1
|
Aktar T, Modak S, Majumder D, Maiti D. A detailed insight into macrophages' role in shaping lung carcinogenesis. Life Sci 2024; 352:122896. [PMID: 38972632 DOI: 10.1016/j.lfs.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Despite significant advancements in cancer treatment in recent decades, the high mortality rate associated with lung cancer remains a significant concern. The development and proper execution of new targeted therapies needs more deep knowledge regarding the lung cancer associated tumour microenvironment. One of the key component of that tumour microenvironment is the lung resident macrophages. Although in normal physiological condition the lung resident macrophages are believed to maintain lung homeostasis, but they may also initiate a vicious inflammatory response in abnormal conditions which is linked to lung cancer development. Depending on the activation pathway, the lung resident macrophages are either of M1 or M2 sub-type. The M1 and M2 sub-types differ significantly in various prospectuses, from phenotypic markers to metabolic pathways. In addition to this generalized classification, the recent advancement of the multiomics technology is able to identify some other sub-types of lung resident macrophages. Researchers have also observed that these different sub-types can manipulate the pathogenesis of lung carcinogenesis in a context dependent manner and can either promote or inhibit the development of lung carcinogenesis upon receiving proper activation. As proper knowledge about the role played by the lung resident macrophages' in shaping the lung carcinogenesis is limited, so the main purpose of this review is to bring all the available information under the same roof. We also elaborated the different mechanisms involved in maintenance of the plasticity of M1/M2 sub-type, as this plasticity can be a good target for lung cancer treatment.
Collapse
Affiliation(s)
- Tamanna Aktar
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India
| | - Snehashish Modak
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India
| | - Debabrata Majumder
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India; Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Debasish Maiti
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India.
| |
Collapse
|
2
|
Glorieux C, Enríquez C, González C, Aguirre-Martínez G, Buc Calderon P. The Multifaceted Roles of NRF2 in Cancer: Friend or Foe? Antioxidants (Basel) 2024; 13:70. [PMID: 38247494 PMCID: PMC10812565 DOI: 10.3390/antiox13010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Physiological concentrations of reactive oxygen species (ROS) play vital roles in various normal cellular processes, whereas excessive ROS generation is central to disease pathogenesis. The nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor that regulates the cellular antioxidant systems in response to oxidative stress by governing the expression of genes encoding antioxidant enzymes that shield cells from diverse oxidative alterations. NRF2 and its negative regulator Kelch-like ECH-associated protein 1 (KEAP1) have been the focus of numerous investigations in elucidating whether NRF2 suppresses tumor promotion or conversely exerts pro-oncogenic effects. NRF2 has been found to participate in various pathological processes, including dysregulated cell proliferation, metabolic remodeling, and resistance to apoptosis. Herein, this review article will examine the intriguing role of phase separation in activating the NRF2 transcriptional activity and explore the NRF2 dual impacts on tumor immunology, cancer stem cells, metastasis, and long non-coding RNAs (LncRNAs). Taken together, this review aims to discuss the NRF2 multifaceted roles in both cancer prevention and promotion while also addressing the advantages, disadvantages, and limitations associated with modulating NRF2 therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Programa de Magister en Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Constanza González
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
| | - Gabriela Aguirre-Martínez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
- Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
3
|
Yao H, Hu J, Shao Y, Shao Q, Zheng S. Aldo-keto Reductase 1B10 Restrains Cell Migration, Invasion, and Adhesion of Gastric Cancer via Regulating Integrin Subunit Alpha 5. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:1197-1205. [PMID: 37823316 PMCID: PMC10765221 DOI: 10.5152/tjg.2023.22555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/06/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND/AIMS Gastric cancer is a prevalent malignancy with unfavorable prognosis partially resulting from its high metastasis rate. Clarifying the molecular mechanism of gastric cancer occurrence and progression for improvement of therapeutic efficacy and prognosis is needed. The study tended to delineate the role and regulatory mechanism of aldo-keto reductase 1B10 (AKR1B10) in gastric cancer progression. MATERIALS AND METHODS The relationship of AKR1B10 expression with survival rate in gastric cancer was analyzed through Kaplan-Meier analysis. The mRNA levels of AKR1B10 and integrin subunit alpha 5 (ITGA5) in gastric cancer tissues and cell lines were measured by real-time quantitative polymerase chain reaction. Protein levels of AKR1B10 and integrin subunit alpha 5 were assayed via western blot. The molecular relationship between AKR1B10 and ITGA5 was analyzed by co-immunoprecipitation assay. Cell viability was assayed through Cell Counting Kit-8, invasion and migration of tumor cells was assessed through wound healing and transwell assays. Transwell assay was utilized to detect invasion. The adhesion of gastric cancer cells was detected using cell adhesion assays. RESULTS The results unveiled that integrin subunit alpha 5 was upregulated, while AKR1B10 was downregulated in gastric cancer tissues and cells. Overexpressing AKR1B10 hindered gastric cancer cell proliferation, migration, invasion and adhesion. It was striking that we certified the inhibitory effect of AKR1B10 on integrin subunit alpha 5 expression and their (AKR1B10 and ITGA5)) negative relationship via bioinformatics method, real-time quantitative polymerase chain reaction, and co-immunoprecipitation assays. Via rescue experiments, it was concluded that AKR1B10 served as tumor suppressor potentially by ITGA5 expression in gastric cancer. CONCLUSION Our results indicated that AKR1B10 inhibited migration, invasion, and adhesion of gastric cancer cells via modulation of ITGA5.
Collapse
Affiliation(s)
- Haibo Yao
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Division of General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Junfeng Hu
- Division of General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanfei Shao
- Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Qinshu Shao
- Division of General Surgery, Department of Gastrointestinal and Pancreatic Surgery, Cancer Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Department of Hepatobiliary & Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Tang YC, Chuang YJ, Chang HH, Juang SH, Yen GC, Chang JY, Kuo CC. How to deal with frenemy NRF2: Targeting NRF2 for chemoprevention and cancer therapy. J Food Drug Anal 2023; 31:387-407. [PMID: 39666284 PMCID: PMC10629913 DOI: 10.38212/2224-6614.3463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 12/13/2024] Open
Abstract
Induction of antioxidant proteins and phase 2 detoxifying enzymes that neutralize reactive electrophiles are important mechanisms for protection against carcinogenesis. Normal cells provide multifaceted pathways to tightly control NF-E2-related factor 2 (NRF2)-mediated gene expression in response to an assault by a range of endogenous and exogenous oncogenic molecules. Transient activation of NRF2 by its activators is able to induce ARE-mediated cytoprotective proteins which are essential for protection against various toxic and oxidative damages, and NRF2 activators thereby have efficacy in cancer chemoprevention. Because NRF2 has a cytoprotective function, it can protect normal cells from carcinogens like an angel, but when the protective effect acts on cancer cells, it will give rise to invincible cancer cells and play a devilish role in tumor progression. Indeed, aberrant activation of NRF2 has been found in a variety of cancers that create a favorable environment for the proliferation and survival of cancer cells and leads to drug resistance, ultimately leading to the poor clinical prognosis of patients. Therefore, pharmacological inhibition of NRF2 signaling has emerged as a promising approach for cancer therapy. This review aims to compile the regulatory mechanisms of NRF2 and its double-edged role in cancer. In addition, we also summarize the research progress of NRF2 modulators, especially phytochemicals, in chemoprevention and cancer therapy.
Collapse
Affiliation(s)
- Ya-Chu Tang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu,
Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu,
Taiwan
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
| | - Shin-Hun Juang
- School of Pharmacy, China Medical University, Taichung,
Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung,
Taiwan
| | - Jang-Yang Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
- Taipei Cancer Center, Taipei Medical University Hospital, Taipei,
Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei,
Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung,
Taiwan
| |
Collapse
|
5
|
Phan HD, Nguyen TTM, Lee S, Seo M, An YJ, de Guzman ACV. The metabolic contribution of SKN-1/Nrf2 to the lifespan of Caenorhabditis elegans. Metabolomics 2023; 19:58. [PMID: 37289273 DOI: 10.1007/s11306-023-02022-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND AND AIMS SKN-1, a C. elegans transcription factor analogous to the mammalian NF-E2-related factor (Nrf2), has been known to promote oxidative stress resistance aiding nematodes' longevity. Although SKN-1's functions suggest its implication in lifespan modulation through cellular metabolism, the actual mechanism of how metabolic rearrangements contribute to SKN-1's lifespan modulation has yet to be well characterized. Therefore, we performed the metabolomic profiling of the short-lived skn-1-knockdown C. elegans. METHODS We analyzed the metabolic profile of the skn-1-knockdown worms with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-tandem mass spectrometry (LC-MS/MS) and obtained distinctive metabolomic profiles compared to WT worms. We further extended our study with gene expression analysis to examine the expression level of genes encoding all metabolic enzymes. RESULTS A significant increase in the phosphocholine and AMP/ATP ratio, potential biomarkers of aging, was observed, accompanied by a decrease in the transsulfuration metabolites, NADPH/NADP+ ratio, and total glutathione (GSHt), which are known to be involved in oxidative stress defense. skn-1-RNAi worms also exhibited an impairment in the phase II detoxification system, confirmed by the lower conversion rate of paracetamol to paracetamol-glutathione. By further examining the transcriptomic profile, we found a decrease in the expression of cbl-1, gpx, T25B9.9, ugt, and gst, which are involved in GSHt and NADPH synthesis as well as in the phase II detoxification system. CONCLUSION Our multi-omics results consistently revealed that the cytoprotective mechanisms, including cellular redox reactions and xenobiotic detoxification system, contribute to the roles of SKN-1/Nrf2 in the lifespan of worms.
Collapse
Affiliation(s)
- Hong-Duc Phan
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Sillim-Dong, Gwanak-Gu, Seoul, 08826, South Korea
| | - Tin Tin Manh Nguyen
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Sillim-Dong, Gwanak-Gu, Seoul, 08826, South Korea
- Department of Pharmacy, Binh Duong University, Thu Dau Mot, 820000, Vietnam
| | - Sujin Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Sillim-Dong, Gwanak-Gu, Seoul, 08826, South Korea
| | - Munjun Seo
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Sillim-Dong, Gwanak-Gu, Seoul, 08826, South Korea
| | - Yong Jin An
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Sillim-Dong, Gwanak-Gu, Seoul, 08826, South Korea.
| | - Arvie Camille V de Guzman
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Sillim-Dong, Gwanak-Gu, Seoul, 08826, South Korea.
| |
Collapse
|
6
|
Occhiuto CJ, Moerland JA, Leal AS, Gallo KA, Liby KT. The Multi-Faceted Consequences of NRF2 Activation throughout Carcinogenesis. Mol Cells 2023; 46:176-186. [PMID: 36994476 PMCID: PMC10070161 DOI: 10.14348/molcells.2023.2191] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/31/2023] Open
Abstract
The oxidative balance of a cell is maintained by the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. This cytoprotective pathway detoxifies reactive oxygen species and xenobiotics. The role of the KEAP1/NRF2 pathway as pro-tumorigenic or anti-tumorigenic throughout stages of carcinogenesis (including initiation, promotion, progression, and metastasis) is complex. This mini review focuses on key studies describing how the KEAP1/NRF2 pathway affects cancer at different phases. The data compiled suggest that the roles of KEAP1/NRF2 in cancer are highly dependent on context; specifically, the model used (carcinogen-induced vs genetic), the tumor type, and the stage of cancer. Moreover, emerging data suggests that KEAP1/NRF2 is also important for regulating the tumor microenvironment and how its effects are amplified either by epigenetics or in response to co-occurring mutations. Further elucidation of the complexity of this pathway is needed in order to develop novel pharmacological tools and drugs to improve patient outcomes.
Collapse
Affiliation(s)
- Christopher J. Occhiuto
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jessica A. Moerland
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Ana S. Leal
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Kathleen A. Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Karen T. Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Feng J, Read OJ, Dinkova-Kostova AT. Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment. Mol Cells 2023; 46:142-152. [PMID: 36927604 PMCID: PMC10070167 DOI: 10.14348/molcells.2023.2183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 03/18/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of pro-inflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.
Collapse
Affiliation(s)
- Jialin Feng
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Oliver J. Read
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Albena T. Dinkova-Kostova
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
8
|
The Novel RXR Agonist MSU-42011 Differentially Regulates Gene Expression in Mammary Tumors of MMTV-Neu Mice. Int J Mol Sci 2023; 24:ijms24054298. [PMID: 36901727 PMCID: PMC10001983 DOI: 10.3390/ijms24054298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Retinoid X receptor (RXR) agonists, which activate the RXR nuclear receptor, are effective in multiple preclinical cancer models for both treatment and prevention. While RXR is the direct target of these compounds, the downstream changes in gene expression differ between compounds. RNA sequencing was used to elucidate the effects of the novel RXRα agonist MSU-42011 on the transcriptome in mammary tumors of HER2+ mouse mammary tumor virus (MMTV)-Neu mice. For comparison, mammary tumors treated with the FDA approved RXR agonist bexarotene were also analyzed. Each treatment differentially regulated cancer-relevant gene categories, including focal adhesion, extracellular matrix, and immune pathways. The most prominent genes altered by RXR agonists positively correlate with survival in breast cancer patients. While MSU-42011 and bexarotene act on many common pathways, these experiments highlight the differences in gene expression between these two RXR agonists. MSU-42011 targets immune regulatory and biosynthetic pathways, while bexarotene acts on several proteoglycan and matrix metalloproteinase pathways. Exploration of these differential effects on gene transcription may lead to an increased understanding of the complex biology behind RXR agonists and how the activities of this diverse class of compounds can be utilized to treat cancer.
Collapse
|
9
|
Moerland JA, Leal AS, Lockwood B, Demireva EY, Xie H, Krieger-Burke T, Liby KT. The Triterpenoid CDDO-Methyl Ester Redirects Macrophage Polarization and Reduces Lung Tumor Burden in a Nrf2-Dependent Manner. Antioxidants (Basel) 2023; 12:116. [PMID: 36670978 PMCID: PMC9854457 DOI: 10.3390/antiox12010116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
The NRF2/KEAP1 pathway protects healthy cells from malignant transformation and maintains cellular homeostasis. Up to 30% of human lung tumors gain constitutive NRF2 activity which contributes to cancer cell survival and chemoresistance, but the effects of NRF2 activation in immune cells within the tumor microenvironment are underexplored. Macrophages can promote cancer progression or regression depending on context, and NRF2 activation affects macrophage activity. The NRF2 activator CDDO-Methyl ester (CDDO-Me or bardoxolone methyl) reprogrammed Nrf2 wild-type (WT) tumor-educated bone marrow-derived macrophages (TE-BMDMs) from a tumor-promoting to a tumor-inhibiting phenotype, marked by an increase in M1 markers TNFα, IL-6, and MHC-II and a decrease in the tumor-promoting factors VEGF, CCL2, and CD206. No changes were observed in Nrf2 knockout (KO) TE-BMDMs. CDDO-Me decreased tumor burden (p < 0.001) and improved pathological grade (p < 0.05) in WT but not Nrf2 KO A/J mice. Tumor burden in Nrf2 KO mice was 4.6-fold higher (p < 0.001) than in WT mice, irrespective of treatment. CDDO-Me increased the number of lung-infiltrating macrophages in WT mice but lowered CD206 expression in these cells (p < 0.0001). In summary, Nrf2 KO exacerbates lung tumorigenesis in A/J mice, and CDDO-Me promotes an Nrf2-dependent, anti-cancer macrophage phenotype.
Collapse
Affiliation(s)
- Jessica A. Moerland
- Department of Pharmacology & Toxicology, College of Osteopathic Medicine, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA
| | - Ana S. Leal
- Department of Pharmacology & Toxicology, College of Osteopathic Medicine, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA
| | - Beth Lockwood
- Department of Pharmacology & Toxicology, College of Osteopathic Medicine, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA
| | - Elena Y. Demireva
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Huirong Xie
- Transgenic and Genome Editing Facility, Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824, USA
| | | | - Karen T. Liby
- Department of Pharmacology & Toxicology, College of Osteopathic Medicine, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
Rivera-Torres N, Bialk P, Kmiec EB. CRISPR-Directed Gene Editing as a Method to Reduce Chemoresistance in Lung Cancer Cells. Methods Mol Biol 2023; 2660:263-271. [PMID: 37191803 DOI: 10.1007/978-1-0716-3163-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We are advancing a novel strategy for the treatment of solid tumors by employing CRISPR-directed gene editing to reduce levels of standard of care required to halt or reverse the progression of tumor growth. We intend to do this by utilizing a combinatorial approach in which CRISPR-directed gene editing is used to eliminate or significantly reduce the acquired resistance emerging from chemotherapy, radiation therapy, or immunotherapy. We will utilize CRISPR/Cas as a biomolecular tool to disable specific genes involved in the sustainability of resistance to cancer therapy. We have also developed a CRISPR/Cas molecule that can distinguish between the genome of a tumor cell in the genome of a normal cell, thereby conferring target selectivity onto this therapeutic approach. We envision delivering these molecules by direct injection into solid tumors for the treatment of squamous cell carcinomas of the lung, esophageal cancer, and head and neck cancer. We provide experimental details and methodology for utilizing CRISPR/Cas as a supplement to chemotherapy to destroy lung cancer cells.
Collapse
Affiliation(s)
| | - Pawel Bialk
- Gene Editing Institute, ChristianaCare Health System, Newark, DE, USA
| | - Eric B Kmiec
- Gene Editing Institute, ChristianaCare Health System, Newark, DE, USA.
| |
Collapse
|
11
|
Qi X, Walton DA, Plafker KS, Boulton ME, Plafker SM. Sulforaphane recovers cone function in an Nrf2-dependent manner in middle-aged mice undergoing RPE oxidative stress. Mol Vis 2022; 28:378-393. [PMID: 36338670 PMCID: PMC9603948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has therapeutic efficacy in numerous animal models of human disease, including mouse models of retinal degeneration. However, despite dozens of clinical trials, the compound remains to be tested as a clinical treatment for ocular disease. Numerous cellular activities of SFN have been identified, including the activation of Nrf2, a transcription factor that induces a battery of target gene products to neutralize oxidative and xenobiotic stresses. As Nrf2 expression and function reportedly decrease with aging, we tested whether the loss of the transcription factor limits the therapeutic efficacy of SFN against retinal degeneration. METHODS Six- to 8-month-old wild-type and Nrf2 knockout mice were treated with SFN beginning 1 month after ribozyme-mediated knockdown of superoxide dismutase 2 (SOD2) mRNA in the RPE. The impacts of MnSOD (the protein product of SOD2) knockdown and the efficacy of SFN were evaluated using a combination of electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT), and postmortem histology. RESULTS SFN restored the ERG photopic b-wave suppressed by MnSOD loss in wild-type mice, but not in the Nrf2 knockout mice. In contrast, ERG scotopic a- and b-wave loss was not restored for either genotype. SFN significantly improved retinal thickness in the Nrf2 knockout mice with MnSOD knockdown, but this was not observed in the wild-type mice. In both genotypes, SFN treatment reduced morphological markers of RPE atrophy and degeneration, although these improvements did not correlate proportionally with functional recovery. CONCLUSIONS These findings highlight the capacity of SFN to preserve cone function, as well as the potential challenges of using the compound as a standalone treatment for age-related retinal degeneration under conditions associated with reduced Nrf2 function.
Collapse
Affiliation(s)
- Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Dorothy A. Walton
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Kendra S. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| |
Collapse
|
12
|
Identifying General Tumor and Specific Lung Cancer Biomarkers by Transcriptomic Analysis. BIOLOGY 2022; 11:biology11071082. [PMID: 36101460 PMCID: PMC9313083 DOI: 10.3390/biology11071082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
The bioinformatic pipeline previously developed in our research laboratory is used to identify potential general and specific deregulated tumor genes and transcription factors related to the establishment and progression of tumoral diseases, now comparing lung cancer with other two types of cancer. Twenty microarray datasets were selected and analyzed separately to identify hub differentiated expressed genes and compared to identify all the deregulated genes and transcription factors in common between the three types of cancer and those unique to lung cancer. The winning DEGs analysis allowed to identify an important number of TFs deregulated in the majority of microarray datasets, which can become key biomarkers of general tumors and specific to lung cancer. A coexpression network was constructed for every dataset with all deregulated genes associated with lung cancer, according to DAVID’s tool enrichment analysis, and transcription factors capable of regulating them, according to oPOSSUM´s tool. Several genes and transcription factors are coexpressed in the networks, suggesting that they could be related to the establishment or progression of the tumoral pathology in any tissue and specifically in the lung. The comparison of the coexpression networks of lung cancer and other types of cancer allowed the identification of common connectivity patterns with deregulated genes and transcription factors correlated to important tumoral processes and signaling pathways that have not been studied yet to experimentally validate their role in lung cancer. The Kaplan–Meier estimator determined the association of thirteen deregulated top winning transcription factors with the survival of lung cancer patients. The coregulatory analysis identified two top winning transcription factors networks related to the regulatory control of gene expression in lung and breast cancer. Our transcriptomic analysis suggests that cancer has an important coregulatory network of transcription factors related to the acquisition of the hallmarks of cancer. Moreover, lung cancer has a group of genes and transcription factors unique to pulmonary tissue that are coexpressed during tumorigenesis and must be studied experimentally to fully understand their role in the pathogenesis within its very complex transcriptomic scenario. Therefore, the downstream bioinformatic analysis developed was able to identify a coregulatory metafirm of cancer in general and specific to lung cancer taking into account the great heterogeneity of the tumoral process at cellular and population levels.
Collapse
|
13
|
V Ganesh G, Ganesan K, Xu B, Ramkumar KM. Nrf2 driven macrophage responses in diverse pathophysiological contexts: Disparate pieces from a shared molecular puzzle. Biofactors 2022; 48:795-812. [PMID: 35618963 DOI: 10.1002/biof.1867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022]
Abstract
The wide anatomical distribution of macrophages and their vast array of functions match various polarization states and their involvement in homeostasis and disease. The confluence of different cellular signaling networks, including direct involvement in inflammation, at the doorstep of the transcription factor Nuclear Factor- erythroid (NF-E2) p45-related factor 2 (Nrf2) activation raises the importance of deciphering the molecular circuitry at the background of multiple-discrete and antagonistic yet flexible and contextual pathways. While we primarily focus on wound healing and repair mechanisms that are affected in diabetic foot ulcers (DFUs), we strive to explore the striking similarities and differences in molecular events including inflammation, angiogenesis, and fibrosis during tissue injury and wound persistence that accumulates pro-inflammatory senescent macrophages, as a means to identify possible targets or cellular mediators to lessen DFU disease burden. In addition, the role of iron in the modulation of Nrf2 response in macrophages is crucial and reviewed here. Targeted approaches, unlike conventional treatments, in DFU management will require the review and re-assessment of mediators with relevance to other pathological conditions.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| | - Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Baojun Xu
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
14
|
Banas K, Modarai S, Rivera-Torres N, Yoo BC, Bialk PA, Barrett C, Batish M, Kmiec EB. Exon skipping induced by CRISPR-directed gene editing regulates the response to chemotherapy in non-small cell lung carcinoma cells. Gene Ther 2022; 29:357-367. [PMID: 35314779 PMCID: PMC9203268 DOI: 10.1038/s41434-022-00324-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
We have been developing CRISPR-directed gene editing as an augmentative therapy for the treatment of non-small cell lung carcinoma (NSCLC) by genetic disruption of Nuclear Factor Erythroid 2-Related Factor 2 (NRF2). NRF2 promotes tumor cell survival in response to therapeutic intervention and thus its disablement should restore or enhance effective drug action. Here, we report how NRF2 disruption leads to collateral damage in the form of CRISPR-mediated exon skipping. Heterogeneous populations of transcripts and truncated proteins produce a variable response to chemotherapy, dependent on which functional domain is missing. We identify and characterize predicted and unpredicted transcript populations and discover that several types of transcripts arise through exon skipping; wherein one or two NRF2 exons are missing. In one specific case, the presence or absence of a single nucleotide determines whether an exon is skipped or not by reorganizing Exonic Splicing Enhancers (ESEs). We isolate and characterize the diversity of clones induced by CRISPR activity in a NSCLC tumor cell population, a critical and often overlooked genetic byproduct of this exciting technology. Finally, gRNAs must be designed with care to avoid altering gene expression patterns that can account for variable responses to solid tumor therapy.
Collapse
Affiliation(s)
- Kelly Banas
- Gene Editing Institute, ChristianaCare, Newark, DE, USA
| | | | | | | | - Pawel A Bialk
- Gene Editing Institute, ChristianaCare, Newark, DE, USA
| | - Connor Barrett
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Eric B Kmiec
- Gene Editing Institute, ChristianaCare, Newark, DE, USA.
| |
Collapse
|
15
|
Pillai R, Hayashi M, Zavitsanou AM, Papagiannakopoulos T. NRF2: KEAPing Tumors Protected. Cancer Discov 2022; 12:625-643. [PMID: 35101864 DOI: 10.1158/2159-8290.cd-21-0922] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
The Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway plays a physiologic protective role against xenobiotics and reactive oxygen species. However, activation of NRF2 provides a powerful selective advantage for tumors by rewiring metabolism to enhance proliferation, suppress various forms of stress, and promote immune evasion. Genetic, epigenetic, and posttranslational alterations that activate the KEAP1/NRF2 pathway are found in multiple solid tumors. Emerging clinical data highlight that alterations in this pathway result in resistance to multiple therapies. Here, we provide an overview of how dysregulation of the KEAP1/NRF2 pathway in cancer contributes to several hallmarks of cancer that promote tumorigenesis and lead to treatment resistance. SIGNIFICANCE: Alterations in the KEAP1/NRF2 pathway are found in multiple cancer types. Activation of NRF2 leads to metabolic rewiring of tumors that promote tumor initiation and progression. Here we present the known alterations that lead to NRF2 activation in cancer, the mechanisms in which NRF2 activation promotes tumors, and the therapeutic implications of NRF2 activation.
Collapse
Affiliation(s)
- Ray Pillai
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, New York.,Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Makiko Hayashi
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Anastasia-Maria Zavitsanou
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York
| | - Thales Papagiannakopoulos
- Department of Pathology, Perlmutter Cancer Center, New York University School of Medicine, New York, New York.
| |
Collapse
|
16
|
Ling Z, Yang C, Tan J, Dou C, Chen Y. Beyond immunosuppressive effects: dual roles of myeloid-derived suppressor cells in bone-related diseases. Cell Mol Life Sci 2021; 78:7161-7183. [PMID: 34635950 PMCID: PMC11072300 DOI: 10.1007/s00018-021-03966-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells (IMCs) with immunosuppressive functions, whereas IMCs originally differentiate into granulocytes, macrophages, and dendritic cells (DCs) to participate in innate immunity under steady-state conditions. At present, difficulties remain in identifying MDSCs due to lacking of specific biomarkers. To make identification of MDSCs accurately, it also needs to be determined whether having immunosuppressive functions. MDSCs play crucial roles in anti-tumor, angiogenesis, and metastasis. Meanwhile, MDSCs could make close interaction with osteoclasts, osteoblasts, chondrocytes, and other stromal cells within microenvironment of bone and joint, and thereby contributing to poor prognosis of bone-related diseases such as cancer-related bone metastasis, osteosarcoma (OS), rheumatoid arthritis (RA), osteoarthritis (OA), and orthopedic trauma. In addition, MDSCs have been shown to participate in the procedure of bone repair. In this review, we have summarized the function of MDSCs in cancer-related bone metastasis, the interaction with stromal cells within the bone microenvironment as well as joint microenvironment, and the critical role of MDSCs in bone repair. Besides, the promising value of MDSCs in the treatment for bone-related diseases is also well discussed.
Collapse
Affiliation(s)
- Zhiguo Ling
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chuan Yang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiulin Tan
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ce Dou
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yueqi Chen
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
17
|
Leal AS, Moerland JA, Zhang D, Carapellucci S, Lockwood B, Krieger-Burke T, Aleiwi B, Ellsworth E, Liby KT. The RXR Agonist MSU42011 Is Effective for the Treatment of Preclinical HER2+ Breast Cancer and Kras-Driven Lung Cancer. Cancers (Basel) 2021; 13:5004. [PMID: 34638488 PMCID: PMC8508021 DOI: 10.3390/cancers13195004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/02/2021] [Accepted: 10/02/2021] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Notwithstanding numerous therapeutic advances, 176,000 deaths from breast and lung cancers will occur in the United States in 2021 alone. The tumor microenvironment and its modulation by drugs have gained increasing attention and relevance, especially with the introduction of immunotherapy as a standard of care in clinical practice. Retinoid X receptors (RXRs) are members of the nuclear receptor superfamily and upon ligand binding, function as transcription factors to modulate multiple cell functions. Bexarotene, the only FDA-approved RXR agonist, is still used to treat cutaneous T-cell lymphoma. (2) Methods: To test the immunomodulatory and anti-tumor effects of MSU42011, a new RXR agonist, we used two different immunocompetent murine models (MMTV-Neu mice, a HER2 positive model of breast cancer and the A/J mouse model, in which vinyl carbamate is used to initiate lung tumorigenesis) and an immunodeficient xenograft lung cancer model. (3) Results: Treatment of established tumors in immunocompetent models of HER2-positive breast cancer and Kras-driven lung cancer with MSU42011 significantly decreased the tumor burden and increased the ratio of CD8/CD4, CD25 T cells, which correlates with enhanced anti-tumor efficacy. Moreover, the combination of MSU42011 and immunotherapy (anti-PDL1 and anti-PD1 antibodies) significantly (p < 0.05) reduced tumor size vs. individual treatments. However, MSU42011 was ineffective in an athymic human A549 lung cancer xenograft model, supporting an immunomodulatory mechanism of action. (4) Conclusions: Collectively, these data suggest that the RXR agonist MSU42011 can be used to modulate the tumor microenvironment in breast and lung cancer.
Collapse
Affiliation(s)
- Ana S. Leal
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (A.S.L.); (J.A.M.); (D.Z.); (S.C.); (B.L.); (T.K.-B.); (B.A.); (E.E.)
| | - Jessica A. Moerland
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (A.S.L.); (J.A.M.); (D.Z.); (S.C.); (B.L.); (T.K.-B.); (B.A.); (E.E.)
| | - Di Zhang
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (A.S.L.); (J.A.M.); (D.Z.); (S.C.); (B.L.); (T.K.-B.); (B.A.); (E.E.)
| | - Sarah Carapellucci
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (A.S.L.); (J.A.M.); (D.Z.); (S.C.); (B.L.); (T.K.-B.); (B.A.); (E.E.)
| | - Beth Lockwood
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (A.S.L.); (J.A.M.); (D.Z.); (S.C.); (B.L.); (T.K.-B.); (B.A.); (E.E.)
| | - Teresa Krieger-Burke
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (A.S.L.); (J.A.M.); (D.Z.); (S.C.); (B.L.); (T.K.-B.); (B.A.); (E.E.)
- In Vivo Facility, Michigan State University, East Lansing, MI 48824, USA
| | - Bilal Aleiwi
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (A.S.L.); (J.A.M.); (D.Z.); (S.C.); (B.L.); (T.K.-B.); (B.A.); (E.E.)
- Medicinal Chemistry Facility, Michigan State University, East Lansing, MI 48824, USA
| | - Edmund Ellsworth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (A.S.L.); (J.A.M.); (D.Z.); (S.C.); (B.L.); (T.K.-B.); (B.A.); (E.E.)
- Medicinal Chemistry Facility, Michigan State University, East Lansing, MI 48824, USA
| | - Karen T. Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (A.S.L.); (J.A.M.); (D.Z.); (S.C.); (B.L.); (T.K.-B.); (B.A.); (E.E.)
| |
Collapse
|
18
|
Zhang D, Hou Z, Aldrich KE, Lockwood L, Odom AL, Liby KT. A Novel Nrf2 Pathway Inhibitor Sensitizes Keap1-Mutant Lung Cancer Cells to Chemotherapy. Mol Cancer Ther 2021; 20:1692-1701. [PMID: 34158350 PMCID: PMC9936621 DOI: 10.1158/1535-7163.mct-21-0210] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
The nuclear factor erythroid-2-related factor 2 (Nrf2)-Keap1-ARE pathway, a master regulator of oxidative stress, has emerged as a promising target for cancer therapy. Mutations in NFE2L2, KEAP1, and related genes have been found in many human cancers, especially lung cancer. These mutations lead to constitutive activation of the Nrf2 pathway, which promotes proliferation of cancer cells and their resistance to chemotherapies. Small molecules that inhibit the Nrf2 pathway are needed to arrest tumor growth and overcome chemoresistance in Nrf2-addicted cancers. Here, we identified a novel small molecule, MSU38225, which can suppress Nrf2 pathway activity. MSU38225 downregulates Nrf2 transcriptional activity and decreases the expression of Nrf2 downstream targets, including NQO1, GCLC, GCLM, AKR1C2, and UGT1A6. MSU38225 strikingly decreases the protein level of Nrf2, which can be blocked by the proteasome inhibitor MG132. Ubiquitination of Nrf2 is enhanced following treatment with MSU38225. By inhibiting production of antioxidants, MSU38225 increases the level of reactive oxygen species (ROS) when cells are stimulated with tert-butyl hydroperoxide (tBHP). MSU38225 also inhibits the growth of human lung cancer cells in both two-dimensional cell culture and soft agar. Cancer cells addicted to Nrf2 are more susceptible to MSU38225 for suppression of cell proliferation. MSU38225 also sensitizes human lung cancer cells to chemotherapies both in vitro and in vivo Our results suggest that MSU38225 is a novel Nrf2 pathway inhibitor that could potentially serve as an adjuvant therapy to enhance the response to chemotherapies in patients with lung cancer.
Collapse
Affiliation(s)
- Di Zhang
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | - Zhilin Hou
- Department of Chemistry, Michigan State University, East Lansing, MI
| | - Kelly E. Aldrich
- Department of Chemistry, Michigan State University, East Lansing, MI
| | - Lizbeth Lockwood
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| | - Aaron L. Odom
- Department of Chemistry, Michigan State University, East Lansing, MI
| | - Karen T. Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI
| |
Collapse
|
19
|
Abstract
The gene expression program induced by NRF2 transcription factor plays a critical role in cell defense responses against a broad variety of cellular stresses, most importantly oxidative stress. NRF2 stability is fine-tuned regulated by KEAP1, which drives its degradation in the absence of oxidative stress. In the context of cancer, NRF2 cytoprotective functions were initially linked to anti-oncogenic properties. However, in the last few decades, growing evidence indicates that NRF2 acts as a tumor driver, inducing metastasis and resistance to chemotherapy. Constitutive activation of NRF2 has been found to be frequent in several tumors, including some lung cancer sub-types and it has been associated to the maintenance of a malignant cell phenotype. This apparently contradictory effect of the NRF2/KEAP1 signaling pathway in cancer (cell protection against cancer versus pro-tumoral properties) has generated a great controversy about its functions in this disease. In this review, we will describe the molecular mechanism regulating this signaling pathway in physiological conditions and summarize the most important findings related to the role of NRF2/KEAP1 in lung cancer. The focus will be placed on NRF2 activation mechanisms, the implication of those in lung cancer progression and current therapeutic strategies directed at blocking NRF2 action.
Collapse
|
20
|
Asgarzade A, Ziyabakhsh A, Asghariazar V, Safarzadeh E. Myeloid-derived suppressor cells: Important communicators in systemic lupus erythematosus pathogenesis and its potential therapeutic significance. Hum Immunol 2021; 82:782-790. [PMID: 34272089 DOI: 10.1016/j.humimm.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023]
Abstract
Systemic lupus erythematosus (SLE) is a recognized chronic condition associated with immune system disorders that affect women nine times more commonly than men. SLE is characterized by over-secretion and release of autoantibodies in response to different cellular compartments and self-tolerance breaks to its own antigens. The detailed immunological dysregulation as an associated event that elicits the onset of clinical manifestations of SLE has not been clarified yet. Though, research using several animal models in the last two decades has indicated the role of the immune system in the pathogenesis of this disease. Myeloid-derived suppressor cells (MDSCs) as heterogeneous myeloid cells, are responsible for severe pathological conditions, including infection, autoimmunity, and cancer, by exerting considerable immunosuppressive effects on T-cells responses. It has been reported that these cells are involved in the regulation process of the immune response in several autoimmune diseases, particularly SLE. The function of MDSC is deleterious in infection and cancer diseases, though their role is more complicated in autoimmune diseases. In this review, we summarized the role and function of MDSCs in the pathogenesis and progression of SLE and its possible therapeutic approach.
Collapse
Affiliation(s)
- Ali Asgarzade
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
21
|
Identification of key genes in the tumor microenvironment of lung adenocarcinoma. Med Oncol 2021; 38:83. [PMID: 34117948 DOI: 10.1007/s12032-021-01529-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/04/2021] [Indexed: 01/12/2023]
Abstract
The tumor microenvironment plays an important role in tumor development and progression, but the role of immune and stromal cells in this environment has not been sufficiently studied. In this study, we aimed to identify key genes associated with the microenvironment of lung adenocarcinoma (LUAD). Raw data for stromal and immune cells in malignant tumors were downloaded from The Cancer Genome Atlas (TCGA). These expression data were used to identify the differentially expressed genes (DEGs) in tissue samples of LUAD with high and low immune scores. A protein-protein interaction (PPI) network based on genes with significant differential expression was constructed. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to functionally annotate putative hub genes. These genes were assessed via Kaplan Meier analysis to determine their correlation with overall survival. In total, we identified 216 DEGs which were correlated with immune and stromal scores, including 30 hub genes which were identified based on the PPI network. Further analysis suggested that the expression levels of 10 of these genes were significantly correlated with overall survival of LUAD patients. These key hub genes included CCR2, CCR5, CD53, CYBB, HCK, IRF8, LCP2, PLEK, PTPRC, and TLR7. Moreover, the expression level of CCR2 was found to have strong prognostic value for LUAD patients. Additionally, high expression of CYBB was also correlated with better survival of patients with LUAD. The results of this study open several new avenues to explore in the treatment of LUAD.
Collapse
|
22
|
Dai X, Chen X, Chen W, Chen Y, Zhao J, Zhang Q, Lu J. A Pan-cancer Analysis Reveals the Abnormal Expression and Drug Sensitivity of CSF1. Anticancer Agents Med Chem 2021; 22:1296-1312. [PMID: 34102987 DOI: 10.2174/1871520621666210608105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Colony-stimulating factor-1 (CSF1) is a cytokine that is closely related to normal organ growth and development as well as tumor progression. OBJECTIVE We aimed to summarize and clarify the reasons for the abnormal expression of CSF1 in tumors and explore the role of CSF1 in tumor progression. Furthermore, drug response analysis may provide a reference for clinical medication. METHODS The expression of CSF1 was analyzed by TCGA and CCLE. Besides, cBioPortal and MethSurv databases were used to conduct mutation and DNA methylation analyses. Further, correlations between CSF1 expression and tumor stage, survival, immune infiltration, drug sensitivity and enrichment analyses were validated via UALCAN, Kaplan-Meier plotter, TIMER, CTRP and Coexperia databases. RESULTS CSF1 is expressed in a variety of tissues, meaningfully, it can be detected in blood. Compared with normal tissues, CSF1 expression was significantly decreased in most tumors. The missense mutation and DNA methylation of CSF1 may cause the downregulated expression. Moreover, decreased CSF1 expression was related with higher tumor stage and worse survival. Further, the promoter DNA methylation level of CSF1 was prognostically significant in most tumors. Besides, CSF1 was closely related to immune infiltration, especially macrophages. Importantly, CSF1 expression was associated with a good response to VEGFRs inhibitors, which may be due to the possible involvement of CSF1 in tumor angiogenesis and metastasis processes. CONCLUSION The abnormal expression of CSF1 could serve as a promising biomarker of tumor progression and prognosis in pan-cancer. Significantly, angiogenesis and metastasis inhibitors may show a good response to CSF1-related tumors.
Collapse
Affiliation(s)
- Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Jun Zhao
- Department of Oncology, Changzhi People's Hospital, Changzhi 046000, Shanxi, China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
23
|
Miller MS, Allen PJ, Brown PH, Chan AT, Clapper ML, Dashwood RH, Demehri S, Disis ML, DuBois RN, Glynn RJ, Kensler TW, Khan SA, Johnson BD, Liby KT, Lipkin SM, Mallery SR, Meuillet EJ, Roden RB, Schoen RE, Sharp ZD, Shirwan H, Siegfried JM, Rao CV, You M, Vilar E, Szabo E, Mohammed A. Meeting Report: Translational Advances in Cancer Prevention Agent Development Meeting. J Cancer Prev 2021; 26:71-82. [PMID: 33842408 PMCID: PMC8020174 DOI: 10.15430/jcp.2021.26.1.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
The Division of Cancer Prevention of the National Cancer Institute (NCI) and the Office of Disease Prevention of the National Institutes of Health co-sponsored the Translational Advances in Cancer Prevention Agent Development Meeting on August 27 to 28, 2020. The goals of this meeting were to foster the exchange of ideas and stimulate new collaborative interactions among leading cancer prevention researchers from basic and clinical research; highlight new and emerging trends in immunoprevention and chemoprevention as well as new information from clinical trials; and provide information to the extramural research community on the significant resources available from the NCI to promote prevention agent development and rapid translation to clinical trials. The meeting included two plenary talks and five sessions covering the range from pre-clinical studies with chemo/immunopreventive agents to ongoing cancer prevention clinical trials. In addition, two NCI informational sessions describing contract resources for the preclinical agent development and cooperative grants for the Cancer Prevention Clinical Trials Network were also presented.
Collapse
Affiliation(s)
- Mark Steven Miller
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| | - Peter J. Allen
- Division of Surgical Oncology, Duke Cancer Institute, Durham, NC, USA
| | - Powel H. Brown
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Margie L. Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Shadmehr Demehri
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | - Mary L. Disis
- Cancer Vaccine Institute, University of Washington School of Medicine, Seattle, WA, USA
| | - Raymond N. DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Robert J. Glynn
- Division of Preventive Medicine, Brigham & Women’s Hospital, Boston, MA, USA
| | - Thomas W. Kensler
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Seema A. Khan
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bryon D. Johnson
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Karen T. Liby
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan, NY, USA
| | - Steven M. Lipkin
- Division of Gastroenterology and Hepatology, Weill Cornell University, New York, NY, USA
| | - Susan R. Mallery
- Department of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, OH, USA
| | | | - Richard B.S. Roden
- Department of Pathology, Cancer Prevention and Control Program, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert E. Schoen
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zelton D. Sharp
- Department of Molecular Medicine, University of Texas Science Center at San Antonio, San Antonio, TX, USA
| | - Haval Shirwan
- Department of Child Health and Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Jill M. Siegfried
- Department of Pharmacology, Masonic Cancer Center, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Chinthalapally V. Rao
- Medical Oncology Center for Cancer Prevention & Drug Development, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ming You
- Department of Pharmacology and Toxicology, Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, Division of Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, TX, USA
| | - Eva Szabo
- Lung and Upper Aerodigestive Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Altaf Mohammed
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
24
|
Choi BH, Kim JM, Kwak MK. The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch Pharm Res 2021; 44:263-280. [PMID: 33754307 DOI: 10.1007/s12272-021-01316-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor erythroid 2-like 2 (NEF2L2; NRF2) plays crucial roles in the defense system against electrophilic or oxidative stress by upregulating an array of genes encoding antioxidant proteins, electrophile/reactive oxygen species (ROS) detoxifying enzymes, and drug efflux transporters. In contrast to the protective roles in normal cells, the multifaceted role of NRF2 in tumor growth and progression, resistance to therapy and intratumoral stress, and metabolic adaptation is rapidly expanding, and the complex association of NRF2 with cancer signaling networks is being unveiled. In particular, the implication of NRF2 signaling in cancer stem cells (CSCs), a small population of tumor cells responsible for therapy resistance and tumor relapse, is emerging. Here, we described the dark side of NRF2 signaling in cancers discovered so far. A particular focus was put on the role of NRF2 in CSCs maintenance and therapy resistance, showing that low ROS levels and refractory drug response of CSCs are mediated by the activation of NRF2 signaling. A better understanding of the roles of the NRF2 pathway in CSCs will allow us to develop a novel therapeutic approach to control tumor relapse after therapy.
Collapse
Affiliation(s)
- Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, 42472, Republic of Korea
| | - Jin Myung Kim
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea.
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
25
|
Robertson H, Dinkova-Kostova AT, Hayes JD. NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis. Cancers (Basel) 2020; 12:E3609. [PMID: 33276631 PMCID: PMC7761610 DOI: 10.3390/cancers12123609] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
NF-E2 p45-related factor 2 (NRF2, encoded in the human by NFE2L2) mediates short-term adaptation to thiol-reactive stressors. In normal cells, activation of NRF2 by a thiol-reactive stressor helps prevent, for a limited period of time, the initiation of cancer by chemical carcinogens through induction of genes encoding drug-metabolising enzymes. However, in many tumour types, NRF2 is permanently upregulated. In such cases, its overexpressed target genes support the promotion and progression of cancer by suppressing oxidative stress, because they constitutively increase the capacity to scavenge reactive oxygen species (ROS), and they support cell proliferation by increasing ribonucleotide synthesis, serine biosynthesis and autophagy. Herein, we describe cancer chemoprevention and the discovery of the essential role played by NRF2 in orchestrating protection against chemical carcinogenesis. We similarly describe the discoveries of somatic mutations in NFE2L2 and the gene encoding the principal NRF2 repressor, Kelch-like ECH-associated protein 1 (KEAP1) along with that encoding a component of the E3 ubiquitin-ligase complex Cullin 3 (CUL3), which result in permanent activation of NRF2, and the recognition that such mutations occur frequently in many types of cancer. Notably, mutations in NFE2L2, KEAP1 and CUL3 that cause persistent upregulation of NRF2 often co-exist with mutations that activate KRAS and the PI3K-PKB/Akt pathway, suggesting NRF2 supports growth of tumours in which KRAS or PKB/Akt are hyperactive. Besides somatic mutations, NRF2 activation in human tumours can occur by other means, such as alternative splicing that results in a NRF2 protein which lacks the KEAP1-binding domain or overexpression of other KEAP1-binding partners that compete with NRF2. Lastly, as NRF2 upregulation is associated with resistance to cancer chemotherapy and radiotherapy, we describe strategies that might be employed to suppress growth and overcome drug resistance in tumours with overactive NRF2.
Collapse
Affiliation(s)
- Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; (H.R.); (A.T.D.-K.)
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; (H.R.); (A.T.D.-K.)
| | - John D. Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK; (H.R.); (A.T.D.-K.)
| |
Collapse
|
26
|
Torrente L, Maan G, Oumkaltoum Rezig A, Quinn J, Jackson A, Grilli A, Casares L, Zhang Y, Kulesskiy E, Saarela J, Bicciato S, Edwards J, Dinkova-Kostova AT, de la Vega L. High NRF2 Levels Correlate with Poor Prognosis in Colorectal Cancer Patients and with Sensitivity to the Kinase Inhibitor AT9283 In Vitro. Biomolecules 2020; 10:E1365. [PMID: 32992842 PMCID: PMC7600603 DOI: 10.3390/biom10101365] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/31/2022] Open
Abstract
Aberrant hyperactivation of nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2) is a common event in many tumour types and associates with resistance to therapy and poor patient prognosis; however, its relevance in colorectal tumours is not well-established. Measuring the expression of surrogate genes for NRF2 activity in silico, in combination with validation in patients' samples, we show that the NRF2 pathway is upregulated in colorectal tumours and that high levels of nuclear NRF2 correlate with a poor patient prognosis. These results highlight the need to overcome the protection provided by NRF2 and present an opportunity to selectively kill cancer cells with hyperactive NRF2. Exploiting the CRISPR/Cas9 technology, we generated colorectal cancer cell lines with hyperactive NRF2 and used them to perform a drug screen. We identified AT9283, an Aurora kinase inhibitor, for its selectivity towards killing cancer cells with hyperactive NRF2 as a consequence to either genetic or pharmacological activation. Our results show that hyperactivation of NRF2 in colorectal cancer cells might present a vulnerability that could potentially be therapeutically exploited by using the Aurora kinase inhibitor AT9283.
Collapse
Affiliation(s)
- Laura Torrente
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Gunjit Maan
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| | - Asma Oumkaltoum Rezig
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (A.O.R.); (J.Q.); (J.E.)
| | - Jean Quinn
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (A.O.R.); (J.Q.); (J.E.)
| | - Angus Jackson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| | - Andrea Grilli
- Department of Life Sciences, University of Modena and Reggio Emilia; via G, Campi 287, 41125 Modena, Italy; (A.G.); (S.B.)
| | - Laura Casares
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| | - Ying Zhang
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| | - Evgeny Kulesskiy
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, FI-00290 Helsinki, Finland; (E.K.); (J.S.)
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, FI-00290 Helsinki, Finland; (E.K.); (J.S.)
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia; via G, Campi 287, 41125 Modena, Italy; (A.G.); (S.B.)
| | - Joanne Edwards
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (A.O.R.); (J.Q.); (J.E.)
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
- Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| |
Collapse
|
27
|
Targeting Myeloid-Derived Suppressor Cells in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12092626. [PMID: 32942545 PMCID: PMC7564060 DOI: 10.3390/cancers12092626] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Myeloid-Derived Suppressor Cells (MDSCs) have been regarded as the main promoters of cancer development in recent years. They can protect tumor cells from being eliminated by neutralizing the anti-tumor response mediated by T cells, macrophages and dendritic cells (DCs). Therefore, different treatment methods targeting MDSCs, including chemotherapy, radiotherapy and immunotherapy, have been developed and proven to effectively inhibit tumor expansion. Herein, we summarize the immunosuppressive role of MDSCs in the tumor microenvironment and some effective treatments targeting MDSCs, and discuss the differences between different therapies. Abstract Myeloid-derived suppressor cells (MDSCs), which are activated under pathological conditions, are a group of heterogeneous immature myeloid cells. MDSCs have potent capacities to support tumor growth via inhibition of the antitumoral immune response and/or the induction of immunosuppressive cells. In addition, multiple studies have demonstrated that MDSCs provide potential therapeutic targets for the elimination of immunosuppressive functions and the inhibition of tumor growth. The combination of targeting MDSCs and other therapeutic approaches has also demonstrated powerful antitumor effects. In this review, we summarize the characteristics of MDSCs in the tumor microenvironment (TME) and current strategies of cancer treatment by targeting MDSCs.
Collapse
|
28
|
Torrente L, Prieto-Farigua N, Falzone A, Elkins CM, Boothman DA, Haura EB, DeNicola GM. Inhibition of TXNRD or SOD1 overcomes NRF2-mediated resistance to β-lapachone. Redox Biol 2020; 30:101440. [PMID: 32007910 PMCID: PMC6997906 DOI: 10.1016/j.redox.2020.101440] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Alterations in the NRF2/KEAP1 pathway result in the constitutive activation of NRF2, leading to the aberrant induction of antioxidant and detoxification enzymes, including NQO1. The NQO1 bioactivatable agent β-lapachone can target cells with high NQO1 expression but relies in the generation of reactive oxygen species (ROS), which are actively scavenged in cells with NRF2/KEAP1 mutations. However, whether NRF2/KEAP1 mutations influence the response to β-lapachone treatment remains unknown. To address this question, we assessed the cytotoxicity of β-lapachone in a panel of NSCLC cell lines bearing either wild-type or mutant KEAP1. We found that, despite overexpression of NQO1, KEAP1 mutant cells were resistant to β-lapachone due to enhanced detoxification of ROS, which prevented DNA damage and cell death. To evaluate whether specific inhibition of the NRF2-regulated antioxidant enzymes could abrogate resistance to β-lapachone, we systematically inhibited the four major antioxidant cellular systems using genetic and/or pharmacologic approaches. We demonstrated that inhibition of the thioredoxin-dependent system or copper-zinc superoxide dismutase (SOD1) could abrogate NRF2-mediated resistance to β-lapachone, while depletion of catalase or glutathione was ineffective. Interestingly, inhibition of SOD1 selectively sensitized KEAP1 mutant cells to β-lapachone exposure. Our results suggest that NRF2/KEAP1 mutational status might serve as a predictive biomarker for response to NQO1-bioactivatable quinones in patients. Further, our results suggest SOD1 inhibition may have potential utility in combination with other ROS inducers in patients with KEAP1/NRF2 mutations.
Collapse
Affiliation(s)
- Laura Torrente
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Nicolas Prieto-Farigua
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Aimee Falzone
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Cody M Elkins
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - David A Boothman
- Department of Biochemistry and Molecular Biology, Simon Cancer Center Indiana, University School of Medicine, Indianapolis, IN, 46202, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
29
|
Zhang D, Baldwin P, Leal AS, Carapellucci S, Sridhar S, Liby KT. A nano-liposome formulation of the PARP inhibitor Talazoparib enhances treatment efficacy and modulates immune cell populations in mammary tumors of BRCA-deficient mice. Am J Cancer Res 2019; 9:6224-6238. [PMID: 31534547 PMCID: PMC6735511 DOI: 10.7150/thno.36281] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022] Open
Abstract
Two recently approved PARP inhibitors provide an important new therapeutic option for patients with BRCA-mutated metastatic breast cancer. PARP inhibitors significantly prolong progression-free survival in patients, but conventional oral delivery of PARP inhibitors is hindered by limited bioavailability and off-target toxicities, thus compromising the therapeutic benefits and quality of life for patients. Here, we developed a new delivery system, in which the PARP inhibitor Talazoparib is encapsulated in the bilayer of a nano-liposome, to overcome these limitations. Methods: Nano-Talazoparib (NanoTLZ) was characterized both in vitro and in vivo. The therapeutic efficacy and toxicity of Nano-Talazoparib (NanoTLZ) were evaluated in BRCA-deficient mice. The regulation of NanoTLZ on gene transcription and immunomodulation were further investigated in spontaneous BRCA-deficient tumors. Results: NanoTLZ significantly (p<0.05) prolonged the overall survival of BRCA-deficient mice compared to all of the other experimental groups, including saline control, empty nanoparticles, and free Talazoparib groups (oral and i.v.). Moreover, NanoTLZ was better tolerated than treatment with free Talazoparib, with no significant weight lost or alopecia as was observed with the free drug. After 5 doses, NanoTLZ altered the expression of over 140 genes and induced DNA damage, cell cycle arrest and inhibition of cell proliferation in the tumor. In addition, NanoTLZ favorably modulated immune cell populations in vivo and significantly (p<0.05) decreased the percentage of myeloid derived suppressor cells in both the tumor and spleen compared to control groups. Conclusions: Our results demonstrate that delivering nanoformulated Talazoparib not only enhances treatment efficacy but also reduces off-target toxicities in BRCA-deficient mice; the same potential is predicted for patients with BRCA-deficient breast cancer.
Collapse
|
30
|
Role of Nrf2 and Its Activators in Respiratory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7090534. [PMID: 30728889 PMCID: PMC6341270 DOI: 10.1155/2019/7090534] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a major regulator of antioxidant response element- (ARE-) driven cytoprotective protein expression. The activation of Nrf2 signaling plays an essential role in preventing cells and tissues from injury induced by oxidative stress. Under the unstressed conditions, natural inhibitor of Nrf2, Kelch-like ECH-associated protein 1 (Keap1), traps Nrf2 in the cytoplasm and promotes the degradation of Nrf2 by the 26S proteasome. Nevertheless, stresses including highly oxidative microenvironments, impair the ability of Keap1 to target Nrf2 for ubiquitination and degradation, and induce newly synthesized Nrf2 to translocate to the nucleus to bind with ARE. Due to constant exposure to external environments, including diverse pollutants and other oxidants, the redox balance maintained by Nrf2 is fairly important to the airways. To date, researchers have discovered that Nrf2 deletion results in high susceptibility and severity of insults in various models of respiratory diseases, including bronchopulmonary dysplasia (BPD), respiratory infections, acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), and lung cancer. Conversely, Nrf2 activation confers protective effects on these lung disorders. In the present review, we summarize Nrf2 involvement in the pathogenesis of the above respiratory diseases that have been identified by experimental models and human studies and describe the protective effects of Nrf2 inducers on these diseases.
Collapse
|
31
|
Batinic-Haberle I, Tovmasyan A, Spasojevic I. Mn Porphyrin-Based Redox-Active Drugs: Differential Effects as Cancer Therapeutics and Protectors of Normal Tissue Against Oxidative Injury. Antioxid Redox Signal 2018; 29:1691-1724. [PMID: 29926755 PMCID: PMC6207162 DOI: 10.1089/ars.2017.7453] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE After approximatelty three decades of research, two Mn(III) porphyrins (MnPs), MnTE-2-PyP5+ (BMX-010, AEOL10113) and MnTnBuOE-2-PyP5+ (BMX-001), have progressed to five clinical trials. In parallel, another similarly potent metal-based superoxide dismutase (SOD) mimic-Mn(II)pentaaza macrocycle, GC4419-has been tested in clinical trial on application, identical to that of MnTnBuOE-2-PyP5+-radioprotection of normal tissue in head and neck cancer patients. This clearly indicates that Mn complexes that target cellular redox environment have reached sufficient maturity for clinical applications. Recent Advances: While originally developed as SOD mimics, MnPs undergo intricate interactions with numerous redox-sensitive pathways, such as those involving nuclear factor κB (NF-κB) and nuclear factor E2-related factor 2 (Nrf2), thereby impacting cellular transcriptional activity. An increasing amount of data support the notion that MnP/H2O2/glutathione (GSH)-driven catalysis of S-glutathionylation of protein cysteine, associated with modification of protein function, is a major action of MnPs on molecular level. CRITICAL ISSUES Differential effects of MnPs on normal versus tumor cells/tissues, which support their translation into clinic, arise from differences in their accumulation and redox environment of such tissues. This in turn results in different yields of MnP-driven modifications of proteins. Thus far, direct evidence for such modification of NF-κB, mitogen-activated protein kinases (MAPK), phosphatases, Nrf2, and endogenous antioxidative defenses was provided in tumor, while indirect evidence shows the modification of NF-κB and Nrf2 translational activities by MnPs in normal tissue. FUTURE DIRECTIONS Studies that simultaneously explore differential effects in same animal are lacking, while they are essential for understanding of extremely intricate interactions of metal-based drugs with complex cellular networks of normal and cancer cells/tissues.
Collapse
Affiliation(s)
- Ines Batinic-Haberle
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Artak Tovmasyan
- 1 Department of Radiation Oncology, Duke University School of Medicine , Durham, North Carolina
| | - Ivan Spasojevic
- 2 Department of Medicine, Duke University School of Medicine , Durham, North Carolina.,3 PK/PD Core Laboratory, Pharmaceutical Research Shared Resource, Duke Cancer Institute , Durham, North Carolina
| |
Collapse
|