1
|
Kotsyurbenko OR, Kompanichenko VN, Brouchkov AV, Khrunyk YY, Karlov SP, Sorokin VV, Skladnev DA. Different Scenarios for the Origin and the Subsequent Succession of a Hypothetical Microbial Community in the Cloud Layer of Venus. ASTROBIOLOGY 2024; 24:423-441. [PMID: 38563825 DOI: 10.1089/ast.2022.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The possible existence of a microbial community in the venusian clouds is one of the most intriguing hypotheses in modern astrobiology. Such a community must be characterized by a high survivability potential under severe environmental conditions, the most extreme of which are very low pH levels and water activity. Considering different scenarios for the origin of life and geological history of our planet, a few of these scenarios are discussed in the context of the origin of hypothetical microbial life within the venusian cloud layer. The existence of liquid water on the surface of ancient Venus is one of the key outstanding questions influencing this possibility. We link the inherent attributes of microbial life as we know it that favor the persistence of life in such an environment and review the possible scenarios of life's origin and its evolution under a strong greenhouse effect and loss of water on Venus. We also propose a roadmap and describe a novel methodological approach for astrobiological research in the framework of future missions to Venus with the intent to reveal whether life exists today on the planet.
Collapse
Affiliation(s)
- Oleg R Kotsyurbenko
- Higher School of Ecology, Yugra State University, Khanty-Mansiysk, Russia
- Network of Researchers on the Chemical Evolution of Life, Leeds, United Kingdom
| | - Vladimir N Kompanichenko
- Network of Researchers on the Chemical Evolution of Life, Leeds, United Kingdom
- Institute for Complex Analysis of Regional Problems RAS, Birobidzhan, Russia
| | | | - Yuliya Y Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Ekaterinburg, Russia
| | - Sergey P Karlov
- Faculty of Mechanical Engineering, Moscow Polytechnic University, Moscow, Russia
| | - Vladimir V Sorokin
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Dmitry A Skladnev
- Network of Researchers on the Chemical Evolution of Life, Leeds, United Kingdom
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| |
Collapse
|
2
|
Deng W, Zhao Z, Li Y, Cao R, Chen M, Tang K, Wang D, Fan W, Hu A, Chen G, Chen CTA, Zhang Y. Strategies of chemolithoautotrophs adapting to high temperature and extremely acidic conditions in a shallow hydrothermal ecosystem. MICROBIOME 2023; 11:270. [PMID: 38049915 PMCID: PMC10696704 DOI: 10.1186/s40168-023-01712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/27/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Active hydrothermal vents create extreme conditions characterized by high temperatures, low pH levels, and elevated concentrations of heavy metals and other trace elements. These conditions support unique ecosystems where chemolithoautotrophs serve as primary producers. The steep temperature and pH gradients from the vent mouth to its periphery provide a wide range of microhabitats for these specialized microorganisms. However, their metabolic functions, adaptations in response to these gradients, and coping mechanisms under extreme conditions remain areas of limited knowledge. In this study, we conducted temperature gradient incubations of hydrothermal fluids from moderate (pH = 5.6) and extremely (pH = 2.2) acidic vents. Combining the DNA-stable isotope probing technique and subsequent metagenomics, we identified active chemolithoautotrophs under different temperature and pH conditions and analyzed their specific metabolic mechanisms. RESULTS We found that the carbon fixation activities of Nautiliales in vent fluids were significantly increased from 45 to 65 °C under moderately acidic condition, while their heat tolerance was reduced under extremely acidic conditions. In contrast, Campylobacterales actively fixed carbon under both moderately and extremely acidic conditions under 30 - 45 °C. Compared to Campylobacterales, Nautiliales were found to lack the Sox sulfur oxidation system and instead use NAD(H)-linked glutamate dehydrogenase to boost the reverse tricarboxylic acid (rTCA) cycle. Additionally, they exhibit a high genetic potential for high activity of cytochrome bd ubiquinol oxidase in oxygen respiration and hydrogen oxidation at high temperatures. In terms of high-temperature adaption, the rgy gene plays a critical role in Nautiliales by maintaining DNA stability at high temperature. Genes encoding proteins involved in proton export, including the membrane arm subunits of proton-pumping NADH: ubiquinone oxidoreductase, K+ accumulation, selective transport of charged molecules, permease regulation, and formation of the permeability barrier of bacterial outer membranes, play essential roles in enabling Campylobacterales to adapt to extremely acidic conditions. CONCLUSIONS Our study provides in-depth insights into how high temperature and low pH impact the metabolic processes of energy and main elements in chemolithoautotrophs living in hydrothermal ecosystems, as well as the mechanisms they use to adapt to the extreme hydrothermal conditions. Video Abstract.
Collapse
Affiliation(s)
- Wenchao Deng
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China.
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Yufang Li
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Rongguang Cao
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Mingming Chen
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Deli Wang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Wei Fan
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guangcheng Chen
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Chen-Tung Arthur Chen
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung Taiwan, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China.
| |
Collapse
|
3
|
Finkel PL, Carrizo D, Parro V, Sánchez-García L. An Overview of Lipid Biomarkers in Terrestrial Extreme Environments with Relevance for Mars Exploration. ASTROBIOLOGY 2023; 23:563-604. [PMID: 36880883 PMCID: PMC10150655 DOI: 10.1089/ast.2022.0083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Lipid molecules are organic compounds, insoluble in water, and based on carbon-carbon chains that form an integral part of biological cell membranes. As such, lipids are ubiquitous in life on Earth, which is why they are considered useful biomarkers for life detection in terrestrial environments. These molecules display effective membrane-forming properties even under geochemically hostile conditions that challenge most of microbial life, which grants lipids a universal biomarker character suitable for life detection beyond Earth, where a putative biological membrane would also be required. What discriminates lipids from nucleic acids or proteins is their capacity to retain diagnostic information about their biological source in their recalcitrant hydrocarbon skeletons for thousands of millions of years, which is indispensable in the field of astrobiology given the time span that the geological ages of planetary bodies encompass. This work gathers studies that have employed lipid biomarker approaches for paleoenvironmental surveys and life detection purposes in terrestrial environments with extreme conditions: hydrothermal, hyperarid, hypersaline, and highly acidic, among others; all of which are analogous to current or past conditions on Mars. Although some of the compounds discussed in this review may be abiotically synthesized, we focus on those with a biological origin, namely lipid biomarkers. Therefore, along with appropriate complementary techniques such as bulk and compound-specific stable carbon isotope analysis, this work recapitulates and reevaluates the potential of lipid biomarkers as an additional, powerful tool to interrogate whether there is life on Mars, or if there ever was.
Collapse
Affiliation(s)
- Pablo L. Finkel
- Centro de Astrobiología (CAB), CSIC-INTA, Madrid, Spain
- Department of Physics and Mathematics and Department of Automatics, University of Alcalá, Madrid, Spain
| | | | - Victor Parro
- Centro de Astrobiología (CAB), CSIC-INTA, Madrid, Spain
| | | |
Collapse
|
4
|
Ferrihydrite synthesis in the presence of amino acids and artificial seawater. Amino Acids 2023:10.1007/s00726-023-03253-w. [PMID: 36877410 DOI: 10.1007/s00726-023-03253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023]
Abstract
Ferrihydrite is widespread in clays, soils, and living organisms and was found on Mars. This iron-mineral could be found on the prebiotic Earth, which also contained simple monomeric amino acids. For prebiotic chemistry, it is important to understand how amino acids have an effect on the process of iron oxide formations. There are three important results in this work: (a) preconcentration of cysteine and aspartic acid, (b) formation of cystine and probably the cysteine peptide occurred during ferrihydrite syntheses, and (c) amino acids have an effect on iron oxide synthesis. For samples containing aspartic acid and cysteine, their presence on the surface or mineral structure can be confirmed by FT-IR spectra. Surface charge analysis showed a relatively high decrease for samples synthesized with cysteine. Scanning electron microscopy did not show marked morphological differences among the samples, except for the seawater sample containing cysteine, which had a lamina-shaped morphology surrounded by circular iron particles, indicating the possible formation of a cysteine structure involving iron oxide particles. The thermogravimetric analysis of the samples indicates that the presence of salts and amino acids in the synthesis of ferrihydrite has an effect on the thermal behavior of the iron oxide/amino acids and modifying the water-loss temperature. The heating of the cysteine samples, synthesized in distilled water and artificial seawater, showed several peaks of degradation of cysteine. In addition, heating of the aspartic acid samples produced the polymerization of this amino acid and peaks of degradation of it. FTIR spectra and XRD patterns did not indicate the precipitation of methionine, 2-aminoisobutyric acid, lysine, or glycine with the iron oxide formations. However, the heating of the glycine, methionine and lysine samples, synthesized in artificial seawater, showed peaks that could be attributed to the degradation of them. Then this could be an indication that these amino acids precipitate with the minerals during the syntheses. Also, the dissolution of these amino acids in artificial seawater prevents the formation of ferrihydrite.
Collapse
|
5
|
Westall F, Brack A, Fairén AG, Schulte MD. Setting the geological scene for the origin of life and continuing open questions about its emergence. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES 2023; 9:1095701. [PMID: 38274407 PMCID: PMC7615569 DOI: 10.3389/fspas.2022.1095701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The origin of life is one of the most fundamental questions of humanity. It has been and is still being addressed by a wide range of researchers from different fields, with different approaches and ideas as to how it came about. What is still incomplete is constrained information about the environment and the conditions reigning on the Hadean Earth, particularly on the inorganic ingredients available, and the stability and longevity of the various environments suggested as locations for the emergence of life, as well as on the kinetics and rates of the prebiotic steps leading to life. This contribution reviews our current understanding of the geological scene in which life originated on Earth, zooming in specifically on details regarding the environments and timescales available for prebiotic reactions, with the aim of providing experimenters with more specific constraints. Having set the scene, we evoke the still open questions about the origin of life: did life start organically or in mineralogical form? If organically, what was the origin of the organic constituents of life? What came first, metabolism or replication? What was the time-scale for the emergence of life? We conclude that the way forward for prebiotic chemistry is an approach merging geology and chemistry, i.e., far-from-equilibrium, wet-dry cycling (either subaerial exposure or dehydration through chelation to mineral surfaces) of organic reactions occurring repeatedly and iteratively at mineral surfaces under hydrothermal-like conditions.
Collapse
Affiliation(s)
| | - André Brack
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - Alberto G. Fairén
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
- Cornell University, Ithaca, NY, United States
| | | |
Collapse
|
6
|
Samulewski RB, Pintor BE, Ivashita FF, Paesano A, Zaia DAM. Study of Ferrocyanide Adsorption onto Different Minerals as Prebiotic Chemistry Assays. ASTROBIOLOGY 2021; 21:1121-1136. [PMID: 34534004 DOI: 10.1089/ast.2020.2322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considered one of the most promising building blocks of life on primitive Earth, cyanide and its complexes are likely to have played an important role in the emergence of life on the planet. Investigation into cyanide on Earth has primarily considered high concentrations, but the cyanide concentration in the oceans of prebiotic Earth was exceptionally low. Thus, Bernal's hypothesis has allowed investigators to work around this problem. We observed, however, that cyanide does not adsorb onto several minerals; therefore, ferrocyanide could be used as a cyanide source when adsorbed onto mineral surfaces to promote the synthesis of molecules of biological significance. When adsorbed onto bentonite, a mineral that has Fe3+ atoms in its interlayers, the formation of Prussian blue analog complexes occurs through endothermic reaction and with increased entropy. The adsorption of ferrocyanide onto kaolinite indicates an exothermic and outer-sphere interaction, which results in degeneracy breakdown for C ≡ N stretch energy into two new bands of FTIR-ATR spectrum. Magnetite, which has iron atoms in its structure, and ferrocyanide interactions have been observed by outer-sphere coordination as well as the formation of Prussian blue analogs, as confirmed by the appearance of a new doublet in the Mössbauer spectra and a broadband close to 750 nm at UV-visible spectroscopy. Magnetite and kaolinite experiments presented relevant results only when performed in seawater, which suggests the importance of seawater composition for prebiotic experiments. These obtained results prove that ferrocyanide interacts with minerals differently according to structure and composition and show that this complex, like the Prussian blue analogs, may have played a crucial role as a source of cyanide on primitive Earth.
Collapse
Affiliation(s)
| | | | - Flávio F Ivashita
- Departamento de Física-CCE, Universidade Estadual de Maringá, Maringá, Brazil
| | - Andrea Paesano
- Departamento de Física-CCE, Universidade Estadual de Maringá, Maringá, Brazil
| | | |
Collapse
|
7
|
Gaylor MO, Miro P, Vlaisavljevich B, Kondage AAS, Barge LM, Omran A, Videau P, Swenson VA, Leinen LJ, Fitch NW, Cole KL, Stone C, Drummond SM, Rageth K, Dewitt LR, González Henao S, Karanauskus V. Plausible Emergence and Self Assembly of a Primitive Phospholipid from Reduced Phosphorus on the Primordial Earth. ORIGINS LIFE EVOL B 2021; 51:185-213. [PMID: 34279769 DOI: 10.1007/s11084-021-09613-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
How life arose on the primitive Earth is one of the biggest questions in science. Biomolecular emergence scenarios have proliferated in the literature but accounting for the ubiquity of oxidized (+ 5) phosphate (PO43-) in extant biochemistries has been challenging due to the dearth of phosphate and molecular oxygen on the primordial Earth. A compelling body of work suggests that exogenous schreibersite ((Fe,Ni)3P) was delivered to Earth via meteorite impacts during the Heavy Bombardment (ca. 4.1-3.8 Gya) and there converted to reduced P oxyanions (e.g., phosphite (HPO32-) and hypophosphite (H2PO2-)) and phosphonates. Inspired by this idea, we review the relevant literature to deduce a plausible reduced phospholipid analog of modern phosphatidylcholines that could have emerged in a primordial hydrothermal setting. A shallow alkaline lacustrine basin underlain by active hydrothermal fissures and meteoritic schreibersite-, clay-, and metal-enriched sediments is envisioned. The water column is laden with known and putative primordial hydrothermal reagents. Small system dimensions and thermal- and UV-driven evaporation further concentrate chemical precursors. We hypothesize that a reduced phospholipid arises from Fischer-Tropsch-type (FTT) production of a C8 alkanoic acid, which condenses with an organophosphinate (derived from schreibersite corrosion to hypophosphite with subsequent methylation/oxidation), to yield a reduced protophospholipid. This then condenses with an α-amino nitrile (derived from Strecker-type reactions) to form the polar head. Preliminary modeling results indicate that reduced phospholipids do not aggregate rapidly; however, single layer micelles are stable up to aggregates with approximately 100 molecules.
Collapse
Affiliation(s)
- Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA.
| | - Pere Miro
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | | | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Arthur Omran
- School of Geosciences, University of South Florida, Tampa, FL, 33620, USA
- Department of Chemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
- Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Vaille A Swenson
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Nathaniel W Fitch
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Krista L Cole
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Chris Stone
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
| | - Samuel M Drummond
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Kayli Rageth
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Lillian R Dewitt
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | | | | |
Collapse
|
8
|
A Few Experimental Suggestions Using Minerals to Obtain Peptides with a High Concentration of L-Amino Acids and Protein Amino Acids. Symmetry (Basel) 2020. [DOI: 10.3390/sym12122046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The peptides/proteins of all living beings on our planet are mostly made up of 19 L-amino acids and glycine, an achiral amino acid. Arising from endogenous and exogenous sources, the seas of the prebiotic Earth could have contained a huge diversity of biomolecules (including amino acids), and precursors of biomolecules. Thus, how were these amino acids selected from the huge number of available amino acids and other molecules? What were the peptides of prebiotic Earth made up of? How were these peptides synthesized? Minerals have been considered for this task, since they can preconcentrate amino acids from dilute solutions, catalyze their polymerization, and even make the chiral selection of them. However, until now, this problem has only been studied in compartmentalized experiments. There are separate experiments showing that minerals preconcentrate amino acids by adsorption or catalyze their polymerization, or separate L-amino acids from D-amino acids. Based on the [GADV]-protein world hypothesis, as well as the relative abundance of amino acids on prebiotic Earth obtained by Zaia, several experiments are suggested. The main goal of these experiments is to show that using minerals it is possible, at least, to obtain peptides whose composition includes a high quantity of L-amino acids and protein amino acids (PAAs). These experiments should be performed using hydrothermal environments and wet/dry cycles. In addition, for hydrothermal environment experiments, it is very important to use one of the suggested artificial seawaters, and for wet/dry environments, it is important to perform the experiments in distilled water and diluted salt solutions. Finally, from these experiments, we suggest that, without an RNA world or even a pre genetic world, a small peptide set could emerge that better resembles modern proteins.
Collapse
|
9
|
Zaia DAM, de Carvalho PCG, Samulewski RB, de Carvalho Pereira R, Zaia CTBV. Unexpected Thiocyanate Adsorption onto Ferrihydrite Under Prebiotic Chemistry Conditions. ORIGINS LIFE EVOL B 2020; 50:57-76. [PMID: 32266585 DOI: 10.1007/s11084-020-09594-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/10/2020] [Indexed: 02/02/2023]
Abstract
The most crucial role played by minerals was in the preconcentration of biomolecules or precursors of biomolecules in prebiotic seas. If this step had not occurred, molecular evolution would not have occurred. Thiocyanate is an important molecule in the formation of biomolecules as well as a catalyst for prebiotic reactions. The adsorption of thiocyanate onto ferrihydrite was carried out under pH and ion composition conditions in seawater that resembled those of prebiotic Earth. The seawater used in this work had high Mg2+, Ca2+ and SO42- concentrations. The most important result of this work was that ferrihydrite adsorbed thiocyanateata pH value (7.2 ± 0.2) that usually does not adsorb thiocyanate. The high adsorptivity of Mg2+, Ca2+ and SO42-onto ferrihydrite showed that seawater ions can act as carriers of thiocyanate to the ferrihydrite surface, creating a huge outer-sphere complex. Kinetic adsorption and isotherm experiments showed the best fit for the pseudo-second-order model and an activation energy of 23.8 kJ mol-1forthe Langmuir-Freundlich model, respectively. Thermodynamic data showed positive ΔG values, which apparently contradict the adsorption isotherm data and kinetic data that was obtained. The adsorption of thiocyanate onto ferrihydrite could be explained by coupling with the exergonic SO42- adsorption onto ferrihydrite. The FTIR spectra showed no difference between the C≡N stretching peaks of adsorbed thiocyanate and free thiocyanate, corroborating the formation of an outer-sphere complex. All the results demonstrated the importance of the artificial seawater composition for the adsorption of thiocyanate and for understanding prebiotic chemistry.
Collapse
Affiliation(s)
- Dimas A M Zaia
- Departamento de Química, Laboratório de Química Prebiótica-LQP, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil.
| | - Paulo C G de Carvalho
- Departamento de Química, Laboratório de Química Prebiótica-LQP, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil
| | - Rafael B Samulewski
- Departamento de Química, Laboratório de Química Prebiótica-LQP, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil
| | - Rodrigo de Carvalho Pereira
- Departamento de Química, Laboratório de Química Prebiótica-LQP, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil
| | - Cássia Thaïs B V Zaia
- Departamento de Ciências Fisiológicas, Laboratório de Fisiologia Neuroendocrina--LaFiNen, Universidade Estadual de Londrina, Londrina, PR, CEP 86 057-970, Brazil
| |
Collapse
|
10
|
Samulewski RB, Gonçalves JM, Urbano A, da Costa ACS, Ivashita FF, Paesano A, Zaia DAM. Magnetite Synthesis in the Presence of Cyanide or Thiocyanate under Prebiotic Chemistry Conditions. Life (Basel) 2020; 10:E34. [PMID: 32252332 PMCID: PMC7236013 DOI: 10.3390/life10040034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 11/24/2022] Open
Abstract
Magnetite is an iron oxide mineral component of primitive Earth. It is naturally synthesized in different ways, such as magma cooling as well as olivine decomposition under hydrothermal conditions. It is probable magnetite played a significant role in biogenesis. The seawater used in the current work contained high Mg2+, Ca2+ and SO42- concentrations, unlike the seawater of today that has high Na+ and Cl- concentrations. It is likely that this seawater better resembled the ion composition of the seas of the Earth from 4 billion years ago. Cyanide and thiocyanate were common molecules in prebiotic Earth, and especially in primitive oceans, where they could act on the magnetite mechanism synthesis via Fe2+ interaction. In this research, magnetite samples that were synthesized under prebiotic conditions in the presence of cyanide or thiocyanate, (both with and without artificial seawater), showed that, besides magnetite, goethite and ferrihydrite can be produced through different Fe2+-ion interactions. Cyanide apparently acts as a protective agent for magnetite production; however, thiocyanate and seawater 4.0 Gy ions produced goethite and ferrihydrite at different ratios. These results validate that Fe3+ oxides/hydroxides were possibly present in primitive Earth, even under anoxic conditions or in the absence of UV radiation. In addition, the results show that the composition of water in early oceans should not be neglected in prebiotic chemistry experiments, since this composition directly influences mineral formation.
Collapse
Affiliation(s)
- Rafael Block Samulewski
- Departamento de Química, Universidade Estadual de Londrina, CEP 86057-970 Londrina, PR, Brazil;
| | - Josué Martins Gonçalves
- Departamento de Química Fundamental, Universidade de São Paulo-USP, CEP 05508-000 São Paulo, SP, Brazil;
| | - Alexandre Urbano
- Departamento de Física-CCE, Universidade Estadual de Londrina, CEP 86057-970 Londrina, PR, Brazil;
| | | | - Flávio F. Ivashita
- Departamento de Física-CCE, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil; (F.F.I.); (A.P.J.)
| | - Andrea Paesano
- Departamento de Física-CCE, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil; (F.F.I.); (A.P.J.)
| | | |
Collapse
|
11
|
Gomez LQ, Shehab AK, Al‐Shathr A, Ingram W, Konstantinova M, Cumming D, McGregor J. H 2 -free Synthesis of Aromatic, Cyclic and Linear Oxygenates from CO 2. CHEMSUSCHEM 2020; 13:647-658. [PMID: 31794078 PMCID: PMC7027563 DOI: 10.1002/cssc.201902340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/11/2019] [Indexed: 06/10/2023]
Abstract
The synthesis of oxygenate products, including cyclic ketones and phenol, from carbon dioxide and water in the absence of gas-phase hydrogen has been demonstrated. The reaction takes place in subcritical conditions at 300 °C and pressure at room temperature of 25 barg. This is the first observation of the production of cyclic ketones by this route and represents a step towards the synthesis of valuable intermediates and products, including methanol, without relying on fossil sources or hydrogen, which carries a high carbon footprint in its production by conventional methods. Inspiration for these studies was taken directly from natural processes occurring in hydrothermal environments around ocean vents. Bulk iron and iron oxides were investigated to provide a benchmark for further studies, whereas reactions over alumina and zeolite-based catalysts were employed to demonstrate, for the first time, the ability to use catalyst properties such as acidity and pore size to direct the reaction towards specific products. Bulk iron and iron oxides produced methanol as the major product in concentrations of approximately 2-3 mmol L-1 . By limiting the hydrogen availability through increasing the initial CO2 /H2 O ratio the reaction could be directed to yield phenol. Alumina and zeolites were both observed to enhance the production of longer-chained species (up to C8 ), likely owing to the role of acid sites in catalysing rapid oligomerisation reactions. Notably, zeolite-based catalysts promoted the formation of cyclic ketones. These proof-of-concept studies show the potential of this process to contribute to sustainable development through either targeting methanol production as part of a "methanol economy" or longer-chained species including phenol and cyclic ketones.
Collapse
Affiliation(s)
- Laura Quintana Gomez
- University of SheffieldDepartment of Chemical and Biological EngineeringMappin StreetSheffieldS1 3JDUK
- BioEcoUVa Bioeconomy InstituteDepartment of Chemical Engineering and Environmental TechnologyUniversity of Valladolid47011ValladolidSpain
| | - Amal K. Shehab
- University of SheffieldDepartment of Chemical and Biological EngineeringMappin StreetSheffieldS1 3JDUK
| | - Ali Al‐Shathr
- University of SheffieldDepartment of Chemical and Biological EngineeringMappin StreetSheffieldS1 3JDUK
| | - William Ingram
- University of SheffieldDepartment of Chemical and Biological EngineeringMappin StreetSheffieldS1 3JDUK
| | - Mariia Konstantinova
- University of SheffieldDepartment of Chemical and Biological EngineeringMappin StreetSheffieldS1 3JDUK
| | - Denis Cumming
- University of SheffieldDepartment of Chemical and Biological EngineeringMappin StreetSheffieldS1 3JDUK
| | - James McGregor
- University of SheffieldDepartment of Chemical and Biological EngineeringMappin StreetSheffieldS1 3JDUK
| |
Collapse
|
12
|
García-Ruiz JM, van Zuilen MA, Bach W. Mineral self-organization on a lifeless planet. Phys Life Rev 2020; 34-35:62-82. [PMID: 32303465 DOI: 10.1016/j.plrev.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 01/14/2023]
Abstract
It has been experimentally demonstrated that, under alkaline conditions, silica is able to induce the formation of mineral self-assembled inorganic-inorganic composite materials similar in morphology, texture and nanostructure to the hybrid biomineral structures that, millions of years later, life was able to self-organize. These mineral self-organized structures (MISOS) have been also shown to work as effective catalysts for prebiotic chemical reactions and to easily create compartmentalization within the solutions where they form. We reason that, during the very earliest history of this planet, there was a geochemical scenario that inevitably led to the existence of a large-scale factory of simple and complex organic compounds, many of which were relevant to prebiotic chemistry. The factory was built on a silica-rich high-pH ocean and powered by two main factors: a) a quasi-infinite source of simple carbon molecules synthesized abiotically from reactions associated with serpentinization, or transported from meteorites and produced from their impact on that alkaline ocean, and b) the formation of self-organized silica-metal mineral composites that catalyze the condensation of simple molecules in a methane-rich reduced atmosphere. We discuss the plausibility of this geochemical scenario, review the details of the formation of MISOS and its catalytic properties and the transition towards a slightly alkaline to neutral ocean.
Collapse
Affiliation(s)
- Juan Manuel García-Ruiz
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Av. de las Palmeras 4, Armilla (Granada), Spain.
| | - Mark A van Zuilen
- Equipe Géomicrobiologie, Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France.
| | - Wolfgang Bach
- Geoscience Department and MARUM, University of Bremen, Klagenfurter Str. 2, 28359 Bremen, Germany.
| |
Collapse
|
13
|
Yoon TJ, Patel LA, Ju T, Vigil MJ, Findikoglu AT, Currier RP, Maerzke KA. Thermodynamics, dynamics, and structure of supercritical water at extreme conditions. Phys Chem Chem Phys 2020; 22:16051-16062. [DOI: 10.1039/d0cp02288h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular dynamics (MD) simulations to understand the thermodynamic, dynamic, and structural changes in supercritical water across the Frenkel line and the melting line have been performed.
Collapse
Affiliation(s)
| | | | - Taeho Ju
- Los Alamos National Laboratory
- Los Alamos
- USA
| | | | | | | | | |
Collapse
|
14
|
The Rise of A Habitable Planet: Four Required Conditions for the Origin of Life in the Universe. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9020092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The advanced version of the author’s inversion concept of the origin of terrestrial life and its application for life in the Universe has been substantiated. A key step in the transition to life consists in the thermodynamic inversion of non-living prebiotic microsystems when the contributions of free energy (F) and information (I) become prevalent over the contribution of entropy (S). It is based the thermodynamic corridor that is mandatory for all chemical scenarios for the origin of life: F + I < S (prebiotic microsystem) → F + I ≈ S (intermediate stage, inversion moment) → F + I > S (primary living unit). A prebiotic organic microsystem can reach the intermediate state between non-life and life only under high-frequency and multilevel oscillations of physic-chemical parameters in hydrothermal environments. The oscillations are considered the fourth required condition for the origin of life, in addition to the three well-known ones: the availability of organic matter, an aqueous medium, and a source of energy. The emergence of initial life sparks in nonequilibrium prebiotic microsystems (being at the intermediate state) proceeds through the continuous response (counteraction) of prebiotic microsystems to incessant physic-chemical oscillations (stress). The next step of laboratory simulations on the origin of life directed to the exploration of the microsystems’ response to high-frequency oscillations (>10−10 s–<30 min) is proposed. Finally, some fragments of the general scenario of the origin of life in the Universe based on the whole four required conditions have been outlined.
Collapse
|
15
|
Kawamura K, Konagaya N, Maruoka Y. Enhancement and Inhibitory Activities of Minerals for Alanine Oligopeptide Elongation Under Hydrothermal Conditions. ASTROBIOLOGY 2018; 18:1403-1413. [PMID: 30160529 DOI: 10.1089/ast.2017.1732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In a previous study, we have showed that the elongation of an alanine oligopeptide [L-alanyl-L-alanyl-L-alanyl-L-alanine ((Ala)4)] to higher oligopeptides is enhanced by calcite and dolomite at 275°C, using a mineral-mediated hydrothermal flow reactor system. However, a problem during the use of hydrothermal flow reactor system was that some of the minerals, such as clay, could not be tested due to their clogging in the reactor. In this article, we attempted to analyze the scope of enhancement for the formation of L-alanyl-L-alanyl-L-alanyl-L-alanyl-L-alanine ((Ala)5) and higher oligopeptides with different minerals including clay minerals for the elongation of alanine oligopeptide at 175°C. First, carbonate minerals and some clay minerals showed an enhancement of the formation of (Ala)5 from (Ala)4. On the contrary, volcanic products showed strong inhibitory activities. According to the pH dependence on the (Ala)4 elongations, we confirmed that most enhancement and inhibitory activities are due to the pH influence on the elongation of (Ala)4. However, the enhancement of montmorillonite (Tsukinuno), sphalerite, apatite, tourmaline, calcite (Nitto Funka), and the inhibitory activities by volcanic ash (Shinmoedake), volcanic ash (Sakurajima), dickite, and pyrophillite are not simply due to the pH change in the presence of these minerals. The difference found between the previous and present studies suggests that the interaction kinetics of the aqueous phase with the mineral phase is also an important factor for the elongation of (Ala)4. These data imply that the environments with pH near neutral to weak alkaline and with minerals might have been useful for the accumulation of oligopeptides in hydrothermal conditions.
Collapse
Affiliation(s)
- Kunio Kawamura
- 1 Department of Human Environmental Studies, Hiroshima Shudo University , Hiroshima, Japan
| | - Noriko Konagaya
- 2 Department of Nutritional Sciences, Yasuda Women's University , Hiroshima, Japan
| | - Yoshimi Maruoka
- 1 Department of Human Environmental Studies, Hiroshima Shudo University , Hiroshima, Japan
| |
Collapse
|
16
|
Ronholm J, Goordial J, Sapers HM, Izawa MRM, Applin DM, Pontefract A, Omelon CR, Lamarche-Gagnon G, Cloutis EA, Whyte LG. Characterization of Microbial Communities Hosted in Quartzofeldspathic and Serpentinite Lithologies in Jeffrey Mine, Canada. ASTROBIOLOGY 2018; 18:1008-1022. [PMID: 29989429 DOI: 10.1089/ast.2017.1685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microbial ecology and activity of serpentine deposits and associated hydrated minerals are largely unknown. Previous research has largely focused on microbial communities in active serpentinizing systems, whereas relatively little research has demonstrated the ability of serpentine deposits to host microbial communities after the cessation of serpentinization. Given the potential role of serpentinization reactions fueling primitive microbial metabolisms on early Earth and the identification of serpentine deposits on Mars, knowledge of these geobiological relationships and potential for serpentine to host extant microbial communities and preserve biosignatures is increasingly important for planetary exploration seeking signs of life. The selection of habitable sites most likely to yield putative biosignatures is crucial to mission success. In this study, we aimed to characterize, on the basis of both metabolic activity and taxonomic composition, the microbial communities hosted in two naturally co-occurring and mineralogically distinct substrates within the serpentine-rich Jeffrey Mine pit-igneous quartzofeldspathic intrusives and serpentinite. Detection of heterotrophic activity in both lithologies at 24°C, and in serpentinite at -5°C, demonstrated that each substrate had the ability to host a viable microbial community, at Mars-relevant temperatures. Targeted amplicon sequencing subsequently showed the presence of bacterial, fungal, and photosynthetic microbial communities in both substrates. Here, we have demonstrated the presence of a viable lithic microbial community within two rock types in the Jeffrey Mine and provided evidence that lithologies associated with serpentine deposits and proximal hydrated minerals have the ability to support diverse prokaryotic and eukaryotic microbial colonization.
Collapse
Affiliation(s)
- Jennifer Ronholm
- 1 Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University , Ste Anne de Bellevue, Canada
- 2 Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University , Ste Anne de Bellevue, Canada
| | - Jacqueline Goordial
- 3 Department of Natural Resource Science, Faculty of Agricultural and Environmental Sciences, McGill University , Ste Anne de Bellevue, Canada
| | - Haley M Sapers
- 3 Department of Natural Resource Science, Faculty of Agricultural and Environmental Sciences, McGill University , Ste Anne de Bellevue, Canada
- 4 Department of Earth and Planetary Sciences, Centre for Planetary Science and Exploration, University of Western Ontario , London, Canada
| | - Matthew R M Izawa
- 5 Department of Geography, University of Winnipeg , Winnipeg, Canada
| | - Daniel M Applin
- 5 Department of Geography, University of Winnipeg , Winnipeg, Canada
| | - Alexandra Pontefract
- 6 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | | | - Guillaume Lamarche-Gagnon
- 3 Department of Natural Resource Science, Faculty of Agricultural and Environmental Sciences, McGill University , Ste Anne de Bellevue, Canada
| | - Edward A Cloutis
- 5 Department of Geography, University of Winnipeg , Winnipeg, Canada
| | - Lyle G Whyte
- 3 Department of Natural Resource Science, Faculty of Agricultural and Environmental Sciences, McGill University , Ste Anne de Bellevue, Canada
| |
Collapse
|
17
|
Rouillard J, García‐Ruiz J, Gong J, van Zuilen MA. A morphogram for silica-witherite biomorphs and its application to microfossil identification in the early earth rock record. GEOBIOLOGY 2018; 16:279-296. [PMID: 29485245 PMCID: PMC5947568 DOI: 10.1111/gbi.12278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/11/2018] [Indexed: 06/01/2023]
Abstract
Archean hydrothermal environments formed a likely site for the origin and early evolution of life. These are also the settings, however, were complex abiologic structures can form. Low-temperature serpentinization of ultramafic crust can generate alkaline, silica-saturated fluids in which carbonate-silica crystalline aggregates with life-like morphologies can self-assemble. These "biomorphs" could have adsorbed hydrocarbons from Fischer-Tropsch type synthesis processes, leading to metamorphosed structures that resemble carbonaceous microfossils. Although this abiogenic process has been extensively cited in the literature and has generated important controversy, so far only one specific biomorph type with a filamentous shape has been discussed for the interpretation of Archean microfossils. It is therefore critical to precisely determine the full distribution in morphology and size of these biomorphs, and to study the range of plausible geochemical conditions under which these microstructures can form. Here, a set of witherite-silica biomorph synthesis experiments in silica-saturated solutions is presented, for a range of pH values (from 9 to 11.5) and barium ion concentrations (from 0.6 to 40 mmol/L BaCl2 ). Under these varying conditions, a wide range of life-like structures is found, from fractal dendrites to complex shapes with continuous curvature. The size, spatial concentration, and morphology of the biomorphs are strongly controlled by environmental parameters, among which pH is the most important. This potentially limits the diversity of environments in which the growth of biomorphs could have occurred on Early Earth. Given the variety of the observed biomorph morphologies, our results show that the morphology of an individual microstructure is a poor criterion for biogenicity. However, biomorphs may be distinguished from actual populations of cellular microfossils by their wide, unimodal size distribution. Biomorphs grown by diffusion in silica gel can be differentiated by their continuous gradient in size, spatial density, and morphology along the direction of diffusion.
Collapse
Affiliation(s)
- J. Rouillard
- Equipe GéomicrobiologieInstitut de Physique du Globe de Paris, Sorbonne Paris CitéUniversité Paris Diderot, UMR 7154, CNRSParisFrance
| | - J.‐M. García‐Ruiz
- Laboratorio de Estudios CristalográficosInstituto Andaluz de Ciencias de la TierraConsejo Superior de Investígacìones Cientificas–Universidad de GranadaGranadaSpain
| | - J. Gong
- Equipe GéomicrobiologieInstitut de Physique du Globe de Paris, Sorbonne Paris CitéUniversité Paris Diderot, UMR 7154, CNRSParisFrance
| | - M. A. van Zuilen
- Equipe GéomicrobiologieInstitut de Physique du Globe de Paris, Sorbonne Paris CitéUniversité Paris Diderot, UMR 7154, CNRSParisFrance
| |
Collapse
|
18
|
Kawamura K. Hydrothermal Microflow Technology as a Research Tool for Origin-of-Life Studies in Extreme Earth Environments. Life (Basel) 2017; 7:E37. [PMID: 28974048 PMCID: PMC5745550 DOI: 10.3390/life7040037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/25/2017] [Accepted: 09/30/2017] [Indexed: 11/16/2022] Open
Abstract
Although studies about the origin of life are a frontier in science and a number of effective approaches have been developed, drawbacks still exist. Examples include: (1) simulation of chemical evolution experiments (which were demonstrated for the first time by Stanley Miller); (2) approaches tracing back the most primitive life-like systems (on the basis of investigations of present organisms); and (3) constructive approaches for making life-like systems (on the basis of molecular biology), such as in vitro construction of the RNA world. Naturally, simulation experiments of chemical evolution under plausible ancient Earth environments have been recognized as a potentially fruitful approach. Nevertheless, simulation experiments seem not to be sufficient for identifying the scenario from molecules to life. This is because primitive Earth environments are still not clearly defined and a number of possibilities should be taken into account. In addition, such environments frequently comprise extreme conditions when compared to the environments of present organisms. Therefore, we need to realize the importance of accurate and convenient experimental approaches that use practical research tools, which are resistant to high temperature and pressure, to facilitate chemical evolution studies. This review summarizes improvements made in such experimental approaches over the last two decades, focusing primarily on our hydrothermal microflow reactor technology. Microflow reactor systems are a powerful tool for performing simulation experiments in diverse simulated hydrothermal Earth conditions in order to measure the kinetics of formation and degradation and the interactions of biopolymers.
Collapse
Affiliation(s)
- Kunio Kawamura
- Department of Human Environmental Studies, Hiroshima Shudo University, Ozuka-higashi, Asaminami-ku, Hiroshima 731-3195, Japan.
| |
Collapse
|
19
|
Kobayashi K, Geppert WD, Carrasco N, Holm NG, Mousis O, Palumbo ME, Waite JH, Watanabe N, Ziurys LM. Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry. ASTROBIOLOGY 2017; 17:786-812. [PMID: 28727932 DOI: 10.1089/ast.2016.1492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution. Key Words: Methane-Interstellar environments-Submarine hydrothermal systems-Titan-Origin of life. Astrobiology 17, 786-812.
Collapse
Affiliation(s)
- Kensei Kobayashi
- 1 Department of Chemistry, Yokohama National University , Yokohama, Japan
| | - Wolf D Geppert
- 2 Department of Geological Sciences, Stockholm University , Stockholm, Sweden
| | - Nathalie Carrasco
- 3 LATMOS, Université Versailles St-Quentin , UPMC, CNRS, Guyancourt, France
| | - Nils G Holm
- 2 Department of Geological Sciences, Stockholm University , Stockholm, Sweden
| | - Olivier Mousis
- 4 Aix Marseille Université , CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Marseille, France
| | | | - J Hunter Waite
- 6 Southwest Research Institute , San Antonio, Texas, USA
| | - Naoki Watanabe
- 7 Institute of Low Temperature Science, Hokkaido University , Sapporo, Japan
| | - Lucy M Ziurys
- 8 Department of Astronomy, Department of Chemistry and Biochemistry, and Steward Observatory, University of Arizona , Tucson, Arizona, USA
| |
Collapse
|
20
|
Ikehara K. Evolutionary Steps in the Emergence of Life Deduced from the Bottom-Up Approach and GADV Hypothesis (Top-Down Approach). Life (Basel) 2016; 6:life6010006. [PMID: 26821048 PMCID: PMC4810237 DOI: 10.3390/life6010006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 02/05/2023] Open
Abstract
It is no doubt quite difficult to solve the riddle of the origin of life. So, firstly, I would like to point out the kinds of obstacles there are in solving this riddle and how we should tackle these difficult problems, reviewing the studies that have been conducted so far. After that, I will propose that the consecutive evolutionary steps in a timeline can be rationally deduced by using a common event as a juncture, which is obtained by two counter-directional approaches: one is the bottom-up approach through which many researchers have studied the origin of life, and the other is the top-down approach, through which I established the [GADV]-protein world hypothesis or GADV hypothesis on the origin of life starting from a study on the formation of entirely new genes in extant microorganisms. Last, I will describe the probable evolutionary process from the formation of Earth to the emergence of life, which was deduced by using a common event-the establishment of the first genetic code encoding [GADV]-amino acids-as a juncture for the results obtained from the two approaches.
Collapse
Affiliation(s)
- Kenji Ikehara
- G & L Kyosei Institute, Keihannna Labo-401, Hikaridai 1-7, Seika-cho, Sorakugun, Kyoto 619-0237, Japan.
- International Institute for Advanced Studies of Japan, Kizugawadai 9-3, Kizugawa, Kyoto 619-0225, Japan.
| |
Collapse
|
21
|
Michiels K, Peeraer B, Van Dun W, Spooren J, Meynen V. Hydrothermal conversion of carbon dioxide into formate with the aid of zerovalent iron: the potential of a two-step approach. Faraday Discuss 2015; 183:177-95. [PMID: 26394661 DOI: 10.1039/c5fd00104h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our research focuses on the hydrothermal conversion of carbon dioxide into formate with the aid of zerovalent iron. Conventionally, a one-step approach is applied wherein both (I) the production of hydrogen gas, through the oxidation of zerovalent iron in an aqueous medium and (II) the conversion of carbon dioxide with this hydrogen gas into formate/formic acid, are performed under the same reaction conditions at a temperature of approximately 300 °C. Until now, the yields of formate/formic acid mentioned in the literature are, in the absence of a catalytic substance, low (13.5%). Recently, we developed a hydrothermal hydrogen gas production method based on the oxidation of zerovalent iron and performed under mild conditions (temperature of 160 °C). This synthesis method produces hydrogen gas with a high purity (>99 mol%) and a significant yield (approximately 80 mol%). These experimental results suggested that the optimal hydrothermal reaction conditions for the production of hydrogen gas and the conversion of carbon dioxide, are strongly different in case of applying zerovalent iron as the reducing agent. Therefore, this paper studies the potential of a two-step approach to enhance the carbon conversion yields. The first step is the production of hydrogen gas via the developed method at 160 °C. The second step is the conversion of carbon dioxide at higher temperatures (250-350 °C). This study reveals that the solubility of hydrogen gas into the aqueous solution is a key parameter in order to achieve a high amount of carbon conversion. Therefore, a high temperature, the degree of filling and the initial hydrogen gas amount are necessary to successfully perform the carbon dioxide conversion step with high carbon conversion yields. Applying these insights have led to the experimental observation that via a two-step approach the conversion of potassium hydrogen carbonate into potassium formate can be successfully performed with higher carbon conversion yields, up to 77.9 wt%, and a selectivity of at least 81% when applying a reaction temperature of 280 °C for 24 hours, a degree of filling with water of 50 vol% and an initial amount of hydrogen gas of 100 mmol.
Collapse
Affiliation(s)
- K Michiels
- Waste Recycling Technologies, Sustainable Materials Management, Flemish Institute for Technological Research, VITO N.V., Boeretang 200, 2400 Mol, Belgium.
| | | | | | | | | |
Collapse
|
22
|
Kompanichenko VN, Poturay VA, Shlufman KV. Hydrothermal Systems of Kamchatka are Models of the Prebiotic Environment. ORIGINS LIFE EVOL B 2015; 45:93-103. [PMID: 25796393 DOI: 10.1007/s11084-015-9429-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/09/2014] [Indexed: 12/01/2022]
Abstract
The composition of organic matter and fluctuations of thermodynamic parameters were investigated in the hydrothermal systems of the Kamchatka peninsula in the context of the origin of life. Organics were analyzed by gas-chromatography/mass spectrometry, and 111 organic compounds belonging to 14 homologous series (aromatic hydrocarbons, alkanes and isoalkanes, halogenated aromatic hydrocarbons, carboxylic acids, esters, etc.) were found in hot springs inhabited by Archaeal and Bacterial thermophiles. The organics detected in the sterile condensate of water-steam mixture taken from deep boreholes (temperature 108-175 °C) consisted of 69 compounds of 11 homologous series, with aromatic hydrocarbons and alkanes being prevalent. The organic material included important prebiotic components such as nitrogen-containing compounds and lipid precursors. A separate organic phase (oil) was discovered in the Uzon Caldera. A biogenic origin is supported by the presence of sterane and hopane biomarkers and the δ(13)C value of the bulk oil; its age determined by (14)C measurements was 1030 ± 40 years. Multilevel fluctuations of thermodynamic parameters proposed to be required for the origin of life were determined in the Mutnovsky and Pauzhetsky hydrothermal systems. The low-frequency component of the hydrothermal fluid pressure varied by up to 2 bars over periods of hours to days, while mid-frequency variations had regular micro-oscillations with periods of about 20 min; the high-frequency component displayed sharp changes of pressure and microfluctuations with periods less than 5 min. The correlation coefficient between pressure and temperature ranges from 0.89 to 0.99 (average 0.96). The natural regimes of pressure and temperature fluctuations in Kamchatka hydrothermal systems can guide future experiments on prebiotic chemistry under oscillating conditions.
Collapse
Affiliation(s)
- V N Kompanichenko
- Institute for Complex Analysis, 4, Sholom Aleyhem St., Birobidzhan, 679016, Russia,
| | | | | |
Collapse
|
23
|
Cruz-Castañeda J, Negrón-Mendoza A, Frías D, Colín-García M, Heredia A, Ramos-Bernal S, Villafañe-Barajas S. Chemical evolution studies: the radiolysis and thermal decomposition of malonic acid. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3711-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Telegina TA, Kolesnikov MP, Vechtomova YL, Buglak AA, Kritsky MS. Abiotic photophosphorylation model based on abiogenic flavin and pteridine pigments. J Mol Evol 2013; 76:332-42. [PMID: 23689512 DOI: 10.1007/s00239-013-9562-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
A model for abiotic photophosphorylation of adenosine diphosphate by orthophosphate with the formation of adenosine triphosphate was studied. The model was based on the photochemical activity of the abiogenic conjugates of pigments with the polymeric material formed after thermolysis of amino acid mixtures. The pigments formed showed different fluorescence parameters depending on the composition of the mixture of amino acid precursors. Thermolysis of the mixture of glutamic acid, glycine, and lysine (8:3:1) resulted in a predominant formation of a pigment fraction which had the fluorescence maximum at 525 nm and the excitation band maxima at 260, 375, and 450 nm and was identified as flavin. When glycine in the initial mixture was replaced with alanine, a product formed whose fluorescence parameters were typical to pteridines (excitation maximum at 350 nm, emission maximum at 440 nm). When irradiated with the quasi-monochromatic light (over the range 325-525 nm), microspheres in which flavin pigments were prevailing showed a maximum photophosphorylating activity at 375 and 450 nm, and pteridine-containing chromoproteinoid microspheres were most active at 350 nm. The positions and the relative height of maxima in the action spectra correlate with those in the excitation spectra of the pigments, which point to the involvement of abiogenic flavins and pteridines in photophosphorylation.
Collapse
Affiliation(s)
- Taisiya A Telegina
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, 33-2, Leninsky Prospekt, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
25
|
Stüeken EE, Anderson RE, Bowman JS, Brazelton WJ, Colangelo-Lillis J, Goldman AD, Som SM, Baross JA. Did life originate from a global chemical reactor? GEOBIOLOGY 2013; 11:101-126. [PMID: 23331348 DOI: 10.1111/gbi.12025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 12/03/2012] [Indexed: 06/01/2023]
Abstract
Many decades of experimental and theoretical research on the origin of life have yielded important discoveries regarding the chemical and physical conditions under which organic compounds can be synthesized and polymerized. However, such conditions often seem mutually exclusive, because they are rarely encountered in a single environmental setting. As such, no convincing models explain how living cells formed from abiotic constituents. Here, we propose a new approach that considers the origin of life within the global context of the Hadean Earth. We review previous ideas and synthesize them in four central hypotheses: (i) Multiple microenvironments contributed to the building blocks of life, and these niches were not necessarily inhabitable by the first organisms; (ii) Mineral catalysts were the backbone of prebiotic reaction networks that led to modern metabolism; (iii) Multiple local and global transport processes were essential for linking reactions occurring in separate locations; (iv) Global diversity and local selection of reactants and products provided mechanisms for the generation of most of the diverse building blocks necessary for life. We conclude that no single environmental setting can offer enough chemical and physical diversity for life to originate. Instead, any plausible model for the origin of life must acknowledge the geological complexity and diversity of the Hadean Earth. Future research may therefore benefit from identifying further linkages between organic precursors, minerals, and fluids in various environmental contexts.
Collapse
Affiliation(s)
- E E Stüeken
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Longo LM, Blaber M. Protein design at the interface of the pre-biotic and biotic worlds. Arch Biochem Biophys 2012; 526:16-21. [DOI: 10.1016/j.abb.2012.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/23/2012] [Indexed: 12/01/2022]
|
27
|
Kompanichenko VN. Inversion concept of the origin of life. ORIGINS LIFE EVOL B 2012; 42:153-78. [PMID: 22644566 DOI: 10.1007/s11084-012-9279-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/18/2012] [Indexed: 11/29/2022]
Abstract
The essence of the inversion concept of the origin of life can be narrowed down to the following theses: 1) thermodynamic inversion is the key transformation of prebiotic microsystems leading to their transition into primary forms of life; 2) this transformation might occur only in the microsystems oscillating around the bifurcation point under far-from-equilibrium conditions. The transformation consists in the inversion of the balance "free energy contribution / entropy contribution", from negative to positive values. At the inversion moment the microsystem radically reorganizes in accordance with the new negentropy (i.e. biological) way of organization. According to this approach, the origin-of-life process on the early Earth took place in the fluctuating hydrothermal medium. The process occurred in two successive stages: a) spontaneous self-assembly of initial three-dimensional prebiotic microsystems composed mainly of hydrocarbons, lipids and simple amino acids, or their precursors, within the temperature interval of 100-300°C (prebiotic stage); b) non-spontaneous synthesis of sugars, ATP and nucleic acids started at the inversion moment under the temperature 70-100°C (biotic stage). Macro- and microfluctuations of thermodynamic and physico-chemical parameters able to sustain this way of chemical conversion have been detected in several contemporary hydrothermal systems. A minimal self-sufficient unit of life on the early Earth was a community of simplest microorganisms (not a separate microorganism).
Collapse
Affiliation(s)
- V N Kompanichenko
- Institute for Complex Analysis, 4 Sholom Aleyhem St, Birobidzhan, 679016, Russia.
| |
Collapse
|
28
|
Balucani N. Elementary reactions of N atoms with hydrocarbons: first steps towards the formation of prebiotic N-containing molecules in planetary atmospheres. Chem Soc Rev 2012; 41:5473-83. [PMID: 22705670 DOI: 10.1039/c2cs35113g] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Nadia Balucani
- Dipartimento di Chimica, Università degli Studi di Perugia, Perugia, Italy.
| |
Collapse
|
29
|
Jorge-Villar SE, Edwards HGM, Benning LG. Raman spectroscopic analysis of arctic nodules: relevance to the astrobiological exploration of Mars. Anal Bioanal Chem 2011; 401:2927-33. [DOI: 10.1007/s00216-011-5385-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
|
30
|
Carneiro CEA, de Santana H, Casado C, Coronas J, Zaia DAM. Adsorption of amino acids (ALA, CYS, HIS, MET) on zeolites: fourier transform infrared and Raman spectroscopy investigations. ASTROBIOLOGY 2011; 11:409-418. [PMID: 21671763 DOI: 10.1089/ast.2010.0521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Minerals adsorb more amino acids with charged R-groups than amino acids with uncharged R-groups. Thus, the peptides that form from the condensation of amino acids on the surface of minerals should be composed of amino acid residues that are more charged than uncharged. However, most of the amino acids (74%) in today's proteins have an uncharged R-group. One mechanism with which to solve this paradox is the use of organophilic minerals such as zeolites. Over the range of pH (pH 2.66-4.50) used in these experiments, the R-group of histidine (His) is positively charged and neutral for alanine (Ala), cysteine (Cys), and methionine (Met). In acidic hydrothermal environments, the pH could be even lower than those used in this study. For the pH range studied, the zeolites were negatively charged, and the overall charge of all amino acids was positive. The conditions used here approximate those of prebiotic Earth. The most important finding of this work is that the relative concentrations of each amino acid (X=His, Met, Cys) to alanine (X/Ala) are close to 1.00. This is an important result with regard to prebiotic chemistry because it could be a solution for the paradox stated above. Pore size did not affect the adsorption of Cys and Met on zeolites, and the Si/Al ratio did not affect the adsorption of Cys, His, and Met. ZSM-5 could be used for the purification of Cys from other amino acids (Student-Newman-Keuls test, p<0.05), and mordenite could be used for separation of amino acids from each other (Student-Newman-Keuls test, p<0.05). As shown by Fourier transform infrared (FT-IR) spectra, Ala interacts with zeolites through the [Formula: see text] group, and methionine-zeolite interactions involve the COO, [Formula: see text], and CH(3) groups. FT-IR spectra show that the interaction between the zeolites and His is weak. Cys showed higher adsorption on all zeolites; however, the hydrophobic Van der Waals interaction between zeolites and Cys is too weak to produce any structural changes in the Cys groups (amine, carboxylic, sulfhydryl, etc.); thus, the FT-IR and Raman spectra are the same as those of solid Cys.
Collapse
|
31
|
Ehrenfreund P, Spaans M, Holm NG. The evolution of organic matter in space. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:538-554. [PMID: 21220279 DOI: 10.1098/rsta.2010.0231] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Carbon, and molecules made from it, have already been observed in the early Universe. During cosmic time, many galaxies undergo intense periods of star formation, during which heavy elements like carbon, oxygen, nitrogen, silicon and iron are produced. Also, many complex molecules, from carbon monoxide to polycyclic aromatic hydrocarbons, are detected in these systems, like they are for our own Galaxy. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly high number of molecules that are used in contemporary biochemistry on the Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites and interplanetary dust particles. Large quantities of extra-terrestrial material were delivered via comets and asteroids to young planetary surfaces during the heavy bombardment phase. Monitoring the formation and evolution of organic matter in space is crucial in order to determine the prebiotic reservoirs available to the early Earth. It is equally important to reveal abiotic routes to prebiotic molecules in the Earth environments. Materials from both carbon sources (extra-terrestrial and endogenous) may have contributed to biochemical pathways on the Earth leading to life's origin. The research avenues discussed also guide us to extend our knowledge to other habitable worlds.
Collapse
Affiliation(s)
- Pascale Ehrenfreund
- Space Policy Institute, 1957 E Street, Suite 403, Washington, DC 20052, USA.
| | | | | |
Collapse
|
32
|
Edwards HGM. Raman spectroscopic approach to analytical astrobiology: the detection of key geological and biomolecular markers in the search for life. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:3059-3065. [PMID: 20529944 DOI: 10.1098/rsta.2010.0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Howell G M Edwards
- Centre for Astrobiology and Extremophiles Research, School of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
33
|
Holm NG, Neubeck A. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis. GEOCHEMICAL TRANSACTIONS 2009; 10:9. [PMID: 19849830 PMCID: PMC2770064 DOI: 10.1186/1467-4866-10-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 10/22/2009] [Indexed: 05/28/2023]
Abstract
Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.
Collapse
Affiliation(s)
- Nils G Holm
- Department of Geology and Geochemistry, Stockholm University, Stockholm, Sweden
| | - Anna Neubeck
- Department of Geology and Geochemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
34
|
Balucani N. Elementary reactions and their role in gas-phase prebiotic chemistry. Int J Mol Sci 2009; 10:2304-2335. [PMID: 19564951 PMCID: PMC2695279 DOI: 10.3390/ijms10052304] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 11/23/2022] Open
Abstract
The formation of complex organic molecules in a reactor filled with gaseous mixtures possibly reproducing the primitive terrestrial atmosphere and ocean demonstrated more than 50 years ago that inorganic synthesis of prebiotic molecules is possible, provided that some form of energy is provided to the system. After that groundbreaking experiment, gas-phase prebiotic molecules have been observed in a wide variety of extraterrestrial objects (including interstellar clouds, comets and planetary atmospheres) where the physical conditions vary widely. A thorough characterization of the chemical evolution of those objects relies on a multi-disciplinary approach: 1) observations allow us to identify the molecules and their number densities as they are nowadays; 2) the chemistry which lies behind their formation starting from atoms and simple molecules is accounted for by complex reaction networks; 3) for a realistic modeling of such networks, a number of experimental parameters are needed and, therefore, the relevant molecular processes should be fully characterized in laboratory experiments. A survey of the available literature reveals, however, that much information is still lacking if it is true that only a small percentage of the elementary reactions considered in the models have been characterized in laboratory experiments. New experimental approaches to characterize the relevant elementary reactions in laboratory are presented and the implications of the results are discussed.
Collapse
Affiliation(s)
- Nadia Balucani
- Dipartimento di Chimica, Università degli Studi di Perugia, 06123 Perugia, Italy; E-Mail:
; Tel. +39-075-585-5513; Fax: +39-075-585-5606
| |
Collapse
|
35
|
Lemke KH, Rosenbauer RJ, Bird DK. Peptide synthesis in early Earth hydrothermal systems. ASTROBIOLOGY 2009; 9:141-146. [PMID: 19371157 DOI: 10.1089/ast.2008.0166] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260 degrees C with those obtained at more moderate temperatures (160 degrees C) gives evidence of a significant (13 kJ . mol(-1)) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life.
Collapse
Affiliation(s)
- Kono H Lemke
- Department of Geological and Environmental Sciences, Stanford University, Stanford, California, USA.
| | | | | |
Collapse
|
36
|
Zaia DAM, Zaia CTBV, De Santana H. Which amino acids should be used in prebiotic chemistry studies? ORIGINS LIFE EVOL B 2008; 38:469-88. [PMID: 18925425 DOI: 10.1007/s11084-008-9150-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 09/30/2008] [Indexed: 11/25/2022]
Abstract
The adsorption of amino acids on minerals and their condensation under conditions that resemble those of prebiotic earth is a well studied subject. However, which amino acids should be used in these experiments is still an open question. The main goal of this review is to attempt to answer this question. There were two sources of amino acids for the prebiotic earth: (1) exogenous -- meaning that the amino acids were synthesized outside the earth and delivered to our planet by interplanetary dust particles (IDPs), meteorites, comets, etc. and (2) endogenous -- meaning that they were synthesized on earth in atmospheric mixtures, hydrothermal vents, etc. For prebiotic chemistry studies, the use of a mixture of amino acids from both endogenous and exogenous sources is suggested. The exogenous contribution of amino acids to this mixture is very different from the average composition of proteins, and contains several non-protein amino acids. On the other hand, the mixture of amino acids from endogenous sources is seems to more closely resemble the amino acid composition of terrestrial proteins.
Collapse
Affiliation(s)
- Dimas A M Zaia
- Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| | | | | |
Collapse
|
37
|
LaRowe DE, Regnier P. Thermodynamic potential for the abiotic synthesis of adenine, cytosine, guanine, thymine, uracil, ribose, and deoxyribose in hydrothermal systems. ORIGINS LIFE EVOL B 2008; 38:383-97. [PMID: 18574710 DOI: 10.1007/s11084-008-9137-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 04/16/2008] [Indexed: 10/21/2022]
Abstract
The thermodynamic potential for the abiotic synthesis of the five common nucleobases (adenine, cytosine, guanine, thymine, and uracil) and two monosaccharides (ribose and deoxyribose) from formaldehyde and hydrogen cyanide has been quantified under temperature, pressure, and bulk composition conditions that are representative of hydrothermal systems. The activities of the precursor molecules (formaldehyde and hydrogen cyanide) required to evaluate the thermodynamics of biomolecule synthesis were computed using the concentrations of aqueous N2, CO, CO2 and H2 reported in the modern Rainbow hydrothermal system. The concentrations of precursor molecules that can be synthesized are strongly dependent on temperature with larger concentrations prevailing at lower temperatures. Similarly, the thermodynamic drive to synthesize nucleobases, ribose and deoxyribose varies considerably as a function of temperature: all of the biomolecules considered in this study are thermodynamically favored to be synthesized throughout the temperature range from 0 degrees C to between 150 degrees C and 250 degrees C, depending on the biomolecule. Furthermore, activity diagrams have been generated to illustrate that activities in the range of 10(-2)- 10(-6) for nucleobases, ribose and deoxyribose can be in equilibrium with a range of precursor molecule activities at 150 degrees C and 500 bars. The results presented here support the notion that hydrothermal systems could have played a fundamental role in the origin of life, and can be used to plan and constrain experimental investigation of the abiotic synthesis of nucleic-acid related biomolecules.
Collapse
Affiliation(s)
- Douglas E LaRowe
- Department of Earth Sciences-Geochemistry, Faculty of Geosciences, Utrecht University, P.O. Box 80.021, TA 3508, Utrecht, The Netherlands.
| | | |
Collapse
|
38
|
Kolesnikov MP, Telegina TA, Lyudnikova TA, Kritsky MS. Abiogenic photophosphorylation of ADP to ATP sensitized by flavoproteinoid microspheres. ORIGINS LIFE EVOL B 2008; 38:243-55. [PMID: 18386156 DOI: 10.1007/s11084-008-9130-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Accepted: 02/13/2008] [Indexed: 11/27/2022]
Abstract
A model for abiogenic photophosphorylation of ADP by orthophosphate to yield ATP was studied. The model is based on the photochemical activity of flavoproteinoid microspheres that are formed by aggregation in an aqueous medium of products of thermal condensation of a glutamic acid, glycine and lysine mixture (8:3:1) and contain, along with amino acid polymers (proteinoids), abiogenic isoalloxazine (flavin) pigments. Irradiation of aqueous suspensions of microspheres with blue visible light or ultraviolet in the presence of ADP and orthophosphate resulted in ATP formation. The yield of ATP in aerated suspensions was 10-20% per one mol of starting ADP. Deaeration reduced the photophosphorylating activity of microspheres five to 10 times. Treatment of aerated microsphere suspensions with superoxide dismutase during irradiation partially suppressed ATP formation. Deaerated microspheres restored completely their photophosphorylating activity after addition of hydrogen peroxide to the suspension. The photophosphorylating activity of deaerated suspensions of flavoproteinoid microspheres was also recovered by introduction of Fe3+-cytochrome c, an electron acceptor alternative to oxygen. On the basis of the results obtained, a chemical mechanism of phosphorylation is proposed in which the free radical form of reduced flavin sensitizer (F1H*) and ADP are involved.
Collapse
Affiliation(s)
- Michael P Kolesnikov
- A.N.Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospekt 33, Bldg. 2, Moscow, 119071, Russia
| | | | | | | |
Collapse
|
39
|
Adsorption of nucleic acid bases on clays: an investigation using Langmuir and Freundlich isotherms and FT-IR spectroscopy. MONATSHEFTE FUR CHEMIE 2008. [DOI: 10.1007/s00706-008-0862-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
40
|
Ji F, Zhou H, Yang Q. The abiotic formation of hydrocarbons from dissolved CO2 under hydrothermal conditions with cobalt-bearing magnetite. ORIGINS LIFE EVOL B 2008; 38:117-25. [PMID: 18288587 DOI: 10.1007/s11084-008-9124-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
Abstract
Conversion of CO(2) to organic compounds in hydrothermal systems is important in understanding prebiotic chemical evolution leading to the origin of life. However, organic compounds with carbon number of more than 3 have never been produced from dissolved CO(2) in simulated hydrothermal experiments. In this paper, we report that not only CH(4), C(2)H(6) and C(3)H(8), but also n-C(4)H(10) and n-C(5)H(12) could be produced from dissolved CO(2) and H(2) in the presence of cobalt-bearing magnetite at 300 degrees C and 30 MPa. It is shown that unbranched alkanes in Anderson-Schulz-Flory distribution were the dominant hydrocarbon products produced from dissolved CO(2) catalyzed by cobalt-bearing magnetite under certain hydrothermal conditions. It is proposed that magnetite with other transition metals may act potentially as effective mineral catalysts for abiotic formation of organic compounds from dissolved CO(2) in hydrothermal systems.
Collapse
Affiliation(s)
- Fuwu Ji
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | | | | |
Collapse
|
41
|
Benetoli LOB, de Souza CMD, da Silva KL, de Souza IG, de Santana H, Paesano A, da Costa ACS, Zaia CTBV, Zaia DAM. Amino acid interaction with and adsorption on clays: FT-IR and Mössbauer spectroscopy and X-ray diffractometry investigations. ORIGINS LIFE EVOL B 2007; 37:479-93. [PMID: 17578677 DOI: 10.1007/s11084-007-9072-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 04/06/2007] [Indexed: 11/28/2022]
Abstract
In the present paper, the adsorption of amino acids (Ala, Met, Gln, Cys, Asp, Lys, His) on clays (bentonite, kaolinite) was studied at different pH (3.00, 6.00, 8.00). The amino acids were dissolved in seawater, which contains the major elements. There were two main findings in this study. First, amino acids with a charged R group (Asp, Lys, His) and Cys were adsorbed on clays more than Ala, Met and Gln (uncharged R groups). However, 74% of the amino acids in the proteins of modern organisms have uncharged R groups. These results raise some questions about the role of minerals in providing a prebiotic concentration mechanism for amino acids. Several mechanisms are also discussed that could produce peptide with a greater proportion of amino acids with uncharged R groups. Second, Cys could play an important role in prebiotic chemistry besides participating in the structure of peptides/proteins. The FT-IR spectra showed that the adsorption of amino acids on the clays occurs through the amine group. However, the Cys/clay interaction occurs through the sulfhydryl and amine groups. X-ray diffractometry showed that pH affects the bentonite interlayer, and at pH 3.00 the expansion of Cys/bentonite was greater than that of the samples of ethylene glycol/bentonite saturated with Mg. The Mössbauer spectrum for the sample with absorbed Cys showed a large increase ( approximately 20%) in ferrous ions. This means that Cys was able to partially reduce iron present in bentonite. This result is similar to that which occurs with aconitase where the ferric ions are reduced to Fe 2.5.
Collapse
Affiliation(s)
- Luís O B Benetoli
- Departamento de Química-CCE, Universidade Estadual de Londrina, 86051-990 Londrina-PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Edwards HGM. Question 2: Raman spectroscopic approach to analytical astrobiology: the detection of key biomolecular markers in the search for life. ORIGINS LIFE EVOL B 2007; 37:335-9. [PMID: 17592755 DOI: 10.1007/s11084-007-9079-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 04/17/2007] [Indexed: 11/30/2022]
Abstract
The recognition of extinct or extant life signatures in the terrestrial geological record is fundamentally dependent upon the understanding of both the structural morphology and chemical composition of relict biomaterials; the identification of cyanobacterial colonies that have adapted biogeologically their mineral matrices in early evolutionary processes is a fundamental step in the acquisition of analytical data from remote planetary probes designed for life-detection experiments, particularly on Mars and on the planetary satellite moons, Europa and Titan. A key factor in the assessment of early life signatures is the molecular presence of chemicals designed to protect the emerging organisms from the damaging effect of radiation exposure and of desiccation and temperature changes; in this respect the non-destructive capability of Raman spectroscopy to delineate the interfacial interactions between substrates and endolithic biology is now deemed an essential part of the ExoMars life-detection suite of instrumentation planned by the European Space Agency in the AURORA programme. A description of the scientific basis for the biogeological discrimination offered by Raman spectroscopy between organic and inorganic moieties in specimens from terrestrial Mars analogue sites is followed by selected examples of the type of analytical information provided, which will be complementary to the elementary and microscopic data obtained from other instrumentation on the same mission.
Collapse
Affiliation(s)
- Howell G M Edwards
- Centre for Astrobiology and Extremophiles Research, University Analytical Centre, Chemical & Forensic Sciences, School of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
43
|
McCollom TM, Seewald JS. Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem Rev 2007; 107:382-401. [PMID: 17253758 DOI: 10.1021/cr0503660] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas M McCollom
- CU Center for Astrobiology & Laboratory for Atmospheric and Space Physics, Campus Box 392, University of Colorado, Boulder, Colorado 80309-0392, USA.
| | | |
Collapse
|
44
|
|
45
|
Bernstein M. Prebiotic materials from on and off the early Earth. Philos Trans R Soc Lond B Biol Sci 2006; 361:1689-700; discussion 1700-2. [PMID: 17008210 PMCID: PMC1664678 DOI: 10.1098/rstb.2006.1913] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the greatest puzzles of all time is how did life arise? It has been universally presumed that life arose in a soup rich in carbon compounds, but from where did these organic molecules come? In this article, I will review proposed terrestrial sources of prebiotic organic molecules, such as Miller-Urey synthesis (including how they would depend on the oxidation state of the atmosphere) and hydrothermal vents and also input from space. While the former is perhaps better known and more commonly taught in school, we now know that comet and asteroid dust deliver tons of organics to the Earth every day, therefore this flux of reduced carbon from space probably also played a role in making the Earth habitable. We will compare and contrast the types and abundances of organics from on and off the Earth given standard assumptions. Perhaps each process provided specific compounds (amino acids, sugars, amphiphiles) that were directly related to the origin or early evolution of life. In any case, whether planetary, nebular or interstellar, we will consider how one might attempt to distinguish between abiotic organic molecules from actual signs of life as part of a robotic search for life in the Solar System.
Collapse
|
46
|
Holm NG, Dumont M, Ivarsson M, Konn C. Alkaline fluid circulation in ultramafic rocks and formation of nucleotide constituents: a hypothesis. GEOCHEMICAL TRANSACTIONS 2006; 7:7. [PMID: 16867193 PMCID: PMC1550712 DOI: 10.1186/1467-4866-7-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 07/25/2006] [Indexed: 05/11/2023]
Abstract
Seawater is constantly circulating through oceanic basement as a low-temperature hydrothermal fluid (<150 degrees C). In cases when ultramafic rocks are exposed to the fluids, for instance during the initial phase of subduction, ferromagnesian minerals are altered in contact with the water, leading to high pH and formation of secondary magnesium hydroxide, among other--brucite, that may scavenge borate and phosphate from seawater. The high pH may promote abiotic formation of pentoses, particularly ribose. Pentoses are stabilized by borate, since cyclic pentoses form a less reactive complex with borate. Analyses have shown that borate occupies the 2' and 3' positions of ribose, thus leaving the 5' position available for reactions like phosphorylation. The purine coding elements (adenine, in particular) of RNA may be formed in the same general hydrothermal environments of the seafloor.
Collapse
Affiliation(s)
- Nils G Holm
- Dept. of Geology and Geochemistry, Stockholm University, Stockholm, Sweden
| | - Marion Dumont
- Dept. of Geology and Geochemistry, Stockholm University, Stockholm, Sweden
| | - Magnus Ivarsson
- Dept. of Geology and Geochemistry, Stockholm University, Stockholm, Sweden
| | - Cécile Konn
- Dept. of Geology and Geochemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|