1
|
Rossetto D, Nader S, Kufner CL, Lozano GG, Cerofolini L, Fragai M, Martin-Diaconescu V, Zambelli B, Ciurli S, Guella G, Szabla R, Sasselov DD, Mansy SS. Preferential survival of prebiotic metallopeptides in the presence of ultraviolet light. Chem Sci 2025:d5sc02170g. [PMID: 40438176 PMCID: PMC12108965 DOI: 10.1039/d5sc02170g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
The transition from unregulated, prebiotic chemistry to metabolic-like systems capable of supporting an evolving protocell has remained difficult to explain. One hypothesis is that early catalysts began to prune the chemical landscape in a manner that facilitated the emergence of modern-day enzymes. As enzymes frequently rely on the intrinsic reactivity of metal ions, it follows that these early catalysts may have been metal ions coordinated to prebiotic peptides that have remained as core structures within extant proteins. Here, we demonstrate that UV light directly selects for the types of metal-binding peptide motifs found in biology. This is because bare cysteine is much more susceptible to photolysis than cysteine bound by a metal ion. Therefore, peptides with greater affinity for environmentally available metal ions, such as Fe2+ or Zn2+, are more stable. Our results are supported by mass spectrometry, calorimetry, X-ray absorption, NMR spectroscopy, transient absorption pump probe spectroscopy, and excited-state quantum-chemical calculations. Photostability arises from the ability of the metal ion to engage transiently generated reactive radical centers in a manner that prevents subsequent degradative processes. The data are consistent with the enrichment of a restricted set of high affinity, extant-like metallopeptides in surficial environments on the early Earth.
Collapse
Affiliation(s)
- Daniele Rossetto
- DiCIBIO, University of Trento 38123 Povo Italy
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Serge Nader
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Corinna L Kufner
- Department of Astronomy, Harvard University 60 Garden Street Cambridge Massachusetts 02138 USA
| | - Gabriella G Lozano
- Department of Astronomy, Harvard University 60 Garden Street Cambridge Massachusetts 02138 USA
| | - Linda Cerofolini
- Magnetic Resonance Centre (CERM), Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Department of Chemistry "Ugo Schiff", University of Florence Sesto Fiorentino Italy
| | - Marco Fragai
- Magnetic Resonance Centre (CERM), Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Department of Chemistry "Ugo Schiff", University of Florence Sesto Fiorentino Italy
| | | | - Barbara Zambelli
- Laboratory of Bio-Inorganic Chemistry (LBIC), Department of Pharmacy and Biotechnology, University of Bologna Bologna Italy
| | - Stefano Ciurli
- Laboratory of Bio-Inorganic Chemistry (LBIC), Department of Pharmacy and Biotechnology, University of Bologna Bologna Italy
| | - Graziano Guella
- Department of Physics, University of Trento 38123 Povo Italy
| | - Rafał Szabla
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology Wrocław Poland
- Department of Physics, Faculty of Science, University of Ostrava 30. dubna 22 701 03 Ostrava Czech Republic
| | - Dimitar D Sasselov
- Department of Astronomy, Harvard University 60 Garden Street Cambridge Massachusetts 02138 USA
| | - Sheref S Mansy
- DiCIBIO, University of Trento 38123 Povo Italy
- Department of Chemistry, University of Alberta Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
2
|
Drachman N, Vietorisz J, Winchester AJ, Vest R, Cooksey GA, Pookpanratana S, Stein D. Photolysis of the peptide bond at 193 and 222 nm. J Chem Phys 2025; 162:165104. [PMID: 40277086 PMCID: PMC12033046 DOI: 10.1063/5.0257551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Ultraviolet (UV) light is a well-established tool for fragmenting peptides in vacuum. This study investigates the fragmentation of peptides using 193 and 222 nm light in aqueous solution. Changes in the absorption spectra of solutions of the model dipeptide glycylglycine are monitored using a combination of real-time in situ transmission measurements and UV-Vis spectroscopy to report peptide bond scission following UV irradiation. Irradiation by a broadband ultraviolet light source flattens the absorbance peak centered near 193 nm, indicating cleavage of peptide bonds. Irradiation with low-intensity, monochromatic 193 and 222 nm light enabled measurements of the single-photon quantum yield of peptide bond scission, found to be (1.50 ± 0.12)% at 193 nm and (0.16 ± 0.03)% at 222 nm. These findings indicate that peptides may be fragmented in solution prior to emission into a mass spectrometer for new types of single-molecule analyses. The susceptibility of peptide bonds to ultraviolet radiation also suggests limited lifetimes for peptides on the early Earth's surface, which are relevant to theories of the origins-of-life, and suggests a role for protein damage in explanations of the germicidal effect of 222 nm light exposure.
Collapse
Affiliation(s)
| | - Jacob Vietorisz
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Andrew J. Winchester
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Robert Vest
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Gregory A. Cooksey
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Sujitra Pookpanratana
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Derek Stein
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
3
|
Matsuo T, Ito-Miwa K, Hoshino Y, Fujii YI, Kanno S, Fujimoto KJ, Tsuji R, Takeda S, Onami C, Arai C, Yoshiyama Y, Mino Y, Kato Y, Yanai T, Fujita Y, Masuda S, Kakegawa T, Miyashita H. Archaean green-light environments drove the evolution of cyanobacteria's light-harvesting system. Nat Ecol Evol 2025; 9:599-612. [PMID: 39966498 PMCID: PMC11976284 DOI: 10.1038/s41559-025-02637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
Cyanobacteria induced the great oxidation event around 2.4 billion years ago, probably triggering the rise in aerobic biodiversity. While chlorophylls are universal pigments used by all phototrophic organisms, cyanobacteria use additional pigments called phycobilins for their light-harvesting antennas-phycobilisomes-to absorb light energy at complementary wavelengths to chlorophylls. Nonetheless, an enigma persists: why did cyanobacteria need phycobilisomes? Here, we demonstrate through numerical simulations that the underwater light spectrum during the Archaean era was probably predominantly green owing to oxidized Fe(III) precipitation. The green-light environments, probably shaped by photosynthetic organisms, may have directed their own photosynthetic evolution. Genetic engineering of extant cyanobacteria, simulating past natural selection, suggests that cyanobacteria that acquired a green-specialized phycobilin called phycoerythrobilin could have flourished under green-light environments. Phylogenetic analyses indicate that the common ancestor of modern cyanobacteria embraced all key components of phycobilisomes to establish an intricate energy transfer mechanism towards chlorophylls using green light and thus gained strong selective advantage under green-light conditions. Our findings highlight the co-evolutionary relationship between oxygenic phototrophs and light environments that defined the aquatic landscape of the Archaean Earth and envision the green colour as a sign of the distinct evolutionary stage of inhabited planets.
Collapse
Affiliation(s)
- Taro Matsuo
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan.
- Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| | - Kumiko Ito-Miwa
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Yosuke Hoshino
- GFZ German Research Centre for Geosciences, Potsdam, Germany
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, Japan
| | - Yuri I Fujii
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Satomi Kanno
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Rio Tsuji
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shinnosuke Takeda
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Chieko Onami
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Chihiro Arai
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yoko Yoshiyama
- Department of Life Sciences, Faculty of Agriculture, Ryukoku University, Shiga, Japan
| | - Yoshihisa Mino
- Institute for Space-Earth Environment Research, Nagoya University, Nagoya, Japan
| | - Yuki Kato
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shinji Masuda
- Department of Life Science & Technology, Institute of Science Tokyo, Yokohama, Japan
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
| | | | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
5
|
Nan J, Luo S, Tran QP, Fahrenbach AC, Lu WN, Hu Y, Yin Z, Ye J, Van Kranendonk MJ. Iron sulfide-catalyzed gaseous CO 2 reduction and prebiotic carbon fixation in terrestrial hot springs. Nat Commun 2024; 15:10280. [PMID: 39609396 PMCID: PMC11605115 DOI: 10.1038/s41467-024-54062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024] Open
Abstract
Understanding abiotic carbon fixation provides insights into early Earth's carbon cycles and life's emergence in terrestrial hot springs, where iron sulfide (FeS), similar to cofactors in metabolic enzymes, may catalyze prebiotic synthesis. However, the role of FeS-mediated carbon fixation in such conditions remains underexplored. Here, we investigate the catalytic behaviors of FeS (pure and doped with Ti, Ni, Mn, and Co), which are capable of H2-driven CO2 reduction to methanol under simulated hot spring vapor-zone conditions, using an anaerobic flow chamber connected to a gas chromatograph. Specifically, Mn-doped FeS increases methanol production five-fold at 120 °C, with UV-visible light (300-720 nm) and UV-enhanced light (200-600 nm) further increasing this activity. Operando and theoretical investigations indicate the mechanism involves a reverse water-gas shift with CO as an intermediate. These findings highlight the potential of FeS-catalyzed carbon fixation in early Earth's terrestrial hot springs, effective with or without UV light.
Collapse
Affiliation(s)
- Jingbo Nan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Shunqin Luo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Quoc Phuong Tran
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Albert C Fahrenbach
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wen-Ning Lu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- National Key Laboratory of Uranium Resource Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, 330013, Nanchang, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, 330013, Nanchang, China
| | - Yingjie Hu
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, 211171, Nanjing, China
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jinhua Ye
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-0814, Japan.
- TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, 300072, Tianjin, China.
| | - Martin J Van Kranendonk
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Earth and Planetary Sciences, Curtin University, Bentley, 6845, Western Australia
| |
Collapse
|
6
|
Scherf M, Lammer H, Spross L. Eta-Earth Revisited II: Deriving a Maximum Number of Earth-Like Habitats in the Galactic Disk. ASTROBIOLOGY 2024; 24:e916-e1061. [PMID: 39481023 DOI: 10.1089/ast.2023.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N2-O2-dominated atmospheres with minor amounts of CO2 can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO2 mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of 2.5 - 2.4 + 71.6 × 10 5 and 0.6 - 0.59 + 27.1 × 10 5 planets that can potentially host N2-O2-dominated atmospheres with maximum CO2 mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of ∼ 10 3 - 10 6 rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (e.g., the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be applied to infer that such life will be common in the galaxy.
Collapse
Affiliation(s)
- Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
| | - Laurenz Spross
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
7
|
Todd ZR, Lozano GG, Kufner CL, Ranjan S, Catling DC, Sasselov DD. UV Transmission in Prebiotic Environments on Early Earth. ASTROBIOLOGY 2024; 24:559-569. [PMID: 38768432 DOI: 10.1089/ast.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ultraviolet (UV) light is likely to have played important roles in surficial origins of life scenarios, potentially as a productive source of energy and molecular activation, as a selective means to remove unwanted side products, or as a destructive mechanism resulting in loss of molecules/biomolecules over time. The transmission of UV light through prebiotic waters depends upon the chemical constituents of such waters, but constraints on this transmission are limited. Here, we experimentally measure the molar decadic extinction coefficients for a number of small molecules used in various prebiotic synthetic schemes. We find that many small feedstock molecules absorb most at short (∼200 nm) wavelengths, with decreasing UV absorption at longer wavelengths. For comparison, we also measured the nucleobase adenine and found that adenine absorbs significantly more than the simpler molecules often invoked in prebiotic synthesis. Our results enable the calculation of UV photon penetration under varying chemical scenarios and allow further constraints on plausibility and self-consistency of such scenarios. While the precise path that prebiotic chemistry took remains elusive, improved understanding of the UV environment in prebiotically plausible waters can help constrain both the chemistry and the environmental conditions that may allow such chemistry to occur.
Collapse
Affiliation(s)
- Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
- Department of Chemistry, Department of Astronomy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabriella G Lozano
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| | - Corinna L Kufner
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| | - Sukrit Ranjan
- Lunar & Planetary Laboratory/Department of Planetary Sciences, University of Arizona, Tucson, Arizona, USA
| | - David C Catling
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Dimitar D Sasselov
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Kufner CL, Crucilla S, Ding D, Stadlbauer P, Šponer J, Szostak JW, Sasselov DD, Szabla R. Photoinduced charge separation and DNA self-repair depend on sequence directionality and stacking pattern. Chem Sci 2024; 15:2158-2166. [PMID: 38332835 PMCID: PMC10848779 DOI: 10.1039/d3sc04971j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
Charge separation is one of the most common consequences of the absorption of UV light by DNA. Recently, it has been shown that this process can enable efficient self-repair of cyclobutane pyrimidine dimers (CPDs) in specific short DNA oligomers such as the GAT[double bond, length as m-dash]T sequence. The mechanism was characterized as sequential electron transfer through the nucleobase stack which is controlled by the redox potentials of nucleobases and their sequence. Here, we demonstrate that the inverse sequence T[double bond, length as m-dash]TAG promotes self-repair with higher quantum yields (0.58 ± 0.23%) than GAT[double bond, length as m-dash]T (0.44 ± 0.18%) in a comparative study involving UV-irradiation experiments. After extended exposure to UV irradiation, a photostationary equilibrium between self-repair and damage formation is reached at 33 ± 13% for GAT[double bond, length as m-dash]T and at 40 ± 16% for T[double bond, length as m-dash]TAG, which corresponds to the maximum total yield of self-repair. Molecular dynamics and quantum mechanics/molecular mechanics (QM/MM) simulations allowed us to assign this disparity to better stacking overlap between the G and A bases, which lowers the energies of the key A-˙G+˙ charge transfer state in the dominant conformers of the T[double bond, length as m-dash]TAG tetramer. These conformational differences also hinder alternative photorelaxation pathways of the T[double bond, length as m-dash]TAG tetranucleotide, which otherwise compete with the sequential electron transfer mechanism responsible for CPD self-repair. Overall, we demonstrate that photoinduced electron transfer is strongly dependent on conformation and the availability of alternative photodeactivation mechanisms. This knowledge can be used in the identification and prediction of canonical and modified DNA sequences exhibiting efficient electron transfer. It also further contributes to our understanding of DNA self-repair and its potential role in the photochemical selection of the most photostable sequences on the early Earth.
Collapse
Affiliation(s)
- Corinna L Kufner
- Department of Astronomy, Harvard-Smithsonian Center for Astrophysics 60 Garden Street Cambridge MA 02138 USA
| | - Sarah Crucilla
- Department of Astronomy, Harvard-Smithsonian Center for Astrophysics 60 Garden Street Cambridge MA 02138 USA
- Department of Earth and Planetary Sciences, Harvard University Cambridge Massachusetts 02138 USA
| | - Dian Ding
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital Boston Massachusetts 02114 USA
- Department of Chemistry and Chemical Biology, Harvard University Cambridge Massachusetts 02138 USA
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61200 Brno Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc Slechtitelu 241/27, 783 71, Olomouc - Holice Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61200 Brno Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc Slechtitelu 241/27, 783 71, Olomouc - Holice Czech Republic
| | - Jack W Szostak
- Howard Hughes Medical Institute, The University of Chicago Chicago IL 60637 USA
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
| | - Dimitar D Sasselov
- Department of Astronomy, Harvard-Smithsonian Center for Astrophysics 60 Garden Street Cambridge MA 02138 USA
| | - Rafał Szabla
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 Wrocław 50-370 Poland
| |
Collapse
|
9
|
Crucilla SJ, Ding D, Lozano GG, Szostak JW, Sasselov DD, Kufner CL. UV-driven self-repair of cyclobutane pyrimidine dimers in RNA. Chem Commun (Camb) 2023; 59:13603-13606. [PMID: 37899697 DOI: 10.1039/d3cc04013e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Nucleic acids can be damaged by ultraviolet (UV) irradiation, forming structural photolesions such as cyclobutane-pyrimidine-dimers (CPD). In modern organisms, sophisticated enzymes repair CPD lesions in DNA, but to our knowledge, no RNA-specific enzymes exist for CPD repair. Here, we show for the first time that RNA can protect itself from photolesions by an intrinsic UV-induced self-repair mechanism. This mechanism, prior to this study, has exclusively been observed in DNA and is based on charge transfer from CPD-adjacent bases. In a comparative study, we determined the quantum yields of the self-repair of the CPD-containing RNA sequence, GAU = U to GAUU (0.23%), and DNA sequence, d(GAT = T) to d(GATT) (0.44%), upon 285 nm irradiation via UV/Vis spectroscopy and HPLC analysis. After several hours of irradiation, a maximum conversion yield of ∼16% for GAU = U and ∼33% for d(GAT = T) was reached. We examined the dynamics of the intermediate charge transfer (CT) state responsible for the self-repair with ultrafast UV pump - IR probe spectroscopy. In the dinucleotides GA and d(GA), we found comparable quantum yields of the CT state of ∼50% and lifetimes on the order of several hundred picoseconds. Charge transfer in RNA strands might lead to reactions currently not considered in RNA photochemistry and may help understanding RNA damage formation and repair in modern organisms and viruses. On the UV-rich surface of the early Earth, these self-stabilizing mechanisms likely affected the selection of the earliest nucleotide sequences from which the first organisms may have developed.
Collapse
Affiliation(s)
- Sarah J Crucilla
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA.
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Dian Ding
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Gabriella G Lozano
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA.
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Dimitar D Sasselov
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA.
| | - Corinna L Kufner
- Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Cohen ZR, Todd ZR, Wogan N, Black RA, Keller SL, Catling DC. Plausible Sources of Membrane-Forming Fatty Acids on the Early Earth: A Review of the Literature and an Estimation of Amounts. ACS EARTH & SPACE CHEMISTRY 2023; 7:11-27. [PMID: 36704178 PMCID: PMC9869395 DOI: 10.1021/acsearthspacechem.2c00168%20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The first cells were plausibly bounded by membranes assembled from fatty acids with at least 8 carbons. Although the presence of fatty acids on the early Earth is widely assumed within the astrobiology community, there is no consensus regarding their origin and abundance. In this Review, we highlight three possible sources of fatty acids: (1) delivery by carbonaceous meteorites, (2) synthesis on metals delivered by impactors, and (3) electrochemical synthesis by spark discharges. We also discuss fatty acid synthesis by UV or particle irradiation, gas-phase ion-molecule reactions, and aqueous redox reactions. We compare estimates for the total mass of fatty acids supplied to Earth by each source during the Hadean eon after an extremely massive asteroid impact that would have reset Earth's fatty acid inventory. We find that synthesis on iron-rich surfaces derived from the massive impactor in contact with an impact-generated reducing atmosphere could have contributed ∼102 times more total mass of fatty acids than subsequent delivery by either carbonaceous meteorites or electrochemical synthesis. Additionally, we estimate that a single carbonaceous meteorite would not deliver a high enough concentration of fatty acids (∼15 mM for decanoic acid) into an existing body of water on the Earth's surface to spontaneously form membranes unless the fatty acids were further concentrated by another mechanism, such as subsequent evaporation of the water. Our estimates rely heavily on various assumptions, leading to significant uncertainties; nevertheless, these estimates provide rough order-of-magnitude comparisons of various sources of fatty acids on the early Earth. We also suggest specific experiments to improve future estimates. Our calculations support the view that fatty acids would have been available on the early Earth. Further investigation is needed to assess the mechanisms by which fatty acids could have been concentrated sufficiently to assemble into membranes during the origin of life.
Collapse
Affiliation(s)
- Zachary R. Cohen
- Department
of Chemistry, Department of Earth and Space Sciences, and Astrobiology Program, University of Washington, Seattle, Washington 98195, United States
| | - Zoe R. Todd
- Department
of Chemistry, Department of Earth and Space Sciences, and Astrobiology Program, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas Wogan
- Department
of Chemistry, Department of Earth and Space Sciences, and Astrobiology Program, University of Washington, Seattle, Washington 98195, United States
| | - Roy A. Black
- Department
of Chemistry, Department of Earth and Space Sciences, and Astrobiology Program, University of Washington, Seattle, Washington 98195, United States
| | - Sarah L. Keller
- Department
of Chemistry, Department of Earth and Space Sciences, and Astrobiology Program, University of Washington, Seattle, Washington 98195, United States
| | - David C. Catling
- Department
of Chemistry, Department of Earth and Space Sciences, and Astrobiology Program, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
11
|
Cohen ZR, Todd ZR, Wogan N, Black RA, Keller SL, Catling DC. Plausible Sources of Membrane-Forming Fatty Acids on the Early Earth: A Review of the Literature and an Estimation of Amounts. ACS EARTH & SPACE CHEMISTRY 2023; 7:11-27. [PMID: 36704178 PMCID: PMC9869395 DOI: 10.1021/acsearthspacechem.2c00168] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 06/18/2023]
Abstract
The first cells were plausibly bounded by membranes assembled from fatty acids with at least 8 carbons. Although the presence of fatty acids on the early Earth is widely assumed within the astrobiology community, there is no consensus regarding their origin and abundance. In this Review, we highlight three possible sources of fatty acids: (1) delivery by carbonaceous meteorites, (2) synthesis on metals delivered by impactors, and (3) electrochemical synthesis by spark discharges. We also discuss fatty acid synthesis by UV or particle irradiation, gas-phase ion-molecule reactions, and aqueous redox reactions. We compare estimates for the total mass of fatty acids supplied to Earth by each source during the Hadean eon after an extremely massive asteroid impact that would have reset Earth's fatty acid inventory. We find that synthesis on iron-rich surfaces derived from the massive impactor in contact with an impact-generated reducing atmosphere could have contributed ∼102 times more total mass of fatty acids than subsequent delivery by either carbonaceous meteorites or electrochemical synthesis. Additionally, we estimate that a single carbonaceous meteorite would not deliver a high enough concentration of fatty acids (∼15 mM for decanoic acid) into an existing body of water on the Earth's surface to spontaneously form membranes unless the fatty acids were further concentrated by another mechanism, such as subsequent evaporation of the water. Our estimates rely heavily on various assumptions, leading to significant uncertainties; nevertheless, these estimates provide rough order-of-magnitude comparisons of various sources of fatty acids on the early Earth. We also suggest specific experiments to improve future estimates. Our calculations support the view that fatty acids would have been available on the early Earth. Further investigation is needed to assess the mechanisms by which fatty acids could have been concentrated sufficiently to assemble into membranes during the origin of life.
Collapse
Affiliation(s)
- Zachary R. Cohen
- Department
of Chemistry, Department of Earth and Space Sciences, and Astrobiology Program, University of Washington, Seattle, Washington 98195, United States
| | - Zoe R. Todd
- Department
of Chemistry, Department of Earth and Space Sciences, and Astrobiology Program, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas Wogan
- Department
of Chemistry, Department of Earth and Space Sciences, and Astrobiology Program, University of Washington, Seattle, Washington 98195, United States
| | - Roy A. Black
- Department
of Chemistry, Department of Earth and Space Sciences, and Astrobiology Program, University of Washington, Seattle, Washington 98195, United States
| | - Sarah L. Keller
- Department
of Chemistry, Department of Earth and Space Sciences, and Astrobiology Program, University of Washington, Seattle, Washington 98195, United States
| | - David C. Catling
- Department
of Chemistry, Department of Earth and Space Sciences, and Astrobiology Program, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Bertram L, Roberts SJ, Powner MW, Szabla R. Photochemistry of 2-thiooxazole: a plausible prebiotic precursor to RNA nucleotides. Phys Chem Chem Phys 2022; 24:21406-21416. [PMID: 36047336 PMCID: PMC7613695 DOI: 10.1039/d2cp03167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potentially prebiotic chemical reactions leading to RNA nucleotides involve periods of UV irradiation, which are necessary to promote selectivity and destroy biologially irrelevant side products. Nevertheless, UV light has only been applied to promote specific stages of prebiotic reactions and its effect on complete prebiotic reaction sequences has not been extensively studied. Here, we report on an experimental and computational investigation of the photostability of 2-thiooxazole (2-TO), a potential precursor of pyrimidine and 8-oxopurine nucleotides on early Earth. Our UV-irradiation experiments resulted in rapid decomposition of 2-TO into unidentified small molecule photoproducts. We further clarify the underlying photochemistry by means of accurate ab initio calculations and surface hopping molecular dynamics simulations. Overall, the computational results show efficient rupture of the aromatic ring upon the photoexcitation of 2-TO via breaking of the C-O bond. Consequently, the initial stage of the divergent prebiotic synthesis of pyrimidine and 8-oxopurine nucleotides would require periodic shielding from UV light either with sun screening chromophores or through a planetary scenario that would protect 2-TO until it is transformed into a more stable intermediate compound, e.g. oxazolidinone thione.
Collapse
Affiliation(s)
- Lauren Bertram
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Samuel J Roberts
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Matthew W Powner
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Rafał Szabla
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
13
|
On the origins of life's homochirality: Inducing enantiomeric excess with spin-polarized electrons. Proc Natl Acad Sci U S A 2022; 119:e2204765119. [PMID: 35787048 PMCID: PMC9282223 DOI: 10.1073/pnas.2204765119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Life as we know it is homochiral, but the origins of biological homochirality on early Earth remain elusive. Shallow closed-basin lakes are a plausible prebiotic environment on early Earth, and most are expected to have significant sedimentary magnetite deposits. We hypothesize that ultraviolet (200- to 300-nm) irradiation of magnetite deposits could generate hydrated spin-polarized electrons sufficient to induce enantioselective prebiotic chemistry. Such electrons are potent reducing agents that drive reduction reactions where the spin polarization direction can enantioselectively alter the reaction kinetics. Our estimate of this chiral bias is based on the strong effective spin-orbit coupling observed in the chiral-induced spin selectivity (CISS) effect, as applied to energy differences in reduction reactions for different isomers. In the original CISS experiments, spin-selective electron transmission through a monolayer of double-strand DNA molecules is observed at room temperature-indicating a strong coupling between molecular chirality and electron spin. We propose that the chiral symmetry breaking due to the CISS effect, when applied to reduction chemistry, can induce enantioselective synthesis on the prebiotic Earth and thus facilitate the homochiral assembly of life's building blocks.
Collapse
|
14
|
Ranjan S, Kufner CL, Lozano GG, Todd ZR, Haseki A, Sasselov DD. UV Transmission in Natural Waters on Prebiotic Earth. ASTROBIOLOGY 2022; 22:242-262. [PMID: 34939825 PMCID: PMC8968845 DOI: 10.1089/ast.2020.2422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/28/2021] [Indexed: 05/10/2023]
Abstract
Ultraviolet (UV) light plays a key role in surficial theories of the origin of life, and numerous studies have focused on constraining the atmospheric transmission of UV radiation on early Earth. However, the UV transmission of the natural waters in which origins-of-life chemistry (prebiotic chemistry) is postulated to have occurred is poorly constrained. In this work, we combine laboratory and literature-derived absorption spectra of potential aqueous-phase prebiotic UV absorbers with literature estimates of their concentrations on early Earth to constrain the prebiotic UV environment in marine and terrestrial natural waters, and we consider the implications for prebiotic chemistry. We find that prebiotic freshwaters were largely transparent in the UV, contrary to assumptions in some models of prebiotic chemistry. Some waters, such as high-salinity waters like carbonate lakes, may be deficient in shortwave (≤220 nm) UV flux. More dramatically, ferrous waters can be strongly UV-shielded, particularly if the Fe2+ forms highly UV-absorbent species such as F e C N 6 4 - . Such waters may be compelling venues for UV-averse origin-of-life scenarios but are unfavorable for some UV-dependent prebiotic chemistries. UV light can trigger photochemistry even if attenuated through photochemical transformations of the absorber (e.g., e a q - production from halide irradiation), which may have both constructive and destructive effects for prebiotic syntheses. Prebiotic chemistries that invoke waters that contain such absorbers must self-consistently account for the chemical effects of these transformations. The speciation and abundance of Fe2+ in natural waters on early Earth is a major uncertainty and should be prioritized for further investigation, as it played a major role in UV transmission in prebiotic natural waters.
Collapse
Affiliation(s)
- Sukrit Ranjan
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics and Astronomy, Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, Illinois, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Corinna L. Kufner
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | | | - Zoe R. Todd
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Azra Haseki
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard College, Cambridge, Massachusetts, USA
| | | |
Collapse
|
15
|
On the Photostability of Cyanuric Acid and Its Candidature as a Prebiotic Nucleobase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041184. [PMID: 35208973 PMCID: PMC8875432 DOI: 10.3390/molecules27041184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/28/2022]
Abstract
Cyanuric acid is a triazine derivative that has been identified from reactions performed under prebiotic conditions and has been proposed as a prospective precursor of ancestral RNA. For cyanuric acid to have played a key role during the prebiotic era, it would have needed to survive the harsh electromagnetic radiation conditions reaching the Earth’s surface during prebiotic times (≥200 nm). Therefore, the photostability of cyanuric acid would have been crucial for its accumulation during the prebiotic era. To evaluate the putative photostability of cyanuric acid in water, in this contribution, we employed density functional theory (DFT) and its time-dependent variant (TD-DFT) including implicit and explicit solvent effects. The calculations predict that cyanuric acid has an absorption maximum at ca. 160 nm (7.73 eV), with the lowest-energy absorption band extending to ca. 200 nm in an aqueous solution and exhibiting negligible absorption at longer wavelengths. Excitation of cyanuric acid at 160 nm or longer wavelengths leads to the population of S5,6 singlet states, which have ππ* character and large oscillator strengths (0.8). The population reaching the S5,6 states is expected to internally convert to the S1,2 states in an ultrafast time scale. The S1,2 states, which have nπ* character, are predicted to access a conical intersection with the ground state in a nearly barrierless fashion (ca. ≤ 0.13 eV), thus efficiently returning the population to the ground state. Furthermore, based on calculated spin–orbit coupling elements of ca. 6 to 8 cm−1, the calculations predict that intersystem crossing to the triplet manifold should play a minor role in the electronic relaxation of cyanuric acid. We have also calculated the vertical ionization energy of cyanuric acid at 8.2 eV, which predicts that direct one-photon ionization of cyanuric acid should occur at ca. 150 nm. Collectively, the quantum-chemical calculations predict that cyanuric acid would have been highly photostable under the solar radiation conditions reaching the Earth’s surface during the prebiotic era in an aqueous solution. Of relevance to the chemical origin of life and RNA-first theories, these observations lend support to the idea that cyanuric acid could have accumulated in large quantities during the prebiotic era and thus strengthens its candidature as a relevant prebiotic nucleobase.
Collapse
|
16
|
Zhao JJ, Zhang YF, Zhao TL, Li H, Yao QZ, Fu SQ, Zhou GT. Abiotic Formation of Calcium Oxalate under UV Irradiation and Implications for Biomarker Detection on Mars. ASTROBIOLOGY 2022; 22:35-48. [PMID: 35020413 DOI: 10.1089/ast.2020.2416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A major objective in the exploration of Mars is to test the hypothesis that the planet has ever hosted life. Biogenic compounds, especially biominerals, are believed to serve as biomarkers in Raman-assisted remote sensing missions. However, the prerequisite for the development of these minerals as biomarkers is the uniqueness of their biogenesis. Herein, tetragonal bipyramidal weddellite, a type of calcium oxalate, is successfully achieved by UV-photolyzing pyruvic acid (PA). The as-prepared products are identified and characterized by micro-Raman spectroscopy and field emission scanning electron microscopy. Persistent mineralization of weddellite is observed with altering key experimental parameters, including pH, Ca2+ and PA concentrations. In particular, the initial concentration of PA can significantly influence the morphology of weddellite crystal. Oxalate acid is commonly of biological origin; thus calcium oxalate is considered to be a biomarker. However, our results reveal that calcium oxalate can be harvested by a UV photolysis pathway. Moreover, prebiotic sources of organics (e.g., PA, glycine, alanine, and aspartic acid) have been proven to be available through abiotic pathways. Therefore, our results may provide a new abiotic pathway of calcium oxalate formation. Considering that calcium oxalate minerals have been taken as biosignatures for the origin and early evolution of life on Earth and astrobiological investigations, its formation and accumulation by the photolysis of abiological organic compounds should be taken into account.
Collapse
Affiliation(s)
- Jia-Jian Zhao
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Yi-Fan Zhang
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Tian-Lei Zhao
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Han Li
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
| | - Qi-Zhi Yao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, P.R. China
| | - Sheng-Quan Fu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, P.R. China
| | - Gen-Tao Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, P.R. China
- CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, P.R. China
| |
Collapse
|
17
|
Altair T, Borges LGF, Galante D, Varela H. Experimental Approaches for Testing the Hypothesis of the Emergence of Life at Submarine Alkaline Vents. Life (Basel) 2021; 11:777. [PMID: 34440521 PMCID: PMC8401828 DOI: 10.3390/life11080777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Since the pioneering experimental work performed by Urey and Miller around 70 years ago, several experimental works have been developed for approaching the question of the origin of life based on very few well-constructed hypotheses. In recent years, attention has been drawn to the so-called alkaline hydrothermal vents model (AHV model) for the emergence of life. Since the first works, perspectives from complexity sciences, bioenergetics and thermodynamics have been incorporated into the model. Consequently, a high number of experimental works from the model using several tools have been developed. In this review, we present the key concepts that provide a background for the AHV model and then analyze the experimental approaches that were motivated by it. Experimental tools based on hydrothermal reactors, microfluidics and chemical gardens were used for simulating the environments of early AHVs on the Hadean Earth (~4.0 Ga). In addition, it is noteworthy that several works used techniques from electrochemistry to investigate phenomena in the vent-ocean interface for early AHVs. Their results provided important parameters and details that are used for the evaluation of the plausibility of the AHV model, and for the enhancement of it.
Collapse
Affiliation(s)
- Thiago Altair
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| | - Luiz G. F. Borges
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (L.G.F.B.); (D.G.)
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (L.G.F.B.); (D.G.)
| | - Hamilton Varela
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, Brazil
| |
Collapse
|
18
|
Szabla R, Zdrowowicz M, Spisz P, Green NJ, Stadlbauer P, Kruse H, Šponer J, Rak J. 2,6-diaminopurine promotes repair of DNA lesions under prebiotic conditions. Nat Commun 2021; 12:3018. [PMID: 34021158 PMCID: PMC8139960 DOI: 10.1038/s41467-021-23300-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
High-yielding and selective prebiotic syntheses of RNA and DNA nucleotides involve UV irradiation to promote the key reaction steps and eradicate biologically irrelevant isomers. While these syntheses were likely enabled by UV-rich prebiotic environment, UV-induced formation of photodamages in polymeric nucleic acids, such as cyclobutane pyrimidine dimers (CPDs), remains the key unresolved issue for the origins of RNA and DNA on Earth. Here, we demonstrate that substitution of adenine with 2,6-diaminopurine enables repair of CPDs with yields reaching 92%. This substantial self-repairing activity originates from excellent electron donating properties of 2,6-diaminopurine in nucleic acid strands. We also show that the deoxyribonucleosides of 2,6-diaminopurine and adenine can be formed under the same prebiotic conditions. Considering that 2,6-diaminopurine was previously shown to increase the rate of nonenzymatic RNA replication, this nucleobase could have played critical roles in the formation of functional and photostable RNA/DNA oligomers in UV-rich prebiotic environments. UV-induced photodamage that likely occurred during the prebiotic synthesis of DNA and RNA is still an untackled issue for their origin on early Earth. Here, the authors show that substitution of 2,6-diaminopurine for adenine enables repair of cyclobutane pyrimidine dimers with high yields, and demonstrate that both 2,6-diaminopurine and adenine nucleosides can be formed under the same prebiotic conditions.
Collapse
Affiliation(s)
- Rafał Szabla
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK. .,Institute of Physics, Polish Academy of Sciences, Warsaw, Poland.
| | | | - Paulina Spisz
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Janusz Rak
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
19
|
Rankine CD. Ultrafast excited-state dynamics of promising nucleobase ancestor 2,4,6-triaminopyrimidine. Phys Chem Chem Phys 2021; 23:4007-4017. [PMID: 33554987 DOI: 10.1039/d0cp05609j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ultrafast excited-state dynamics of 2,4,6-triaminopyrimidine - thought to be a promising candidate for a proto-RNA nucleobase - have been investigated via static multireference quantum-chemical calculations and mixed-quantum-classical/trajectory surface-hopping dynamics with a focus on the lowest-lying electronic states of the singlet manifold and with a view towards understanding the UV(C)/UV(B) photostability of the molecule. Ultrafast internal conversion channels have been identified that connect the lowest-lying ππ* electronically-excited state of 2,4,6-triaminopyrimidine with the ground electronic state, and non-radiative decay has been observed to take place on the picosecond timescale via a ππ* out-of-plane NH2 ("oop-NH2") minimum-energy crossing point. The short excited-state lifetime is competitive with the excited-state lifetimes of the canonical pyrimidine nucleobases, affirming the promise of 2,4,6-triaminopyrimidine as an ancestor. Evidence for energy-dependent excited-state dynamics is presented, and the open question of intersystem crossing is discussed speculatively.
Collapse
Affiliation(s)
- Conor D Rankine
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
20
|
Todd ZR, Szostak JW, Sasselov DD. Shielding from UV Photodamage: Implications for Surficial Origins of Life Chemistry on the Early Earth. ACS EARTH & SPACE CHEMISTRY 2021; 5:239-246. [PMID: 36317066 PMCID: PMC9616438 DOI: 10.1021/acsearthspacechem.0c00270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
UV light has been invoked as a source of energy for driving prebiotic chemistry, but such high energy photons are also known to cause damage to biomolecules and their precursors. One potential mechanism for increasing the lifetime of UV-photounstable molecules is to invoke a protection or shielding mechanism. UV shielding could either occur by the molecule in question itself (self-shielding) or by the presence of other UV-absorbing molecules. We investigate and illustrate these two shielding mechanisms as means of increasing the lifetime of 2-aminooxazole (AO), a prebiotic precursor molecule moderately susceptible to UV photodamage, with an expected half-life of 7 h on the surface of the early Earth. AO can be protected by being present in high concentrations, such that it self-shields. AO can similarly be protected by the presence of UV-absorbing nucleosides; the degree of protection depends on the concentration and identity of the nucleoside. The purine nucleosides (A, G, and I) confer more protection than the pyrimidines (C and U). We find that 0.1 mM purine ribonucleosides affords AO about the same protection as 1 mM AO self-shielding, corresponding to a lifetime enhancement of 2-3×. This suggests that only a modest yield of nucleosides can potentially allow for protection of UV photounstable molecules, and therefore this could be a plausible mechanism for protecting sensitive molecules while prebiotic synthesis is occurring simultaneously. Our findings suggest that both synthetic and degradative reactions can proceed at the same time, given various degrees of shielding.
Collapse
Affiliation(s)
- Zoe R. Todd
- Center
for Astrophysics Harvard and Smithsonian, 60 Garden Street, Cambridge, Massachusetts 02138, United States
- Howard
Hughes Medical Institute, Department of Molecular Biology and Center
for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jack W. Szostak
- Howard
Hughes Medical Institute, Department of Molecular Biology and Center
for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Dimitar D. Sasselov
- Center
for Astrophysics Harvard and Smithsonian, 60 Garden Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
21
|
Todd ZR, Fahrenbach AC, Ranjan S, Magnani CJ, Szostak JW, Sasselov DD. Ultraviolet-Driven Deamination of Cytidine Ribonucleotides Under Planetary Conditions. ASTROBIOLOGY 2020; 20:878-888. [PMID: 32267736 PMCID: PMC9634989 DOI: 10.1089/ast.2019.2182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A previously proposed synthesis of pyrimidine ribonucleotides makes use of ultraviolet (UV) light to convert β-d-ribocytidine-2',3'-cyclic phosphate to β-d-ribouridine-2',3'-cyclic phosphate, while simultaneously selectively degrading synthetic byproducts. Past studies of the photochemical reactions of pyrimidines have employed mercury arc lamps, characterized by narrowband emission centered at 254 nm, which is not representative of the UV environment of the early Earth. To further assess this process under more realistic circumstances, we investigated the wavelength dependence of the UV-driven conversion of β-d-ribocytidine-2',3'-cyclic phosphate to β-d-ribouridine-2',3'-cyclic phosphate. We used constraints provided by planetary environments to assess the implications for pyrimidine nucleotides on the early Earth. We found that the wavelengths of light (255-285 nm) that most efficiently drive the deamination of β-d-ribocytidine-2',3'-cyclic phosphate to β-d-ribouridine-2',3'-cyclic phosphate are accessible on planetary surfaces such as those of the Hadean-Archaean Earth for CO2-N2-dominated atmospheres. However, continued irradiation could eventually lead to low levels of ribocytidine in a low-temperature, highly irradiated environment, if production rates are slow.
Collapse
Affiliation(s)
- Zoe R. Todd
- Department of Astronomy, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
- Address correspondence to: Zoe R. Todd, Department of Astronomy, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street Mail-Stop 10, Cambridge, MA 02138
| | | | - Sukrit Ranjan
- SCOL Postdoctoral Fellow, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher J. Magnani
- Department of Astronomy, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Dimitar D. Sasselov
- Department of Astronomy, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts
| |
Collapse
|
22
|
Photochemistry of Anoxic Abiotic Habitable Planet Atmospheres: Impact of New H2O Cross Sections. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/1538-4357/ab9363] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Lin R, Wang Y, Li X, Liu Y, Zhao Y. pH-Dependent Adsorption of Peptides on Montmorillonite for Resisting UV Irradiation. Life (Basel) 2020; 10:life10040045. [PMID: 32325947 PMCID: PMC7235719 DOI: 10.3390/life10040045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
Ultraviolet (UV) irradiation is considered an energy source for the prebiotic chemical synthesis of life's building blocks. However, it also results in photodegradation of biology-related organic compounds on early Earth. Thus, it is important to find a process to protect these compounds from decomposition by UV irradiation. Herein, pH effects on both the adsorption of peptides on montmorillonite (MMT) and the abilities of peptides to resist UV irradiation due to this adsorption were systematically studied. We found that montmorillonite (MMT) can adsorb peptides effectively under acidic conditions, while MMT-adsorbed peptides can be released under basic conditions. Peptide adsorption is positively correlated with the length of the peptide chains. MMT's adsorption of peptides and MMT-adsorbed peptide desorption are both rapid-equilibrium, and it takes less than 30 min to reach the equilibrium in both cases. Furthermore, compared to free peptides, MMT-adsorbed peptides under acidic conditions are well protected from UV degradation even after prolonged irradiation. These results indicate amino acid/peptides are able to concentrate from aqueous solution by MMT adsorption under low-pH conditions (concentration step). The MMT-adsorbed peptides survive under UV irradiation among other unprotected species (storage step). Then, the MMT-adsorbed peptides can be released to the aqueous solution if the environment becomes more basic (releasing step), and these free peptides are ready for polymerization to polypeptides. Hence, a plausible prebiotic concentration-storage-release cycle of amino acids/peptides for further polypeptide synthesis is established.
Collapse
Affiliation(s)
- Rongcan Lin
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (R.L.); (Y.W.); (X.L.); (Y.Z.)
| | - Yueqiao Wang
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (R.L.); (Y.W.); (X.L.); (Y.Z.)
| | - Xin Li
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (R.L.); (Y.W.); (X.L.); (Y.Z.)
| | - Yan Liu
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (R.L.); (Y.W.); (X.L.); (Y.Z.)
- Correspondence:
| | - Yufen Zhao
- Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (R.L.); (Y.W.); (X.L.); (Y.Z.)
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Sasselov DD, Grotzinger JP, Sutherland JD. The origin of life as a planetary phenomenon. SCIENCE ADVANCES 2020; 6:eaax3419. [PMID: 32076638 PMCID: PMC7002131 DOI: 10.1126/sciadv.aax3419] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
We advocate an integrative approach between laboratory experiments in prebiotic chemistry and geologic, geochemical, and astrophysical observations to help assemble a robust chemical pathway to life that can be reproduced in the laboratory. The cyanosulfidic chemistry scenario described here was developed by such an integrative iterative process. We discuss how it maps onto evolving planetary surface environments on early Earth and Mars and the value of comparative planetary evolution. The results indicate that Mars can offer direct evidence for geochemical conditions similar to prebiotic Earth, whose early record has been erased. The Jezero crater is now the chosen landing site for NASA's Mars 2020 rover, making this an extraordinary opportunity for a breakthrough in understanding life's origins.
Collapse
Affiliation(s)
- Dimitar D. Sasselov
- Department of Astronomy, Harvard University, 60 Garden St., Cambridge, MA 02138, USA
- Corresponding author.
| | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - John D. Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge CB2 0QH, UK
| |
Collapse
|
25
|
Sousa-Silva C, Seager S, Ranjan S, Petkowski JJ, Zhan Z, Hu R, Bains W. Phosphine as a Biosignature Gas in Exoplanet Atmospheres. ASTROBIOLOGY 2020; 20:235-268. [PMID: 31755740 DOI: 10.1089/ast.2018.1954] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A long-term goal of exoplanet studies is the identification and detection of biosignature gases. Beyond the most discussed biosignature gas O2, only a handful of gases have been considered in detail. In this study, we evaluate phosphine (PH3). On Earth, PH3 is associated with anaerobic ecosystems, and as such, it is a potential biosignature gas in anoxic exoplanets. We simulate the atmospheres of habitable terrestrial planets with CO2- and H2-dominated atmospheres and find that PH3 can accumulate to detectable concentrations on planets with surface production fluxes of 1010 to 1014 cm-2 s-1 (corresponding to surface concentrations of 10s of ppb to 100s of ppm), depending on atmospheric composition and ultraviolet (UV) irradiation. While high, the surface flux values are comparable to the global terrestrial production rate of methane or CH4 (1011 cm-2 s-1) and below the maximum local terrestrial PH3 production rate (1014 cm-2 s-1). As with other gases, PH3 can more readily accumulate on low-UV planets, for example, planets orbiting quiet M dwarfs or with a photochemically generated UV shield. PH3 has three strong spectral features such that in any atmosphere scenario one of the three will be unique compared with other dominant spectroscopic molecules. Phosphine's weakness as a biosignature gas is its high reactivity, requiring high outgassing rates for detectability. We calculate that tens of hours of JWST (James Webb Space Telescope) time are required for a potential detection of PH3. Yet, because PH3 is spectrally active in the same wavelength regions as other atmospherically important molecules (such as H2O and CH4), searches for PH3 can be carried out at no additional observational cost to searches for other molecular species relevant to characterizing exoplanet habitability. Phosphine is a promising biosignature gas, as it has no known abiotic false positives on terrestrial planets from any source that could generate the high fluxes required for detection.
Collapse
Affiliation(s)
- Clara Sousa-Silva
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
- Department of Physics, and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
- Department of Physics, and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Sukrit Ranjan
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
- SCOL Postdoctoral Fellow
| | - Janusz Jurand Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Zhuchang Zhan
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Renyu Hu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | | |
Collapse
|
26
|
Gangidine A, Havig JR, Hannon JS, Czaja AD. Silica Precipitation in a Wet-Dry Cycling Hot Spring Simulation Chamber. Life (Basel) 2020; 10:E3. [PMID: 31947527 PMCID: PMC7175326 DOI: 10.3390/life10010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/23/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
Terrestrial hot springs have emerged as strong contenders for sites that could have facilitated the origin of life. Cycling between wet and dry conditions is a key feature of these systems, which can produce both structural and chemical complexity within protocellular material. Silica precipitation is a common phenomenon in terrestrial hot springs and is closely associated with life in modern systems. Not only does silica preserve evidence of hot spring life, it also can help it survive during life through UV protection, a factor which would be especially relevant on the early Earth. Determining which physical and chemical components of hot springs are the result of life vs. non-life in modern hot spring systems is a difficult task, however, since life is so prevalent in these environments. Using a model hot spring simulation chamber, we demonstrate a simple yet effective way to precipitate silica with or without the presence of life. This system may be valuable in further investigating the plausible role of silica precipitation in ancient terrestrial hot spring environments even before life arose, as well as its potential role in providing protection from the high surface UV conditions which may have been present on early Earth.
Collapse
Affiliation(s)
- Andrew Gangidine
- Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.S.H.)
| | - Jeff R. Havig
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Jeffrey S. Hannon
- Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.S.H.)
| | - Andrew D. Czaja
- Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA; (J.S.H.)
| |
Collapse
|
27
|
Madsen MM, Jensen F, Thøgersen J. The primary photo-dissociation dynamics of amino acids in aqueous solution: breaking the Cα-bond. Phys Chem Chem Phys 2020; 22:2307-2318. [DOI: 10.1039/c9cp05836b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photo-excitation of aqueous amino acids at 200 nm breaks the Cα-bond.
Collapse
Affiliation(s)
| | - Frank Jensen
- Dept. of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| | - Jan Thøgersen
- Dept. of Chemistry
- Aarhus University
- DK-8000 Aarhus C
- Denmark
| |
Collapse
|
28
|
Haqq-Misra J. Does the Evolution of Complex Life Depend on the Stellar Spectral Energy Distribution? ASTROBIOLOGY 2019; 19:1292-1299. [PMID: 31429585 DOI: 10.1089/ast.2018.1946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article presents the proportional evolutionary time (PET) hypothesis, which posits that the mean time required for the evolution of complex life is a function of stellar mass. The "biological available window" is defined as the region of a stellar spectrum between 200 and 1200 nm that generates free energy for life. Over the ∼4 Gyr history of Earth, the total energy incident at the top of the atmosphere and within the biological available window is ∼1034 J. The hypothesis assumes that the rate of evolution from the origin of life to complex life is proportional to this total energy, which would suggest that planets orbiting other stars should not show signs of complex life if the total energy incident on the planet is below this energy threshold. The PET hypothesis predicts that late K- and M-dwarf stars (M < 0.7 [Formula: see text]) are too young to host any complex life at the present age of the Universe. F-, G-, and early K-dwarf stars (M > 0.7 [Formula: see text]) represent the best targets for the next generation of space telescopes to search for spectroscopic biosignatures indicative of complex life.
Collapse
|
29
|
Mojarro A, Hachey J, Bailey R, Brown M, Doebler R, Ruvkun G, Zuber MT, Carr CE. Nucleic Acid Extraction and Sequencing from Low-Biomass Synthetic Mars Analog Soils for In Situ Life Detection. ASTROBIOLOGY 2019; 19:1139-1152. [PMID: 31204862 PMCID: PMC6708270 DOI: 10.1089/ast.2018.1929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent studies regarding the origins of life and Mars-Earth meteorite transfer simulations suggest that biological informational polymers, such as nucleic acids (DNA and RNA), have the potential to provide unambiguous evidence of life on Mars. To this end, we are developing a metagenomics-based life-detection instrument which integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG). Our goal is to isolate and sequence nucleic acids from extant or preserved life on Mars in order to determine if a particular genetic sequence (1) is distantly related to life on Earth, indicating a shared ancestry due to lithological exchange, or (2) is unrelated to life on Earth, suggesting convergent origins of life on Mars. In this study, we validate prior work on nucleic acid extraction from cells deposited in Mars analog soils down to microbial concentrations (i.e., 104 cells in 50 mg of soil) observed in the driest and coldest regions on Earth. In addition, we report low-input nanopore sequencing results from 2 pg of purified Bacillus subtilis spore DNA simulating ideal extraction yields equivalent to 1 ppb life-detection sensitivity. We achieve this by employing carrier sequencing, a method of sequencing sub-nanogram DNA in the background of a genomic carrier. After filtering of carrier, low-quality, and low-complexity reads we detected 5 B. subtilis reads, 18 contamination reads (including Homo sapiens), and 6 high-quality noise reads believed to be sequencing artifacts.
Collapse
Affiliation(s)
- Angel Mojarro
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Address correspondence to: Angel Mojarro, Massachusetts Institute of Technology, 77 Massachusetts Ave, Room E25-647, Cambridge, MA 02139
| | | | - Ryan Bailey
- Claremont Biosolutions, LLC, Upland, California
| | - Mark Brown
- Claremont Biosolutions, LLC, Upland, California
| | | | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| | - Maria T. Zuber
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christopher E. Carr
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
30
|
Todd ZR, Szabla R, Szostak JW, Sasselov DD. UV photostability of three 2-aminoazoles with key roles in prebiotic chemistry on the early earth. Chem Commun (Camb) 2019; 55:10388-10391. [PMID: 31380533 PMCID: PMC9631353 DOI: 10.1039/c9cc05265h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 01/20/2023]
Abstract
Three related molecules in the 2-aminoazole family are potentially important for prebiotic chemistry: 2-aminooxazole, 2-aminoimidazole, and 2-aminothiazole, which can provide critical functions as an intermediate in nucleotide synthesis, a nucleotide activating agent, and a selective agent, respectively. Here, we examine the wavelength-dependent photodegradation of these three molecules under mid-range UV light (210-290 nm). We then assess the implications of the observed degradation rates for the proposed prebiotic roles of these compounds. We find that all three 2-aminoazoles degrade under UV light, with half lives ranging from ≈7-100 hours under a solar-like spectrum. 2-Aminooxazole is the least photostable, while 2-aminoimidazole is the most photostable. The relative photostabilities are consistent with the order in which these molecules would be used prebiotically: AO is used first to build nucleotides and AI is used last to activate them.
Collapse
Affiliation(s)
- Zoe R. Todd
- Department of Astronomy, Harvard-Smithsonian Center for Astrophysics60 Garden StreetCambridgeMA 02138USA
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital185 Cambridge StreetBostonMA 02114USA
| | - Rafał Szabla
- Institute of Physics, Polish Academy of SciencesAl. Lotników 32/46PL-02668WarsawPoland
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital185 Cambridge StreetBostonMA 02114USA
| | - Dimitar D. Sasselov
- Department of Astronomy, Harvard-Smithsonian Center for Astrophysics60 Garden StreetCambridgeMA 02138USA
| |
Collapse
|
31
|
Gate G, Szabla R, Haggmark MR, Šponer J, Sobolewski AL, de Vries MS. Photodynamics of alternative DNA base isoguanine. Phys Chem Chem Phys 2019; 21:13474-13485. [DOI: 10.1039/c9cp01622h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pump–probe experiments and quantum-chemical simulations of UV-excited isoguanine elucidate its tautomer dependent photochemical properties.
Collapse
Affiliation(s)
- Gregory Gate
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Rafał Szabla
- Institute of Physics
- Polish Academy of Sciences
- 02-668 Warsaw
- Poland
- Institute of Biophysics of the Czech Academy of Sciences
| | - Michael R. Haggmark
- Department of Chemistry and Biochemistry
- University of California
- Santa Barbara
- USA
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences
- 61265 Brno
- Czech Republic
| | | | | |
Collapse
|
32
|
Janicki MJ, Roberts SJ, Šponer J, Powner MW, Góra RW, Szabla R. Photostability of oxazoline RNA-precursors in UV-rich prebiotic environments. Chem Commun (Camb) 2018; 54:13407-13410. [PMID: 30426980 DOI: 10.1039/c8cc07343k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pentose aminooxazolines and oxazolidinone thiones are considered as the key precursors which could have enabled the formation of RNA nucleotides under the conditions of early Earth. UV-irradiation experiments and quantum-chemical calculations demonstrate that these compounds are remarkably photostable and could accumulate over long periods of time in UV-rich prebiotic environments to undergo stereoisomeric purification.
Collapse
Affiliation(s)
- Mikołaj J Janicki
- Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | | | | | | | | | | |
Collapse
|
33
|
Kunnev D, Gospodinov A. Possible Emergence of Sequence Specific RNA Aminoacylation via Peptide Intermediary to Initiate Darwinian Evolution and Code Through Origin of Life. Life (Basel) 2018; 8:E44. [PMID: 30279401 PMCID: PMC6316189 DOI: 10.3390/life8040044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/30/2018] [Accepted: 09/30/2018] [Indexed: 12/12/2022] Open
Abstract
One of the most intriguing questions in biological science is how life originated on Earth. A large number of hypotheses have been proposed to explain it, each putting an emphasis on different events leading to functional translation and self-sustained system. Here, we propose a set of interactions that could have taken place in the prebiotic environment. According to our hypothesis, hybridization-induced proximity of short aminoacylated RNAs led to the synthesis of peptides of random sequence. We postulate that among these emerged a type of peptide(s) capable of stimulating the interaction between specific RNAs and specific amino acids, which we call "bridge peptide" (BP). We conclude that translation should have emerged at the same time when the standard genetic code begun to evolve due to the stabilizing effect on RNA-peptide complexes with the help of BPs. Ribosomes, ribozymes, and the enzyme-directed RNA replication could co-evolve within the same period, as logical outcome of RNA-peptide world without the need of RNA only self-sustained step.
Collapse
Affiliation(s)
- Dimiter Kunnev
- Roswell Park Cancer Institute, Department of Molecular & Cellular Biology, Buffalo, NY 14263, USA.
| | - Anastas Gospodinov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, Sofia 1113, Bulgaria.
| |
Collapse
|
34
|
Ranjan S, Todd ZR, Sutherland JD, Sasselov DD. Sulfidic Anion Concentrations on Early Earth for Surficial Origins-of-Life Chemistry. ASTROBIOLOGY 2018; 18:1023-1040. [PMID: 29627997 PMCID: PMC6225604 DOI: 10.1089/ast.2017.1770] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/19/2018] [Indexed: 05/16/2023]
Abstract
A key challenge in origin-of-life studies is understanding the environmental conditions on early Earth under which abiogenesis occurred. While some constraints do exist (e.g., zircon evidence for surface liquid water), relatively few constraints exist on the abundances of trace chemical species, which are relevant to assessing the plausibility and guiding the development of postulated prebiotic chemical pathways which depend on these species. In this work, we combine literature photochemistry models with simple equilibrium chemistry calculations to place constraints on the plausible range of concentrations of sulfidic anions (HS-, HSO3-, SO32-) available in surficial aquatic reservoirs on early Earth due to outgassing of SO2 and H2S and their dissolution into small shallow surface water reservoirs like lakes. We find that this mechanism could have supplied prebiotically relevant levels of SO2-derived anions, but not H2S-derived anions. Radiative transfer modeling suggests UV light would have remained abundant on the planet surface for all but the largest volcanic explosions. We apply our results to the case study of the proposed prebiotic reaction network of Patel et al. ( 2015 ) and discuss the implications for improving its prebiotic plausibility. In general, epochs of moderately high volcanism could have been especially conducive to cyanosulfidic prebiotic chemistry. Our work can be similarly applied to assess and improve the prebiotic plausibility of other postulated surficial prebiotic chemistries that are sensitive to sulfidic anions, and our methods adapted to study other atmospherically derived trace species.
Collapse
Affiliation(s)
- Sukrit Ranjan
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
- MIT Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Zoe R. Todd
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
35
|
Redox Evolution via Gravitational Differentiation on Low-mass Planets: Implications for Abiotic Oxygen, Water Loss, and Habitability. ACTA ACUST UNITED AC 2018. [DOI: 10.3847/1538-3881/aab608] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Szabla R, Kruse H, Stadlbauer P, Šponer J, Sobolewski AL. Sequential electron transfer governs the UV-induced self-repair of DNA photolesions. Chem Sci 2018; 9:3131-3140. [PMID: 29732095 PMCID: PMC5916108 DOI: 10.1039/c8sc00024g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/22/2018] [Indexed: 01/09/2023] Open
Abstract
Cyclobutane pyrimidine dimers (CpDs) are among the most common DNA lesions occurring due to the interaction with ultraviolet light. While photolyases have been well known as external factors repairing CpDs, the intrinsic self-repairing capabilities of the GAT 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 T DNA sequence were discovered only recently and are still largely obscure. Here, we elucidate the mechanistic details of this self-repair process by means of MD simulations and QM/MM computations involving the algebraic diagrammatic construction to the second order [ADC(2)] method. We show that local UV-excitation of guanine may be followed by up to three subsequent electron transfers, which may eventually enable efficient CpD ring opening when the negative charge resides on the T 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 T dimer. Consequently, the molecular mechanism of GAT 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 T self-repair can be envisaged as sequential electron transfer (SET) occurring downhill along the slope of the S1 potential energy surface. Even though the general features of the SET mechanism are retained in both of the studied stacked conformers, our optimizations of different S1/S0 state crossings revealed minor differences which could influence their self-repair efficiencies. We expect that such assessment of the availability and efficiency of the SET process in other DNA oligomers could hint towards other sequences exhibiting similar photochemical properties. Such explorations will be particularly fascinating in the context of the origins of biomolecules on Earth, owing to the lack of external repairing factors in the Archean age.
Collapse
Affiliation(s)
- Rafał Szabla
- Institute of Physics , Polish Academy of Sciences , Al. Lotników 32/46 , PL-02668 Warsaw , Poland.,Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135 , 61265 Brno , Czech Republic .
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135 , 61265 Brno , Czech Republic .
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135 , 61265 Brno , Czech Republic . .,Regional Centre of Advanced Technologies and Materials , Department of Physical Chemistry , Faculty of Science , Palacký University , 17. Listopadu 1192/12 , 77146 Olomouc , Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Královopolská 135 , 61265 Brno , Czech Republic .
| | - Andrzej L Sobolewski
- Institute of Physics , Polish Academy of Sciences , Al. Lotników 32/46 , PL-02668 Warsaw , Poland
| |
Collapse
|
37
|
|
38
|
Todd ZR, Fahrenbach AC, Magnani CJ, Ranjan S, Björkbom A, Szostak JW, Sasselov DD. Solvated-electron production using cyanocuprates is compatible with the UV-environment on a Hadean–Archaean Earth. Chem Commun (Camb) 2018; 54:1121-1124. [PMID: 29334083 PMCID: PMC9631354 DOI: 10.1039/c7cc07748c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UV-driven photoredox processing of cyanocuprates can generate simple sugars necessary for prebiotic synthesis. We investigate the wavelength dependence of this process from 215 to 295 nm and generally observe faster rates at shorter wavelengths. The most efficient wavelengths are accessible to a range of potential prebiotic atmospheres, supporting the potential role of cyanocuprate photochemistry in prebiotic synthesis on the early Earth. Simple sugars necessary for the synthesis of prebiotic molecules can be generated from UV-driven cyanocuprate photoprocessing under conditions consistent with those expected on the surface of the early Earth.![]()
Collapse
Affiliation(s)
- Zoe R. Todd
- Department of Astronomy
- Harvard-Smithsonian Center for Astrophysics
- 60 Garden Street
- Cambridge
- USA
| | - Albert C. Fahrenbach
- Howard Hughes Medical Institute
- Department of Molecular Biology and Center for Computational and Integrative Biology
- Massachusetts General Hospital
- 185 Cambridge Street
- Boston
| | - Christopher J. Magnani
- Department of Astronomy
- Harvard-Smithsonian Center for Astrophysics
- 60 Garden Street
- Cambridge
- USA
| | - Sukrit Ranjan
- Department of Astronomy
- Harvard-Smithsonian Center for Astrophysics
- 60 Garden Street
- Cambridge
- USA
| | - Anders Björkbom
- Howard Hughes Medical Institute
- Department of Molecular Biology and Center for Computational and Integrative Biology
- Massachusetts General Hospital
- 185 Cambridge Street
- Boston
| | - Jack W. Szostak
- Howard Hughes Medical Institute
- Department of Molecular Biology and Center for Computational and Integrative Biology
- Massachusetts General Hospital
- 185 Cambridge Street
- Boston
| | - Dimitar D. Sasselov
- Department of Astronomy
- Harvard-Smithsonian Center for Astrophysics
- 60 Garden Street
- Cambridge
- USA
| |
Collapse
|
39
|
Ranjan S, Wordsworth R, Sasselov DD. Atmospheric Constraints on the Surface UV Environment of Mars at 3.9 Ga Relevant to Prebiotic Chemistry. ASTROBIOLOGY 2017; 17:687-708. [PMID: 28537771 DOI: 10.1089/ast.2016.1596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent findings suggest that Mars may have been a clement environment for the emergence of life and may even have compared favorably to Earth in this regard. These findings have revived interest in the hypothesis that prebiotically important molecules or even nascent life may have formed on Mars and been transferred to Earth. UV light plays a key role in prebiotic chemistry. Characterizing the early martian surface UV environment is key to understanding how Mars compares to Earth as a venue for prebiotic chemistry. Here, we present two-stream, multilayer calculations of the UV surface radiance on Mars at 3.9 Ga to constrain the surface UV environment as a function of atmospheric state. We explore a wide range of atmospheric pressures, temperatures, and compositions that correspond to the diversity of martian atmospheric states consistent with available constraints. We include the effects of clouds and dust. We calculate dose rates to quantify the effect of different atmospheric states on UV-sensitive prebiotic chemistry. We find that, for normative clear-sky CO2-H2O atmospheres, the UV environment on young Mars is comparable to young Earth. This similarity is robust to moderate cloud cover; thick clouds (τcloud ≥ 100) are required to significantly affect the martian UV environment, because cloud absorption is degenerate with atmospheric CO2. On the other hand, absorption from SO2, H2S, and dust is nondegenerate with CO2, meaning that, if these constituents build up to significant levels, surface UV fluence can be suppressed. These absorbers have spectrally variable absorption, meaning that their presence affects prebiotic pathways in different ways. In particular, high SO2 environments may admit UV fluence that favors pathways conducive to abiogenesis over pathways unfavorable to it. However, better measurements of the spectral quantum yields of these pathways are required to evaluate this hypothesis definitively. Key Words: Radiative transfer-Origin of life-Mars-UV radiation-Prebiotic chemistry. Astrobiology 17, 687-708.
Collapse
Affiliation(s)
- Sukrit Ranjan
- 1 Harvard-Smithsonian Center for Astrophysics , Cambridge, Massachusetts
| | - Robin Wordsworth
- 2 Harvard Paulson School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts
- 3 Department of Earth and Planetary Sciences, Harvard University , Cambridge, Massachusetts
| | - Dimitar D Sasselov
- 1 Harvard-Smithsonian Center for Astrophysics , Cambridge, Massachusetts
| |
Collapse
|
40
|
The Surface UV Environment on Planets Orbiting M Dwarfs: Implications for Prebiotic Chemistry and the Need for Experimental Follow-up. ACTA ACUST UNITED AC 2017. [DOI: 10.3847/1538-4357/aa773e] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|