling response compared to male mice during development and progression of disuse atrophy. J Cachexia Sarcopenia Muscle 2021; 12:717-730. [PMID: 33675163 PMCID: PMC8200438 DOI: 10.1002/jcsm.12693] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Muscle atrophy is a common pathology associated with disuse, such as prolonged bed rest or spaceflight, and is associated with detrimental health outcomes. There is emerging evidence that disuse atrophy may differentially affect males and females. Cellular mechanisms contributing to the development and progression of disuse remain elusive, particularly protein turnover cascades. The purpose of this study was to investigate the initial development and progression of disuse muscle atrophy in male and female mice using the well-established model of hindlimb unloading (HU). METHODS One hundred C57BL/6J mice (50 male and 50 female) were hindlimb suspended for 0 (control), 24, 48, 72, or 168 h to induce disuse atrophy (10 animals per group). At designated time points, animals were euthanized, and tissues (extensor digitorum longus, gastrocnemius, and soleus for mRNA analysis, gastrocnemius and extensor digitorum longus for protein synthesis rates, and tibialis anterior for histology) were collected for analysis of protein turnover mechanisms (protein anabolism and catabolism). RESULTS Both males and females lost ~30% of tibialis anterior cross-sectional area after 168 h of disuse. Males had no statistical difference in MHCIIB fibre area, whereas unloaded females had ~33% lower MHCIIB cross-sectional area by 168 h of unloading. Both males and females had lower fractional protein synthesis rates (FSRs) within 24-48 h of HU, and females appeared to have a greater reduction compared with males within 24 h of HU (~23% lower FSRs in males vs. 40% lower FSRs in females). Males and females exhibited differential patterns and responses in multiple markers of protein anabolism, catabolism, and myogenic capacity during the development and progression of disuse atrophy. Specifically, females had greater mRNA inductions of catabolic factors Ubc and Gadd45a (~4-fold greater content in females compared with ~2-fold greater content in males) and greater inductions of anabolic inhibitors Redd1 and Deptor with disuse across multiple muscle tissues exhibiting different fibre phenotypes. CONCLUSIONS These results suggest that the aetiology of disuse muscle atrophy is more complicated and nuanced than previously thought, with different responses based on muscle phenotypes and between males and females, with females having greater inductions of atrophic markers early in the development of disuse atrophy.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Wesley A Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Jacob L Brown
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - John William Deaver
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Francielly Morena Da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Lisa T Jansen
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - David E Lee
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Michael P Wiggs
- Integrative Physiology and Nutrition Laboratory Name, Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX, USA.,Department of Health, Human Performance and Recreation, Baylor University, Waco, TX, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
16
|
Wang F, So KF, Xiao J, Wang H. Organ-organ communication: The liver's perspective. Am J Cancer Res 2021; 11:3317-3330. [PMID: 33537089 PMCID: PMC7847667 DOI: 10.7150/thno.55795] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Communication between organs participates in most physiological and pathological events. Owing to the importance of precise coordination among the liver and virtually all organs in the body for the maintenance of homeostasis, many hepatic disorders originate from impaired organ-organ communication, resulting in concomitant pathological phenotypes of distant organs. Hepatokines are proteins that are predominantly secreted from the liver, and many hepatokines and several signaling proteins have been linked to diseases of other organs, such as the heart, muscle, bone, and eyes. Although liver-centered interorgan communication has been proposed in both basic and clinical studies, to date, the regulatory mechanisms of hepatokine production, secretion, and reciprocation with signaling factors from other organs are obscure. Whether other hormones and cytokines are involved in such communication also warrants investigation. Herein, we summarize the current knowledge of organ-organ communication phenotypes in a variety of diseases and the possible involvement of hepatokines and/or other important signaling factors. This provides novel insight into the underlying roles and mechanisms of liver-originated signal transduction and, more importantly, the understanding of disease in an integrative view.
Collapse
|
17
|
Peris-Moreno D, Cussonneau L, Combaret L, Polge C, Taillandier D. Ubiquitin Ligases at the Heart of Skeletal Muscle Atrophy Control. Molecules 2021; 26:molecules26020407. [PMID: 33466753 PMCID: PMC7829870 DOI: 10.3390/molecules26020407] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass. While indirect modulation of E3 ligases may prove beneficial in some situations of muscle atrophy, some drugs directly inhibiting their activity have started to appear. This review summarizes the main signaling pathways involved in muscle atrophy and the E3 ligases implicated, but also the molecules potentially usable for future therapies.
Collapse
|
18
|
Berezin AE, Berezin AA, Lichtenauer M. Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. DISEASE MARKERS 2021; 2021:6644631. [PMID: 33520013 PMCID: PMC7819753 DOI: 10.1155/2021/6644631] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a global medical problem that characterizes poor prognosis and high economic burden for the health system and family of the HF patients. Although modern treatment approaches have significantly decreased a risk of the occurrence of HF among patients having predominant coronary artery disease, hypertension, and myocarditis, the mortality of known HF continues to be unacceptably high. One of the most important symptoms of HF that negatively influences tolerance to physical exercise, well-being, social adaptation, and quality of life is deep fatigue due to HF-related myopathy. Myopathy in HF is associated with weakness of the skeletal muscles, loss of myofibers, and the development of fibrosis due to microvascular inflammation, metabolic disorders, and mitochondrial dysfunction. The pivotal role in the regulation of myocardial and skeletal muscle rejuvenation, attenuation of muscle metabolic homeostasis, and protection against ischemia injury and apoptosis belongs to myokines. Myokines are defined as a wide spectrum of active molecules that are directly synthesized and released by both cardiac and skeletal muscle myocytes and regulate energy homeostasis in autocrine/paracrine manner. In addition, myokines have a large spectrum of pleiotropic capabilities that are involved in the pathogenesis of HF including cardiac remodeling, muscle atrophy, and cardiac cachexia. The aim of the narrative review is to summarize the knowledge with respect to the role of myokines in adverse cardiac remodeling, myopathy, and clinical outcomes among HF patients. Some myokines, such as myostatin, irisin, brain-derived neurotrophic factor, interleukin-15, fibroblast growth factor-21, and growth differential factor-11, being engaged in the regulation of the pathogenesis of HF-related myopathy, can be detected in peripheral blood, and the evaluation of their circulating levels can provide new insights to the course of HF and stratify patients at higher risk of poor outcomes prior to sarcopenic stage.
Collapse
Affiliation(s)
- Alexander E. Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye 69035, Ukraine
| | - Alexander A. Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye 69096, Ukraine
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
19
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
20
|
Rosa-Caldwell ME, Benson CA, Lee DE, Brown JL, Washington TA, Greene NP, Wiggs MP. Mitochondrial Function and Protein Turnover in the Diaphragm are Altered in LLC Tumor Model of Cancer Cachexia. Int J Mol Sci 2020; 21:E7841. [PMID: 33105841 PMCID: PMC7660065 DOI: 10.3390/ijms21217841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
It is established that cancer cachexia causes limb muscle atrophy and is strongly associated with morbidity and mortality; less is known about how the development of cachexia impacts the diaphragm. The purpose of this study was to investigate cellular signaling mechanisms related to mitochondrial function, reactive oxygen species (ROS) production, and protein synthesis during the development of cancer cachexia. C57BL/J6 mice developed Lewis Lung Carcinoma for either 0 weeks (Control), 1 week, 2 weeks, 3 weeks, or 4 weeks. At designated time points, diaphragms were harvested and analyzed. Mitochondrial respiratory control ratio was ~50% lower in experimental groups, which was significant by 2 weeks of cancer development, with no difference in mitochondrial content markers COXIV or VDAC. Compared to the controls, ROS was 4-fold elevated in 2-week animals but then was not different at later time points. Only one antioxidant protein, GPX3, was altered by cancer development (~70% lower in experimental groups). Protein synthesis, measured by a fractional synthesis rate, appeared to become progressively lower with the cancer duration, but the mean difference was not significant. The development and progression of cancer cachexia induces marked alterations to mitochondrial function and ROS production in the diaphragm and may contribute to increased cachexia-associated morbidity and mortality.
Collapse
Affiliation(s)
- Megan E. Rosa-Caldwell
- Exercise Science Research Center, Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.R.-C.); (D.E.L.); (J.L.B.); (N.P.G.)
| | - Conner A. Benson
- Integrative Physiology and Nutrition Laboratory Name, Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX 75799, USA;
| | - David E. Lee
- Exercise Science Research Center, Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.R.-C.); (D.E.L.); (J.L.B.); (N.P.G.)
| | - Jacob L. Brown
- Exercise Science Research Center, Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.R.-C.); (D.E.L.); (J.L.B.); (N.P.G.)
| | - Tyrone A. Washington
- Exercise Science Research Center, Exercise Muscle Biology Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Nicholas P. Greene
- Exercise Science Research Center, Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA; (M.E.R.-C.); (D.E.L.); (J.L.B.); (N.P.G.)
| | - Michael P. Wiggs
- Integrative Physiology and Nutrition Laboratory Name, Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX 75799, USA;
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
21
|
Li J, Yang Q, Han L, Pan C, Lei C, Chen H, Lan X. C2C12 Mouse Myoblasts Damage Induced by Oxidative Stress Is Alleviated by the Antioxidant Capacity of the Active Substance Phloretin. Front Cell Dev Biol 2020; 8:541260. [PMID: 33042989 PMCID: PMC7516399 DOI: 10.3389/fcell.2020.541260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
A new direction for the treatment of skeletal myopathies, which are mainly caused by abnormal mitochondrial metabolism, is the application of drugs and active substances to relieve oxidative stress in mitochondria. Phloretin, a dihydrochalcone active substance widely present in succulent fruits, has attracted attention for its strong antioxidant activity. This study aimed to investigate the potential antioxidant effects of phloretin and its potential mechanism of action in C2C12 mouse myoblasts. Under oxidative stress caused by 500 μmol/L H2O2, the addition of 10 μmol/L phloretin ameliorated the high level of reactive oxygen species, increased CuZn/Mn-dependent superoxide dismutase activities, and restored the loss of mitochondrial membrane potential. Additionally, apoptosis, necrocytosis, and the inhibition of cell proliferation caused by H2O2 stimulation were alleviated by phloretin. Moreover, phloretin significantly increased the expression of cyclin D1 and alleviated the stagnation trend of the G1 phase of cell proliferation caused by H2O2. Furthermore, the addition of phloretin simultaneously significantly increased the protein and mRNA expression of heme oxygenase-1 (HO-1) and alleviated the inhibitory phosphorylation of p-nuclear factor erythroid 2-related factor 2 (Nrf2), p-AMP-activated protein kinase (AMPK), and p-liver kinase B1 (LKB1) induced by H2O2. Moreover, the expression of nuclear Nrf2 was higher with phloretin treatment than without phloretin treatment. Overall, phloretin alleviated the proliferation inhibition and apoptosis induced by H2O2 and exerted antioxidant effects via the LKB1/AMPK/Nrf2/HO-1 pathway in C2C12 cells. These results provide insight for the application of phloretin to alleviate oxidative damage to muscle.
Collapse
Affiliation(s)
- Jie Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qing Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chuanying Pan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
22
|
Su X, Zhang Q, Yue J, Wang Y, Zhang Y, Yang R. TRIM59 suppresses NO production by promoting the binding of PIAS1 and STAT1 in macrophages. Int Immunopharmacol 2020; 89:107030. [PMID: 33045573 DOI: 10.1016/j.intimp.2020.107030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Macrophages, which can secret various inflammation mediators, have an essential role in tumor growth and metastasis. However, the mechanism(s) to regulate the production of inflammation mediator is not completely clear. Here we found that TRIM 59 could inhibit the production of NO and the expression of inducible nitric oxide synthase (iNOS), cytochrome c oxidase subunit2 (COX2) and TNFα. TRIM59 mediated suppression on nitric oxide (NO) production is through inhibiting the activation of JAK2-STAT1 signal pathway. In response to LPS, TRIM59 in macrophages was translocated from cytoplasm to nucleus and directly bound with STAT1. During this process, TRIM59 could recruit much more PIAS1 to bind with STAT1 to suppress the activation of STAT1. Finally, TRIM59 modified macrophages could promote tumor growth. Thus, TRIM59 mediated suppression on NO production by promoting the binding of PIAS1 and STAT1 in macrophages may regulate tumor growth.
Collapse
Affiliation(s)
- Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| | - Qianjing Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Jianmei Yue
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yachen Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
23
|
Lin PW, Chu ML, Liu HS. Autophagy and metabolism. Kaohsiung J Med Sci 2020; 37:12-19. [PMID: 33021078 DOI: 10.1002/kjm2.12299] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/03/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolism consists of diverse life-sustaining chemical reactions in living organisms. Autophagy is a highly conservative process that responds to various internal and external stresses. Both processes utilize surrounding resources to provide energy and nutrients for the cell. Autophagy progression may proceed to the degradative or secretory pathway determined by Rab family proteins. The former is a degradative and lysosome-dependent catabolic process that produces energy and provides nutrients for the synthesis of essential proteins. The degradative pathway also balances the energy source of the cell and regulates tissue homeostasis. The latter is a newly discovered pathway in which the autophagosome is fused with the plasma membrane. Secretory autophagy participates in diverse functions and diseases ranging from the spread of viral particles to cancer and neurodegenerative diseases. Aberrant metabolism in the body causes various metabolic syndromes. This review explores the relationships among autophagy, metabolism, and related diseases.
Collapse
Affiliation(s)
- Pei-Wen Lin
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Man-Ling Chu
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiao-Sheng Liu
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
24
|
Rosa-Caldwell ME, Lim S, Haynie WS, Jansen LT, Westervelt LC, Amos MG, Washington TA, Greene NP. Altering aspects of mitochondrial quality to improve musculoskeletal outcomes in disuse atrophy. J Appl Physiol (1985) 2020; 129:1290-1303. [PMID: 32940556 DOI: 10.1152/japplphysiol.00407.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Muscle atrophy is a significant moderator for disease prognosis; as such, interventions to mitigate disuse-induced muscle loss are imperative to improve clinical interventions. Mitochondrial deteriorations may underlie disuse-induced myopathies; therefore, improving mitochondrial quality may be an enticing therapeutic intervention. However, different mitochondria-based treatments may have divergent impacts on the prognosis of disuse atrophy. Therefore, the purpose of this study was to investigate different mitochondria-centered interventions during disuse atrophy in hindlimb unloaded male and female mice. Male and female mice overexpressing peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) or mitochondrially targeted catalase (MCAT) and their respective wild-type (WT) littermate controls were hindlimb unloaded for 7 days to induce disuse atrophy or allowed normal ambulatory activity (cage control; CON). After designated interventions, animals were euthanized, and tissues were collected for measures of mitochondrial quality control and protein turnover. Although PGC-1α overexpression mitigated ubiquitin-proteasome activation (MuRF1 and Atrogin mRNA content), this did not correspond to phenotypic protections from disuse-induced atrophy. Rather, PGC-1α mice appeared to have a greater reliance on autophagic protein breakdown compared with WT mice. In MCAT mice, females exhibited a mitigated response to disuse atrophy; however, this effect was not noted in males. Despite these phenotypic differences, there were no clear cellular signaling differences between MCAT hindlimb unloaded females and MCAT fully loaded females. PGC-1α overexpression does not protect against phenotypic alterations during disuse atrophy but appears to shift catabolic pathways moderating atrophy. However, increased mitochondrially targeted catalase activity appears to blunt disuse atrophy within highly oxidative muscles specifically in female mice.NEW & NOTEWORTHY We present data suggesting that mitochondria-based interventions may mitigate disuse atrophy. However, the efficacy of mitochondria-based interventions may vary depending on the specific target of the intervention and the sex of the organism. Females appear to be more responsive to increased mitochondrial catalase as a potential therapeutic for mitigating disuse atrophy.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Lisa T Jansen
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Lauren C Westervelt
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Madeline G Amos
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
25
|
Wang D, Yang Y, Zou X, Zheng Z, Zhang J. Curcumin ameliorates CKD-induced mitochondrial dysfunction and oxidative stress through inhibiting GSK-3β activity. J Nutr Biochem 2020; 83:108404. [PMID: 32531667 DOI: 10.1016/j.jnutbio.2020.108404] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Curcumin has been reported to attenuate muscle atrophy. However, the underling mechanism remains unclear. The aim of this study was to investigate whether curcumin could improve chronic kidney disease (CKD)-induced muscle atrophy and mitochondrial dysfunction by inhibiting glycogen synthase kinase-3β (GSK-3β) activity. The sham and CKD mice were fed either a control diet or an identical diet containing 0.04% curcumin for 12 weeks. The C2C12 myotubes were treated with H2O2 in the presence or absence of curcumin. In addition, wild-type and muscle-specific GSK-3β knockout (KO) CKD model mice were made by 5/6 nephrectomy, and the sham was regarded as control. Curcumin could exert beneficial effects, including weight maintenance and improved muscle function, increased mitochondrial biogenesis, alleviated mitochondrial dysfunction by increasing adenosine triphosphate levels, activities of mitochondrial electron transport chain complexes and basal mitochondrial respiration and suppressing mitochondrial membrane potential. In addition, curcumin modulated redox homeostasis by increasing antioxidant activity and suppressed mitochondrial oxidative stress. Moreover, the protective effects of curcumin had been found to be mediated via inhibiting GSK-3β activity in vitro and in vivo. Importantly, GSK-3β KO contributed to improved mitochondrial function, attenuated mitochondrial oxidative damage and augmented mitochondrial biogenesis in muscle of CKD. Overall, this study suggested that curcumin alleviated CKD-induced mitochondrial oxidative damage and mitochondrial dysfunction via inhibiting GSK-3β activity in skeletal muscle.
Collapse
Affiliation(s)
- Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 5181000, Guangdong, China; School of Chinese Medicine, Southern Medical University, Shenzhen 510515, Guangdong, China; Department of the Ministry of Science and Technology, Guangxi International Zhuang Medicine Hospital, Nanning 530201, Guangxi , China; Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Traditional Chinese Medicine, Shenzhen 518033, Guangdong, China.
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang 524023, Guangdong , China
| | - Xiaohu Zou
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 5181000, Guangdong, China
| | - Zena Zheng
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 5181000, Guangdong, China
| | - Jing Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 5181000, Guangdong, China
| |
Collapse
|
26
|
Bůžková P, Barzilay JI, Fink HA, Robbins JA, Cauley JA, Ix JH, Mukamal KJ. Higher albumin:creatinine ratio and lower estimated glomerular filtration rate are potential risk factors for decline of physical performance in the elderly: the Cardiovascular Health Study. Clin Kidney J 2019; 12:788-794. [PMID: 31807292 PMCID: PMC6885681 DOI: 10.1093/ckj/sfz024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Mildly reduced renal function and elevated urine protein levels are each prospectively associated with hip fracture risk in older adults. Here we determine whether these markers are associated with reduced appendicular muscle performance. METHODS We prospectively examined the associations of urine albumin:creatinine ratio (ACR) and reduced estimated glomerular filtration rate (eGFR) with longitudinal changes in grip strength and gait speed >2 years in 2317 older community-dwelling men and women (median age 77 years). The median ACR was 9.8 [interquartile range (IQR) 5.40-21.50] mg/g creatinine and the median eGFR was 71.6 (IQR 59.1-83.56) mL/min/1.73 m2. Models were adjusted for demographic factors, clinical history and biochemical measures in four candidate pathways: diabetes, oxidative stress, inflammation and fibrosis. RESULTS In demographic- and covariate-adjusted models, a 2-fold higher baseline urine ACR was associated with longitudinal changes of -0.17 kg [95% confidence interval (CI) -0.29 to -0.06) in grip strength and -1.10 cm/s (95% CI -1.67 to -0.53) gait speed per year. Corresponding estimates for a 10 mL/min/1.73 m2 lower baseline eGFR were -0.13 kg (95% CI -0.23 to -0.04) and -0.89 cm/s (95% CI -1.37 to -0.40), respectively. The associations of a 2-fold higher baseline ACR and a 10 mL/min/1.73 m2 lower baseline eGFR using cystatin C with grip strength and gait speed were equivalent to ∼1.2-1.9 additional years of age. Adjustment for covariates in candidate pathways did not attenuate these estimates. CONCLUSIONS In older adults, higher ACR and lower eGFR are potential risk factors for a decline of physical performance >2 years.
Collapse
Affiliation(s)
- Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Joshua I Barzilay
- Division of Endocrinology, Kaiser Permanente of Georgia, Emory University School of Medicine, Atlanta, GA, USA
| | - Howard A Fink
- Geriatric Research Education and Clinical Center, VA Health Care System, Minneapolis, MN, USA
| | - John A Robbins
- Department of Medicine, University of California, Davis, Modesto, CA, USA
| | - Jane A Cauley
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joachim H Ix
- Division of Nephrology, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
27
|
Rosa-Caldwell ME, Fix DK, Washington TA, Greene NP. Muscle alterations in the development and progression of cancer-induced muscle atrophy: a review. J Appl Physiol (1985) 2019; 128:25-41. [PMID: 31725360 DOI: 10.1152/japplphysiol.00622.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer cachexia-cancer-associated body weight and muscle loss-is a significant predictor of mortality and morbidity in cancer patients across a variety of cancer types. However, despite the negative prognosis associated with cachexia onset, there are no clinical therapies approved to treat or prevent cachexia. This lack of treatment may be partially due to the relative dearth of literature on mechanisms occurring within the muscle before the onset of muscle wasting. Therefore, the purpose of this review is to compile the current scientific literature on mechanisms contributing to the development and progression of cancer cachexia, including protein turnover, inflammatory signaling, and mitochondrial dysfunction. We define "development" as changes in cell function occurring before the onset of cachexia and "progression" as alterations to cell function that coincide with the exacerbation of muscle wasting. Overall, the current literature suggests that multiple aspects of cellular function, such as protein turnover, inflammatory signaling, and mitochondrial quality, are altered before the onset of muscle loss during cancer cachexia and clearly highlights the need to study more thoroughly the developmental stages of cachexia. The studying of these early aberrations will allow for the development of effective therapeutics to prevent the onset of cachexia and improve health outcomes in cancer patients.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Dennis K Fix
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
28
|
Rosa-Caldwell ME, Greene NP. Muscle metabolism and atrophy: let's talk about sex. Biol Sex Differ 2019; 10:43. [PMID: 31462271 PMCID: PMC6714453 DOI: 10.1186/s13293-019-0257-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle health is a strong predictor of overall health and longevity. Pathologies affecting skeletal muscle such as cancer cachexia, intensive care unit treatment, muscular dystrophies, and others are associated with decreased quality of life and increased mortality. Recent research has begun to determine that these muscular pathologies appear to present and develop differently between males and females. However, to our knowledge, there has yet to be a comprehensive review on musculoskeletal differences between males and females and how these differences may contribute to sex differences in muscle pathologies. Herein, we present a review of the current literature on muscle phenotype and physiology between males and females and how these differences may contribute to differential responses to atrophic stimuli. In general, females appear to be more susceptible to disuse induced muscle wasting, yet protected from inflammation induced (such as cancer cachexia) muscle wasting compared to males. These differences may be due in part to differences in muscle protein turnover, satellite cell content and proliferation, hormonal interactions, and mitochondrial differences between males and females. However, more works specifically examining muscle pathologies in females are necessary to more fully understand the inherent sex-based differences in muscle pathologies between the sexes and how they may correspond to different clinical treatments.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
29
|
Rosa-Caldwell ME, Brown JL, Perry RA, Shimkus KL, Shirazi-Fard Y, Brown LA, Hogan HA, Fluckey JD, Washington TA, Wiggs MP, Greene NP. Regulation of mitochondrial quality following repeated bouts of hindlimb unloading. Appl Physiol Nutr Metab 2019; 45:264-274. [PMID: 31340136 DOI: 10.1139/apnm-2019-0218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Muscle disuse impairs muscle quality and is associated with increased mortality. Little is known regarding additive effects of multiple bouts of disuse, which is a common occurrence in patients experiencing multiple surgeries. Mitochondrial quality is vital to muscle health and quality; however, to date mitochondrial quality control has not been investigated following multiple bouts of disuse. Therefore, the purpose of this study was to investigate mitochondrial quality controllers during multiple bouts of disuse by hindlimb unloading. Male rats (n ∼ 8/group) were assigned to the following groups: hindlimb unloading for 28 days, hindlimb unloading with 56 days of reloading, 2 bouts of hindlimb unloading separated by a recovery phase of 56 days of reloading, 2 bouts of hindlimb unloading and recovery after each disuse, or control animals with no unloading. At designated time points, tissues were collected for messenger RNA and protein analysis of mitochondrial quality. Measures of mitochondrial biogenesis, such as proliferator-activated receptor gamma coactivator 1 alpha, decreased 30%-40% with unloading with no differences noted between unloading conditions. Measures of mitochondrial translation were 40%-50% lower in unloading conditions, with no differences noted between bouts of unloading. Measures of mitophagy were 40%-50% lower with reloading, with no differences noted between reloading conditions. In conclusion, disuse causes alterations in measures of mitochondrial quality; however, multiple bouts of disuse does not appear to have additive effects. Novelty Disuse atrophy causes multiple alterations to mitochondrial quality control. With sufficient recovery most detriments to mitochondrial quality control are fixed. In general, multiple bouts of disuse do not produce additive effects.
Collapse
Affiliation(s)
- Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jacob L Brown
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Richard A Perry
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kevin L Shimkus
- Muscle Biology Laboratory, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Yasaman Shirazi-Fard
- Bone Biomechanics Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Lemuel A Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Harry A Hogan
- Bone Biomechanics Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - James D Fluckey
- Muscle Biology Laboratory, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| | - Michael P Wiggs
- Integrated Physiology and Nutrition Laboratory, Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX 75799, USA
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA.,Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
30
|
Kobayashi J, Uchida H, Kofuji A, Ito J, Shimizu M, Kim H, Sekiguchi Y, Kushibe S. Molecular regulation of skeletal muscle mass and the contribution of nitric oxide: A review. FASEB Bioadv 2019; 1:364-374. [PMID: 32123839 PMCID: PMC6996321 DOI: 10.1096/fba.2018-00080] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
A variety of internal and external factors such as exercise, nutrition, inflammation, and cancer-associated cachexia affect the regulation of skeletal muscle mass. Because skeletal muscle functions as a crucial regulator of whole body metabolism, rather than just as a motor for locomotion, the enhancement and maintenance of muscle mass and function are required to maintain health and reduce the morbidity and mortality associated with diseases involving muscle wasting. Recent studies in this field have made tremendous progress; therefore, identification of the mechanisms that regulate skeletal muscle mass is necessary for the physical and nutritional management of both athletes and patients with muscle wasting disease. In this review, we present an overall picture of the interactions regulating skeletal muscle mass, particularly focusing on the insulin-like growth factor-I (IGF-I)/insulin-Akt-mammalian target of rapamycin (mTOR) pathway, skeletal muscle inactivity, and endurance and resistance exercise. We also discuss the contribution of nitric oxide (NO) to the regulation of skeletal muscle mass based on the current knowledge of the novel role of NO in these processes.
Collapse
Affiliation(s)
- Jun Kobayashi
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Hiroyuki Uchida
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Ayaka Kofuji
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Junta Ito
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Maki Shimizu
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Hyounju Kim
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Yusuke Sekiguchi
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical ScienceJosai UniversitySaitamaJapan
| | - Seiji Kushibe
- Department of Management, Faculty of ManagementJosai UniversitySaitamaJapan
| |
Collapse
|
31
|
Tang F, Ling C, Liu J. Reduced expression of growth differentiation factor 11 promoted the progression of chronic obstructive pulmonary disease by activating the AKT signaling pathway. Biomed Pharmacother 2018; 103:691-698. [DOI: 10.1016/j.biopha.2018.04.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/29/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022] Open
|
32
|
Production of functional human CuZn-SOD and EC-SOD in bitransgenic cloned goat milk. Transgenic Res 2018; 27:343-354. [PMID: 29926349 DOI: 10.1007/s11248-018-0080-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/26/2018] [Indexed: 12/16/2022]
Abstract
Human copper/zinc superoxide dismutase (CuZn-SOD) and extracellular superoxide dismutase (EC-SOD) are two superoxide dismutases that scavenge reactive oxygen species (ROS). Their biological role of eliminating oxidative stress caused by excessive ROS levels in living organisms has been utilized in medical treatment, preventing skin photoaging and food preservation. In this study, we employed two sequences that encode human CuZn-SOD and EC-SOD, along with goat beta-casein 5' and 3' regulatory elements, to construct mammary gland-specific expression vectors. Bitransgenic goats were generated using somatic cell nuclear transfer (SCNT), which employed co-transfection to generate bitransgenic goat fetal fibroblast cells as donor cells, and the expression of human CuZn-SOD and EC-SOD and their biological activities were assayed in the milk. PCR and Southern blot analysis confirmed that the cloned goat harbors both hCuZn-SOD and hEC-SOD transgenes. rhCuZn-SOD and rhEC-SOD were expressed in the mammary glands of bitransgenic goat, as determined by western blotting. The expression levels were 100.14 ± 5.09 mg/L for rhCuZn-SOD and 279.10 ± 5.38 mg/L for rhEC-SOD, as determined using ELISA. A total superoxide dismutase assay with WST-8 indicates that the biological activity of rhCuZn-SOD and rhEC-SOD in goat milk is 1451 ± 136 U/mL. The results indicate that two expression vectors can simultaneously transfect goat fetal fibroblast cells as donor cells to produce transgenic goats by SCNT, and the CuZn-SOD and EC-SOD proteins secreted in the mammary glands showed biological activity. The present study thus describes an initial step in the production of recombinant human SODs that may potentially be used for therapeutic purposes.
Collapse
|
33
|
L-Arginine Enhances Protein Synthesis by Phosphorylating mTOR (Thr 2446) in a Nitric Oxide-Dependent Manner in C2C12 Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7569127. [PMID: 29854093 PMCID: PMC5944195 DOI: 10.1155/2018/7569127] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/24/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
Muscle atrophy may arise from many factors such as inactivity, malnutrition, and inflammation. In the present study, we investigated the stimulatory effect of nitric oxide (NO) on muscle protein synthesis. Primarily, C2C12 cells were supplied with extra L-arginine (L-Arg) in the culture media. L-Arg supplementation increased the activity of inducible nitric oxide synthase (iNOS), the rate of protein synthesis, and the phosphorylation of mTOR (Thr 2446) and p70S6K (Thr 389). L-NAME, an NOS inhibitor, decreased NO concentrations within cells and abolished the stimulatory effect of L-Arg on protein synthesis and the phosphorylation of mTOR and p70S6K. In contrast, SNP (sodium nitroprusside), an NO donor, increased NO concentrations, enhanced protein synthesis, and upregulated mTOR and p70S6K phosphorylation, regardless of L-NAME treatment. Blocking mTOR with rapamycin abolished the stimulatory effect of both L-Arg and SNP on protein synthesis and p70S6K phosphorylation. These results indicate that L-Arg stimulates protein synthesis via the activation of the mTOR (Thr 2446)/p70S6K signaling pathway in an NO-dependent manner.
Collapse
|
34
|
Ábrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D, Estrada L, Cabello-Verrugio C. Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2063179. [PMID: 29785242 PMCID: PMC5896211 DOI: 10.1155/2018/2063179] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Skeletal muscle atrophy is a pathological condition mainly characterized by a loss of muscular mass and the contractile capacity of the skeletal muscle as a consequence of muscular weakness and decreased force generation. Cachexia is defined as a pathological condition secondary to illness characterized by the progressive loss of muscle mass with or without loss of fat mass and with concomitant diminution of muscle strength. The molecular mechanisms involved in cachexia include oxidative stress, protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction. Oxidative stress is one of the most common mechanisms of cachexia caused by different factors. It results in increased ROS levels, increased oxidation-dependent protein modification, and decreased antioxidant system functions. In this review, we will describe the importance of oxidative stress in skeletal muscles, its sources, and how it can regulate protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction involved in cachexia.
Collapse
Affiliation(s)
- Johanna Ábrigo
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A. Elorza
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
- 3Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Claudia A. Riedel
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Cristian Vilos
- 4Laboratory of Nanomedicine and Targeted Delivery, Center for Integrative Medicine and Innovative Science, Faculty of Medicine, and Center for Bioinformatics and Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
- 5Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Daniel Cabrera
- 6Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- 7Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Lisbell Estrada
- 8Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Claudio Cabello-Verrugio
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
35
|
Lee SR, Nilius B, Han J. Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. Rev Physiol Biochem Pharmacol 2018; 174:81-156. [PMID: 29372329 DOI: 10.1007/112_2017_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|