1
|
Cho TJ, Rhee MS. Space food production on microbiological safety: Key considerations for the design of Hazard Analysis and Critical Control Points (HACCP) plan. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:287-381. [PMID: 40023563 DOI: 10.1016/bs.afnr.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Although diet in space has relied on the sterilized products transported from earth, on-site space food production (e.g., farming, nutritional bioregeneration, bioculture foods, cooking) have been suggested to establish sustainable food supply system. This book chapter describes the key consideration for the design of hazard analysis and critical control points plan optimized for food produced and prepared in outer space. Technical advances in the food production during spaceflight were summarized to categorize the types of on-site space food production. Overall results of previous research regarding microbial monitoring of contaminants onboard the habitat of astronauts (single bacterial isolation and community analysis) and the alteration of physiological characteristics of host-pathogen-food in microgravity were analyzed to suggest information required for hazard analysis. Pathogen control strategies which can be set as critical control points were also designed from raw materials to consumption followed by the waste recycling.
Collapse
Affiliation(s)
- Tae Jin Cho
- Department of Food and Biotechnology, College of Science and Technology, Korea University, Sejong, South Korea; Department of Food Regulatory Science, College of Science and Technology, Korea University, Sejong, South Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea.
| |
Collapse
|
2
|
Maffei ME, Balestrini R, Costantino P, Lanfranco L, Morgante M, Battistelli A, Del Bianco M. The physiology of plants in the context of space exploration. Commun Biol 2024; 7:1311. [PMID: 39394270 PMCID: PMC11470014 DOI: 10.1038/s42003-024-06989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
The stress that the space environment can induce on plant physiology is of both abiotic and biotic nature. The abiotic space environment is characterized by ionizing radiation and altered gravity, geomagnetic field (GMF), pressure, and light conditions. Biotic interactions include both pathogenic and beneficial interactions. Here, we provide an overall picture of the effects of abiotic and biotic space-related factors on plant physiology. The knowledge required for the success of future space missions will lead to a better understanding of fundamental aspects of plant physiological responses, thus providing useful tools for plant breeding and agricultural practices on Earth.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department of Life Sciences and Systems Biology, Plant Physiology Unit, University of Turin, Via Quarello 15/a, 10135, Turin, Italy
| | - Raffaella Balestrini
- Institute of Biosciences and Bioresources, Via Amendola 165/A, 70126, Bari, Italy
| | - Paolo Costantino
- Department of Biology and Biotechnology "C. Darwin", University of Rome "Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Michele Morgante
- Institute of Applied Genomics, University of Udine, Via Jacopo Linussio 51, 33100, Udine, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, Viale Guglielmo Marconi 2, 05010, Porano, Italy
| | - Marta Del Bianco
- Italian Space Agency, Viale del Politecnico s.n.c., 00133, Rome, Italy.
- Centre for Space Life Sciences, Viale Regina Elena, 299, 00161, Roma, Italy.
| |
Collapse
|
3
|
Nickerson CA, McLean RJC, Barrila J, Yang J, Thornhill SG, Banken LL, Porterfield DM, Poste G, Pellis NR, Ott CM. Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability. Microbiol Mol Biol Rev 2024; 88:e0014423. [PMID: 39158275 PMCID: PMC11426028 DOI: 10.1128/mmbr.00144-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches. Here, we review biological and physical mechanisms that regulate microbial responses to spaceflight and spaceflight analog environments from both the microbe and host-microbe perspective that are relevant to human health and habitat sustainability. We highlight instrumentation and technology used in spaceflight microbiology experiments, their limitations, and advances necessary to enable next-generation research. As spaceflight experiments are relatively rare, we discuss ground-based analogs that mimic aspects of microbial responses to reduced gravity in spaceflight, including those that reduce mechanical forces of fluid flow over cell surfaces which also simulate conditions encountered by microorganisms during their terrestrial lifecycles. As spaceflight mission durations increase with traditional astronauts and commercial space programs send civilian crews with underlying health conditions, microorganisms will continue to play increasingly critical roles in health and habitat sustainability, thus defining a new dimension of occupational health. The ability of microorganisms to adapt, survive, and evolve in the spaceflight environment is important for future human space endeavors and provides opportunities for innovative biological and technological advances to benefit life on Earth.
Collapse
Affiliation(s)
- Cheryl A. Nickerson
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Jennifer Barrila
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | | | - Laura L. Banken
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona, USA
| | - D. Marshall Porterfield
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - George Poste
- Complex Adaptive Systems Initiative, Arizona State University, Tempe, Arizona, USA
| | | | - C. Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
4
|
Nastasi N, Haines SR, Bope A, Meyer ME, Horack JM, Dannemiller KC. Fungal diversity differences in the indoor dust microbiome from built environments on earth and in space. Sci Rep 2024; 14:11858. [PMID: 38789478 PMCID: PMC11126634 DOI: 10.1038/s41598-024-62191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Human occupied built environments are no longer confined to Earth. In fact, there have been humans living and working in low-Earth orbit on the International Space Station (ISS) since November 2000. With NASA's Artemis missions and the age of commercial space stations set to begin, more human-occupied spacecraft than ever will be in Earth's orbit and beyond. On Earth and in the ISS, microbes, especially fungi, can be found in dust and grow when unexpected, elevated moisture conditions occur. However, we do not yet know how indoor microbiomes in Earth-based homes and in the ISS differ due to their unique set of environmental conditions. Here we show that bacterial and fungal communities are different in dust collected from vacuum bags on Earth and the ISS, with Earth-based homes being more diverse (465 fungal OTUs and 237 bacterial ASVs) compared to the ISS (102 fungal OTUs and 102 bacterial ASVs). When dust from these locations were exposed to varying equilibrium relative humidity conditions (ERH), there were also significant fungal community composition changes as ERH and time elevated increased (Bray Curtis: R2 = 0.35, P = 0.001). These findings can inform future spacecraft design to promote healthy indoor microbiomes that support crew health, spacecraft integrity, and planetary protection.
Collapse
Affiliation(s)
- Nicholas Nastasi
- Environmental Science Graduate Program, Ohio State University, Columbus, OH, 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, College of Engineering, Environmental Health Sciences, The Ohio State University, 470 Hitchcock Hall, 2050 Neil Ave, Columbus, OH, 43210, USA
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA
| | - Sarah R Haines
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Ashleigh Bope
- Environmental Science Graduate Program, Ohio State University, Columbus, OH, 43210, USA
- Department of Civil, Environmental and Geodetic Engineering, College of Engineering, Environmental Health Sciences, The Ohio State University, 470 Hitchcock Hall, 2050 Neil Ave, Columbus, OH, 43210, USA
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA
| | - Marit E Meyer
- NASA Glenn Research Center, Cleveland, OH, 44135, USA
| | - John M Horack
- Department of Mechanical and Aerospace Engineering, College of Engineering and John Glenn College of Public Affairs, Ohio State University, Columbus, OH, 43210, USA
| | - Karen C Dannemiller
- Department of Civil, Environmental and Geodetic Engineering, College of Engineering, Environmental Health Sciences, The Ohio State University, 470 Hitchcock Hall, 2050 Neil Ave, Columbus, OH, 43210, USA.
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA.
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Nguyen HN, Sharp GM, Stahl-Rommel S, Velez Justiniano YA, Castro CL, Nelman-Gonzalez M, O’Rourke A, Lee MD, Williamson J, McCool C, Crucian B, Clark KW, Jain M, Castro-Wallace SL. Microbial isolation and characterization from two flex lines from the urine processor assembly onboard the international space station. Biofilm 2023; 5:100108. [PMID: 36938359 PMCID: PMC10020673 DOI: 10.1016/j.bioflm.2023.100108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/13/2023] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Urine, humidity condensate, and other sources of non-potable water are processed onboard the International Space Station (ISS) by the Water Recovery System (WRS) yielding potable water. While some means of microbial control are in place, including a phosphoric acid/hexavalent chromium urine pretreatment solution, many areas within the WRS are not available for routine microbial monitoring. Due to refurbishment needs, two flex lines from the Urine Processor Assembly (UPA) within the WRS were removed and returned to Earth. The water from within these lines, as well as flush water, was microbially evaluated. Culture and culture-independent analysis revealed the presence of Burkholderia, Paraburkholderia, and Leifsonia. Fungal culture also identified Fusarium and Lecythophora. Hybrid de novo genome analysis of the five distinct Burkholderia isolates identified them as B. contaminans, while the two Paraburkholderia isolates were identified as P. fungorum. Chromate-resistance gene clusters were identified through pangenomic analysis that differentiated these genomes from previously studied isolates recovered from the point-of-use potable water dispenser and/or current NCBI references, indicating that unique populations exist within distinct niches in the WRS. Beyond genomic analysis, fixed samples directly from the lines were imaged by environmental scanning electron microscopy, which detailed networks of fungal-bacterial biofilms. This is the first evidence of biofilm formation within flex lines from the UPA onboard the ISS. For all bacteria isolated, biofilm potential was further characterized, with the B. contaminans isolates demonstrating the most considerable biofilm formation. Moreover, the genomes of the B. contaminans revealed secondary metabolite gene clusters associated with quorum sensing, biofilm formation, antifungal compounds, and hemolysins. The potential production of these gene cluster metabolites was phenotypically evaluated through biofilm, bacterial-fungal interaction, and hemolytic assays. Collectively, these data identify the UPA flex lines as a unique ecological niche and novel area of biofilm growth within the WRS. Further investigation of these organisms and their resistance profiles will enable engineering controls directed toward biofilm prevention in future space station water systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aubrie O’Rourke
- Exploration Research and Technology, NASA Kennedy Space Center, Merritt Island, FL, USA
| | | | - Jill Williamson
- Space Systems Department, NASA Marshall Space Flight Center, Huntsville, AL, USA
| | | | - Brian Crucian
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | | | - Miten Jain
- Department of Bioengineering, Department of Physics, Northeastern University, Boston, MA, USA
| | - Sarah L. Castro-Wallace
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
- Corresponding author.
| |
Collapse
|
6
|
Totsline N, Kniel KE, Bais HP. Microgravity and evasion of plant innate immunity by human bacterial pathogens. NPJ Microgravity 2023; 9:71. [PMID: 37679341 PMCID: PMC10485020 DOI: 10.1038/s41526-023-00323-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Spaceflight microgravity and modeled-microgravity analogs (MMA) broadly alter gene expression and physiology in both pathogens and plants. Research elucidating plant and bacterial responses to normal gravity or microgravity has shown the involvement of both physiological and molecular mechanisms. Under true and simulated microgravity, plants display differential expression of pathogen-defense genes while human bacterial pathogens exhibit increased virulence, antibiotic resistance, stress tolerance, and reduced LD50 in animal hosts. Human bacterial pathogens including Salmonella enterica and E. coli act as cross-kingdom foodborne pathogens by evading and suppressing the innate immunity of plants for colonization of intracellular spaces. It is unknown if evasion and colonization of plants by human pathogens occurs under microgravity and if there is increased infection capability as demonstrated using animal hosts. Understanding the relationship between microgravity, plant immunity, and human pathogens could prevent potentially deadly outbreaks of foodborne disease during spaceflight. This review will summarize (1) alterations to the virulency of human pathogens under microgravity and MMA, (2) alterations to plant physiology and gene expression under microgravity and MMA, (3) suppression and evasion of plant immunity by human pathogens under normal gravity, (4) studies of plant-microbe interactions under microgravity and MMA. A conclusion suggests future study of interactions between plants and human pathogens under microgravity is beneficial to human safety, and an investment in humanity's long and short-term space travel goals.
Collapse
Affiliation(s)
- Noah Totsline
- Department of Plant and Soil Sciences, AP Biopharma, University of Delaware, Newark, DE, USA.
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Harsh P Bais
- Department of Plant and Soil Sciences, AP Biopharma, University of Delaware, Newark, DE, USA
| |
Collapse
|
7
|
Qu X, Wang H, Lodhi AF, Deng YL, Zhang Y. Evaluation of Decontamination Potential of Wet Wipes Against Microbial Contamination of Chinese Spacecraft Materials. ASTROBIOLOGY 2023; 23:746-755. [PMID: 37279031 DOI: 10.1089/ast.2022.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Abstract There are many kinds of microorganisms that inhabit the environment of manned space stations. Wet wipes are a common tool used in space stations to clean and reduce microorganisms on surfaces. Here, we compared the performance of five types of wipes used by the Chinese Space Station (CSS) on orbit before 2021 in terms of microbial decontamination. In previous studies, we found that Bacillus sp. TJ-1-1 and Staphylococcus sp. HN-5 were the most abundant microorganisms in the assembly environment of the CSS. In this study, we used these two bacteria to build different microbial load models to represent the occurrence and non-occurrence of microbial outbreaks in the on-orbit CSS. The results show that the number of microorganisms that can be removed when wiping the surface with high microbial load by wet wipes was higher than that when wiping the surface with low microbial load. For on-orbit daily cleaning and keeping the microbial population within the regulation concentration range, it is suitable to use two pure water wipes per 100 cm2. When the number of microorganisms increases to a degree where astronauts can see the colonies with their naked eyes, the best way to eliminate the problem is to wipe them thoroughly and repeatedly with at least four quaternary ammonium-based wipes every 100 cm2.
Collapse
Affiliation(s)
- Xi Qu
- Beijing Institute of Spacecraft System Engineering, Beijing, China
| | - Hong Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Adil Farooq Lodhi
- Department of Microbiology, Faculty of Biological and Health Sciences, Hazara University, Mansehra, Pakistan
| | - Yu-Lin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
8
|
Koehle AP, Brumwell SL, Seto EP, Lynch AM, Urbaniak C. Microbial applications for sustainable space exploration beyond low Earth orbit. NPJ Microgravity 2023; 9:47. [PMID: 37344487 DOI: 10.1038/s41526-023-00285-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
With the construction of the International Space Station, humans have been continuously living and working in space for 22 years. Microbial studies in space and other extreme environments on Earth have shown the ability for bacteria and fungi to adapt and change compared to "normal" conditions. Some of these changes, like biofilm formation, can impact astronaut health and spacecraft integrity in a negative way, while others, such as a propensity for plastic degradation, can promote self-sufficiency and sustainability in space. With the next era of space exploration upon us, which will see crewed missions to the Moon and Mars in the next 10 years, incorporating microbiology research into planning, decision-making, and mission design will be paramount to ensuring success of these long-duration missions. These can include astronaut microbiome studies to protect against infections, immune system dysfunction and bone deterioration, or biological in situ resource utilization (bISRU) studies that incorporate microbes to act as radiation shields, create electricity and establish robust plant habitats for fresh food and recycling of waste. In this review, information will be presented on the beneficial use of microbes in bioregenerative life support systems, their applicability to bISRU, and their capability to be genetically engineered for biotechnological space applications. In addition, we discuss the negative effect microbes and microbial communities may have on long-duration space travel and provide mitigation strategies to reduce their impact. Utilizing the benefits of microbes, while understanding their limitations, will help us explore deeper into space and develop sustainable human habitats on the Moon, Mars and beyond.
Collapse
Affiliation(s)
- Allison P Koehle
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| | - Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | | | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Camilla Urbaniak
- ZIN Technologies Inc, Middleburg Heights, OH, USA.
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
9
|
Haveman NJ, Schuerger AC, Yu PL, Brown M, Doebler R, Paul AL, Ferl RJ. Advancing the automation of plant nucleic acid extraction for rapid diagnosis of plant diseases in space. FRONTIERS IN PLANT SCIENCE 2023; 14:1194753. [PMID: 37389293 PMCID: PMC10304293 DOI: 10.3389/fpls.2023.1194753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023]
Abstract
Human space exploration missions will continue the development of sustainable plant cultivation in what are obviously novel habitat settings. Effective pathology mitigation strategies are needed to cope with plant disease outbreaks in any space-based plant growth system. However, few technologies currently exist for space-based diagnosis of plant pathogens. Therefore, we developed a method of extracting plant nucleic acid that will facilitate the rapid diagnosis of plant diseases for future spaceflight applications. The microHomogenizer™ from Claremont BioSolutions, originally designed for bacterial and animal tissue samples, was evaluated for plant-microbial nucleic acid extractions. The microHomogenizer™ is an appealing device in that it provides automation and containment capabilities that would be required in spaceflight applications. Three different plant pathosystems were used to assess the versatility of the extraction process. Tomato, lettuce, and pepper plants were respectively inoculated with a fungal plant pathogen, an oomycete pathogen, and a plant viral pathogen. The microHomogenizer™, along with the developed protocols, proved to be an effective mechanism for producing DNA from all three pathosystems, in that PCR and sequencing of the resulting samples demonstrated clear DNA-based diagnoses. Thus, this investigation advances the efforts to automate nucleic acid extraction for future plant disease diagnosis in space.
Collapse
Affiliation(s)
- Natasha J. Haveman
- NASA Utilization & Life Sciences Office (UB-A), Kennedy Space Center, Merritt Island, FL, United States
| | - Andrew C. Schuerger
- Department of Plant Pathology, University of Florida, Space Life Science Lab, Merritt Island, FL, United States
| | - Pei-Ling Yu
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Mark Brown
- Claremont BioSolutions Limited Liability Company (LLC), Upland, CA, United States
| | - Robert Doebler
- Claremont BioSolutions Limited Liability Company (LLC), Upland, CA, United States
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Robert J. Ferl
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- University of Florida Office of Research, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
McDonagh F, Cormican M, Morris D, Burke L, Singh NK, Venkateswaran K, Miliotis G. Medical Astro-Microbiology: Current Role and Future Challenges. J Indian Inst Sci 2023; 103:1-26. [PMID: 37362850 PMCID: PMC10082442 DOI: 10.1007/s41745-023-00360-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 06/28/2023]
Abstract
The second and third decades of the twenty-first century are marked by a flourishing of space technology which may soon realise human aspirations of a permanent multiplanetary presence. The prevention, control and management of infection with microbial pathogens is likely to play a key role in how successful human space aspirations will become. This review considers the emerging field of medical astro-microbiology. It examines the current evidence regarding the risk of infection during spaceflight via host susceptibility, alterations to the host's microbiome as well as exposure to other crew members and spacecraft's microbiomes. It also considers the relevance of the hygiene hypothesis in this regard. It then reviews the current evidence related to infection risk associated with microbial adaptability in spaceflight conditions. There is a particular focus on the International Space Station (ISS), as one of the only two crewed objects in low Earth orbit. It discusses the effects of spaceflight related stressors on viruses and the infection risks associated with latent viral reactivation and increased viral shedding during spaceflight. It then examines the effects of the same stressors on bacteria, particularly in relation to changes in virulence and drug resistance. It also considers our current understanding of fungal adaptability in spaceflight. The global public health and environmental risks associated with a possible re-introduction to Earth of invasive species are also briefly discussed. Finally, this review examines the largely unknown microbiology and infection implications of celestial body habitation with an emphasis placed on Mars. Overall, this review summarises much of our current understanding of medical astro-microbiology and identifies significant knowledge gaps. Graphical Abstract
Collapse
Affiliation(s)
- Francesca McDonagh
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Department of Medical Microbiology, Galway University Hospitals, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Liam Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| | - Nitin Kumar Singh
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
11
|
Haveman NJ, Schuerger AC. Diagnosing an Opportunistic Fungal Pathogen on Spaceflight-Grown Plants Using the MinION Sequencing Platform. ASTROBIOLOGY 2022; 22:1-6. [PMID: 34793258 DOI: 10.1089/ast.2021.0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sustainable agriculture in microgravity is integral to future long-term human space exploration. To ensure the efficient and sustainable cultivation of plants in space, a contingency plan to monitor plant health and mitigate plant diseases is necessary. Yet, neither methods nor tools currently exist to evaluate the plant microbial interactions or to diagnose potential plant diseases in space-based bioregenerative life support systems. In this study, we show how the MinION sequencing platform can be used to diagnose the opportunistic pathogen Fusarium oxysporum sensu lato, a fungal infection on Zinnia hybrida (zinnia) plants that were grown on the International Space Station (ISS) in 2015-2016. Genomic DNA from the infected plant material (root and leaf tissues) retrieved from the ISS were extracted and sequenced. In addition, pure cultures of Burkholderia contaminans, F. oxysporum sensu lato, and Fusarium sporotrichioides were used as controls to test the specificity of the bioinformatics pipeline developed. The results show that the MinION platform can be used to accurately differentiate between fusaria species and strengthens the case for using the platform as a rapid plant disease diagnostic tool in space.
Collapse
Affiliation(s)
- Natasha J Haveman
- Department of Horticultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Andrew C Schuerger
- Department of Plant Pathology, University of Florida, Merritt Island, Florida, USA
| |
Collapse
|
12
|
Sun R, Yi Z, Fu Y, Liu H. Dynamic changes in rhizosphere fungi in different developmental stages of wheat in a confined and isolated environment. Appl Microbiol Biotechnol 2021; 106:441-453. [PMID: 34870738 DOI: 10.1007/s00253-021-11698-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
As the core food crop of a bioregenerative life support system (BLSS), wheat is susceptible to pathogen infection due to the lack of effective microbial communities in the confined and isolated environment. Therefore, a thorough understanding of the dynamic changes in wheat rhizosphere fungi is of great significance for improving wheat production and ensuring the stability of the BLSS. In the current study, we collected samples of rhizosphere fungi in the four growth stages of wheat grown in the "Lunar Palace 365" experiment. We employed bioinformatics methods to analyze the samples' species composition characteristics, community network characteristics, and FUNGuild function analysis. We found that the species composition of rhizosphere fungi in the wheat at the tillering stage changed greatly in the closed and isolated environment, while the species composition in the seedling, flowering, and mature stage were relatively stable. The results of the FUNGuild function analysis showed that the functions of rhizosphere fungi changed during wheat development. The rhizosphere fungal community was centered on Ascomycota, Mortierellomycota, and Chytridiomycota, and the community showed the characteristics of a "small world" arrangement. The stage of wheat seedlings is characterized by a greater abundance, diversity, and complexity of the network of interactions in the rhizosphere mycorrhiza community, while the tillering stage exhibited a greater clustering coefficient. Based on the changes in species composition, guild function regulation, and community structure differences of the wheat rhizosphere fungi in the BLSS, our study identified the critical fungal species during wheat development, providing a reference for ensuring the health and yield of plants in the BLSS system. KEY POINTS: • The diversity, composition, FUNguild, and network structure of rhizosphere fungi were analyzed. • Ascomycota, Mortierellomycota, and Chytridiomycota were the center of the rhizosphere fungal community network. • The effects of different wheat developmental stages on the community composition, function, and network structure of rhizosphere fungi were examined.
Collapse
Affiliation(s)
- Ruxin Sun
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, China.,International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhihao Yi
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, China.,International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yuming Fu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, China. .,International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100191, China. .,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, 100083, China.
| | - Hong Liu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, China.,International Joint Research Center of Aerospace Biotechnology & Medical Engineering, Beihang University, Beijing, 100191, China.,State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
13
|
Hummerick ME, Khodadad CLM, Dixit AR, Spencer LE, Maldonado-Vasquez GJ, Gooden JL, Spern CJ, Fischer JA, Dufour N, Wheeler RM, Romeyn MW, Smith TM, Massa GD, Zhang Y. Spatial Characterization of Microbial Communities on Multi-Species Leafy Greens Grown Simultaneously in the Vegetable Production Systems on the International Space Station. Life (Basel) 2021; 11:life11101060. [PMID: 34685431 PMCID: PMC8537831 DOI: 10.3390/life11101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The establishment of steady-state continuous crop production during long-term deep space missions is critical for providing consistent nutritional and psychological benefits for the crew, potentially improving their health and performance. Three technology demonstrations were completed achieving simultaneous multi-species plant growth and the concurrent use of two Veggie units on the International Space Station (ISS). Microbiological characterization using molecular and culture-based methods was performed on leaves and roots from two harvests of three leafy greens, red romaine lettuce (Lactuca sativa cv. ‘Outredgeous’); mizuna mustard, (Brassica rapa var japonica); and green leaf lettuce, (Lactuca sativa cv. Waldmann’s) and associated rooting pillow components and Veggie chamber surfaces. Culture based enumeration and pathogen screening indicated the leafy greens were safe for consumption. Surface samples of the Veggie facility and plant pillows revealed low counts of bacteria and fungi and are commonly isolated on ISS. Community analysis was completed with 16S rRNA amplicon sequencing. Comparisons between pillow components, and plant tissue types from VEG-03D, E, and F revealed higher diversity in roots and rooting substrate than the leaves and wick. This work provides valuable information for food production-related research on the ISS and the impact of the plant microbiome on this unique closed environment.
Collapse
Affiliation(s)
- Mary E. Hummerick
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
- Correspondence: (M.E.H.); (Y.Z.)
| | - Christina L. M. Khodadad
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Anirudha R. Dixit
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Lashelle E. Spencer
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Gretchen J. Maldonado-Vasquez
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Jennifer L. Gooden
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Cory J. Spern
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Jason A. Fischer
- Kennedy Space Center, Amentum Services, Inc., LASSO, Merritt Island, FL 32899, USA; (C.L.M.K.); (A.R.D.); (L.E.S.); (G.J.M.-V.); (J.L.G.); (C.J.S.); (J.A.F.)
| | - Nicole Dufour
- Kennedy Space Center, Utilization and Life Sciences Office, NASA, Merritt Island, FL 32899, USA; (N.D.); (R.M.W.); (M.W.R.); (T.M.S.); (G.D.M.)
| | - Raymond M. Wheeler
- Kennedy Space Center, Utilization and Life Sciences Office, NASA, Merritt Island, FL 32899, USA; (N.D.); (R.M.W.); (M.W.R.); (T.M.S.); (G.D.M.)
| | - Matthew W. Romeyn
- Kennedy Space Center, Utilization and Life Sciences Office, NASA, Merritt Island, FL 32899, USA; (N.D.); (R.M.W.); (M.W.R.); (T.M.S.); (G.D.M.)
| | - Trent M. Smith
- Kennedy Space Center, Utilization and Life Sciences Office, NASA, Merritt Island, FL 32899, USA; (N.D.); (R.M.W.); (M.W.R.); (T.M.S.); (G.D.M.)
| | - Gioia D. Massa
- Kennedy Space Center, Utilization and Life Sciences Office, NASA, Merritt Island, FL 32899, USA; (N.D.); (R.M.W.); (M.W.R.); (T.M.S.); (G.D.M.)
| | - Ye Zhang
- Kennedy Space Center, Utilization and Life Sciences Office, NASA, Merritt Island, FL 32899, USA; (N.D.); (R.M.W.); (M.W.R.); (T.M.S.); (G.D.M.)
- Correspondence: (M.E.H.); (Y.Z.)
| |
Collapse
|
14
|
Draft Genome Sequences of Fungi Isolated from the International Space Station during the Microbial Tracking-2 Experiment. Microbiol Resour Announc 2021; 10:e0075121. [PMID: 34528817 PMCID: PMC8444978 DOI: 10.1128/mra.00751-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
As part of the Microbial Tracking-2 study, 94 fungal strains were isolated from surfaces on the International Space Station, and whole-genome sequences were assembled. Characterization of these draft genomes will allow evaluation of microgravity adaption, risks to human health and spacecraft functioning, and biotechnological applications of fungi.
Collapse
|
15
|
Haveman NJ, Khodadad CLM, Dixit AR, Louyakis AS, Massa GD, Venkateswaran K, Foster JS. Evaluating the lettuce metatranscriptome with MinION sequencing for future spaceflight food production applications. NPJ Microgravity 2021; 7:22. [PMID: 34140518 PMCID: PMC8211661 DOI: 10.1038/s41526-021-00151-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Healthy plants are vital for successful, long-duration missions in space, as they provide the crew with life support, food production, and psychological benefits. The microorganisms that associate with plant tissues play a critical role in improving plant health and production. To that end, we developed a methodology to investigate the transcriptional activities of the microbiome of red romaine lettuce, a key salad crop that was grown under International Space Station (ISS)-like conditions. Microbial transcripts enriched from host-microbe total RNA were sequenced using the Oxford Nanopore MinION sequencing platform. Results show that this enrichment approach was highly reproducible and could be an effective approach for the on-site detection of microbial transcriptional activity. Our results demonstrate the feasibility of using metatranscriptomics of enriched microbial RNA as a potential method for on-site monitoring of the transcriptional activity of crop microbiomes, thereby helping to facilitate and maintain plant health for on-orbit space food production.
Collapse
Affiliation(s)
- Natasha J. Haveman
- grid.15276.370000 0004 1936 8091Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL USA
| | - Christina L. M. Khodadad
- grid.419743.c0000 0001 0845 4769Amentum Services, Inc., LASSO, Kennedy Space Center, Merritt Island, FL USA
| | - Anirudha R. Dixit
- grid.419743.c0000 0001 0845 4769Amentum Services, Inc., LASSO, Kennedy Space Center, Merritt Island, FL USA
| | - Artemis S. Louyakis
- grid.63054.340000 0001 0860 4915Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT USA
| | - Gioia D. Massa
- grid.419743.c0000 0001 0845 4769Space Crop Production Team, Kennedy Space Center, Merritt Island, FL USA
| | - Kasthuri Venkateswaran
- grid.211367.0Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, Pasadena, CA USA
| | - Jamie S. Foster
- grid.15276.370000 0004 1936 8091Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL USA
| |
Collapse
|