1
|
Bagnato C, Magna A, Mereu E, Bernardini S, Bartimoccia S, Marti R, Lazzerini PE, D’Amico A, Ettorre E, Desideri G, Pignatelli P, Violi F, Carnevale R, Loffredo L. Impact of Hospitalization on Sarcopenia, NADPH-Oxidase 2, Oxidative Stress, and Low-Grade Endotoxemia in Elderly Patients. Antioxidants (Basel) 2025; 14:304. [PMID: 40227278 PMCID: PMC11939531 DOI: 10.3390/antiox14030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Hospitalization in older adults often worsens sarcopenia due to prolonged bed rest, poor nutrition, and inactivity. This study examined how hospitalization impacts muscle mass, focusing on oxidative stress and gut-derived endotoxemia. METHODS Thirty-one hospitalized older adults were compared with 31 outpatients. Ultrasound was used to measure the thickness of the rectus femoris (RF), intercostal, and diaphragmatic muscles at admission and discharge. Serum levels of LPS, zonulin, sNOX2-dp, and H2O2 were also assessed. RESULTS Hospitalized patients had higher serum levels of sNOX2-dp, H2O2, LPS, and zonulin than outpatients. In hospitalized patients, significant increases were observed at discharge compared to admission levels in sNOX2-dp (20.9 ± 6.5 to 23.8 ± 7.5 pg/mL; p = 0.004), H2O2 (24.4 ± 9.8 to 32.8 ± 14.5 µM; p = 0.01), LPS (30.4 ± 12.6 to 43.3 ± 16.35 pg/mL; p < 0.001), and zonulin (2.06 ± 1.23 to 2.95 ± 1.33 ng/mL; p < 0.001). Ultrasound data revealed a reduction in RF muscle thickness (-35%) (0.58 ± 0.29 to 0.38 ± 0.31 cm, p < 0.001), intercostal muscle thickness (-28%) (0.22 ± 0.08 to 0.16 ± 0.06 cm, p < 0.001), and diaphragmatic muscle thickness (-26%) (0.19 ± 0.06 to 0.14 ± 0.04 cm, p < 0.001) at discharge compared to admission. Additionally, muscle strength, measured using the hand-grip test, showed a 25% reduction. Regression analysis revealed correlations between RF muscle loss and increases in sNOX2-dp and H2O2, as well as between NOX2, H2O2, and LPS with zonulin. CONCLUSIONS Hospitalization in older adult patients elevates NOX2 blood levels, correlating with reduced muscle mass. Increased low-grade endotoxemia may trigger NOX2 activation, generating oxidative stress that accelerates muscle degeneration and can lead to sarcopenia.
Collapse
Affiliation(s)
- Chiara Bagnato
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (C.B.); (A.M.); (E.M.); (S.B.); (R.M.); (E.E.); (G.D.); (P.P.)
| | - Arianna Magna
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (C.B.); (A.M.); (E.M.); (S.B.); (R.M.); (E.E.); (G.D.); (P.P.)
| | - Elena Mereu
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (C.B.); (A.M.); (E.M.); (S.B.); (R.M.); (E.E.); (G.D.); (P.P.)
| | - Sciaila Bernardini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy (P.E.L.)
| | - Simona Bartimoccia
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (C.B.); (A.M.); (E.M.); (S.B.); (R.M.); (E.E.); (G.D.); (P.P.)
| | - Roberta Marti
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (C.B.); (A.M.); (E.M.); (S.B.); (R.M.); (E.E.); (G.D.); (P.P.)
| | - Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy (P.E.L.)
| | - Alessandra D’Amico
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy;
- IRCCS Neuromed, 86077 Pozzilli, Italy;
| | - Evaristo Ettorre
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (C.B.); (A.M.); (E.M.); (S.B.); (R.M.); (E.E.); (G.D.); (P.P.)
| | - Giovambattista Desideri
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (C.B.); (A.M.); (E.M.); (S.B.); (R.M.); (E.E.); (G.D.); (P.P.)
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (C.B.); (A.M.); (E.M.); (S.B.); (R.M.); (E.E.); (G.D.); (P.P.)
| | | | - Roberto Carnevale
- IRCCS Neuromed, 86077 Pozzilli, Italy;
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Lorenzo Loffredo
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (C.B.); (A.M.); (E.M.); (S.B.); (R.M.); (E.E.); (G.D.); (P.P.)
| | - Neurodegenerative Study Group
- Department of Clinical Internal, Anaesthesiologic and Cardiovascular Science, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (C.B.); (A.M.); (E.M.); (S.B.); (R.M.); (E.E.); (G.D.); (P.P.)
| |
Collapse
|
2
|
Powers SK, Radak Z, Ji LL, Jackson M. Reactive oxygen species promote endurance exercise-induced adaptations in skeletal muscles. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:780-792. [PMID: 38719184 PMCID: PMC11336304 DOI: 10.1016/j.jshs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 05/22/2024]
Abstract
The discovery that contracting skeletal muscle generates reactive oxygen species (ROS) was first reported over 40 years ago. The prevailing view in the 1980s was that exercise-induced ROS production promotes oxidation of proteins and lipids resulting in muscle damage. However, a paradigm shift occurred in the 1990s as growing research revealed that ROS are signaling molecules, capable of activating transcriptional activators/coactivators and promoting exercise-induced muscle adaptation. Growing evidence supports the notion that reduction-oxidation (redox) signaling pathways play an important role in the muscle remodeling that occurs in response to endurance exercise training. This review examines the specific role that redox signaling plays in this endurance exercise-induced skeletal muscle adaptation. We begin with a discussion of the primary sites of ROS production in contracting muscle fibers followed by a summary of the antioxidant enzymes involved in the regulation of ROS levels in the cell. We then discuss which redox-sensitive signaling pathways promote endurance exercise-induced muscle adaptation and debate the strength of the evidence supporting the notion that redox signaling plays an essential role in muscle adaptation to endurance exercise training. In hopes of stimulating future research, we highlight several important unanswered questions in this field.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology, University of Florida, Gainesville, FL 32608, USA.
| | - Zsolt Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest 1123, Hungary
| | - Li Li Ji
- Department of Kinesiology, University of Minnesota, St. Paul, MN 55455, USA
| | - Malcolm Jackson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
3
|
Meneses-Valdés R, Gallero S, Henríquez-Olguín C, Jensen TE. Exploring NADPH oxidases 2 and 4 in cardiac and skeletal muscle adaptations - A cross-tissue comparison. Free Radic Biol Med 2024; 223:296-305. [PMID: 39069268 DOI: 10.1016/j.freeradbiomed.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Striated muscle cells, encompassing cardiac myocytes and skeletal muscle fibers, are fundamental to athletic performance, facilitating blood circulation and coordinated movement through contraction. Despite their distinct functional roles, these muscle types exhibit similarities in cytoarchitecture, protein expression, and excitation-contraction coupling. Both muscle types also undergo molecular remodeling in energy metabolism and cell size in response to acute and repeated exercise stimuli to enhance exercise performance. Reactive oxygen species (ROS) produced by NADPH oxidase (NOX) isoforms 2 and 4 have emerged as signaling molecules that regulate exercise adaptations. This review systematically compares NOX2 and NOX4 expression, regulation, and roles in cardiac and skeletal muscle responses across exercise modalities. We highlight the many gaps in our knowledge and opportunities to let future skeletal muscle research into NOX-dependent mechanisms be inspired by cardiac muscle studies and vice versa. Understanding these processes could enhance the development of exercise routines to optimize human performance and health strategies that capitalize on the advantages of physical activity.
Collapse
Affiliation(s)
- Roberto Meneses-Valdés
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark
| | - Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark; Advanced Center for Chronic Diseases (ACCDiS) and Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Carlos Henríquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark; Center of Exercise Physiology and Metabolism, Department of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile.
| | - Thomas E Jensen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, Copenhagen, 2100, Denmark.
| |
Collapse
|
4
|
Zhang R, Liu S, Mousavi SM. Cognitive Dysfunction and Exercise: From Epigenetic to Genetic Molecular Mechanisms. Mol Neurobiol 2024; 61:6279-6299. [PMID: 38286967 DOI: 10.1007/s12035-024-03970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 01/31/2024]
Abstract
Maintaining good health is crucial, and exercise plays a vital role in achieving this goal. It offers a range of positive benefits for cognitive function, regardless of age. However, as our population ages and life expectancy increases, cognitive impairment has become a prevalent issue, often coexisting with age-related neurodegenerative conditions. This can result in devastating consequences such as memory loss, difficulty speaking, and confusion, greatly hindering one's ability to lead an ordinary life. In addition, the decrease in mental capacity has a significant effect on an individual's physical and emotional well-being, greatly reducing their overall level of contentment and causing a significant financial burden for communities. While most current approaches aim to slow the decline of cognition, exercise offers a non-pharmacological, safe, and accessible solution. Its effects on cognition are intricate and involve changes in the brain's neural plasticity, mitochondrial stability, and energy metabolism. Moreover, exercise triggers the release of cytokines, playing a significant role in the body-brain connection and its impact on cognition. Additionally, exercise can influence gene expression through epigenetic mechanisms, leading to lasting improvements in brain function and behavior. Herein, we summarized various genetic and epigenetic mechanisms that can be modulated by exercise in cognitive dysfunction.
Collapse
Affiliation(s)
- Runhong Zhang
- Department of Physical Education, Luliang University, Lishi, 033000, Shanxi, China.
| | - Shangwu Liu
- Department of Physical Education, Luliang University, Lishi, 033000, Shanxi, China
| | | |
Collapse
|
5
|
Gallero S, Persson KW, Henríquez-Olguín C. Unresolved questions in the regulation of skeletal muscle insulin action by reactive oxygen species. FEBS Lett 2024; 598:2145-2159. [PMID: 38803005 DOI: 10.1002/1873-3468.14937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Reactive oxygen species (ROS) are well-established signaling molecules implicated in a wide range of cellular processes, including both oxidative stress and intracellular redox signaling. In the context of insulin action within its target tissues, ROS have been reported to exert both positive and negative regulatory effects. However, the precise molecular mechanisms underlying this duality remain unclear. This Review examines the complex role of ROS in insulin action, with a particular focus on skeletal muscle. We aim to address three critical aspects: (a) the proposed intracellular pro-oxidative redox shift elicited by insulin, (b) the evidence supporting that redox-sensitive cysteine modifications impact insulin signaling and action, and (c) cellular mechanisms underlying how ROS can paradoxically act as both enhancers and inhibitors of insulin action. This Review underscores the urgent need for more systematic research to identify specific reactive species, redox targets, and the physiological significance of redox signaling in maintaining insulin action and metabolic health, with a particular emphasis on human skeletal muscle.
Collapse
Affiliation(s)
- Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Kaspar W Persson
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Carlos Henríquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
6
|
Guedira G, Petermann O, Scapozza L, Ismail HM. Diapocynin treatment induces functional and structural improvements in an advanced disease state in the mdx 5Cv mice. Biomed Pharmacother 2024; 177:116957. [PMID: 38908198 DOI: 10.1016/j.biopha.2024.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/30/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common muscular disorder affecting children. It affects nearly 1 male birth over 5000. Oxidative stress is a pervasive feature in the pathogenesis of DMD. Recent work shows that the main generators of ROS are NADPH oxidases (NOX), suggesting that they are an early and promising target in DMD. In addition, skeletal muscles of mdx mice, a murine model of DMD, overexpress NOXes. We investigated the impact of diapocynin, a dimer of the NOX inhibitor apocynin, on the chronic disease phase of mdx5Cv mice. Treatment of these mice with diapocynin from 7 to 10 months of age resulted in decreased hypertrophy of several muscles, prevented force loss induced by tetanic and eccentric contractions, improved muscle and respiratory functions, decreased fibrosis of the diaphragm and positively regulated the expression of disease modifiers. These encouraging results ensure the potential role of diapocynin in future treatment strategies.
Collapse
Affiliation(s)
- Ghali Guedira
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Olivier Petermann
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| | - Hesham M Ismail
- Pharmaceutical Biochemistry/Chemistry Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Shahid H, Morya VK, Oh JU, Kim JH, Noh KC. Hypoxia-Inducible Factor and Oxidative Stress in Tendon Degeneration: A Molecular Perspective. Antioxidants (Basel) 2024; 13:86. [PMID: 38247510 PMCID: PMC10812560 DOI: 10.3390/antiox13010086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Tendinopathy is a debilitating condition marked by degenerative changes in the tendons. Its complex pathophysiology involves intrinsic, extrinsic, and physiological factors. While its intrinsic and extrinsic factors have been extensively studied, the role of physiological factors, such as hypoxia and oxidative stress, remains largely unexplored. This review article delves into the contribution of hypoxia-associated genes and oxidative-stress-related factors to tendon degeneration, offering insights into potential therapeutic strategies. The unique aspect of this study lies in its pathway-based evidence, which sheds light on how these factors can be targeted to enhance overall tendon health.
Collapse
Affiliation(s)
- Hamzah Shahid
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
- School of Medicine, Hallym University, Chuncheon City 24252, Gangwon-do, Republic of Korea
| | - Vivek Kumar Morya
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| | - Ji-Ung Oh
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| | - Jae-Hyung Kim
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| | - Kyu-Cheol Noh
- Dongtan Sacred Heart Hospital, Hallym University, Hwaseong-si 18450, Gyeonggi-do, Republic of Korea (J.-H.K.)
| |
Collapse
|
8
|
Dong S, Chen C, Di C, Wang S, Dong Q, Lin W, Liu D. The Association between NADPH Oxidase 2 (NOX2) and Drug Resistance in Cancer. Curr Cancer Drug Targets 2024; 24:1195-1212. [PMID: 38362697 DOI: 10.2174/0115680096277328240110062433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 02/17/2024]
Abstract
NADPH oxidase, as a major source of intracellular reactive oxygen species (ROS), assumes an important role in the immune response and oxidative stress response of the body. NADPH oxidase 2 (NOX2) is the first and most representative member of the NADPH oxidase family, and its effects on the development of tumor cells are gaining more and more attention. Our previous study suggested that NCF4 polymorphism in p40phox, a key subunit of NOX2, affected the outcome of diffuse large B-cell lymphoma patients treated with rituximab. It hypothesized that NOX2-mediated ROS could enhance the cytotoxic effects of some anti-tumor drugs in favor of patients with tumors. Several reviews have summarized the role of NOX2 and its congeners-mediated ROS in anti-tumor therapy, but few studies focused on the relationship between the expression of NOX2 and anti-tumor drug resistance. In this article, we systematically introduced the NOX family, represented by NOX2, and a classification of the latest inhibitors and agonists of NOX2. It will help researchers to have a more rational and objective understanding of the dual role of NOX2 in tumor drug resistance and is expected to provide new ideas for oncology treatment and overcoming drug resistance in cancer.
Collapse
Affiliation(s)
- Shiqi Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Chao Chen
- Department of laboratory, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Chang Di
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Shufan Wang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Quan Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Wenxin Lin
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| |
Collapse
|
9
|
Henriquez-Olguin C, Meneses-Valdes R, Kritsiligkou P, Fuentes-Lemus E. From workout to molecular switches: How does skeletal muscle produce, sense, and transduce subcellular redox signals? Free Radic Biol Med 2023; 209:355-365. [PMID: 37923089 DOI: 10.1016/j.freeradbiomed.2023.10.404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Skeletal muscle is crucial for maintaining human health and overall quality of life. Acute exercise introduces a multifaceted intracellular stress, with numerous post-translational modifications believed to underpin the health benefits of sustained exercise training. Reactive oxygen species (ROS) are posited to serve as second messengers, triggering cytoprotective adaptations such as the upregulation of enzymatic scavenger systems. However, a significant knowledge gap exists between the generation of oxidants in muscle and the exact mechanisms driving muscle adaptations. This review delves into the current research on subcellular redox biochemistry and its role in the physiological adaptations to exercise. We propose that the subcellular regulation of specific redox modifications is key to ensuring specificity in the intracellular response.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- The August Krogh Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark; Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile.
| | - Roberto Meneses-Valdes
- The August Krogh Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, 2100, Denmark
| | | | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
10
|
Henriquez-Olguin C, Meneses-Valdes R, Raun SH, Gallero S, Knudsen JR, Li Z, Li J, Sylow L, Jaimovich E, Jensen TE. NOX2 deficiency exacerbates diet-induced obesity and impairs molecular training adaptations in skeletal muscle. Redox Biol 2023; 65:102842. [PMID: 37572454 PMCID: PMC10440567 DOI: 10.1016/j.redox.2023.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023] Open
Abstract
The production of reactive oxygen species (ROS) by NADPH oxidase (NOX) 2 has been linked to both insulin resistance and exercise training adaptations in skeletal muscle. This study explores the previously unexamined role of NOX2 in the interplay between diet-induced insulin resistance and exercise training (ET). Using a mouse model that harbors a point mutation in the essential NOX2 regulatory subunit, p47phox (Ncf1*), we investigated the impact of this mutation on various metabolic adaptations. Wild-type (WT) and Ncf1* mice were assigned to three groups: chow diet, 60% energy fat diet (HFD), and HFD with access to running wheels (HFD + E). After a 16-week intervention, a comprehensive phenotypic assessment was performed, including body composition, glucose tolerance, energy intake, muscle insulin signaling, redox-related proteins, and mitochondrial adaptations. The results revealed that NOX2 deficiency exacerbated the impact of HFD on body weight, body composition, and glucose intolerance. Moreover, in Ncf1* mice, ET did not improve glucose tolerance or increase muscle cross-sectional area. ET normalized body fat independently of genotype. The lack of NOX2 activity during ET reduced several metabolic adaptations in skeletal muscle, including insulin signaling and expression of Hexokinase II and oxidative phosphorylation complexes. In conclusion, these findings suggest that NOX2 mediates key beneficial effects of exercise training in the context of diet-induced obesity.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago, Chile.
| | - Roberto Meneses-Valdes
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Steffen H Raun
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, Copenhagen N, Denmark
| | - Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Jonas R Knudsen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Zhencheng Li
- College of Physical Education, Chongqing University, Chongqing, 400044, CN, China
| | - Jingwen Li
- School of Medicine and Nursing, Huzhou University, Huzhou, 313000, CN, China
| | - Lykke Sylow
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, Copenhagen N, Denmark
| | - Enrique Jaimovich
- Center for Exercise, Metabolism and Cancer, ICBM, Universidad de Chile, 8380453, Santiago, Chile
| | - Thomas E Jensen
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise, and Sports, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
11
|
Paoli A, Cerullo G. Investigating the Link between Ketogenic Diet, NAFLD, Mitochondria, and Oxidative Stress: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051065. [PMID: 37237931 DOI: 10.3390/antiox12051065] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Together with the global rise in obesity and metabolic syndrome, the prevalence of individuals who suffer from nonalcoholic fatty liver disease (NAFLD) has risen dramatically. NAFLD is currently the most common chronic liver disease and includes a continuum of liver disorders from initial fat accumulation to nonalcoholic steatohepatitis (NASH), considered the more severe forms, which can evolve in, cirrhosis, and hepatocellular carcinoma. Common features of NAFLD includes altered lipid metabolism mainly linked to mitochondrial dysfunction, which, as a vicious cycle, aggravates oxidative stress and promotes inflammation and, as a consequence, the progressive death of hepatocytes and the severe form of NAFLD. A ketogenic diet (KD), i.e., a diet very low in carbohydrates (<30 g/die) that induces "physiological ketosis", has been demonstrated to alleviate oxidative stress and restore mitochondrial function. Based on this, the aim of the present review is to analyze the body of evidence regarding the potential therapeutic role of KD in NAFLD, focusing on the interplay between mitochondria and the liver, the effects of ketosis on oxidative stress pathways, and the impact of KD on liver and mitochondrial function.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Research Center for High Performance Sport, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
12
|
Wang Y, Chen X, Baker JS, Davison GW, Xu S, Zhou Y, Bao X. Astaxanthin promotes mitochondrial biogenesis and antioxidant capacity in chronic high-intensity interval training. Eur J Nutr 2023; 62:1453-1466. [PMID: 36650315 DOI: 10.1007/s00394-023-03083-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE Reactive oxygen and nitrogen species are required for exercise-induced molecular adaptations; however, excessive exercise may cause cellular oxidative distress. We postulate that astaxanthin (ASX) can neutralize oxidative distress and stimulate mitochondrial biogenesis in high-intensity exercise-trained mice. METHODS Six-week-old mice (n = 8/group) were treated with ASX (10 mg/kg BW) or placebo. Training groups participated in 30 min/day high-intensity interval training (HIIT) for 6 weeks. Gastrocnemius muscle was collected and assayed following the exercise training period. RESULTS Compared to the HIIT control mice, the ASX-treated HIIT mice reduced malonaldehyde levels and upregulated the expression of Nrf2 and FOXO3a. Meanwhile, the genes NQO1 and GCLC, modulated by Nrf2, and SOD2, regulated by FOXO3a, and GPx4, were transcriptionally upregulated in the ASX-treated HIIT group. Meanwhile, the expression of energy sensors, AMPK, SIRT1, and SIRT3, increased in the ASX-treated HIIT group compared to the HIIT control group. Additionally, PGC-1α, regulated by AMPK and SIRT1, was upregulated in the ASX-treated HIIT group. Further, the increased PGC-1α stimulated the transcript of NRF1 and Tfam and mitochondrial proteins IDH2 and ATP50. Finally, the ASX-treated HIIT mice had upregulations in the transcript level of mitochondrial fusion factors, including Mfn1, Mfn2, and OPA1. However, the protein level of AMPK, SIRT1, and FOXO3a, and the transcript level of Nrf2, NQO1, PGC-1α, NRF1, Mfn1, Mfn2, and OPA1 decreased in the HIIT control group compared to the sedentary control group. CONCLUSION Supplementation with ASX can reduce oxidative stress and promote antioxidant capacity and mitochondrial biogenesis during strenuous HIIT exercise in mice.
Collapse
Affiliation(s)
- Yang Wang
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Xiaoping Chen
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Julien S Baker
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, 999077, HK, People's Republic of China
| | - Gareth W Davison
- Sport and Exercise Sciences Research Institute, Ulster University, Newtownabbey, BT37 0QB, UK
| | - Shujun Xu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Yingsong Zhou
- Faculty of Sports Science, Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| | - Xiaoming Bao
- Department of Cardiology, Ningbo No.2 Hospital, Ningbo, Zhejiang, People's Republic of China.
- Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Volpe-Fix AR, de França E, Silvestre JC, Thomatieli-Santos RV. The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods 2023; 12:foods12050916. [PMID: 36900433 PMCID: PMC10001084 DOI: 10.3390/foods12050916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Food bioactive compounds (FBC) comprise a vast class of substances, including polyphenols, with different chemical structures, and they exert physiological effects on individuals who consume them, such as antioxidant and anti-inflammatory action. The primary food sources of the compounds are fruits, vegetables, wines, teas, seasonings, and spices, and there are still no daily recommendations for their intake. Depending on the intensity and volume, physical exercise can stimulate oxidative stress and muscle inflammation to generate muscle recovery. However, little is known about the role that polyphenols may have in the process of injury, inflammation, and muscle regeneration. This review aimed to relate the effects of supplementation with mentation with some polyphenols in oxidative stress and post-exercise inflammatory markers. The consulted papers suggest that supplementation with 74 to 900 mg of cocoa, 250 to 1000 mg of green tea extract for around 4 weeks, and 90 mg for up to 5 days of curcumin can attenuate cell damage and inflammation of stress markers of oxidative stress during and after exercise. However, regarding anthocyanins, quercetins, and resveratrol, the results are conflicting. Based on these findings, the new reflection that was made is the possible impact of supplementation associating several FBCs simultaneously. Finally, the benefits discussed here do not consider the existing divergences in the literature. Some contradictions are inherent in the few studies carried out so far. Methodological limitations, such as supplementation time, doses used, forms of supplementation, different exercise protocols, and collection times, create barriers to knowledge consolidation and must be overcome.
Collapse
Affiliation(s)
| | - Elias de França
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
| | - Jean Carlos Silvestre
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Campus Rosinha Viegas, Universidade Metropolitana de Santos, Santos 11045-002, Brazil
- Center for Applied Social Sciences, Universidade Católica de Santos, Santos 11015-002, Brazil
| | - Ronaldo Vagner Thomatieli-Santos
- Postgraduate Program in Psychobiology, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Correspondence:
| |
Collapse
|
14
|
Zhu H, Ma H, Dong N, Wu M, Li D, Liu L, Shi Q, Ju X. 1,5-Anhydroglucitol promotes pre-B acute lymphocytic leukemia progression by driving glycolysis and reactive oxygen species formation. BMC Cancer 2023; 23:122. [PMID: 36747147 PMCID: PMC9903573 DOI: 10.1186/s12885-023-10589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Precursor B-cell acute lymphoblastic leukemia (pre-B ALL) is the most common hematological malignancy in children. Cellular metabolic reorganization is closely related to the progression and treatment of leukemia. We found that the level of 1,5-anhydroglucitol (1,5-AG), which is structurally similar to glucose, was elevated in children with pre-B ALL. However, the effect of 1,5-AG on pre-B ALL was unclear. Here, we aimed to reveal the roles and mechanisms of 1,5-AG in pre-B ALL progression. METHODS The peripheral blood plasma level of children with initial diagnosis of pre-B ALL and that of healthy children was measured using untargeted metabolomic analysis. Cell Counting Kit-8 assay, RNA sequencing, siRNA transfection, real-time quantitative PCR, and western blot were performed using pre-B ALL cell lines Reh and HAL-01. Cell cycle, cell apoptosis, ROS levels, and the positivity rate of CD19 were assessed using flow cytometry. Oxygen consumption rates and extracellular acidification rate were measured using XFe24 Extracellular Flux Analyzer. The lactate and nicotinamide adenine dinucleotide phosphate levels were measured using kits. The effect of 1,5-AG on pre-B ALL progression was verified using the In Vivo Imaging System in a xenotransplantation leukemia model. RESULTS We confirmed that 1,5-AG promoted the proliferation, viability, and intracellular glycolysis of pre-B ALL cells. Mechanistically, 1,5-AG promotes glycolysis while inhibiting mitochondrial respiration by upregulating pyruvate dehydrogenase kinase 4 (PDK4). Furthermore, high levels of intracellular glycolysis promote pre-B ALL progression by activating the reactive oxygen species (ROS)-dependent mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Conversely, N-acetylcysteine or vitamin C, an antioxidant, effectively inhibited 1,5-AG-mediated progression of leukemia cells. CONCLUSIONS Our study reveals a previously undiscovered role of 1,5-AG in pre-B ALL, which contributes to an in-depth understanding of anaerobic glycolysis in the progression of pre-B ALL and provides new targets for the clinical treatment of pre-B ALL.
Collapse
Affiliation(s)
- Huasu Zhu
- grid.452402.50000 0004 1808 3430Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Huixian Ma
- grid.452402.50000 0004 1808 3430Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Na Dong
- grid.452402.50000 0004 1808 3430Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Min Wu
- grid.452402.50000 0004 1808 3430Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Dong Li
- grid.452402.50000 0004 1808 3430Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Linghong Liu
- grid.452402.50000 0004 1808 3430Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Qing Shi
- grid.452402.50000 0004 1808 3430Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, 250012 Shandong Province China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China. .,Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
15
|
Kumar RA, Hahn D, Kelley RC, Muscato DR, Shamoun A, Curbelo-Bermudez N, Butler WG, Yegorova S, Ryan TE, Ferreira LF. Skeletal muscle Nox4 knockout prevents and Nox2 knockout blunts loss of maximal diaphragm force in mice with heart failure with reduced ejection fraction. Free Radic Biol Med 2023; 194:23-32. [PMID: 36436728 PMCID: PMC10191720 DOI: 10.1016/j.freeradbiomed.2022.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
Patients with heart failure with reduced ejection fraction (HFrEF) experience diaphragm weakness that contributes to the primary disease symptoms of fatigue, dyspnea, and exercise intolerance. Weakness in the diaphragm is related to excessive production of reactive oxygen species (ROS), but the exact source of ROS remains unknown. NAD(P)H Oxidases (Nox), particularly the Nox2 and 4 isoforms, are important sources of ROS within skeletal muscle that contribute to optimal cell function. There are reports of increased Nox activity in the diaphragm of patients and animal models of HFrEF, implicating these complexes as possible sources of diaphragm dysfunction in HFrEF. To investigate the role of these proteins on diaphragm weakness in HFrEF, we generated inducible skeletal muscle specific knockouts of Nox2 or Nox4 using the Cre-Lox system and assessed diaphragm function in a mouse model of HFrEF induced by myocardial infarction. Diaphragm maximal specific force measured in vitro was depressed by ∼20% with HFrEF. Skeletal muscle knockout of Nox4 provided full protection against the loss of maximal force (p < 0.01), while the knockout of Nox2 provided partial protection (7% depression, p < 0.01). Knockout of Nox2 from skeletal myofibers improved survival from 50 to 80% following myocardial infarction (p = 0.026). Our findings show an important role for skeletal muscle NAD(P)H Oxidases contributing to loss of diaphragm maximal force in HFrEF, along with systemic pathophysiological responses following myocardial infarction.
Collapse
Affiliation(s)
- Ravi A Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; King's College London British Heart Foundation Centre of Excellence, School of Cardiovascular Medicine & Sciences, London, United Kingdom
| | - Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Rachel C Kelley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Endocrine Society, Washington, D.C, USA
| | - Derek R Muscato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Alex Shamoun
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Nuria Curbelo-Bermudez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - W Greyson Butler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Svetlana Yegorova
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Sutkowy P, Wróblewska J, Wróblewski M, Nuszkiewicz J, Modrzejewska M, Woźniak A. The Impact of Exercise on Redox Equilibrium in Cardiovascular Diseases. J Clin Med 2022; 11:jcm11164833. [PMID: 36013072 PMCID: PMC9410476 DOI: 10.3390/jcm11164833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases constitute the most important public health problem in the world. They are characterized by inflammation and oxidative stress in the heart and blood. Physical activity is recognized as one of the best ways to prevent these diseases, and it has already been applied in treatment. Physical exercise, both aerobic and anaerobic and single and multiple, is linked to the oxidant–antioxidant imbalance; however, this leads to positive adaptive changes in, among others, the increase in antioxidant capacity. The goal of the paper was to discuss the issue of redox equilibrium in the human organism in the course of cardiovascular diseases to systemize updated knowledge in the context of exercise impacts on the organism. Antioxidant supplementation is also an important issue since antioxidant supplements still have great potential regarding their use as drugs in these diseases.
Collapse
|
17
|
Begum R, Thota S, Abdulkadir A, Kaur G, Bagam P, Batra S. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol 2022; 19:660-686. [PMID: 35585127 DOI: 10.1038/s41423-022-00858-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/12/2022] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) are pervasive signaling molecules in biological systems. In humans, a lack of ROS causes chronic and extreme bacterial infections, while uncontrolled release of these factors causes pathologies due to excessive inflammation. Professional phagocytes such as neutrophils (PMNs), eosinophils, monocytes, and macrophages use superoxide-generating NADPH oxidase (NOX) as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS. NOX is a multisubunit enzyme complex composed of five essential subunits, two of which are localized in the membrane, while three are localized in the cytosol. In resting phagocytes, the oxidase complex is unassembled and inactive; however, it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase. The NOX isoforms play a variety of roles in cellular differentiation, development, proliferation, apoptosis, cytoskeletal control, migration, and contraction. Recent studies have identified NOX as a major contributor to disease pathologies, resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals. Therefore, a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS. The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology, highlights pharmacological strategies, and discusses the importance of computational modeling for future NOX-related studies.
Collapse
Affiliation(s)
- Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Shilpa Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Abubakar Abdulkadir
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
18
|
Effting PS, Thirupathi A, Müller AP, Pereira BC, Sepa-Kishi DM, Marqueze LFB, Vasconcellos FTF, Nesi RT, Pereira TCB, Kist LW, Bogo MR, Ceddia RB, Pinho RA. Resistance Exercise Training Improves Metabolic and Inflammatory Control in Adipose and Muscle Tissues in Mice Fed a High-Fat Diet. Nutrients 2022; 14:nu14112179. [PMID: 35683979 PMCID: PMC9182921 DOI: 10.3390/nu14112179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigates whether ladder climbing (LC), as a model of resistance exercise, can reverse whole-body and skeletal muscle deleterious metabolic and inflammatory effects of high-fat (HF) diet-induced obesity in mice. To accomplish this, Swiss mice were fed for 17 weeks either standard chow (SC) or an HF diet and then randomly assigned to remain sedentary or to undergo 8 weeks of LC training with progressive increases in resistance weight. Prior to beginning the exercise intervention, HF-fed animals displayed a 47% increase in body weight (BW) and impaired ability to clear blood glucose during an insulin tolerance test (ITT) when compared to SC animals. However, 8 weeks of LC significantly reduced BW, adipocyte size, as well as glycemia under fasting and during the ITT in HF-fed rats. LC also increased the phosphorylation of AktSer473 and AMPKThr172 and reduced tumor necrosis factor-alpha (TNF-α) and interleukin 1 beta (IL1-β) contents in the quadriceps muscles of HF-fed mice. Additionally, LC reduced the gene expression of inflammatory markers and attenuated HF-diet-induced NADPH oxidase subunit gp91phox in skeletal muscles. LC training was effective in reducing adiposity and the content of inflammatory mediators in skeletal muscle and improved whole-body glycemic control in mice fed an HF diet.
Collapse
Affiliation(s)
- Pauline S. Effting
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
- Graduate Program in Health Science, Medical School, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil;
| | - Anand Thirupathi
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
- Correspondence: (A.T.); (R.A.P.)
| | - Alexandre P. Müller
- Graduate de Pós-graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis 88020-302, SC, Brazil;
| | - Bárbara C. Pereira
- Graduate Program in Health Science, Medical School, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, SC, Brazil;
| | - Diane M. Sepa-Kishi
- Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada; (D.M.S.-K.); (R.B.C.)
| | - Luis F. B. Marqueze
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (L.F.B.M.); (F.T.F.V.); (R.T.N.)
| | - Franciane T. F. Vasconcellos
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (L.F.B.M.); (F.T.F.V.); (R.T.N.)
| | - Renata T. Nesi
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (L.F.B.M.); (F.T.F.V.); (R.T.N.)
| | - Talita C. B. Pereira
- Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil; (T.C.B.P.); (L.W.K.); (M.R.B.)
| | - Luiza W. Kist
- Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil; (T.C.B.P.); (L.W.K.); (M.R.B.)
| | - Maurício R. Bogo
- Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil; (T.C.B.P.); (L.W.K.); (M.R.B.)
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | - Rolando B. Ceddia
- Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada; (D.M.S.-K.); (R.B.C.)
| | - Ricardo A. Pinho
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil; (L.F.B.M.); (F.T.F.V.); (R.T.N.)
- Correspondence: (A.T.); (R.A.P.)
| |
Collapse
|
19
|
Chen MM, Li Y, Deng SL, Zhao Y, Lian ZX, Yu K. Mitochondrial Function and Reactive Oxygen/Nitrogen Species in Skeletal Muscle. Front Cell Dev Biol 2022; 10:826981. [PMID: 35265618 PMCID: PMC8898899 DOI: 10.3389/fcell.2022.826981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/26/2022] [Indexed: 12/06/2022] Open
Abstract
Skeletal muscle fibers contain a large number of mitochondria, which produce ATP through oxidative phosphorylation (OXPHOS) and provide energy for muscle contraction. In this process, mitochondria also produce several types of "reactive species" as side product, such as reactive oxygen species and reactive nitrogen species which have attracted interest. Mitochondria have been proven to have an essential role in the production of skeletal muscle reactive oxygen/nitrogen species (RONS). Traditionally, the elevation in RONS production is related to oxidative stress, leading to impaired skeletal muscle contractility and muscle atrophy. However, recent studies have shown that the optimal RONS level under the action of antioxidants is a critical physiological signal in skeletal muscle. Here, we will review the origin and physiological functions of RONS, mitochondrial structure and function, mitochondrial dynamics, and the coupling between RONS and mitochondrial oxidative stress. The crosstalk mechanism between mitochondrial function and RONS in skeletal muscle and its regulation of muscle stem cell fate and myogenesis will also be discussed. In all, this review aims to describe a comprehensive and systematic network for the interaction between skeletal muscle mitochondrial function and RONS.
Collapse
Affiliation(s)
- Ming-Ming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yue Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
de França E, dos Santos RVT, Baptista LC, Da Silva MAR, Fukushima AR, Hirota VB, Martins RA, Caperuto EC. Potential Role of Chronic Physical Exercise as a Treatment in the Development of Vitiligo. Front Physiol 2022; 13:843784. [PMID: 35360245 PMCID: PMC8960951 DOI: 10.3389/fphys.2022.843784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Vitiligo is an autoimmune disease characterized by progressive skin depigmentation and the appearance of white patches throughout the body caused by significant apoptosis of epidermal melanocytes. Despite not causing any physical pain, vitiligo can originate several psychosocial disorders, drastically reducing patients' quality of life. Emerging evidence has shown that vitiligo is associated with several genetic polymorphisms related to auto-reactivity from the immune system to melanocytes. Melanocytes from vitiligo patients suffer from excess reactive oxygen species (ROS) produced by defective mitochondria besides a poor endogenous antioxidant system (EAS). This redox imbalance results in dramatic melanocyte oxidative stress (OS), causing significant damage in proteins, lipid membranes, and DNA. The damaged melanocytes secret damage-associated molecular pattern (DAMPs), inducing and increasing inflammatory gene expression response that ultimately leads to melanocytes apoptosis. Vitiligo severity has been also associated with increasing the prevalence and incidence of metabolic syndrome (MetS) or associated disorders such as insulin resistance and hypercholesterolemia. Thus, suggesting that in genetically predisposed individuals, the environmental context that triggers MetS (i.e., sedentary lifestyle) may also be an important trigger for the development and severity of vitiligo disease. This paper will discuss the relationship between the immune system and epidermal melanocytes and their interplay with the redox system. Based on state-of-the-art evidence from the vitiligo research, physical exercise (PE) immunology, and redox system literature, we will also propose chronic PE as a potential therapeutic strategy to treat and prevent vitiligo disease progression. We will present evidence that chronic PE can change the balance of inflammatory to an anti-inflammatory state, improve both EAS and the mitochondrial structure and function (resulting in the decrease of OS). Finally, we will highlight clinically relevant markers that can be analyzed in a new research avenue to test the potential applicability of chronic PE in vitiligo disease.
Collapse
Affiliation(s)
- Elias de França
- Human Movement Laboratory, São Judas University, São Paulo, Brazil
- Departamento de Biociências, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Liliana C. Baptista
- Faculty of Sport, Research Centre in Physical Activity, Health and Leisure, University of Porto, Porto, Portugal
- Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL United States
- Targeted Exercise, Microbiome and Aging Laboratory, University of Alabama, Birmingham, AL United States
| | - Marco A. R. Da Silva
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
- Department of Physical Education, Universidade da Amazônia, Belém, Brazil
| | - André R. Fukushima
- Centro Universitário das Américas – FAM, São Paulo, Brazil
- Faculdade de Ciências da Saúde – IGESP – FASIG, São Paulo, Brazil
| | | | - Raul A. Martins
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | | |
Collapse
|
21
|
Knudsen JR, Madsen AB, Li Z, Andersen NR, Schjerling P, Jensen TE. Gene deletion of γ-actin impairs insulin-stimulated skeletal muscle glucose uptake in growing mice but not in mature adult mice. Physiol Rep 2022; 10:e15183. [PMID: 35224890 PMCID: PMC8882697 DOI: 10.14814/phy2.15183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 04/14/2023] Open
Abstract
The cortical cytoskeleton, consisting of the cytoplasmic actin isoforms β and/or γ-actin, has been implicated in insulin-stimulated GLUT4 translocation and glucose uptake in muscle and adipose cell culture. Furthermore, transgenic inhibition of multiple actin-regulating proteins in muscle inhibits insulin-stimulated muscle glucose uptake. The current study tested if γ-actin was required for insulin-stimulated glucose uptake in mouse skeletal muscle. Based on our previously reported age-dependent phenotype in muscle-specific β-actin gene deletion (-/- ) mice, we included cohorts of growing 8-14 weeks old and mature 18-32 weeks old muscle-specific γ-actin-/- mice or wild-type littermates. In growing mice, insulin significantly increased the glucose uptake in slow-twitch oxidative soleus and fast-twitch glycolytic EDL muscles from wild-type mice, but not γ-actin-/- . In relative values, the maximal insulin-stimulated glucose uptake was reduced by ~50% in soleus and by ~70% in EDL muscles from growing γ-actin-/- mice compared to growing wild-type mice. In contrast, the insulin-stimulated glucose uptake responses in mature adult γ-actin-/- soleus and EDL muscles were indistinguishable from the responses in wild-type muscles. Mature adult insulin-stimulated phosphorylations on Akt, p70S6K, and ULK1 were not significantly affected by genotype. Hence, insulin-stimulated muscle glucose uptake shows an age-dependent impairment in young growing but not in fully grown γ-actin-/- mice, bearing phenotypic resemblance to β-actin-/- mice. Overall, γ-actin does not appear required for insulin-stimulated muscle glucose uptake in adulthood. Furthermore, our data emphasize the need to consider the rapid growth of young mice as a potential confounder in transgenic mouse phenotyping studies.
Collapse
Affiliation(s)
- Jonas R. Knudsen
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Agnete B. Madsen
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Zhencheng Li
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Nicoline R. Andersen
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| | - Peter Schjerling
- Department of Orthopedic Surgery MInstitute of Sports Medicine CopenhagenBispebjerg HospitalCopenhagenDenmark
| | - Thomas E. Jensen
- Section for Molecular PhysiologyDepartment of Nutrition, Exercise and SportsUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
22
|
Liu X, Zu E, Chang X, Ma X, Wang Z, Song X, Li X, Yu Q, Kamei KI, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T, Wang DO. Bi-phasic effect of gelatin in myogenesis and skeletal muscle regeneration. Dis Model Mech 2021; 14:273524. [PMID: 34821368 PMCID: PMC8713995 DOI: 10.1242/dmm.049290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle regeneration requires extracellular matrix (ECM) remodeling, including an acute and transient breakdown of collagen that produces gelatin. Although the physiological function of this process is unclear, it has inspired the application of gelatin to injured skeletal muscle for a potential pro-regenerative effect. Here, we investigated a bi-phasic effect of gelatin in skeletal muscle regeneration, mediated by the hormetic effects of reactive oxygen species (ROS). Low-dose gelatin stimulated ROS production from NADPH oxidase 2 (NOX2) and simultaneously upregulated the antioxidant system for cellular defense, reminiscent of the adaptive compensatory process during mild stress. This response triggered the release of the myokine IL-6, which stimulates myogenesis and facilitates muscle regeneration. By contrast, high-dose gelatin stimulated ROS overproduction from NOX2 and the mitochondrial chain complex, and ROS accumulation by suppressing the antioxidant system, triggering the release of TNFα, which inhibits myogenesis and regeneration. Our results have revealed a bi-phasic role of gelatin in regulating skeletal muscle repair mediated by intracellular ROS, the antioxidant system and cytokine (IL-6 and TNFα) signaling. Summary: Application of high- and low-dose gelatin to skeletal muscle revealed a bi-phasic role of gelatin in regulating skeletal muscle repair, which has translational implications for regenerative medicine.
Collapse
Affiliation(s)
- Xiaoling Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Er Zu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinyu Chang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiaowei Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ziqi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xintong Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiangru Li
- School of Life Science and Biopharmaceutic, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ken-Ichiro Kamei
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-850, Japan
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Department of Chemistry and Life Science, School of Advance Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo 192-0015, Japan.,Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research and Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Dan Ohtan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.,Center for Biosystems Dynamics Research (BDR), RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
23
|
Hasegawa Y, Kawasaki T, Maeda N, Yamada M, Takahashi N, Watanabe T, Iwasaki T. Accumulation of lipofuscin in broiler chicken with wooden breast. Anim Sci J 2021; 92:e13517. [PMID: 33522116 DOI: 10.1111/asj.13517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Lipofuscin is one of the indicators of oxidative stress. To elucidate the role of oxidative stress in the development of wooden breast, this study investigates lipofuscin accumulation in various parts of wooden breast muscles. Sampling was performed using 46-day-old broiler chickens housed at a commercial Japanese poultry slaughterhouse. Fourteen wooden breast fillets and 13 normal breast fillets were collected in the deboning line. The samples used to measure shear force, 2-thiobarbituric acid reactive substance (TBARS), and for histological analysis were taken from the six portions of breast muscle fillets. In muscles affected by wooden breast, vacuolated muscle fibers were observed, and connective tissues appearing like perimysium were expanded with fibrosis. TBARS value and accumulation of lipofuscin were significantly higher in the wooden breast than in the normal breasts. A lot of lipofuscin granules were localized in the cytoplasm of collapsed muscle fibers of the wooden breast. The cranial portion of the wooden breast showed the highest shear force. The cranial position had a large amount of connective tissue and lipofuscin granules. The results of the present study strongly suggest that high oxidative stress, especially with a significant accumulation of lipofuscin, is associated with the development of wooden breasts.
Collapse
Affiliation(s)
- Yasuhiro Hasegawa
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Ebetsu, Japan
| | - Takeshi Kawasaki
- Research Office Concerning the Health of Humans and Birds, Abashiri, Japan
| | - Naoyuki Maeda
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Ebetsu, Japan
| | - Michi Yamada
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Naoki Takahashi
- Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Tomohito Iwasaki
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
24
|
Kowluru RA, Radhakrishnan R, Mohammad G. Regulation of Rac1 transcription by histone and DNA methylation in diabetic retinopathy. Sci Rep 2021; 11:14097. [PMID: 34238980 PMCID: PMC8266843 DOI: 10.1038/s41598-021-93420-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Cytosolic ROS, generated by NADPH oxidase 2 (Nox2) in diabetes, damage retinal mitochondria, which leads to the development of retinopathy. A small molecular weight G-protein essential for Nox2 activation, Rac1, is also transcriptionally activated via active DNA methylation-hydroxymethylation. DNA methylation is a dynamic process, and can also be regulated by histone modifications; diabetes alters retinal histone methylation machinery. Our aim is to investigate the role of histone methylation (H3K9me3) of Rac1 promoter in dynamic DNA methylation- transcriptional activation. Using human retinal endothelial cells in 20 mM D-glucose, H3K9me3 at Rac1 promoter was quantified by chromatin-Immunoprecipitation technique. Crosstalk between H3K9me3 and DNA methylation was examined in cells transfected with siRNA of histone trimethyl-transferase, Suv39H1, or Dnmt1, exposed to high glucose. Key parameters were confirmed in retinal microvessels from streptozotocin-induced diabetic mice, with intravitreally administered Suv39H1-siRNA or Dnmt1-siRNA. Compared to cells in normal glucose, high glucose increased H3K9me3 and Suv39H1 binding at Rac1 promoter, and Suv39H1-siRNA prevented glucose-induced increase 5 hydroxy methyl cytosine (5hmC) and Rac1 mRNA. Similarly, in diabetic mice, Suv39H1-siRNA attenuated increase in 5hmC and Rac1 mRNA. Thus, H3K9me3 at Rac1 promoter assists in active DNA methylation-hydroxymethylation, activating Rac1 transcription. Regulation of Suv39H1-H3K9 trimethylation could prevent further epigenetic modifications, and prevent diabetic retinopathy.
Collapse
Affiliation(s)
- Renu A Kowluru
- Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University, Detroit, MI, 48201, USA.
| | - Rakesh Radhakrishnan
- Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Ghulam Mohammad
- Ophthalmology, Visual and Anatomical Sciences, Kresge Eye Institute, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
25
|
Bouviere J, Fortunato RS, Dupuy C, Werneck-de-Castro JP, Carvalho DP, Louzada RA. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants (Basel) 2021; 10:antiox10040537. [PMID: 33808211 PMCID: PMC8066165 DOI: 10.3390/antiox10040537] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Physical exercise represents a major challenge to whole-body homeostasis, provoking acute and adaptative responses at the cellular and systemic levels. Different sources of reactive oxygen species (ROS) have been described in skeletal muscle (e.g., NADPH oxidases, xanthine oxidase, and mitochondria) and are closely related to the physiological changes induced by physical exercise through the modulation of several signaling pathways. Many signaling pathways that are regulated by exercise-induced ROS generation, such as adenosine monophosphate-activated protein kinase (AMPK), mitogen activated protein kinase (MAPK), nuclear respiratory factor2 (NRF2), and PGC-1α are involved in skeletal muscle responses to physical exercise, such as increased glucose uptake, mitochondriogenesis, and hypertrophy, among others. Most of these adaptations are blunted by antioxidants, revealing the crucial role played by ROS during and after physical exercise. When ROS generation is either insufficient or exacerbated, ROS-mediated signaling is disrupted, as well as physical exercise adaptations. Thus, an understanding the limit between "ROS that can promote beneficial effects" and "ROS that can promote harmful effects" is a challenging question in exercise biology. The identification of new mediators that cause reductive stress and thereby disrupt exercise-stimulated ROS signaling is a trending on this topic and are covered in this current review.
Collapse
Affiliation(s)
- Jessica Bouviere
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Rodrigo S. Fortunato
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Corinne Dupuy
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Denise P. Carvalho
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
| | - Ruy A. Louzada
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.); (R.S.F.); (D.P.C.)
- Université Paris-Saclay, UMR 9019CNRS, Gustave Roussy, 94800 Villejuif, France;
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Correspondence:
| |
Collapse
|
26
|
Nox2 Inhibition Regulates Stress Response and Mitigates Skeletal Muscle Fiber Atrophy during Simulated Microgravity. Int J Mol Sci 2021; 22:ijms22063252. [PMID: 33806917 PMCID: PMC8005132 DOI: 10.3390/ijms22063252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/25/2023] Open
Abstract
Insufficient stress response and elevated oxidative stress can contribute to skeletal muscle atrophy during mechanical unloading (e.g., spaceflight and bedrest). Perturbations in heat shock proteins (e.g., HSP70), antioxidant enzymes, and sarcolemmal neuronal nitric oxidase synthase (nNOS) have been linked to unloading-induced atrophy. We recently discovered that the sarcolemmal NADPH oxidase-2 complex (Nox2) is elevated during unloading, downstream of angiotensin II receptor 1, and concomitant with atrophy. Here, we hypothesized that peptidyl inhibition of Nox2 would attenuate disruption of HSP70, MnSOD, and sarcolemmal nNOS during unloading, and thus muscle fiber atrophy. F344 rats were divided into control (CON), hindlimb unloaded (HU), and hindlimb unloaded +7.5 mg/kg/day gp91ds-tat (HUG) groups. Unloading-induced elevation of the Nox2 subunit p67phox-positive staining was mitigated by gp91ds-tat. HSP70 protein abundance was significantly lower in HU muscles, but not HUG. MnSOD decreased with unloading; however, MnSOD was not rescued by gp91ds-tat. In contrast, Nox2 inhibition protected against unloading suppression of the antioxidant transcription factor Nrf2. nNOS bioactivity was reduced by HU, an effect abrogated by Nox2 inhibition. Unloading-induced soleus fiber atrophy was significantly attenuated by gp91ds-tat. These data establish a causal role for Nox2 in unloading-induced muscle atrophy, linked to preservation of HSP70, Nrf2, and sarcolemmal nNOS.
Collapse
|
27
|
Mansuri ML, Sharma G, Parihar P, Dube KT, Sharma T, Parihar A, Parihar MS. Increased oxidative stress and mitochondrial impairments associated with increased expression of TNF-α and caspase-3 in palmitic acid-induced lipotoxicity in myoblasts. J Biochem Mol Toxicol 2021; 35:e22744. [PMID: 33604948 DOI: 10.1002/jbt.22744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/30/2020] [Accepted: 02/10/2021] [Indexed: 11/07/2022]
Abstract
Saturated fatty acids, whose circulating levels are markedly increased in the body, significantly affect the growth and functions of skeletal muscle. These fatty acids may exert a detrimental effect on the undifferentiated skeletal myoblasts that may adversely affect their differentiation. In the present study, the exposure of myoblasts to excess palmitic acid caused an elevation of tumor necrosis factor-α expression and an increase in reactive oxygen species levels consistent with the enhanced inflammation and oxidative stress. Various concentrations of palmitic acid significantly decreased the mitochondrial membrane potential, induced the programmed cell death by an increase in the caspase-3 expression, and DNA fragmentation in the myoblasts. These findings suggest that the increased concentrations of saturated fatty acid in the myoblasts increase lipotoxicity by increasing inflammation and oxidative stress, decreasing the mitochondrial function, and inducing apoptosis.
Collapse
Affiliation(s)
- Mohammad Lukman Mansuri
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, Madhya Pradesh, India
| | - Garima Sharma
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, Madhya Pradesh, India
| | - Priyanka Parihar
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, Madhya Pradesh, India
| | - Kirti Tiwari Dube
- Department of Zoology, Government Holkar Science College, Indore, Madhya Pradesh, India
| | - Tejasweta Sharma
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, Madhya Pradesh, India
| | | | - Mordhwaj Singh Parihar
- School of Studies in Zoology & Biotechnology, Vikram University, Ujjain, Madhya Pradesh, India.,Bioexons LLC, Seattle, Washington, USA
| |
Collapse
|
28
|
Devrim-Lanpir A, Hill L, Knechtle B. How N-Acetylcysteine Supplementation Affects Redox Regulation, Especially at Mitohormesis and Sarcohormesis Level: Current Perspective. Antioxidants (Basel) 2021; 10:antiox10020153. [PMID: 33494270 PMCID: PMC7909817 DOI: 10.3390/antiox10020153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/04/2023] Open
Abstract
Exercise frequently alters the metabolic processes of oxidative metabolism in athletes, including exposure to extreme reactive oxygen species impairing exercise performance. Therefore, both researchers and athletes have been consistently investigating the possible strategies to improve metabolic adaptations to exercise-induced oxidative stress. N-acetylcysteine (NAC) has been applied as a therapeutic agent in treating many diseases in humans due to its precursory role in the production of hepatic glutathione, a natural antioxidant. Several studies have investigated NAC’s possible therapeutic role in oxidative metabolism and adaptive response to exercise in the athletic population. However, still conflicting questions regarding NAC supplementation need to be clarified. This narrative review aims to re-evaluate the metabolic effects of NAC on exercise-induced oxidative stress and adaptive response developed by athletes against the exercise, especially mitohormetic and sarcohormetic response.
Collapse
Affiliation(s)
- Aslı Devrim-Lanpir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medeniyet University, Istanbul 34862, Turkey;
| | - Lee Hill
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Beat Knechtle
- Medbase St. Gallen am Vadianplatz, 9001 St. Gallen, Switzerland
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland
- Correspondence: ; Tel.: +41-0-71-226-93-00
| |
Collapse
|
29
|
Abstract
Reactive oxygen species (ROS) are ubiquitous metabolic products and important cellular signaling molecules that contribute to several biological functions. Pathophysiology arises when ROS are generated either in excess or in cell types or subcellular locations that normally do not produce ROS or when non-physiological types of ROS (e.g., superoxide instead of hydrogen peroxide) are formed. In the latter scenario, antioxidants were considered as the apparent remedy but, clinically, have consistently failed and even sometimes induced harm. The obvious reason for that is the non-selective ROS scavenging effects of antioxidants which interfere with both qualities of ROS, physiological and pathological. Therefore, it is essential to overcome this "antidote or neutralizer" strategy. We here review the most promising alternative approach by identifying the disease-relevant enzymatic sources of ROS, target these selectively, but leave physiological ROS signaling through other sources intact. Among all ROS sources, NADPH oxidases (NOX1-5 and DUOX1-2) stand out as their sole function is to produce ROS, whereas most other enzymatic sources only produce ROS as a by-product or upon biochemical uncoupling or damage. This qualifies NOXs as the main potential drug-target candidates in diseases associated with dysfunction in ROS signaling. As a reflection of this, the development of several NOX inhibitors has taken place. Recently, the WHO approved a new stem, "naxib," which refers to NADPH oxidase inhibitors, and thereby recognized NOX inhibitors as a new therapeutic class. This has been announced while clinical trials with the first-in-class compound, setanaxib (initially known as GKT137831) had been initiated. We also review the differences between the seven NOX family members in terms of structure and function in health and disease and then focus on the most advanced NOX inhibitors with an exclusive focus on clinically relevant validations and applications. Therapeutically relevant NADPH oxidase isoforms type 1, 2, 4, and 5 (NOX1, NOX2, NOX4, NOX5). Of note, NOX5 is not present in mice and rats and thus pre-clinically less studied. NOX2, formerly termed gp91phox, has been correlated with many, too many, diseases and is rather relevant as genetic deficiency in chronic granulomatous disease (CGD), treated by gene therapy. Overproduction of ROS through NOX1, NOX4, and NOX5 leads to the indicated diseases states including atherosclerosis (red), a condition where NOX4 is surprisingly protective.
Collapse
Affiliation(s)
- Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, School of MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | | | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School of MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
30
|
Stretton C, Pugh JN, McDonagh B, McArdle A, Close GL, Jackson MJ. 2-Cys peroxiredoxin oxidation in response to hydrogen peroxide and contractile activity in skeletal muscle: A novel insight into exercise-induced redox signalling? Free Radic Biol Med 2020; 160:199-207. [PMID: 32784030 PMCID: PMC7718083 DOI: 10.1016/j.freeradbiomed.2020.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022]
Abstract
Skeletal muscle generates superoxide during contractions which is rapidly converted to H2O2. This molecule has been proposed to activate signalling pathways and transcription factors that regulate key adaptive responses to exercise but the concentration of H2O2 required to oxidise and activate key signalling proteins in vitro is much higher than the intracellular concentration in muscle fibers following exercise. We hypothesised that Peroxiredoxins (Prx), which reacts with H2O2 at the low intracellular concentrations found in muscle, would be rapidly oxidised in contracting muscle and hence potentially transmit oxidising equivalents to downstream signalling proteins as a method for their oxidation and activation. The aim of this study was to characterise the effects of muscle contractile activity on the oxidation of Prx1, 2 and 3 and determine if these were affected by aging. Prx1, 2 and 3 were all rapidly and reversibly oxidised following treatment with low micromolar concentrations of H2O2 in C2C12 myotubes and also in isolated mature flexor digitalis brevis fibers from adult mice following a protocol of repeated isometric contractions. Significant oxidation of Prx2 was seen within 1 min (i.e. after 12 contractions), whereas significant oxidation was seen after 2 min for Prx1 and 3. In muscle fibers from old mice, Prx2 oxidation was significantly attenuated following contractile activity. Thus we show for the first time that Prx are rapidly and reversibly oxidised in response to contractile activity in skeletal muscle and hypothesise that these proteins act as effectors of muscle redox signalling pathways which are key to adaptations to exercise that are attenuated during aging.
Collapse
Affiliation(s)
- Clare Stretton
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool and MRC- Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), UK
| | - Jamie N Pugh
- School of Sport and Exercise Sciences, Tom Reilly Building, Byrom Street, Liverpool John Moores University, Liverpool, UK
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, National University of Ireland Galway, Ireland
| | - Anne McArdle
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool and MRC- Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), UK
| | - Graeme L Close
- School of Sport and Exercise Sciences, Tom Reilly Building, Byrom Street, Liverpool John Moores University, Liverpool, UK
| | - Malcolm J Jackson
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool and MRC- Arthritis Research UK Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), UK.
| |
Collapse
|
31
|
Abstract
Even though physical activity is known to perturb the redox homeostasis and create a pro-oxidative muscular environment, robust evidence has confirmed precise, powerful, and beneficial effects of regular physical activity on health. Physical exercise can activate redox-sensitive intracellular signaling pathways via reactive oxygen species (ROS)-related pathways leading to modification of muscle function through genomic and nongenomic mechanisms. However, ROS-mediated signaling also has deleterious effects on skeletal muscle function, which has been observed in several pathological conditions, such as cancer, obesity, and diabetes, among others. One of the most challenging issues debated on this topic is that of the levels of redox signaling that promote either beneficial or harmful effects to our bodies. This Forum discusses the latest progress in muscle redox signaling with emphasis on muscle physiology and physiopathology. Antioxid. Redox Signal. 33, 539-541.
Collapse
Affiliation(s)
- Rodrigo S Fortunato
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ruy A Louzada
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Université Paris-Sud, Orsay, UMR 8200 CNRS and Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
32
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
33
|
Shenkman BS. How Postural Muscle Senses Disuse? Early Signs and Signals. Int J Mol Sci 2020; 21:E5037. [PMID: 32708817 PMCID: PMC7404025 DOI: 10.3390/ijms21145037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
A mammalian soleus muscle along with other "axial" muscles ensures the stability of the body under the Earth's gravity. In rat experiments with hindlimb suspension, zero-gravity parabolic flights as well as in human dry immersion studies, a dramatic decrease in the electromyographic (EMG) activity of the soleus muscle has been repeatedly shown. Most of the motor units of the soleus muscle convert from a state of activity to a state of rest which is longer than under natural conditions. And the state of rest gradually converts to the state of disuse. This review addresses a number of metabolic events that characterize the earliest stage of the cessation of the soleus muscle contractile activity. One to three days of mechanical unloading are accompanied by energy-dependent dephosphorylation of AMPK, accumulation of the reactive oxygen species, as well as accumulation of resting myoplasmic calcium. In this transition period, a rapid rearrangement of the various signaling pathways occurs, which, primarily, results in a decrease in the rate of protein synthesis (primarily via inhibition of ribosomal biogenesis and activation of endogenous inhibitors of mRNA translation, such as GSK3β) and an increase in proteolysis (via upregulation of muscle-specific E3-ubiquitin ligases).
Collapse
Affiliation(s)
- Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems RAS, 123007 Moscow, Russia
| |
Collapse
|
34
|
Nikolaidis MG, Margaritelis NV, Matsakas A. Quantitative Redox Biology of Exercise. Int J Sports Med 2020; 41:633-645. [PMID: 32455453 DOI: 10.1055/a-1157-9043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biology is rich in claims that reactive oxygen and nitrogen species are involved in every biological process and disease. However, many quantitative aspects of redox biology remain elusive. The important quantitative parameters you need to address the feasibility of redox reactions in vivo are: rate of formation and consumption of a reactive oxygen and nitrogen species, half-life, diffusibility and membrane permeability. In the first part, we explain the basic chemical kinetics concepts and algebraic equations required to perform "street fighting" quantitative analysis. In the second part, we provide key numbers to help thinking about sizes, concentrations, rates and other important quantities that describe the major oxidants (superoxide, hydrogen peroxide, nitric oxide) and antioxidants (vitamin C, vitamin E, glutathione). In the third part, we present the quantitative effect of exercise on superoxide, hydrogen peroxide and nitric oxide concentration in mitochondria and whole muscle and calculate how much hydrogen peroxide concentration needs to increase to transduce signalling. By taking into consideration the quantitative aspects of redox biology we can: i) refine the broad understanding of this research area, ii) design better future studies and facilitate comparisons among studies, and iii) define more efficiently the "borders" between cellular signaling and stress.
Collapse
Affiliation(s)
- Michalis G Nikolaidis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece.,General Military Hospital of Thessaloniki, Dialysis Unit, Thessaloniki, Greece
| | - Antonios Matsakas
- Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, Hull, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
35
|
Peterson SJ, Dave N, Kothari J. The Effects of Heme Oxygenase Upregulation on Obesity and the Metabolic Syndrome. Antioxid Redox Signal 2020; 32:1061-1070. [PMID: 31880952 DOI: 10.1089/ars.2019.7954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Obesity is a chronic condition that is characterized by inflammation and oxidative stress with consequent cardiovascular complications of hypertension, dyslipidemia, and vascular dysfunction. Obesity-induced metabolic syndrome remains an epidemic of global proportions. Recent Advances: Gene targeting of the endothelium with a retrovirus using an endothelium-specific promoter vascular endothelium cadherin (VECAD)-HO-1 offers a potential long-term solution to adiposity by targeting the endothelium. This has resulted in improvements of both vascular function and adiposity attenuation. Critical Issues: Heme oxygenase plays an ever-increasing role in the understanding of human biology in the complex conditions of obesity and the metabolic syndrome. The heme oxygenase 1 (HO-1) system creates biliverdin/bilirubin, which functions as an antioxidant, and carbon monoxide, which has antiapoptotic properties. Future Directions: Upregulation of HO-1 has been shown to improve adiposity as well as vascular function in both animal and human studies.
Collapse
Affiliation(s)
- Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, New York.,New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
| | - Niel Dave
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
| | - Janish Kothari
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
| |
Collapse
|
36
|
Louzada RA, Bouviere J, Matta LP, Werneck-de-Castro JP, Dupuy C, Carvalho DP, Fortunato RS. Redox Signaling in Widespread Health Benefits of Exercise. Antioxid Redox Signal 2020; 33:745-760. [PMID: 32174127 DOI: 10.1089/ars.2019.7949] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Exercise-induced reactive oxygen species (ROS) production activates multiple intracellular signaling pathways through genomic and nongenomic mechanisms that are responsible for the beneficial effects of exercise in muscle. Beyond the positive effect of exercise on skeletal muscle cells, other tissues such as white and brown adipose, liver, central nervous system, endothelial, heart, and endocrine organ tissues are also responsive to exercise. Recent Advances: Crosstalk between different cells is essential to achieve homeostasis and to promote the benefits of exercise through paracrine or endocrine signaling. This crosstalk can be mediated by different effectors that include the secretion of metabolites of muscle contraction, myokines, and exosomes. During the past 20 years, it has been demonstrated that contracting muscle cells produce and secrete different classes of myokines, which functionally link muscle with nearly all other cell types. Critical Issues: The redox signaling behind this exercise-induced crosstalk is now being decoded. Many of these widespread beneficial effects of exercise require not only a complex ROS-dependent intramuscular signaling cascade but simultaneously, an integrated network with many remote tissues. Future Directions: Strong evidence suggests that the powerful beneficial effect of regular physical activity for preventing (or treating) a large range of disorders might also rely on ROS-mediated signaling. Within a contracting muscle, ROS signaling may control exosomes and myokines secretion. In remote tissues, exercise generates regular and synchronized ROS waves, creating a transient pro-oxidative environment in many cells. These new concepts integrate exercise, ROS-mediated signaling, and the widespread health benefits of exercise.
Collapse
Affiliation(s)
- Ruy A Louzada
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Université Paris-Sud, Orsay, UMR 8200 CNRS and Institut Gustave Roussy, Villejuif, France
| | - Jessica Bouviere
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo P Matta
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joao Pedro Werneck-de-Castro
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Corinne Dupuy
- Université Paris-Sud, Orsay, UMR 8200 CNRS and Institut Gustave Roussy, Villejuif, France
| | - Denise P Carvalho
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo S Fortunato
- Institut of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Henriquez-Olguin C, Meneses-Valdes R, Jensen TE. Compartmentalized muscle redox signals controlling exercise metabolism - Current state, future challenges. Redox Biol 2020; 35:101473. [PMID: 32122793 PMCID: PMC7284909 DOI: 10.1016/j.redox.2020.101473] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Exercise imposes cellular stress on contracting skeletal muscle fibers, forcing them to complete molecular adaptations to maintain homeostasis. There is mounting evidence that redox signaling by reactive oxygen species (ROS) is vital for skeletal muscle exercise adaptations across many different exercise modalities. The study of redox signaling is moving towards a growing appreciation that these ROS do not signal in a global unspecific way, but rather elicit their effects in distinct subcellular compartments. This short review will first outline the sources of ROS in exercising skeletal muscle and then discuss some examples of exercise adaptations, which are evidenced to be regulated by compartmentalized redox signaling. We speculate that knowledge of these redox pathways might one day allow targeted manipulation to increase redox-signaling in specific compartments to augment the exercise-hormetic response in health and disease.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Roberto Meneses-Valdes
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Integrated Physiology Unit, Laboratory of Exercise Sciences, MEDS Clinic, Santiago, Chile
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|