1
|
Chang X, Leung JYS, Wang T, Hu M, Wang Y. Ocean acidification disrupts the energy balance and impairs the health of mussels (Mytilus coruscus) by weakening their trophic interactions with microalgae and intestinal microbiome. ENVIRONMENTAL RESEARCH 2025; 276:121493. [PMID: 40157417 DOI: 10.1016/j.envres.2025.121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/10/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Despite extensive research in the last two decades, exploring the potential mechanisms underlying the sensitivity and resistance of marine organisms to ocean acidification is still imperative. Species interactions can play a role in these mechanisms, but the extent to which they modulate organismal responses to ocean acidification remains largely unknown. Here, we investigated how ocean acidification (pH 7.7) affects energy homeostasis and fitness of mussels (Mytilus coruscus) by assessing their physiological responses, intestinal microbiome and nutritional quality of their food (microalgae). Under ocean acidification, the mussels had reduced feeding rates by 34 % and reduced activities of digestive enzymes (pepsin by 39 %, trypsin by 28 % and lipase by 53 %) due to direct exposure to acidified seawater and increased phenol content of microalgae. Richness and diversity of intestinal microbiome (OTU, Chao1 index and Shannon index) were also lowered by ocean acidification, which can undermine nutrient absorption. On the other hand, energy expenditure of mussels increased by 53 % under ocean acidification, which was associated with the upregulation of antioxidant defence (SOD, CAT and GPx activities). Consequently, energy reserves in mussels decreased by 28 %, which were underpinned by the reduction in protein, carbohydrate and lipid contents. Overall, we demonstrate that ocean acidification could disrupt herbivore-algae and host-microbe interactions, thereby lowering the energy balance and impairing the health of marine organisms. This can have ramifications on the population and energy dynamics of marine communities in the acidifying ocean.
Collapse
Affiliation(s)
- Xueqing Chang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jonathan Y S Leung
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Ting Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; University of Geneva, Faculty of Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, Environmental Biogeochemistry and Ecotoxicology, Bvd Carl-Vogt 66, Geneva, 1211, Switzerland
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
2
|
Ren X, Sayed ZN, Shi S, Hao J, Gao J, Wu J, Zhang H, Liu Z, Zhang B. Construction of a mitochondrial-targeting near-infrared fluorescent probe for detection of viscosity changes in type 2 diabetes mellitus and nonalcoholic steatohepatitis. Talanta 2025; 286:127470. [PMID: 39733524 DOI: 10.1016/j.talanta.2024.127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
The intracellular viscosity plays a pivotal role as a physicochemical factor and an important indicator of organelles performance. Abnormal changes in subcellular viscosity are often associated with cellular malfunction and various diseases. Nonalcoholic steatohepatitis (NASH) is the most common liver disease related with type 2 diabetes mellitus (T2DM), and both are linked to aberrant mitochondrial viscosity. In this study, we styled and screened a novel near-infrared probe termed MT-E, carrying the double bonds as the viscosity response groups, that was employed to image the viscosity changes in HepG2 cells, zebrafish and animal models. MT-E has a superior mitochondrial targeting ability, as well as a large Stokes shift (167 nm). Additionally, utilizing the excellent performance of MT-E, we first monitored the increased viscosity trends in both T2DM mice and NASH mice, suggesting that there is a strong correlation between T2DM and NASH. More groundbreakingly, we have successfully revealed, from fluorescence imaging, the extraordinary potential of Aloin in treating T2DM mice that can effectively reduce viscosity. This is a sign that MT-E may have a steering role in mitochondrial viscosity-associated disorders.
Collapse
Affiliation(s)
- Xiaowen Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zahid Nasim Sayed
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Suntao Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junlei Hao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining, 810007, Qinghai, China
| | - Jia Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining, 810007, Qinghai, China
| | - Haijuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Yang S, Xu X, Wang L, Fang Y, Zhou Y, Dai C, Jiang L, Zhang B, Luo J. Contrast-Induced Acute Kidney Injury is Modulated by Circadian CLOCK/NRF2 Pathway. IUBMB Life 2025; 77:e70022. [PMID: 40391788 DOI: 10.1002/iub.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/12/2025] [Accepted: 04/18/2025] [Indexed: 05/22/2025]
Abstract
Numerous kidney functions exhibit substantial circadian oscillations, such as renal blood flow, glomerular filtration rate, tubular reabsorption function, and erythropoietin production. The onset and the injury of acute kidney injury caused by ischemia or drugs also have a circadian rhythmicity. Contrast media are widely used in clinical diagnosis and treatment; however, whether contrast-induced kidney injury exhibits a time-of-day dependence is unknown. We retrospectively analyzed 33 patients who underwent percutaneous coronary angiography and found that contrast induced the increase of serum neutrophil gelatinase-associated lipocalin (NGAL) was more obvious in the group who underwent operation during 6:00 ~ 13:00 than the group who underwent operation between 13:00 ~ 20:00. In addition, C57BL/6J mice were injected with iohexol at different times. The kidney injury of mice injected with iohexol at ZT12 was more severe than that at ZT0, which was manifested in the increase of urinary KIM1 and NGAL, enhanced renal tubular lipid peroxidation, and increased tubular ferroptosis. Inhibition of ferroptosis could alleviate kidney injury induced by iohexol at ZT12. Mechanistically, we found that nuclear factor erythrocyte 2-associated factor 2 (NRF2) expression has a 24-h circadian rhythm and is directly regulated by CLOCK. Administration of 4-Octyl itaconate at ZT12 to increase NRF2 expression could attenuate iohexol-induced tubular ferroptosis. These findings provide a new insight into the pathology of contrast medium-induced kidney injury, in which oscillatory NRF2 expression regulated by CLOCK contributes to the susceptibility of contrast-induced kidney injury in a time-of-day-specific fashion.
Collapse
Affiliation(s)
- Shuqing Yang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinxin Xu
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lulu Wang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Fang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Zhou
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Jiang
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Boqing Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Luo
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Guo Y, Zheng W, Yue T, Baimakangzhuo, Qi X, Liu K, Li L, He Y, Su B. GCH1 contributes to high-altitude adaptation in Tibetans by regulating blood nitric oxide. J Genet Genomics 2025:S1673-8527(25)00114-6. [PMID: 40254159 DOI: 10.1016/j.jgg.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
Nitric oxide (NO) is a key vasodilator that regulates vascular pressure and blood flow. Tibetans have developed a "blunted" mechanism for regulating NO levels at high altitude, with GTP cyclohydrolase 1 (GCH1) identified as a key candidate gene. Here, we present comprehensive genetic and functional analyses of GCH1, which exhibits strong Darwinian positive selection in Tibetans. We show that Tibetan-enriched GCH1 variants down-regulate its expression in the blood of Tibetans. Based on this observation, we generate the heterozygous Gch1 knockout (Gch1+/-) mouse model to simulate its downregulation in Tibetans. We find that under prolonged hypoxia, the Gch1+/- mice have relatively higher blood NO and blood oxygen saturation levels compared to the wild-type (WT) controls, providing better oxygen supplies to the cardiovascular and pulmonary systems. Markedly, hypoxia-induced cardiac hypertrophy and pulmonary remodeling are significantly attenuated in the Gch1+/- mice compared with the WT controls, likely due to the adaptive changes in molecular regulations related to metabolism, inflammation, circadian rhythm, extracellular matrix, and oxidative stress. This study sheds light on the role of GCH1 in regulating blood NO, contributing to the physiological adaptation of the cardiovascular and pulmonary systems in Tibetans at high altitude.
Collapse
Affiliation(s)
- Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China; School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, Xizang 850000, China
| | - Xuebin Qi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650223, China
| | - Kai Liu
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Liya Li
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Key Laboratory of Integrative Anthropology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
5
|
Zhu L, Ding J, Xue W, Zhou S, Wang L, Jiang A, Zhao M, He Q, Ren A. Manganese Peroxidase Participates in the Liquid-Solid-Gas Triphase Regulation on Microbial Degradation of Lignocellulose in Solid-State Fermentation. Biotechnol Bioeng 2025; 122:908-921. [PMID: 39810331 DOI: 10.1002/bit.28927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
The three-phase structure of solid-state fermentation (SSF) directly affects substrate degradation and fermentation efficiency. However, the mechanism of three-phase regulation on lignocellulose utilization and microbial metabolism is still unclear. Based on comparative transcriptome analysis, a lignocellulose degrading enzyme, manganese peroxidase (GlMnP), which was significantly affected by water stress meanwhile related to triphase utilization, was screened to reveal the mechanism using Ganoderma lucidum as the reference strain. The results showed that GlMnP directly participates in lignocellulose degradation by positively regulating the activity of carboxymethylcellulase (CMCase), filter paper (FPAse), and laccase (LACase) enzymes, and indirectly participates in lignocellulose degradation by negatively regulating the redox levels in microorganisms. In addition, GlMnP can also control microbial glycolysis rate to enhance lignocellulose utilization. The results indicated that GlMnP participates in the liquid-solid-gas triphase regulation on lignocellulose degradation by G. lucidum in SSF.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Juan Ding
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenjing Xue
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shu Zhou
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Longyu Wang
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ailiang Jiang
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingwen Zhao
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qin He
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ang Ren
- Department of Microbiology, Sanya Institute of Nanjing Agricultural University, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Cui Y, Zheng Z, Zhou Q, Han X, Liu S, Xia T, Gu X, Zhang Y. The role of clock control of DRP1 activity involved in postoperative cognitive dysfunction. Exp Neurol 2025; 385:115140. [PMID: 39788309 DOI: 10.1016/j.expneurol.2025.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/08/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Postoperative cognitive dysfunction (POCD) is a prevalent clinical issue following anesthesia and surgery. The onset of POCD, which is closely linked to circadian rhythm disturbance in previous studies, yet the underlying mechanism remains elusive. There is increasing evidence showed that mitochondrial architecture is coordinated by the circadian clock which DRP1 playing a crucial role. Nonetheless, how DRP1's mediation of mitochondrial dynamics influences POCD through circadian rhythm disruption is still unclear. To investigate this, mice were subjected to 6 h of 1.5 % isoflurane anesthesia from Zeitgeber Time ZT 14 to ZT20 to induce POCD. HT-22 cells underwent prolonged exposure to isoflurane in vitro. Cognitive function was assessed using the Y-maze and fear conditioning tests. Q-PCR and Western blot analyses were performed to measure relative protein expression. Mice's gross movement rhythms were continuously monitored using Mini-Mitter. Mitochondrial morphology was examined via Mito-Tracker imaging. ATP and ROS level were measured to evaluate mitochondrial function. Isoflurane anesthesia compromised the clock control of DRP1 activity in the hippocampus. This disruption of DRP1 phosphorylation rhythm impaired circadian ATP production, affected mitochondrial morphology and function, exacerbated circadian rhythm disturbances, and ultimately led to cognitive deficits in mice. Pretreatment with Mdivi-1, a specific DRP1 inhibitor, managed to reconstruct mitochondrial morphology and function, restore circadian ATP production and rhythm, thereby alleviating the cognitive impairment induced by isoflurane anesthesia. This study suggests that circadian DRP1 activity's regulation of mitochondrial energy metabolism in the hippocampus may play a significant role in the pathogenesis of POCD in mice.
Collapse
Affiliation(s)
- Yin Cui
- School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhiying Zheng
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Qingyun Zhou
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xue Han
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Shuai Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Tianjiao Xia
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China; Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China.
| | - Xiaopin Gu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Yun Zhang
- School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
7
|
Freyberg Z, Andreazza AC, McClung CA, Phillips ML. Linking Mitochondrial Dysfunction, Neurotransmitter, and Neural Network Abnormalities and Mania: Elucidating Neurobiological Mechanisms of the Therapeutic Effect of the Ketogenic Diet in Bipolar Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:267-277. [PMID: 39053576 PMCID: PMC11754533 DOI: 10.1016/j.bpsc.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
There is growing interest in the ketogenic diet as a treatment for bipolar disorder (BD), and there are promising anecdotal and small case study reports of efficacy. However, the neurobiological mechanisms by which diet-induced ketosis might ameliorate BD symptoms remain to be determined, particularly in manic and hypomanic states-defining features of BD. Identifying these mechanisms will provide new markers to guide personalized interventions and provide targets for novel treatment developments for individuals with BD. In this critical review, we describe recent findings highlighting 2 types of neurobiological abnormalities in BD: 1) mitochondrial dysfunction and 2) neurotransmitter and neural network functional abnormalities. We link these abnormalities to mania/hypomania and depression in BD and then describe the biological underpinnings by which the ketogenic diet may have a beneficial effect in individuals with BD. We end the review by describing approaches that can be employed in future studies to elucidate the neurobiology that underlies the therapeutic effect of the ketogenic diet in BD. Doing this may provide marker predictors to identify individuals who will respond well to the ketogenic diet, as well as offer neural targets for novel treatment developments for BD.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
8
|
Elsayed MA, Radwan DA, Rabah HM, El-Horany HES, Nasef NA, Abo El Gheit RE, Emam MN, Elesawy RO, Elseady W, Mahmoud A. Protective Effects of Galangin Against Cyclophosphamide-Induced Cardiotoxicity via Suppressing NF-κB and Improving Mitochondrial Biogenesis. J Biochem Mol Toxicol 2025; 39:e70193. [PMID: 39999301 DOI: 10.1002/jbt.70193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Cyclophosphamide (CYP) is an effective chemotherapeutic and immunosuppressive agent; however, its clinical application is limited by a variety of toxic side effects. Mitochondrial dysfunction has been associated with the pathogenesis of chemotherapy-induced cardiotoxicity. This work aimed to evaluate the possible protective effect of galangin (Gal) on CYP-induced cardiotoxicity, pointing to its ability to promote mitochondrial biogenesis. Thirty two male rats were allocated equally into four groups: control; Gal-treated; CYP-treated; and Gal + CYP-treated groups. Markers of cardiac injury, oxidative/antioxidant status, inflammation, apoptosis, and mitochondrial function were assessed in addition to histopathological and electrocardiographic (ECG) evaluation. The current results revealed that Gal treatment significantly attenuated the cardiac injury and retrieved the alterations in cardiac histopathology and ECG changes. Also, it restored redox balance, as evidenced by the alleviation of malondialdehyde (MDA) levels and increased glutathione peroxidase (GPx) activity. Gal activated the sirtuin (SIRT) 1/nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway, as indicated by upregulation of SIRT1, Nrf2, SIRT3, and mitochondrial transcription factor (TFAM), in addition to increased levels of superoxide dismutase 2 (SOD)2 and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), together with increased activity of citrate synthase (CS), pointing to improved mitochondrial function. It ameliorated the inflammation and apoptosis-associated markers supported by biochemical and immunostaining data. Our study provided novel insights elucidating the mitigative potential of against CYP-induced cardiac oxidative damage, inflammation, apoptosis, and mitochondrial dysfunction by upregulating the SIRT1/Nrf2/SIRT3/PGC-1α/TFAM survival pathway.
Collapse
Affiliation(s)
- Manar Ali Elsayed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa A Radwan
- Department of Anatomy and Embryology, Faculty of Medicinen, Tanta University, Tanta, Egypt
| | - Hanem Mohamed Rabah
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hemat El-Sayed El-Horany
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Biochemistry Department, College of Medicine, Hail University, Hail, Saudi Arabia
| | - Nahla Anas Nasef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab E Abo El Gheit
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Physiology, Faculty of Physical Therapy, AlSalam University, Tanta, Egypt
| | - Marwa N Emam
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Bio-Physiology Department, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| | - Rasha Osama Elesawy
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Walaa Elseady
- Department of Anatomy and Embryology, Faculty of Medicinen, Tanta University, Tanta, Egypt
| | - Alia Mahmoud
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
9
|
Li Y, Gao W, Jiao L, Dong D, Sun L, Liu Y, Shen L. Changes in Mitochondrial Transcriptional Rhythms and Depression-like Behavior in the Hippocampus of IL-33-Overexpressing Mice. Int J Mol Sci 2025; 26:1895. [PMID: 40076523 PMCID: PMC11900197 DOI: 10.3390/ijms26051895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Neuroinflammation is involved in the development of depression and may induce depression-like behaviors by affecting metabolism through interactions with circadian rhythms. As the hub of metabolism, mitochondria are regulated by various types of metabolism and release signals that regulate cellular functions. In this study, we performed transcriptomic analysis of the hippocampus of IL-33-overexpressing mice to provide new ideas to explore the pathogenesis of inflammation-mediated depression at the transcriptional level. Male C57BL/6J mice and IL-33-overexpressing mice were subjected to behavioral tests. The hippocampus was extracted during the light or dark period, and differential gene expression analysis was conducted using RNA sequencing. Differential gene enrichment analysis was performed, as well as multilayered analysis of mitochondrial transcriptional rhythms by integrating the regulatory networks and Mito 3.0 database. The results were further verified using RT-qPCR. IL-33-overexpressing mice exhibited depressive behaviors associated with rhythmic disorders and shortened circadian cycles. Differential KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis showed that the top 20 pathways with the lowest p-values included mood-related, immune-related, and circadian rhythm-related pathways. Differential gene GO (Gene Ontology) enrichment analysis showed that 20 of the top 30 pathways with the lowest p-values were related to metabolism. Transcriptome data from IL-33-overexpressing mice showed that the mitochondrial-encoded subunit of the oxidative respiratory complex showed predominantly increased expression during the light period. Metabolic disorders and disrupted mitochondrial transcriptional rhythm were also observed. Weighted gene correlation network analysis showed that the circadian cycle is associated with depression-like behavior disorders. Network analysis showed that circadian-related genes were enriched in mitochondrial pathways related to metabolism and oxidative phosphorylation. Multilayer analysis of mitochondrial transcriptional rhythms using the mitochondrial database Mito 3.0 revealed that mitochondrial dynamics and surveillance pathways were the most enriched. The depressive behavior in mice caused by long-term IL-33 stimulation may be related to changes in the transcriptional rhythms of metabolism-related genes and the interaction between mitochondria and clock genes. This suggests that mitochondrial transcriptional rhythms are central to the pathogenesis of microinflammation-induced depression, further supporting the potential of mitochondria as a target for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Pathobiology, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (W.G.); (L.J.); (D.D.); (L.S.)
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Yibin Research Institute of Jilin University, Yibin 644000, China
| | - Weinan Gao
- Key Laboratory of Pathobiology, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (W.G.); (L.J.); (D.D.); (L.S.)
| | - Lin Jiao
- Key Laboratory of Pathobiology, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (W.G.); (L.J.); (D.D.); (L.S.)
| | - Delu Dong
- Key Laboratory of Pathobiology, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (W.G.); (L.J.); (D.D.); (L.S.)
| | - Liankun Sun
- Key Laboratory of Pathobiology, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (W.G.); (L.J.); (D.D.); (L.S.)
| | - Yanan Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (W.G.); (L.J.); (D.D.); (L.S.)
| | - Luyan Shen
- Key Laboratory of Pathobiology, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Y.L.); (W.G.); (L.J.); (D.D.); (L.S.)
| |
Collapse
|
10
|
Egg M, Kietzmann T. Little strokes fell big oaks: The use of weak magnetic fields and reactive oxygen species to fight cancer. Redox Biol 2025; 79:103483. [PMID: 39729909 PMCID: PMC11733197 DOI: 10.1016/j.redox.2024.103483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024] Open
Abstract
The increase in early-stage cancers, particularly gastrointestinal, breast and kidney cancers, has been linked to lifestyle changes such as consumption of processed foods and physical inactivity, which contribute to obesity and diabetes - major cancer risk factors. Conventional treatments such as chemotherapy and radiation often lead to severe long-term side effects, including secondary cancers and tissue damage, highlighting the need for new, safer and more effective therapies, especially for young patients. Weak electromagnetic fields (WEMF) offer a promising non-invasive approach to cancer treatment. While WEMF have been used therapeutically for musculoskeletal disorders for decades, their role in oncology is still emerging. WEMFs affect multiple cellular processes through mechanisms such as the radical pair mechanism (RPM), which alters reactive oxygen species (ROS) levels, mitochondrial function, and glycolysis, among others. This review explores the potential of WEMF in conjunction with reactive oxygen species as a cancer therapy, highlighting WEMFs selective targeting of cancer cells and its non-ionizing nature, which could reduce collateral damage compared to conventional treatments. In addition, synchronization of WEMF with circadian rhythms may further enhance its therapeutic efficacy, as has been demonstrated in other cancer therapies.
Collapse
Affiliation(s)
- Margit Egg
- Institute of Zoology, University Innsbruck, Technikerstraße 25, 6020, Innsbruck, Tyrol, A-6020, Austria.
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| |
Collapse
|
11
|
Mao W, Ge X, Chen Q, Li JD. Epigenetic Mechanisms in the Transcriptional Regulation of Circadian Rhythm in Mammals. BIOLOGY 2025; 14:42. [PMID: 39857273 PMCID: PMC11762092 DOI: 10.3390/biology14010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025]
Abstract
Almost all organisms, from the simplest bacteria to advanced mammals, havea near 24 h circadian rhythm. Circadian rhythms are highly conserved across different life forms and are regulated by circadian genes as well as by related transcription factors. Transcription factors are fundamental to circadian rhythms, influencing gene expression, behavior in plants and animals, and human diseases. This review examines the foundational research on transcriptional regulation of circadian rhythms, emphasizing histone modifications, chromatin remodeling, and Pol II pausing control. These studies have enhanced our understanding of transcriptional regulation within biological circadian rhythms and the importance of circadian biology in human health. Finally, we summarize the progress and challenges in these three areas of regulation to move the field forward.
Collapse
Affiliation(s)
- Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xingnan Ge
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310000, China; (W.M.); (X.G.)
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jia-Da Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
12
|
Niu R, Guo X, Wang J, Yang X. The hidden rhythms of epilepsy: exploring biological clocks and epileptic seizure dynamics. ACTA EPILEPTOLOGICA 2025; 7:1. [PMID: 40217344 PMCID: PMC11960285 DOI: 10.1186/s42494-024-00197-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/09/2024] [Indexed: 04/15/2025] Open
Abstract
Epilepsy, characterized by recurrent seizures, is influenced by biological rhythms, such as circadian, seasonal, and menstrual cycles. These rhythms affect the frequency, severity, and timing of seizures, although the precise mechanisms underlying these associations remain unclear. This review examines the role of biological clocks, particularly the core circadian genes Bmal1, Clock, Per, and Cry, in regulating neuronal excitability and epilepsy susceptibility. We explore how the sleep-wake cycle, particularly non-rapid eye movement sleep, increases the risk of seizures, and discuss the circadian modulation of neurotransmitters like gamma-aminobutyric acid and glutamate. We explore clinical implications, including chronotherapy which refers to the practice of timing medical treatments to align with the body's natural biological rhythms, such as the circadian rhythm. Chronotherapy aligns anti-seizure medication administration with biological rhythms. We also discuss rhythm-based neuromodulation strategies, such as adaptive deep brain stimulation, which may dynamically change stimulation in response to predicted seizures in patients, provide additional therapeutic options. This review emphasizes the potential of integrating biological rhythm analysis into personalized epilepsy management, offering novel approaches to optimize treatment and improve patient outcomes. Future research should focus on understanding individual variability in seizure rhythms and harnessing technological innovations to enhance seizure prediction, precision treatment, and long-term management.
Collapse
Affiliation(s)
- Ruili Niu
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Xuan Guo
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiaoyang Wang
- Guangzhou National Laboratory, Guangzhou, 510005, China
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaofeng Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China.
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
13
|
Germain D, Mashaka T, Chattopadhyay M, Polushakov D, Torres-Martin M, Sia D, Jenkins E. Maternal ancestry reveals cyclical aging of the mammary gland. RESEARCH SQUARE 2024:rs.3.rs-4926839. [PMID: 39606444 PMCID: PMC11601869 DOI: 10.21203/rs.3.rs-4926839/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
We present provocative data that in addition to the expected progressive age-related involution, mammary gland aging can occur in a cyclical pattern and is dictated by maternal ancestry. In cyclical aging, mammary glands of 11 and 19 months old mice share genetic and proteomic signatures, which are enriched in breast cancer-related pathways, but are absent at 3 and 14 months. Since incidence of breast cancer shows a bimodal age distribution at 45 (~11m in mice) and 65 (~ 19m in mice), cyclical aging may contribute to these peaks of cancer susceptibility. Conversely, since the mammary glands at 3 and 14 months cluster together hierarchically, the cancer-associated peaks seem separated by a rejuvenation phase. Since cyclical aging is observed in mice with extended lifespan, these findings raise the possibility that if oncogenic mutations are avoided during the pro-oncogenic phases, through its rejuvenation phase, cyclical aging may impact multiple organs leading to extended longevity.
Collapse
|
14
|
Teglas T, Marcos AC, Torices S, Toborek M. Circadian control of polycyclic aromatic hydrocarbon-induced dysregulation of endothelial tight junctions and mitochondrial bioenergetics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175886. [PMID: 39218115 PMCID: PMC11444715 DOI: 10.1016/j.scitotenv.2024.175886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The study evaluates the impact of environmental toxicants, such as polycyclic aromatic hydrocarbons (PAHs), on circadian regulations and functions of brain endothelial cells, which form the main structural element of the blood-brain barrier (BBB). PAH are lipophilic and highly toxic environmental pollutants that accumulate in human and animal tissues. Environmental factors related to climate change, such as an increase in frequency and intensity of wildfires or enhanced strength of hurricanes or tropical cyclones, may lead to redistribution of these toxicants and enhanced human exposure. These natural disasters are also associated with disruption of circadian rhythms in affected populations, linking increased exposure to environmental toxicants to alterations of circadian rhythm pathways. Several vital physiological processes are coordinated by circadian rhythms, and disruption of the circadian clock can contribute to the development of several diseases. The blood-brain barrier (BBB) is crucial for protecting the brain from blood-borne harmful substances, and its integrity is influenced by circadian rhythms. Exposure of brain endothelial cells to a human and environmentally-relevant PAH mixture resulted in dose-dependent alterations of expression of critical circadian modulators, such as Clock, Bmal1, Cry1/2, and Per1/2. Moreover, silencing of the circadian Clock gene potentiated the impact of PAHs on the expression of the main tight junction genes and proteins (namely, claudin-5, occludin, JAM-2, and ZO-2), as well as mitochondrial bioenergetics. Findings from this study contribute to a better understanding of pathological influence of PAH-induced health effects, especially those related to circadian rhythm disruption.
Collapse
Affiliation(s)
- Timea Teglas
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Anne Caroline Marcos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 528E Gautier Bldg. 1011 NW 15th Street, Miami, FL 33136, USA; Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland.
| |
Collapse
|
15
|
Deyurka NA, Navigatore-Fonzo LS, Coria-Lucero CD, Ferramola ML, Delgado SM, Lacoste MG, Anzulovich AC. Aging abolishes circadian rhythms and disrupts temporal organization of antioxidant-prooxidant status, endogenous clock activity and neurotrophin gene expression in the rat temporal cortex. Neuroscience 2024; 559:125-138. [PMID: 39244007 DOI: 10.1016/j.neuroscience.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Disruption of circadian rhythms contributes to deficits in cognitive functions during aging. Up to date, the biochemical, molecular and chronobiological bases of such deterioration have not been completely elucidated. Here, we aim: 1) to investigate the endogenous nature of 24 h-rhythms of antioxidant defenses, oxidative stress, clocḱ's, and neurotrophic factors expression, in the rat temporal cortex (TC), and 2) to study the consequences of aging on the circadian organization of those factors. We observed a circadian organization of antioxidant enzymes activity, lipoperoxidation and the clock, BMAL1 and RORa, proteins, in the TC of young rats. Such temporal organization suggests the existence of a two-way communication among clock transcription factors and antioxidant defenses. This might generate the rhythmic and circadian expression of Bdnf and Rc3 genes involved in the TC-depending cognitive function. Noteworthy, such circadian organization disappears in the TC of aged rats. Aging also reduces glutathione peroxidase activity and expression, and it increases lipid peroxidation, throughout a 24 h-period. An increased oxidative stress makes the cellular redox environment change into an oxidative status which alters the endogenous clock activity and disrupts the circadian organization of, at least part, of the molecular basis of the synaptic plasticity in the TC.
Collapse
Affiliation(s)
- Nicolás Andrés Deyurka
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina; Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Lorena Silvina Navigatore-Fonzo
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina; Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Cinthia Daiana Coria-Lucero
- Faculty of Health Sciences, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Mariana Lucila Ferramola
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina; Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Silvia Marcela Delgado
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina; Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - María Gabriela Lacoste
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina; Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina.
| | - Ana Cecilia Anzulovich
- Laboratory of Chronobiology, Multidisciplinary Institute of Biological Research-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina; Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina.
| |
Collapse
|
16
|
Su Z, Hu Q, Li X, Wang Z, Xie Y. The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging. Int J Mol Sci 2024; 25:10926. [PMID: 39456709 PMCID: PMC11507642 DOI: 10.3390/ijms252010926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian rhythms, the internal timekeeping systems governing physiological processes, significantly influence skin health, particularly in response to ultraviolet radiation (UVR). Disruptions in circadian rhythms can exacerbate UVR-induced skin damage and increase the risk of skin aging and cancer. This review explores how circadian rhythms affect various aspects of skin physiology and pathology, with a special focus on DNA repair. Circadian regulation ensures optimal DNA repair following UVR-induced damage, reducing mutation accumulation, and enhancing genomic stability. The circadian control over cell proliferation and apoptosis further contributes to skin regeneration and response to UVR. Oxidative stress management is another critical area where circadian rhythms exert influence. Key circadian genes like brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) modulate the activity of antioxidant enzymes and signaling pathways to protect cells from oxidative stress. Circadian rhythms also affect inflammatory and immune responses by modulating the inflammatory response and the activity of Langerhans cells and other immune cells in the skin. In summary, circadian rhythms form a complex defense network that manages UVR-induced damage through the precise regulation of DNA damage repair, cell proliferation, apoptosis, inflammatory response, oxidative stress, and hormonal signaling. Understanding these mechanisms provides insights into developing targeted skin protection and improving skin cancer prevention.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Qianhua Hu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Xiang Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Zirun Wang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
17
|
Tavares MEA, Pinto AP, da Rocha AL, Sampaio LV, Correia RR, Batista VRG, Veras ASC, Chaves-Neto AH, da Silva ASR, Teixeira GR. Combined physical exercise re-synchronizes expression of Bmal1 and REV-ERBα and up-regulates apoptosis and metabolism in the prostate during aging. Life Sci 2024; 351:122800. [PMID: 38880169 DOI: 10.1016/j.lfs.2024.122800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Aging increases the prevalence of prostate cancer. The circadian clock coordinates metabolism, cell cycle, and tumor suppressor p53. Although physical exercise has several effects on preventing prostate diseases, its effect on regulating genes and proteins of the circadian rhythm of the prostate needs to be better evaluated. The present study verified expression of REV-ERBα (Nr1d1), Bmal1, apoptosis, tumor suppressors, energetic metabolism markers, and androgen receptors in the prostatic microenvironment in 18-month-old mice submitted to combined physical training. METHODS C57BL/6 J mice were divided into 2 groups: 6 months-old (n = 10) and 18 months-old, (n = 20). The 18-month-old animals were divided into 2 subgroups: sedentary (n = 10, 18 m Sed) and submitted to combined physical training (n = 10, 18 m TR). Combined physical training protocol was performed by running on the treadmill (40-60 % of incremental load test) and climbing strength training (40-50 % of maximum repetition test), consisting of 5×/week (3 days aerobic and 2 days strength) for 3 weeks. The prostate was prepared for Western blot and RT-qPCR analysis, and the plasm was prepared for the biochemistry analysis. RESULTS Combined physical exercise during aging led to increased levels of Bmal1 and decreased levels of REV-ERBα in the prostate. These results were accompanied by a reduction in the AMPK/SIRT1/PGC-1α proteins and an increase in the PI3K/AKT and p53/PTEN/caspase 3 pathways, promoting apoptotic potential. CONCLUSION These findings suggest that strength and aerobic physical exercise may be preventive in the development of preneoplastic molecular alterations and age-related features by re-synchronizes Bmal1 and REV-ERBα in prostatic tissues.
Collapse
Affiliation(s)
- Maria Eduarda Almeida Tavares
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Ana Paula Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Alisson Luiz da Rocha
- School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Larissa Victorino Sampaio
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Rafael Ribeiro Correia
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Victor Rogério Garcia Batista
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Allice Santos Cruz Veras
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil
| | - Antonio Hernandes Chaves-Neto
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Adelino Sanchez Ramos da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil; Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil.
| |
Collapse
|
18
|
Davinelli S, Medoro A, Savino R, Scapagnini G. Sleep and Oxidative Stress: Current Perspectives on the Role of NRF2. Cell Mol Neurobiol 2024; 44:52. [PMID: 38916679 PMCID: PMC11199221 DOI: 10.1007/s10571-024-01487-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/15/2024] [Indexed: 06/26/2024]
Abstract
Sleep is a fundamental conserved physiological state across evolution, suggesting vital biological functions that are yet to be fully clarified. However, our understanding of the neural and molecular basis of sleep regulation has increased rapidly in recent years. Among various processes implicated in controlling sleep homeostasis, a bidirectional relationship between sleep and oxidative stress has recently emerged. One proposed function of sleep may be the mitigation of oxidative stress in both brain and peripheral tissues, contributing to the clearance of reactive species that accumulate during wakefulness. Conversely, reactive species, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), at physiological levels, may act as signaling agents to regulate redox-sensitive transcriptional factors, enzymes, and other effectors involved in the regulation of sleep. As a primary sensor of intracellular oxidation, the transcription factor NRF2 is emerging as an indispensable component to maintain cellular redox homeostasis during sleep. Indeed, a number of studies have revealed an association between NRF2 dysfunction and the most common sleep conditions, including sleep loss, obstructive sleep apnea, and circadian sleep disturbances. This review examines the evidence of the intricate link between oxidative stress and NRF2 function in the context of sleep, and highlights the potential of NRF2 modulators to alleviate sleep disturbances.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy.
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| | - Rosa Savino
- Department of Woman and Child, Neuropsychiatry for Child and Adolescent Unit, General Hospital "Riuniti" of Foggia, Viale Pinto Luigi, 1, 71122, Foggia, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Sanctis, s.n.c., 86100, Campobasso, Italy
| |
Collapse
|
19
|
Li YY, Hu JL, Wu JR, Wang YR, Zhang AH, Tan YW, Shang YJ, Liang T, Li M, Meng YL, Kang YF. Multifunctional fluorescence probe for simultaneous detection of viscosity, polarity, and ONOO - and its bioimaging in vitro and vivo. Biosens Bioelectron 2024; 254:116233. [PMID: 38518563 DOI: 10.1016/j.bios.2024.116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Intracellular microenvironment (viscosity and polarity) and peroxynitrite ions (ONOO-) are involved in maintaining cell morphology, cell function, and signaling so that it is crucial to explore their level changes in vitro and vivo. In this work, we designed and synthesized a mitochondria-targeted fluorescence probe XBL for monitoring the dynamic changes of viscosity, polarity, and ONOO- based on TICT and ICT mechanism. The fluorescence spectra showed obvious changes for polarity at 500 nm as well as ONOO- and viscosity at 660 nm, respectively. The XBL can image simultaneously viscosity, polarity, and ONOO- in cells, and the results showed excess ONOO- leaded to the increase of viscosity in mitochondrial. The ferroptosis process was accompanied by increase of intracellular viscosity and ONOO- levels (or decrease of polarity), which allowed us to better understand the relevant physiological and pathological processes. The XBL can distinguish normal cells and cancerous cells by the fluorescence intensity changes in green and red channels, and image viscosity in inflamed mice. Thus, XBL can provided the chemical tool to understand the physiological and pathological mechanisms of disease by simultaneous detection of viscosity, polarity and ONOO-.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Jia-Ling Hu
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Ji-Rou Wu
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Yi-Ru Wang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Ai-Hong Zhang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Yu-Wei Tan
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Ya-Jing Shang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Ting Liang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Min Li
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China
| | - Ya-Li Meng
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| | - Yan-Fei Kang
- College of Laboratory Medicine, Zhang Jiakou Key Laboratory of Organic Light Functional Materials, Hebei Key Laboratory of Neuropharmacology and Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, 075000, Hebei Province, China.
| |
Collapse
|
20
|
Pagotto GLDO, dos Santos LMO, Osman N, Lamas CB, Laurindo LF, Pomini KT, Guissoni LM, de Lima EP, Goulart RDA, Catharin VMCS, Direito R, Tanaka M, Barbalho SM. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer's Dementia: Clinical Trial Systematic Review. Antioxidants (Basel) 2024; 13:651. [PMID: 38929090 PMCID: PMC11201198 DOI: 10.3390/antiox13060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a stealthy and progressive neurological disorder that is a leading cause of dementia in the global elderly population, imposing a significant burden on both the elderly and society. Currently, the condition is treated with medications that alleviate symptoms. Nonetheless, these drugs may not consistently produce the desired results and can cause serious side effects. Hence, there is a vigorous pursuit of alternative options to enhance the quality of life for patients. Ginkgo biloba (GB), an herb with historical use in traditional medicine, contains bioactive compounds such as terpenoids (Ginkgolides A, B, and C), polyphenols, organic acids, and flavonoids (quercetin, kaempferol, and isorhamnetin). These compounds are associated with anti-inflammatory, antioxidant, and neuroprotective properties, making them valuable for cognitive health. A systematic search across three databases using specific keywords-GB in AD and dementia-yielded 1702 documents, leading to the selection of 15 clinical trials for synthesis. In eleven studies, GB extract/EGb 761® was shown to improve cognitive function, neuropsychiatric symptoms, and functional abilities in both dementia types. In four studies, however, there were no significant differences between the GB-treated and placebo groups. Significant improvements were observed in scores obtained from the Mini-Mental State Examination (MMSE), Short Cognitive Performance Test (SKT), and Neuropsychiatric Inventory (NPI). While the majority of synthesized clinical trials show that Ginkgo biloba has promising potential for the treatment of these conditions, more research is needed to determine optimal dosages, effective delivery methods, and appropriate pharmaceutical formulations. Furthermore, a thorough assessment of adverse effects, exploration of long-term use implications, and investigation into potential drug interactions are critical aspects that must be carefully evaluated in future studies.
Collapse
Affiliation(s)
- Guilherme Lopes de Oliveira Pagotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Livia Maria Oliveira dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Najwa Osman
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Leila M. Guissoni
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Virginia M. C. Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|
21
|
Park Y, Kang HG, Kang SJ, Ku HO, Zarbl H, Fang MZ, Park JH. Combined use of multiparametric high-content-screening and in vitro circadian reporter assays in neurotoxicity evaluation. Arch Toxicol 2024; 98:1485-1498. [PMID: 38483585 PMCID: PMC10965668 DOI: 10.1007/s00204-024-03686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 03/27/2024]
Abstract
Accumulating evidence indicates that chronic circadian rhythm disruption is associated with the development of neurodegenerative diseases induced by exposure to neurotoxic chemicals. Herein, we examined the relationship between cellular circadian rhythm disruption and cytotoxicity in neural cells. Moreover, we evaluated the potential application of an in vitro cellular circadian rhythm assay in determining circadian rhythm disruption as a sensitive and early marker of neurotoxicant-induced adverse effects. To explore these objectives, we established an in vitro cellular circadian rhythm assay using human glioblastoma (U87 MG) cells stably transfected with a circadian reporter vector (PER2-dLuc) and determined the lowest-observed-adverse-effect levels (LOAELs) of several common neurotoxicants. Additionally, we determined the LOAEL of each compound on multiple cytotoxicity endpoints (nuclear size [NC], mitochondrial membrane potential [MMP], calcium ions, or lipid peroxidation) using a multiparametric high-content screening (HCS) assay using transfected U87 MG cells treated with the same neurotoxicants for 24 and 72 h. Based on our findings, the LOAEL for cellular circadian rhythm disruption for most chemicals was slightly higher than that for most cytotoxicity indicators detected using HCS, and the LOAEL for MMP in the first 24 h was the closest to that for cellular circadian rhythm disruption. Dietary antioxidants (methylselenocysteine and N-acetyl-l-cysteine) prevented or restored neurotoxicant-induced cellular circadian rhythm disruption. Our results suggest that cellular circadian rhythm disruption is as sensitive as cytotoxicity indicators and occurs early as much as cytotoxic events during disease development. Moreover, the in vitro cellular circadian rhythm assay warrants further evaluation as an early screening tool for neurotoxicants.
Collapse
Affiliation(s)
- Youngil Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-Si, 39660, Korea
| | - Hwan-Goo Kang
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-Si, 39660, Korea
- Department of Animal Health and Welfare, Semyung University, 65, Semyung Ro, Jecheon, Chungcheongbuk‑do, Korea
| | - Seok-Jin Kang
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-Si, 39660, Korea
| | - Hyun-Ok Ku
- Veterinary Drugs and Biologics Division, Animal and Plant Quarantine Agency, Gimcheon-Si, 39660, Korea
| | - Helmut Zarbl
- Department of Environmental and Occupational Health, School of Public Health, NIEHS Center for Environmental Exposure and Disease, Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ08854, USA
| | - Ming-Zhu Fang
- Department of Environmental and Occupational Health, School of Public Health, NIEHS Center for Environmental Exposure and Disease, Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ08854, USA
| | - Jae-Hak Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
22
|
Tian H, Zhao X, Zhang Y, Xia Z. Research progress of circadian rhythm in cardiovascular disease: A bibliometric study from 2002 to 2022. Heliyon 2024; 10:e28738. [PMID: 38560247 PMCID: PMC10979111 DOI: 10.1016/j.heliyon.2024.e28738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Background Given that the circadian rhythm is intricately linked to cardiovascular physiological functions, the objective of this investigation was to employ bibliometric visualization analysis in order to scrutinize the trends, hotspots, and prospects of the circadian rhythm and cardiovascular disease (CVD) over the past two decades. Methods A thorough exploration of the literature related to the circadian rhythm and CVD was conducted via the Web of Science Core Collection database spanning the years 2002-2022. Advanced software tools, including citespace and VOSviewer, were employed to carry out a comprehensive analysis of the co-occurrence and collaborative relationships among countries, institutions, journals, references, and keywords found in this literature. Furthermore, correlation mapping was executed to provide a visual representation of the data. Results The present study encompassed a total of 3399 published works, comprising of 2691 articles and 708 reviews. The publications under scrutiny were primarily derived from countries such as the United States, Japan, and China. The most prominent research institutions were found to be the University of Vigo, University of Minnesota, and Harvard University. Notably, the journal Chronobiology International, alongside its co-cited publications, had the most substantial contribution to the research in this field. Following an exhaustive analysis, the most frequently observed keywords were identified as circadian rhythm, blood pressure, hypertension, heart rate, heart rate variability, and melatonin. Furthermore, a nascent analysis indicated that future research might gravitate towards topics such as inflammation, metabolism, oxidative stress, and autophagy, thereby indicating new directions for investigation. Conclusion This analysis represents the first instance of bibliometric scrutiny pertaining to circadian rhythm and its correlation with cardiovascular disease (CVD) through the use of visualization software. Notably, this study has succeeded in highlighting the recent research frontiers and prominent trajectories in this field, thereby providing a valuable contribution to the literature.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoshuai Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
23
|
Yan R, Cai H, Zhou X, Bao G, Bai Z, Ge RL. Hypoxia-inducible factor-2α promotes fibrosis in non-alcoholic fatty liver disease by enhancing glutamine catabolism and inhibiting yes-associated protein phosphorylation in hepatic stellate cells. Front Endocrinol (Lausanne) 2024; 15:1344971. [PMID: 38501098 PMCID: PMC10946064 DOI: 10.3389/fendo.2024.1344971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 03/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence and affects approximately one-third of adults, owing to high-fat dietary habits and a sedentary lifestyle. The role of hypoxia-inducible factor 2α (HIF-2α) in NAFLD progression remains unknown. This study aimed to investigate the effects of chronic hypoxia on NAFLD progression by examining the role of hypoxia-inducible factor 2α (HIF-2α) activation and that of hepatic stellate cell (HSC)-derived myofibroblasts through glutaminolysis. We hypothesised that hypoxia exacerbates NAFLD by promoting HIF-2α upregulation and inhibiting phosphorylated yes-associated protein (YAP), and that increasing YAP expression enhances HSC-derived myofibroblasts. We studied patients with NAFLD living at high altitudes, as well as animal models and cultured cells. The results revealed significant increases in HSC-derived myofibroblasts and collagen accumulation caused by HIF-2α and YAP upregulation, both in patients and in a mouse model for hypoxia and NAFLD. HIF-2α and HIF-2α-dependent YAP downregulation reduced HSC activation and myofibroblast levels in persistent chronic hypoxia. Furthermore, hypoxia-induced HIF-2α upregulation promoted YAP and inhibited YAP phosphorylation, leading to glutaminase 1 (GLS1), SLC38A1, α-SMA, and Collagen-1 overexpression. Additionally, hypoxia restored mitochondrial adenosine triphosphate production and reactive oxygen species (ROS) overproduction. Thus, chronic hypoxia-induced HIF-2α activation enhances fibrosis and NAFLD progression by restoring mitochondrial ROS production and glutaminase-1-induced glutaminolysis, which is mediated through the inhibition of YAP phosphorylation and increased YAP nuclear translocation. In summary, HIF-2α plays a pivotal role in NAFLD progression during chronic hypoxia.
Collapse
Affiliation(s)
- Ranran Yan
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, China
| | - Hao Cai
- Oncology Department, The Fifth People’s Hospital of Qinghai Provincial, Xining, China
| | - Xiaofeng Zhou
- Affiliated Hospital of Qinghai University, Xining, China
| | - Guodan Bao
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Affiliated Hospital of Qinghai University, Xining, China
| | - Zhenzhong Bai
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, China
| | - Ri-li Ge
- Qinghai-Utah Joint Key Lab for High-altitude Medicine, Medical College of Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Medical College of Qinghai University, Xining, China
- Key Laboratory of High-Altitude Medicine in Qinghai University, Ministry of Education, Xining, China
- Key Laboratory for Application of High-Altitude Medicine in Qinghai Province, Xining, China
| |
Collapse
|
24
|
Ma T, Huang H, Liu Y, Peng Y. Theoretical investigation on a simple turn on fluorescent probe for detection of biothiols based on coumarin unit. Front Chem 2023; 11:1290745. [PMID: 38025079 PMCID: PMC10663294 DOI: 10.3389/fchem.2023.1290745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The discovery of a simple and efficient detection method for biothiols would be scientifically significant due to the crucial role of them in various physiological processes. Recently, a simple fluorescent probe, DEMCA-NBSC, based on coumarin fragments, was developed by Ding et al., and provided an efficient way for real-time sensing of biothiols both in vivo and vitro. Theoretical insights to the fluorescence sensing mechanism of the probe were provided in this work. Details of the electron transfer process in the probe under optical excitation and the fluorescent character of the probe were analyzed using a quantum mechanical method. All these theoretical results could inspire the development of a highly convenient and efficient fluorescent probe to sense biothiols both in vivo and vitro.
Collapse
Affiliation(s)
- Tianhao Ma
- Affiliated 3rd Hospital, Jinzhou Medical University, Jinzhou, China
| | - He Huang
- College of Bio-Informational Engineering, Jinzhou Medical University, Jinzhou, China
| | - Yuling Liu
- College of Bio-Informational Engineering, Jinzhou Medical University, Jinzhou, China
| | - Yongjin Peng
- College of Bio-Informational Engineering, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
25
|
Guan S, Wang Z, Zhang R, Chen S, Bu X, Lu J. 3-MCPD Induced Mitochondrial Damage of Renal Cells Via the Rhythmic Protein BMAL1 Targeting SIRT3/SOD2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14351-14364. [PMID: 37750480 DOI: 10.1021/acs.jafc.3c04358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Biorhythm regulates a variety of physiological functions and enables organisms to adapt to changing environments. 3-Monochloro-1,2-propanediol (3-MCPD) is a common food thermal processing contaminant, and the kidney is its toxic target organ. However, the nephrotoxicity mechanism of 3-MCPD has not been fully elucidated. In the study, we found that 3-MCPD caused mitochondrial damage in renal cells by inhibiting the SIRT3/SOD2 pathway. Further, we found that 3-MCPD could interfere with rhythm protein BMAL1 expression at protein and mRNA levels in mice kidney and NRK-52E cells. Simultaneously, the balance of the daily oscillation of SIRT3/SOD2 pathway proteins was impeded under 3-MCPD treatment. To determine the role of BAML1 in mitochondrial damage, we overexpressed the BMAL1 protein. The data showed that BMAL1 overexpression upregulated SIRT3 and SOD2 expression and attenuated mitochondrial damage caused by 3-MCPD. These results indicated that 3-MCPD inhibited the SIRT3/SOD2 pathway by affecting the expression of the rhythm protein BMAL1, thereby inducing mitochondrial damage in renal cells. Taken together, our work reveals that 3-MCPD may possess a toxic effect via circadian clock mechanisms.
Collapse
Affiliation(s)
- Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Ziyi Wang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shanshan Chen
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xiujuan Bu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, People's Republic of China
| |
Collapse
|
26
|
Song Z, Yang Z, Tian L, Liu Y, Guo Z, Zhang Q, Zhang Y, Wen T, Xu H, Li Z, Wang Y. Targeting mitochondrial circadian rhythms: The potential intervention strategies of Traditional Chinese medicine for myocardial ischaemia‒reperfusion injury. Biomed Pharmacother 2023; 166:115432. [PMID: 37673019 DOI: 10.1016/j.biopha.2023.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023] Open
Abstract
Coronary artery disease has one of the highest mortality rates in the country, and methods such as thrombolysis and percutaneous coronary intervention (PCI) can effectively improve symptoms and reduce mortality, but most patients still experience symptoms such as chest pain after PCI, which seriously affects their quality of life and increases the incidence of adverse cardiovascular events (myocardial ischaemiareperfusion injury, MIRI). MIRI has been shown to be closely associated with circadian rhythm disorders and mitochondrial dysfunction. Mitochondria are a key component in the maintenance of normal cardiac function, and new research shows that mitochondria have circadian properties. Traditional Chinese medicine (TCM), as a traditional therapeutic approach characterised by a holistic concept and evidence-based treatment, has significant advantages in the treatment of MIRI, and there is an interaction between the yin-yang theory of TCM and the circadian rhythm of Western medicine at various levels. This paper reviews the clinical evidence for the treatment of MIRI in TCM, basic experimental studies on the alleviation of MIRI by TCM through the regulation of mitochondria, the important role of circadian rhythms in the pathophysiology of MIRI, and the potential mechanisms by which TCM regulates mitochondrial circadian rhythms to alleviate MIRI through the regulation of the biological clock transcription factor. It is hoped that this review will provide new insights into the clinical management, basic research and development of drugs to treat MIRI.
Collapse
Affiliation(s)
- Zhihui Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Tian
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yangxi Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zehui Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiuju Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhang Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Wen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haowei Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenzhen Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
27
|
Dong C, Li J, Tang Q, Wang Y, Zeng C, Du L, Sun Q. Denervation aggravates renal ischemia reperfusion injury via BMAL1-mediated Nrf2/ARE pathway. Arch Biochem Biophys 2023; 746:109736. [PMID: 37657745 DOI: 10.1016/j.abb.2023.109736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/04/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
AIM To explore the change of clock gene rhythm under renal denervation (RDN) and its effect on renal function and oxidative stress during renal ischemia-reperfusion (IR) injury. METHOD C57/BL6 mice were randomly divided into 4 groups at daytime 7 A M (zeitgeber time [ZT] 0) or at nighttime 7 P M (ZT12) in respectively: Sham (S) group, RDN group, IR group and RDN + IR (DIR) group. Renal pathological and functional changes were assessed by H&E staining, and serum creatinine, urea nitrogen and neutrophil gelatinase-associated lipocalin levels. Renal oxidative stress was detected by SOD and MDA levels, and renal inflammation was measured by IL-6, IL-17 A F and TNF-ɑ levels. BMAL1, CLOCK, Nrf2 and HO-1 mRNA and protein expressions were tested by qPCR and Western Blot. RESULT Compared with S groups, the rhythm of BMAL1, CLOCK and Nrf2 genes in the kidney were disordered in RDN groups, while renal pathological and functional indexes did not change significantly. Compared with IR groups, renal pathological and functional indexes were significantly higher in the DIR groups, as well as oxidative stress and inflammation in renal tissues. The nocturnal IR injury in the RDN kidney was the worst while the BMAL1, Nrf2 and HO-1 expressions were the highest. In DIR groups, renal injury was aggravated after the Brusatol treatment, but there was no significant improvement after the t-BHQ treatment at night, which might be consistent with the changes of Nrf2 and HO-1 protein expressions. CONCLUSION RDN lead to the disruption of BMAL1-mediated Nrf2 rhythm accumulation in the kidney, which reduced the renal ability to resist oxidative stress and inflammation, due to the impaired effect of activating Nrf2/ARE pathway in renal IR injury at nighttime.
Collapse
Affiliation(s)
- Chong Dong
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Jing Li
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee, 1193053, Regensburg, Germany
| | - Qiao Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yifei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Zeng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Du
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Sun
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
28
|
Malhan D, Schoenrock B, Yalçin M, Blottner D, Relόgio A. Circadian regulation in aging: Implications for spaceflight and life on earth. Aging Cell 2023; 22:e13935. [PMID: 37493006 PMCID: PMC10497835 DOI: 10.1111/acel.13935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Alterations in the circadian system are characteristic of aging on Earth. With the decline in physiological processes due to aging, several health concerns including vision loss, cardiovascular disorders, cognitive impairments, and muscle mass loss arise in elderly populations. Similar health risks are reported as "red flag" risks among astronauts during and after a long-term Space exploration journey. However, little is known about the common molecular alterations underlying terrestrial aging and space-related aging in astronauts, and controversial conclusions have been recently reported. In light of the regulatory role of the circadian clock in the maintenance of human health, we review here the overlapping role of the circadian clock both on aging on Earth and spaceflight with a focus on the four most affected systems: visual, cardiovascular, central nervous, and musculoskeletal systems. In this review, we briefly introduce the regulatory role of the circadian clock in specific cellular processes followed by alterations in those processes due to aging. We next summarize the known molecular alterations associated with spaceflight, highlighting involved clock-regulated genes in space flown Drosophila, nematodes, small mammals, and astronauts. Finally, we discuss common genes that are altered in terms of their expression due to aging on Earth and spaceflight. Altogether, the data elaborated in this review strengthen our hypothesis regarding the timely need to include circadian dysregulation as an emerging hallmark of aging on Earth and beyond.
Collapse
Affiliation(s)
- Deeksha Malhan
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
| | - Britt Schoenrock
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Müge Yalçin
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dieter Blottner
- Institute of Integrative NeuroanatomyCharité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Neuromuscular System and Neuromuscular SignalingBerlin Center of Space Medicine & Extreme EnvironmentsBerlinGermany
| | - Angela Relόgio
- Institute for Systems Medicine and Faculty of Human MedicineMSH Medical School HamburgHamburgGermany
- Institute for Theoretical Biology (ITB)Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| |
Collapse
|
29
|
Li Z, Peng L, Sun L, Si J. A link between mitochondrial damage and the immune microenvironment of delayed onset muscle soreness. BMC Med Genomics 2023; 16:196. [PMID: 37612729 PMCID: PMC10464284 DOI: 10.1186/s12920-023-01621-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Delayed onset muscle soreness (DOMS) is a self-healing muscle pain disorder. Inflammatory pain is the main feature of DOMS. More and more researchers have realized that changes in mitochondrial morphology are related to pain. However, the role of mitochondria in the pathogenesis of DOMS and the abnormal immune microenvironment is still unknown. METHODS Mitochondria-related genes and gene expression data were obtained from MitoCarta3.0 and NCBI GEO databases. The network of mitochondrial function and the immune microenvironment of DOMS was constructed by computer algorithm. Subsequently, the skeletal muscle of DOMS rats was subjected to qPCR to verify the bioinformatics results. DOMS and non-DOMS histological samples were further studied by staining and transmission electron microscopy. RESULTS Bioinformatics results showed that expression of mitochondria-related genes was changed in DOMS. The results of qPCR showed that four hub genes (AMPK, PGC1-α, SLC25A25, and ARMCX1) were differentially expressed in DOMS. These hub genes are related to the degree of skeletal muscle immune cell infiltration, mitochondrial respiratory chain complex, DAMPs, the TCA cycle, and mitochondrial metabolism. Bayesian network inference showed that IL-6 and PGC1-α may be the main regulatory genes of mitochondrial damage in DOMS. Transmission electron microscopy revealed swelling of skeletal muscle mitochondria and disorganization of myofilaments. CONCLUSIONS Our study found that skeletal muscle mitochondrial damage is one of the causes of inflammatory factor accumulation in DOMS. According to the screened-out hub genes, this study provides a reference for follow-up clinical application.
Collapse
Affiliation(s)
- Zheng Li
- College of Sport Human Sciences, Harbin Sport University, No. 1, Dacheng Road, Nangang District, 150008, Harbin, China
| | - Lina Peng
- College of Sport Human Sciences, Harbin Sport University, No. 1, Dacheng Road, Nangang District, 150008, Harbin, China
| | - Lili Sun
- College of Sport Human Sciences, Harbin Sport University, No. 1, Dacheng Road, Nangang District, 150008, Harbin, China.
| | - Juncheng Si
- College of Sport Human Sciences, Harbin Sport University, No. 1, Dacheng Road, Nangang District, 150008, Harbin, China
| |
Collapse
|
30
|
Niu Y, Wang Y, Chen H, Liu X, Liu J. Overview of the Circadian Clock in the Hair Follicle Cycle. Biomolecules 2023; 13:1068. [PMID: 37509104 PMCID: PMC10377266 DOI: 10.3390/biom13071068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The circadian clock adapts to the light-dark cycle and autonomously generates physiological and metabolic rhythmicity. Its activity depends on the central suprachiasmatic pacemaker. However, it also has an independent function in peripheral tissues such as the liver, adipose tissue, and skin, which integrate environmental signals and energy homeostasis. Hair follicles (HFs) maintain homeostasis through the HF cycle, which depends heavily on HF stem cell self-renewal and the related metabolic reprogramming. Studies have shown that circadian clock dysregulation in HFs perturbs cell cycle progression. Moreover, there is increasing evidence that the circadian clock exerts a significant influence on glucose metabolism, feeding/fasting, stem cell differentiation, and senescence. This suggests that circadian metabolic crosstalk plays an essential role in regulating HF regeneration. An improved understanding of the role of the circadian clock in HFs may facilitate the discovery of new drug targets for hair loss. Therefore, the present review provides a discussion of the relationship between the circadian clock and HF regeneration, mainly from the perspective of HF metabolism, and summarizes the current understanding of the mechanisms by which HFs function.
Collapse
Affiliation(s)
- Ye Niu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Yujie Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Hao Chen
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Xiaomei Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, China
| |
Collapse
|
31
|
Qiao X, Kang L, Shi C, Ye A, Wu D, Huang Y, Deng M, Wang J, Zhao Y, Chen C. Exploring the precision redox map during fasting-refeeding and satiation in C. elegans. STRESS BIOLOGY 2023; 3:17. [PMID: 37676352 PMCID: PMC10442001 DOI: 10.1007/s44154-023-00096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Fasting is a popular dietary strategy because it grants numerous advantages, and redox regulation is one mechanism involved. However, the precise redox changes with respect to the redox species, organelles and tissues remain unclear, which hinders the understanding of the metabolic mechanism, and exploring the precision redox map under various dietary statuses is of great significance. Twelve redox-sensitive C. elegans strains stably expressing genetically encoded redox fluorescent probes (Hyperion sensing H2O2 and Grx1-roGFP2 sensing GSH/GSSG) in three organelles (cytoplasm, mitochondria and endoplasmic reticulum (ER)) were constructed in two tissues (body wall muscle and neurons) and were confirmed to respond to redox challenge. The H2O2 and GSSG/GSH redox changes in two tissues and three organelles were obtained by confocal microscopy during fasting, refeeding, and satiation. We found that under fasting condition, H2O2 decreased in most compartments, except for an increase in mitochondria, while GSSG/GSH increased in the cytoplasm of body muscle and the ER of neurons. After refeeding, the redox changes in H2O2 and GSSG/GSH caused by fasting were reversed in most organelles of the body wall muscle and neurons. In the satiated state, H2O2 increased markedly in the cytoplasm, mitochondria and ER of muscle and the ER of neurons, while GSSG/GSH exhibited no change in most organelles of the two tissues except for an increase in the ER of muscle. Our study systematically and precisely presents the redox characteristics under different dietary states in living animals and provides a basis for further investigating the redox mechanism in metabolism and optimizing dietary guidance.
Collapse
Affiliation(s)
- Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Kang
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, 646000, China
| | - Chang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongli Wu
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, 646000, China
| | - Yuyunfei Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghao Deng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiarui Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuzheng Zhao
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, 646000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Maudsley S, Schrauwen C, Harputluoğlu İ, Walter D, Leysen H, McDonald P. GPR19 Coordinates Multiple Molecular Aspects of Stress Responses Associated with the Aging Process. Int J Mol Sci 2023; 24:ijms24108499. [PMID: 37239845 DOI: 10.3390/ijms24108499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 04/15/2023] [Indexed: 05/28/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a significant role in controlling biological paradigms such as aging and aging-related disease. We have previously identified receptor signaling systems that are specifically associated with controlling molecular pathologies associated with the aging process. Here, we have identified a pseudo-orphan GPCR, G protein-coupled receptor 19 (GPR19), that is sensitive to many molecular aspects of the aging process. Through an in-depth molecular investigation process that involved proteomic, molecular biological, and advanced informatic experimentation, this study found that the functionality of GPR19 is specifically linked to sensory, protective, and remedial signaling systems associated with aging-related pathology. This study suggests that the activity of this receptor may play a role in mitigating the effects of aging-related pathology by promoting protective and remedial signaling systems. GPR19 expression variation demonstrates variability in the molecular activity in this larger process. At low expression levels in HEK293 cells, GPR19 expression regulates signaling paradigms linked with stress responses and metabolic responses to these. At higher expression levels, GPR19 expression co-regulates systems involved in sensing and repairing DNA damage, while at the highest levels of GPR19 expression, a functional link to processes of cellular senescence is seen. In this manner, GPR19 may function as a coordinator of aging-associated metabolic dysfunction, stress response, DNA integrity management, and eventual senescence.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Patricia McDonald
- Moffitt Cancer Center, Department of Metabolism & Physiology, 12902 Magnolia Drive, Tampa, FL 33612, USA
- Lexicon Pharmaceuticals Inc. Research & Development, 2445 Technology Forest, The Woodlands, TX 77381, USA
| |
Collapse
|
33
|
Jin Z, Ji Y, Su W, Zhou L, Wu X, Gao L, Guo J, Liu Y, Zhang Y, Wen X, Xia ZY, Xia Z, Lei S. The role of circadian clock-controlled mitochondrial dynamics in diabetic cardiomyopathy. Front Immunol 2023; 14:1142512. [PMID: 37215098 PMCID: PMC10196400 DOI: 10.3389/fimmu.2023.1142512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetes mellitus is a metabolic disease with a high prevalence worldwide, and cardiovascular complications are the leading cause of mortality in patients with diabetes. Diabetic cardiomyopathy (DCM), which is prone to heart failure with preserved ejection fraction, is defined as a cardiac dysfunction without conventional cardiac risk factors such as coronary heart disease and hypertension. Mitochondria are the centers of energy metabolism that are very important for maintaining the function of the heart. They are highly dynamic in response to environmental changes through mitochondrial dynamics. The disruption of mitochondrial dynamics is closely related to the occurrence and development of DCM. Mitochondrial dynamics are controlled by circadian clock and show oscillation rhythm. This rhythm enables mitochondria to respond to changing energy demands in different environments, but it is disordered in diabetes. In this review, we summarize the significant role of circadian clock-controlled mitochondrial dynamics in the etiology of DCM and hope to play a certain enlightening role in the treatment of DCM.
Collapse
Affiliation(s)
- Zhenshuai Jin
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wating Su
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Zhou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Gao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junfan Guo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yutong Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuefu Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Huang J, Chen L, Yao ZM, Sun XR, Tong XH, Dong SY. The role of mitochondrial dynamics in cerebral ischemia-reperfusion injury. Biomed Pharmacother 2023; 162:114671. [PMID: 37037094 DOI: 10.1016/j.biopha.2023.114671] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Stroke is one of the leading causes of death and long-term disability worldwide. More than 80 % of strokes are ischemic, caused by an occlusion of cerebral arteries. Without question, restoration of blood supply as soon as possible is the first therapeutic strategy. Nonetheless paradoxically, reperfusion can further aggravate the injury through a series of reactions known as cerebral ischemia-reperfusion injury (CIRI). Mitochondria play a vital role in promoting nerve survival and neurological function recovery and mitochondrial dysfunction is considered one of the characteristics of CIRI. Neurons often die due to oxidative stress and an imbalance in energy metabolism following CIRI, and there is a strong association with mitochondrial dysfunction. Altered mitochondrial dynamics is the first reaction of mitochondrial stress. Mitochondrial dynamics refers to the maintenance of the integrity, distribution, and size of mitochondria as well as their ability to resist external stimuli through a continuous cycle of mitochondrial fission and fusion. Therefore, improving mitochondrial dynamics is a vital means of treating CIRI. This review discusses the relationship between mitochondria and CIRI and emphasizes improving mitochondrial dynamics as a potential therapeutic approach to improve the prognosis of CIRI.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Xu-Hui Tong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China; Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China.
| |
Collapse
|
35
|
Colombini B, Dinu M, Murgo E, Lotti S, Tarquini R, Sofi F, Mazzoccoli G. Ageing and Low-Level Chronic Inflammation: The Role of the Biological Clock. Antioxidants (Basel) 2022; 11:2228. [PMID: 36421414 PMCID: PMC9686908 DOI: 10.3390/antiox11112228] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 09/01/2023] Open
Abstract
Ageing is a multifactorial physiological manifestation that occurs inexorably and gradually in all forms of life. This process is linked to the decay of homeostasis due to the progressive decrease in the reparative and regenerative capacity of tissues and organs, with reduced physiological reserve in response to stress. Ageing is closely related to oxidative damage and involves immunosenescence and tissue impairment or metabolic imbalances that trigger inflammation and inflammasome formation. One of the main ageing-related alterations is the dysregulation of the immune response, which results in chronic low-level, systemic inflammation, termed "inflammaging". Genetic and epigenetic changes, as well as environmental factors, promote and/or modulate the mechanisms of ageing at the molecular, cellular, organ, and system levels. Most of these mechanisms are characterized by time-dependent patterns of variation driven by the biological clock. In this review, we describe the involvement of ageing-related processes with inflammation in relation to the functioning of the biological clock and the mechanisms operating this intricate interaction.
Collapse
Affiliation(s)
- Barbara Colombini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Emanuele Murgo
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, 71013 San Giovanni Rotondo, Italy
| | - Sofia Lotti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Roberto Tarquini
- Division of Internal Medicine I, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, Opera di Padre Pio da Pietrelcina, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
36
|
Ye L, He X, Su C, Feng H, Meng G, Chen B, Wu X. The Effect of Mitochondria on Ganoderma lucidum Growth and Bioactive Components Based on Transcriptomics. J Fungi (Basel) 2022; 8:1182. [PMID: 36354949 PMCID: PMC9692720 DOI: 10.3390/jof8111182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 01/06/2024] Open
Abstract
Mitochondria are the power source of living cells and implicated in the oxidative metabolism. However, the effect of mitochondria on breeding is usually ignored in conventional research. In this study, the effect of mitochondria on Ganoderma lucidum morphology, yield, and main primary bioactive components was analyzed via structuring and comparing isonuclear alloplasmic strains. The crucial biological pathways were then explored based on the transcriptome. The results showed that isonuclear alloplasmic exhibited difference in mycelial growth rate in potato dextrose agar medium (PDA), basidiospore yield, and polysaccharide and triterpenoid content. Otherwise, mitochondria did not change colony and fruit body morphology, mushroom yield, or mycelial growth rate in solid-state fermentation cultivation material. The transcriptome data of two significant isonuclear alloplasmic strains S1 and S5 revealed that the involvement of differentially expressed genes (DEGs) was mainly in pentose and glucuronate interconversions, starch and sucrose metabolism, and steroid biosynthesis. The result was further confirmed by the other isonuclear alloplasmic strains. The above results further proved that mitochondria could affect the active components of G. lucidum. Our results provide information which will contribute to understanding of mitochondria and will be helpful for breeding improved varieties.
Collapse
Affiliation(s)
- Liyun Ye
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaofang He
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Congbao Su
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haiying Feng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoliang Meng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bingzhi Chen
- College of Food Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Xiaoping Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
37
|
Maudsley S, Walter D, Schrauwen C, Van Loon N, Harputluoğlu İ, Lenaerts J, McDonald P. Intersection of the Orphan G Protein-Coupled Receptor, GPR19, with the Aging Process. Int J Mol Sci 2022; 23:ijms232113598. [PMID: 36362387 PMCID: PMC9653598 DOI: 10.3390/ijms232113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent one of the most functionally diverse classes of transmembrane proteins. GPCRs and their associated signaling systems have been linked to nearly every physiological process. They also constitute nearly 40% of the current pharmacopeia as direct targets of remedial therapies. Hence, their place as a functional nexus in the interface between physiological and pathophysiological processes suggests that GPCRs may play a central role in the generation of nearly all types of human disease. Perhaps one mechanism through which GPCRs can mediate this pivotal function is through the control of the molecular aging process. It is now appreciated that, indeed, many human disorders/diseases are induced by GPCR signaling processes linked to pathological aging. Here we discuss one such novel member of the GPCR family, GPR19, that may represent an important new target for novel remedial strategies for the aging process. The molecular signaling pathways (metabolic control, circadian rhythm regulation and stress responsiveness) associated with this recently characterized receptor suggest an important role in aging-related disease etiology.
Collapse
Affiliation(s)
- Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
- Correspondence:
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Claudia Schrauwen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Nore Van Loon
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | - Julia Lenaerts
- Receptor Biology Lab, University of Antwerp, 2610 Antwerpen, Belgium
| | | |
Collapse
|
38
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
39
|
Protective Effects of Liquiritigenin against Cisplatin-Induced Nephrotoxicity via NRF2/SIRT3-Mediated Improvement of Mitochondrial Function. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123823. [PMID: 35744945 PMCID: PMC9231399 DOI: 10.3390/molecules27123823] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 01/14/2023]
Abstract
Acute kidney injury (AKI) induced by cisplatin (CP), a first-line anticancer drug for chemotherapy, is common. To date, there is an urgent need to find effective treatments to reduce the nephrotoxicity caused by CP. Meanwhile, the restoration of mitochondrial dysfunction shows potential to be used as an adjunct to conventional therapeutic strategies. This study found that liquiritigenin can ameliorate mitochondrial dysfunction and acute kidney injury induced by CP in mice. The intraperitoneal injection of 15 mg/kg body weight liquiritigenin for 2 days markedly protected against CP-induced mitochondrial dysfunction, restored renal tubule and mitochondrial morphology, decreased blood Scr and BUN levels, and decreased cell apoptosis. Furthermore, the elevated expression of SIRT3 induced by liquiritigenin, which can be upregulated by NRF2, was confirmed in vivo and in vitro. The underlying protective mechanisms of liquiritigenin in CP-induced nephrotoxicity were then investigated. Molecular docking results showed that liquiritigenin has potent binding activities to KEAP1, GSK-3β and HRD1. Further results showed that liquiritigenin induced the nuclear translocation of NRF2 and increased the levels of mitochondrial bioenergetics-related protein such as PGC-1α, and TFAM, which are related to NRF2 activity and mitochondrial biogenesis. In addition, liquiritigenin was found to possibly reverse the decrease in BCL2/BAX ratio induced by CP in live cultured renal tubule epithelial cells. Collectively, these results indicated that liquiritigenin could be used as a potential nephroprotective agent to protect against cisplatin-induced acute kidney injury in a NRF2-dependent manner by improving mitochondria function.
Collapse
|
40
|
Leysen H, Walter D, Clauwaert L, Hellemans L, van Gastel J, Vasudevan L, Martin B, Maudsley S. The Relaxin-3 Receptor, RXFP3, Is a Modulator of Aging-Related Disease. Int J Mol Sci 2022; 23:4387. [PMID: 35457203 PMCID: PMC9027355 DOI: 10.3390/ijms23084387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
During the aging process our body becomes less well equipped to deal with cellular stress, resulting in an increase in unrepaired damage. This causes varying degrees of impaired functionality and an increased risk of mortality. One of the most effective anti-aging strategies involves interventions that combine simultaneous glucometabolic support with augmented DNA damage protection/repair. Thus, it seems prudent to develop therapeutic strategies that target this combinatorial approach. Studies have shown that the ADP-ribosylation factor (ARF) GTPase activating protein GIT2 (GIT2) acts as a keystone protein in the aging process. GIT2 can control both DNA repair and glucose metabolism. Through in vivo co-regulation analyses it was found that GIT2 forms a close coexpression-based relationship with the relaxin-3 receptor (RXFP3). Cellular RXFP3 expression is directly affected by DNA damage and oxidative stress. Overexpression or stimulation of this receptor, by its endogenous ligand relaxin 3 (RLN3), can regulate the DNA damage response and repair processes. Interestingly, RLN3 is an insulin-like peptide and has been shown to control multiple disease processes linked to aging mechanisms, e.g., anxiety, depression, memory dysfunction, appetite, and anti-apoptotic mechanisms. Here we discuss the molecular mechanisms underlying the various roles of RXFP3/RLN3 signaling in aging and age-related disorders.
Collapse
Affiliation(s)
- Hanne Leysen
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Deborah Walter
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lore Clauwaert
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lieselot Hellemans
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Jaana van Gastel
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
- SGS Belgium, Intercity Business Park, Generaal De Wittelaan 19-A5, 2800 Mechelen, Belgium
| | | | - Bronwen Martin
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Stuart Maudsley
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| |
Collapse
|