1
|
Fujii T, Mukai T, Hasegawa S, Hirata TI, Sawai K. Evaluation of bovine embryo quality based on gene expression profiling using whole-transcriptome amplification. J Reprod Dev 2024; 70:259-263. [PMID: 38852998 PMCID: PMC11310381 DOI: 10.1262/jrd.2024-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
This study aimed to develop a method to evaluate the quality of bovine in vitro fertilized (IVF) embryos based on gene expression profiling via whole-transcriptome amplification. The expression of 11 developmentally important genes in individual bovine in vivo-derived (IVD) and IVF embryos were examined. Gene expression profiling was conducted by classifying the expression level of each gene in individual embryos as low, medium, or high. The IVF group had a higher (P < 0.01) proportion of embryos with low expression of SOX2, NANOG, and FGF4. In addition, a correlation analysis between the expression levels of each gene in individual embryos demonstrated that the relationship between gene expression differed with respect to IVD and IVF embryos. Our results suggest that the expression profiling of developmentally important genes using IVD embryos as normal controls could be a useful indicator for evaluating the quality of bovine IVF embryos.
Collapse
Affiliation(s)
- Takashi Fujii
- Animal Research center, Hokkaido Research Organization, Hokkaido 081-0038, Japan
- Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Takamasa Mukai
- Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | | | - Toh-Ichi Hirata
- Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Ken Sawai
- Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| |
Collapse
|
2
|
Hassan FU, Deng T, Rehman MSU, Rehman ZU, Sarfraz S, Mushahid M, Rehman SU. Genome-wide identification and evolutionary analysis of the FGF gene family in buffalo. J Biomol Struct Dyn 2023; 42:10225-10236. [PMID: 37697717 DOI: 10.1080/07391102.2023.2256861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023]
Abstract
Fibroblast growth factors (FGFs) are important polypeptide growth factors that play a critical role in many developmental processes, including differentiation, cell proliferation, and migration in mammals. This study employs in silico analyses to characterize the FGF gene family in buffalo, investigating their genome-wide identification, physicochemical properties, and evolutionary patterns. For this purpose, genomic and proteomic sequences of buffalo, cattle, goat, and sheep were retrieved from NCBI database. We identified a total of 22 FGF genes in buffalo. Physicochemical properties observed through ProtParam tool showed notable features of these proteins including in-vitro instability, thermostability, hydrophilicity, and basic nature. Phylogenetic analysis grouped 22 identified genes into nine sub-families based on evolutionary relationships. Additionally, analysis of gene structure, motif patterns, and conserved domains using TBtools revealed the remarkable conservation of this gene family across selected species throughout the course of evolution. Comparative amino acid analysis performed through ClustalW demonstrated significant conservation between buffalo and cattle FGF proteins. Mutational analysis showed three non-synonymous mutations at positions R103 > G, P7 > L, and E98 > Q in FGF4, FGF6, and FGF19, respectively in buffalo. Duplication events revealed only one segmental duplication (FGF10/FGF22) in buffalo and two in cattle (FGF10/FGF22 and FGF13/FGF13-like) with Ka/Ks values <1 indicating purifying selection pressure for these duplications. Comparison of protein structures of buffalo, goat, and sheep exhibited more similarities in respective structures. In conclusion, our study highlights the conservation of the FGF gene family in buffalo during evolution. Furthermore, the identified non-synonymous mutations may have implications for the selection of animals with better performance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faiz-Ul Hassan
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Tingxian Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Muhammad Saif-Ur Rehman
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zia-Ur Rehman
- University of Agriculture, Faisalabad-Sub Campus Toba Tek Sing, Pakistan
| | - Saad Sarfraz
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Mushahid
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Saif Ur Rehman
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| |
Collapse
|
3
|
Kim M, Lee J, Cai L, Choi H, Oh D, Jawad A, Hyun SH. Neurotrophin-4 promotes the specification of trophectoderm lineage after parthenogenetic activation and enhances porcine early embryonic development. Front Cell Dev Biol 2023; 11:1194596. [PMID: 37519302 PMCID: PMC10373506 DOI: 10.3389/fcell.2023.1194596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Neurotrophin-4 (NT-4), a neurotrophic factor, appears to affect early embryonic development because it is secreted not only by neurons but also by oviductal and uterine epithelial cells. However, no studies have characterized the effects of NT-4 on early embryonic development in pigs. In this study, we applied the experimental model of parthenogenetic-activation (PA)-derived embryos. Herein, we investigated the effect of NT-4 supplementation during the in vitro culture (IVC) of embryos, analyzed the transcription levels of specific genes, and outlined the first cell lineage specification for porcine PA-derived blastocysts. We confirmed that NT-4 and its receptor proteins were localized in both the inner cell mass (ICM) and trophectoderm (TE) in porcine blastocysts. Across different concentrations (0, 1, 10, and 100 ng/mL) of NT-4 supplementation, the optimal concentration of NT-4 to improve the developmental competence of porcine parthenotes was 10 ng/mL. NT-4 supplementation during porcine IVC significantly (p < 0.05) increased the proportion of TE cells by inducing the transcription of TE lineage markers (CDX2, PPAG3, and GATA3 transcripts). NT-4 also reduced blastocyst apoptosis by regulating the transcription of apoptosis-related genes (BAX and BCL2L1 transcripts) and improved blastocyst quality via the interaction of neurotrophin-, Hippo-yes-associated protein (Hippo-YAP) and mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway. Additionally, NT-4 supplementation during IVC significantly (p < 0.05) increased YAP1 transcript levels and significantly (p < 0.01) decreased LATS2 transcript levels, respectively, in the porcine PA-derived blastocysts. We also confirmed through fluorescence intensity that the YAP1 protein was significantly (p < 0.001) increased in the NT-4-treated blastocysts compared with that in the control. NT-4 also promoted differentiation into the TE lineage rather than into the ICM lineage during porcine early embryonic development. In conclusion, 10 ng/mL NT-4 supplementation enhanced blastocyst quality by regulating the apoptosis- and TE lineage specification-related genes and interacting with neurotrophin-, Hippo-YAP-, and MAPK/ERK signaling pathway during porcine in vitro embryo development.
Collapse
Affiliation(s)
- Mirae Kim
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Marsico TV, Valente RS, Annes K, Oliveira AM, Silva MV, Sudano MJ. Species-specific molecular differentiation of embryonic inner cell mass and trophectoderm: A systematic review. Anim Reprod Sci 2023; 252:107229. [PMID: 37079996 DOI: 10.1016/j.anireprosci.2023.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
A wide-ranging review study regarding the molecular characterization of the first cell lineages of the developmental embryo is lacking, especially for the primary events during earliest differentiation which leads to the determination of cellular fate. Here, a systematic review and meta-analysis were conducted according to PRISMA guidelines. MEDLINE-PubMed was searched based on an established search strategy through April 2021. Thirty-six studies fulfilling the inclusion criteria were subjected to qualitative and quantitative analysis. Among the studies, 50 % (18/36) used mice as an animal model, 22.2 % (8/36) pigs, 16.7 % (6/36) cattle, 5.5 % (2/36) humans, and 2.8 % (1/36) goats as well as 2.8 % (1/36) equine. Our results demonstrated that each of the first cell lineages of embryos requires a certain pattern of expression to establish the cellular determination of fate. Moreover, these patterns are shared by many species, particularly for those molecules that have already been identified in the literature as biomarkers. In conclusion, the present study integrated carefully chosen studies regarding embryonic development and first cellular decisions in mammalian species and summarized the information about the differential characterization of the first cell lineages and their possible relationship with specific gene expression.
Collapse
Affiliation(s)
| | | | - Kelly Annes
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | - Mara Viana Silva
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Mateus José Sudano
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil; Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
5
|
Goissis MD, Cibelli JB. Early Cell Specification in Mammalian Fertilized and Somatic Cell Nuclear Transfer Embryos. Methods Mol Biol 2023; 2647:59-81. [PMID: 37041329 DOI: 10.1007/978-1-0716-3064-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Early cell specification in mammalian preimplantation embryos is an intricate cellular process that leads to coordinated spatial and temporal expression of specific genes. Proper segregation into the first two cell lineages, the inner cell mass (ICM) and the trophectoderm (TE), is imperative for developing the embryo proper and the placenta, respectively. Somatic cell nuclear transfer (SCNT) allows the formation of a blastocyst containing both ICM and TE from a differentiated cell nucleus, which means that this differentiated genome must be reprogrammed to a totipotent state. Although blastocysts can be generated efficiently through SCNT, the full-term development of SCNT embryos is impaired mostly due to placental defects. In this review, we examine the early cell fate decisions in fertilized embryos and compare them to observations in SCNT-derived embryos, in order to understand if these processes are affected by SCNT and could be responsible for the low success of reproductive cloning.
Collapse
Affiliation(s)
- Marcelo D Goissis
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Jose B Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
6
|
Dubey P, Batra V, Sarwalia P, Nayak S, Baithalu R, Kumar R, Datta TK. miR-1246 is implicated as a possible candidate for endometrium remodelling facilitating implantation in buffalo (Bubalus bubalis). Vet Med Sci 2022; 9:443-456. [PMID: 36282011 PMCID: PMC9857007 DOI: 10.1002/vms3.968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The microRNAs (miRs) secreted by the trophectoderm (TE) cells have recently been implicated in the conceptus-endometrial cross talk during implantation and placentation. These miRs modulate various cellular processes during conception and throughout the pregnancy by regulating the gene expression in the foetal and maternal tissues. OBJECTIVES This study was undertaken to elucidate the function of TE secreted miRNAs in the maternal-foetal cross-talk during implantation/placentation in buffalo. METHODS The in vitro produced blastocysts were cultured on a cumulus feeder layer for 21 days. The relative expression profiles of a selected panel of miRs was generated using the spent media collected on Days 0, 7, 12, 16, and 21. A custom-designed mirVana™ miRNA mimic was used to transfect the endometrial epithelial cells (EECs) in order to determine the role of miRNA exhibiting highest expression on Days 21 and 21. RESULTS The expression of miR-1246 (p < 0.001) and let-7b (p < 0.01) was found to be significantly higher on Day 21 of TE culture in comparison to the control (Day 0). This elevated expression indicated the involvement of these miRs in the maternal-foetal cross-talk. Interestingly, after the transfection of EECs with miRNA mimic for miR-1246 (a novel molecule vis-à-vis implantation), the expression of beta-catenin and mucin1 in these cells was found to be significantly (p < 0.05) downregulated vis-à-vis the control, that is, the IFN-τ primed EECs (before transfection). CONCLUSIONS The TE secreted miR-1246 appeared to lower the expression of the endometrial receptivity genes (mucin1 and beta-catenin) which apparently assists the endometrium in preparing for placentation.
Collapse
Affiliation(s)
- Pratiksha Dubey
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia,Department of Biological SciencesIndian Institute of Science Education and ResearchMohaliIndia
| | - Vipul Batra
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia
| | - Parul Sarwalia
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia
| | - Samiksha Nayak
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia
| | - Rubina Baithalu
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia
| | - Rakesh Kumar
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia
| | - Tirtha Kumar Datta
- Animal Genomiccs Lab, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnalIndia,ICAR‐Central Institute for Research on BuffaloesHisarHaryanaIndia
| |
Collapse
|
7
|
Salilew-Wondim D, Tesfaye D, Rings F, Held-Hoelker E, Miskel D, Sirard MA, Tholen E, Schellander K, Hoelker M. The global gene expression outline of the bovine blastocyst: reflector of environmental conditions and predictor of developmental capacity. BMC Genomics 2021; 22:408. [PMID: 34082721 PMCID: PMC8176733 DOI: 10.1186/s12864-021-07693-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Background Morphological evaluation of embryos has been used to screen embryos for transfer. However, the repeatability and accuracy of this method remains low. Thus, evaluation of an embryo’s gene expression signature with respect to its developmental capacity could provide new opportunities for embryo selection. Since the gene expression outline of an embryo is considered as an aggregate of its intrinsic characteristics and culture conditions, we have compared transcriptome profiles of in vivo and in vitro derived blastocysts in relation to pregnancy outcome to unravel the discrete effects of developmental competence and environmental conditions on bovine embryo gene expression outlines. To understand whether the gene expression patterns could be associated with blastocyst developmental competency, the global transcriptome profile of in vivo (CVO) and in vitro (CVT) derived competent blastocysts that resulted in pregnancy was investigated relative to that of in vivo (NVO) and in vitro (NVT) derived blastocysts which did not establish initial pregnancy, respectively while to unravel the effects of culture condition on the transcriptome profile of embryos, the transcriptional activity of the CVO group was compared to the CVT group and the NVO group was compared to the NVT ones. Results A total of 700 differentially expressed genes (DEGs) were identified between CVO and NVO blastocysts. These gene transcripts represent constitutive regions, indel variants, 3′-UTR sequence variants and novel transcript regions. The majority (82%) of these DEGs, including gene clusters like ATP synthases, eukaryotic translation initiation factors, ribosomal proteins, mitochondrial ribosomal proteins, NADH dehydrogenase and cytochrome c oxidase subunits were enriched in the CVO group. These DEGs were involved in pathways associated with glycolysis/glycogenesis, citrate acid cycle, pyruvate metabolism and oxidative phosphorylation. Similarly, a total of 218 genes were differentially expressed between CVT and NVT groups. Of these, 89%, including TPT1, PDIA6, HSP90AA1 and CALM, were downregulated in the CVT group and those DEGs were overrepresented in pathways related to protein processing, endoplasmic reticulum, spliceasome, ubiquitone mediated proteolysis and steroid biosynthesis. On the other hand, although both the CVT and CVO blastocyst groups resulted in pregnancy, a total of 937 genes were differential expressed between the two groups. Compared to CVO embryos, the CVT ones exhibited downregulation of gene clusters including ribosomal proteins, mitochondrial ribosomal protein, eukaryotic translation initiation factors, ATP synthases, NADH dehydrogenase and cytochrome c oxidases. Nonetheless, downregulation of these genes could be associated with pre and postnatal abnormalities observed after transfer of in vitro embryos. Conclusion The present study provides a detailed inventory of differentially expressed gene signatures and pathways specifically reflective of the developmental environment and future developmental capacities of bovine embryos suggesting that transcriptome activity observed in blastocysts could be indicative of further pregnancy success but also adaptation to culture environment. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07693-0.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, 3105 Rampart Rd, CO, 80521, Fort Collins, USA
| | - Franca Rings
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Eva Held-Hoelker
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Dennis Miskel
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Marc-Andre Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des sciences de l'agriculture et de l'alimentation, INAF, Pavillon des services, Université Laval (Québec), G1V 0A6, Quebec City, Canada
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Michael Hoelker
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany. .,Department of Animal Science, Biotechnology & Reproduction in farm animals, University of Goettingen, Burckhardtweg 2, 37077, Goettingen, Germany.
| |
Collapse
|
8
|
Sawai K. Roles of cell differentiation factors in preimplantation development of domestic animals. J Reprod Dev 2021; 67:161-165. [PMID: 33907058 PMCID: PMC8238671 DOI: 10.1262/jrd.2021-031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In mammalian embryos, the first visible differentiation event is the segregation of the inner cell mass (ICM) and trophectoderm (TE) during the transition from
the morula to the blastocyst stage. The ICM, which is attached to the inside of the TE, develop into the fetus and extraembryonic tissues, while the TE, which
is a single layer surrounding the fluid-filled cavity called the blastocoel, will provide extraembryonic structures such as the placenta. ICM/TE differentiation
is regulated by the interaction between various transcriptional factors. However, little information is available on the segregation of the ICM and TE lineages
in preimplantation embryos of domestic animals, such as cattle and pigs. This review focuses on the roles of cell differentiation factors that regulate the
ICM/TE segregation of preimplantation bovine and porcine embryos. Understanding the mechanism of cell differentiation in early embryos is necessary to improve
the in vitro production systems for bovine and porcine embryos.
Collapse
Affiliation(s)
- Ken Sawai
- Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| |
Collapse
|
9
|
Płusa B, Piliszek A. Common principles of early mammalian embryo self-organisation. Development 2020; 147:147/14/dev183079. [PMID: 32699138 DOI: 10.1242/dev.183079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pre-implantation mammalian development unites extreme plasticity with a robust outcome: the formation of a blastocyst, an organised multi-layered structure ready for implantation. The process of blastocyst formation is one of the best-known examples of self-organisation. The first three cell lineages in mammalian development specify and arrange themselves during the morphogenic process based on cell-cell interactions. Despite decades of research, the unifying principles driving early mammalian development are still not fully defined. Here, we discuss the role of physical forces, and molecular and cellular mechanisms, in driving self-organisation and lineage formation that are shared between eutherian mammals.
Collapse
Affiliation(s)
- Berenika Płusa
- Faculty of Biology, Medicine and Health (FBMH), Division of Developmental Biology & Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Anna Piliszek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
10
|
Yamanaka KI, Yamashita K, Khatun H, Wada Y, Tatemoto H, Sakatani M, Takenouchi N, Takahashi M, Watanabe S. Normal DNA methylation status in sperm from a somatic cell cloned bull and their fertilized embryos. Anim Sci J 2018; 89:1406-1414. [DOI: 10.1111/asj.13086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/26/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Ken-Ichi Yamanaka
- Faculty of Agriculture; Saga University; Saga Japan
- The United Graduate School of Agricultural Sciences; Kagoshima University; Kagoshima Japan
| | | | - Hafiza Khatun
- Faculty of Agriculture; Saga University; Saga Japan
- The United Graduate School of Agricultural Sciences; Kagoshima University; Kagoshima Japan
| | - Yasuhiko Wada
- Faculty of Agriculture; Saga University; Saga Japan
- The United Graduate School of Agricultural Sciences; Kagoshima University; Kagoshima Japan
| | - Hideki Tatemoto
- The United Graduate School of Agricultural Sciences; Kagoshima University; Kagoshima Japan
- Faculty of Agriculture; University of Ryukyus; Okinawa Japan
| | - Miki Sakatani
- Kyushu Okinawa Agricultural Research Center; NARO; Kosi Japan
| | | | | | - Shinya Watanabe
- Institute of Livestock and Grassland Science; NARO; Tsukuba Japan
| |
Collapse
|
11
|
Abstract
During the first days following fertilization, cells of mammalian embryo gradually lose totipotency, acquiring distinct identity. The first three lineages specified in the mammalian embryo are pluripotent epiblast, which later gives rise to the embryo proper, and two extraembryonic lineages, hypoblast (also known as primitive endoderm) and trophectoderm, which form tissues supporting development of the fetus in utero. Most of our knowledge regarding the mechanisms of early lineage specification in mammals comes from studies in the mouse. However, the growing body of evidence points to both similarities and species-specific differences. Understanding molecular and cellular mechanisms of early embryonic development in nonrodent mammals expands our understanding of basic mechanisms of differentiation and is essential for the development of effective protocols for assisted reproduction in agriculture, veterinary medicine, and for biomedical research. This review summarizes the current state of knowledge on key events in epiblast, hypoblast, and trophoblast differentiation in domestic mammals.
Collapse
Affiliation(s)
- Anna Piliszek
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, Poland.
| | - Zofia E Madeja
- Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
12
|
Talbot NC, Sparks WO, Phillips CE, Ealy AD, Powell AM, Caperna TJ, Garrett WM, Donovan DM, Blomberg LA. Bovine trophectoderm cells induced from bovine fibroblasts with induced pluripotent stem cell reprogramming factors. Mol Reprod Dev 2017; 84:468-485. [PMID: 28332752 DOI: 10.1002/mrd.22797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Abstract
Thirteen independent induced bovine trophectroderm (iBT) cell lines were established by reprogramming bovine fetal liver-derived fibroblasts after viral-vector transduction with either six or eight factors, including POU5F1 (OCT4), KLF4, SOX2, MYC, NANOG, LIN28, SV40 large T antigen, and hTERT. Light- and electron-microscopy analysis showed that the iBT cells had epithelial cell morphology typical of bovine trophectoderm cells. Reverse-transcription-PCR assays indicated that all of the cell lines expressed interferon-tau (IFNT) at passages 1 or 2. At later passages (≥ passage 8), however, immunoblot and antiviral activity assays revealed that more than half of the iBT cell lines had stopped expressing IFNT. Messenger RNAs specific to trophectoderm differentiation and function were found in the iBT cell lines, and 2-dimensional-gel analysis for cellular proteins showed an expression pattern similar to that of trophectoderm cell lines derived from bovine blastocysts. Integration of some of the human reprogramming factors, including POU5F1, KLF4, SOX2, MYC, NANOG, and LIN28, were detected by PCR, but their transcription was mostly absent in the iBT cell lines. Gene expression assessment of endogenous bovine reprogramming factor orthologs revealed endogenous bLIN28 and bMYC transcripts in all; bSOX2 and bNANOG in none; and bKLF4 and bPOU5F1 in less than half of the iBT cell lines. These results demonstrate that bovine trophectoderm can be induced via reprogramming factor expression from bovine liver-derived fibroblasts, although other fibroblast populations-e.g., derived from fetal thigh tissue-may produce similar results, albeit at lower frequencies.
Collapse
Affiliation(s)
- Neil C Talbot
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Wendy O Sparks
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Caitlin E Phillips
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Anne M Powell
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Thomas J Caperna
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Wesley M Garrett
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - David M Donovan
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| | - Le Ann Blomberg
- U.S. Department of Agriculture, Agricultural Research Service, Animal Biosciences and Biotechnology Laboratory, Beltsville, Maryland
| |
Collapse
|
13
|
Sakurai N, Takahashi K, Emura N, Hashizume T, Sawai K. Effects of downregulating TEAD4 transcripts by RNA interference on early development of bovine embryos. J Reprod Dev 2016; 63:135-142. [PMID: 27941302 PMCID: PMC5401806 DOI: 10.1262/jrd.2016-130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factor TEA domain family transcription factor 4 (Tead4) is one of the key factors involved in the differentiation of the trophectoderm (TE) in murine embryos. However, knowledge on the roles of TEAD4 in preimplantation development during bovine embryos is currently limited. This study examined the transcript and protein expression patterns of TEAD4 and attempted to elucidate the functions of TEAD4 during bovine preimplantation development using RNA interference. TEAD4 mRNA was found to be upregulated between the 16-cell and morula stages, and nuclear localization of the TEAD4 protein was detected at the morula stage, as well as in subsequent developmental stages. TEAD4 downregulation did not affect embryonic development until the blastocyst stage, and TEAD4-downregulated embryos were capable of forming the TE under both 5% and 21% O2 conditions. Results of gene expression analysis showed that TEAD4 downregulation did not affect the expression levels of POU class 5 transcription factor 1 (OCT-4), NANOG, caudal-type homeobox 2 (CDX2), GATA binding protein 3 (GATA3), and interferon-tau (IFNT). In conclusion, TEAD4 might be dispensable for development until the blastocyst stage and TE differentiation in bovine embryos.
Collapse
Affiliation(s)
- Nobuyuki Sakurai
- United Graduate School of Agricultural Sciences, Iwate University, Iwate 020-8550, Japan
| | - Kazuki Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, Iwate 020-8550, Japan
| | - Natsuko Emura
- Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Tsutomu Hashizume
- United Graduate School of Agricultural Sciences, Iwate University, Iwate 020-8550, Japan.,Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | - Ken Sawai
- United Graduate School of Agricultural Sciences, Iwate University, Iwate 020-8550, Japan.,Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| |
Collapse
|
14
|
Sakurai N, Takahashi K, Emura N, Fujii T, Hirayama H, Kageyama S, Hashizume T, Sawai K. The Necessity of OCT-4 and CDX2 for Early Development and Gene Expression Involved in Differentiation of Inner Cell Mass and Trophectoderm Lineages in Bovine Embryos. Cell Reprogram 2016; 18:309-318. [PMID: 27500421 DOI: 10.1089/cell.2015.0081] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The functions of POU class 5 transcription factor 1 (Oct-4) and caudal-type homeobox 2 (Cdx2) in the differentiation of the murine inner cell mass (ICM) and trophectoderm (TE) have been described in detail. However, little is known about the roles of OCT-4 and CDX2 in preimplantation bovine embryos. To elucidate their functions during early development in bovine embryos, we performed OCT-4 and CDX2 downregulation using RNA interference. We injected OCT-4- or CDX2-specific short interfering RNAs (siRNAs) into bovine zygotes. The rate of blastocyst development of OCT-4-downregulated embryos was lower compared with uninjected or control siRNA-injected embryos. Gene expression analysis revealed decreased CDX2 and fibroblast growth factor 4 expression in OCT-4-downregulated embryos. CDX2-downregulated embryos developed to the blastocyst stage; however, in most cases, blastocoel formation was delayed. Gene expression analysis revealed decreased GATA3 expression and elevated NANOG expression in CDX2-downregulated embryos. In conclusion, OCT-4 and CDX2 are essential for early development and gene expression involved in differentiation of ICM and TE lineages in bovine embryos.
Collapse
Affiliation(s)
- Nobuyuki Sakurai
- 1 United Graduate School of Agricultural Sciences, Iwate University , Morioka, Iwate, Japan
| | - Kazuki Takahashi
- 1 United Graduate School of Agricultural Sciences, Iwate University , Morioka, Iwate, Japan
| | - Natsuko Emura
- 2 Faculty of Agriculture, Iwate University , Morioka, Iwate, Japan
| | - Takashi Fujii
- 3 Animal Research Center , Hokkaido Research Organization, Shintoku, Hokkaido, Japan
| | - Hiroki Hirayama
- 3 Animal Research Center , Hokkaido Research Organization, Shintoku, Hokkaido, Japan
| | - Soichi Kageyama
- 3 Animal Research Center , Hokkaido Research Organization, Shintoku, Hokkaido, Japan
| | - Tsutomu Hashizume
- 1 United Graduate School of Agricultural Sciences, Iwate University , Morioka, Iwate, Japan .,2 Faculty of Agriculture, Iwate University , Morioka, Iwate, Japan
| | - Ken Sawai
- 1 United Graduate School of Agricultural Sciences, Iwate University , Morioka, Iwate, Japan .,2 Faculty of Agriculture, Iwate University , Morioka, Iwate, Japan
| |
Collapse
|
15
|
Frankenberg SR, de Barros FR, Rossant J, Renfree MB. The mammalian blastocyst. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:210-32. [DOI: 10.1002/wdev.220] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022]
Affiliation(s)
| | - Flavia R.O. de Barros
- Program in Developmental and Stem Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Canada
- Department of Molecular Genetics; University of Toronto; Toronto Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Canada
- Department of Molecular Genetics; University of Toronto; Toronto Canada
| | | |
Collapse
|
16
|
The Efficient Derivation of Trophoblast Cells from Porcine In Vitro Fertilized and Parthenogenetic Blastocysts and Culture with ROCK Inhibitor Y-27632. PLoS One 2015; 10:e0142442. [PMID: 26555939 PMCID: PMC4640852 DOI: 10.1371/journal.pone.0142442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
Trophoblasts (TR) are specialized cells of the placenta and play an important role in embryo implantation. The in vitro culture of trophoblasts provided an important tool to investigate the mechanisms of implantation. In the present study, porcine trophoblast cells were derived from pig in vitro fertilized (IVF) and parthenogenetically activated (PA) blastocysts via culturing in medium supplemented with KnockOut serum replacement (KOSR) and basic fibroblast growth factor (bFGF) on STO feeder layers, and the effect of ROCK (Rho-associated coiled-coil protein kinases) inhibiter Y-27632 on the cell lines culture was tested. 5 PA blastocyst derived cell lines and 2 IVF blastocyst derived cell lines have been cultured more than 20 passages; one PA cell lines reached 110 passages without obvious morphological alteration. The derived trophoblast cells exhibited epithelium-like morphology, rich in lipid droplets, and had obvious defined boundaries with the feeder cells. The cells were histochemically stained positive for alkaline phosphatase. The expression of TR lineage markers, such as CDX2, KRT7, KRT18, TEAD4, ELF5 and HAND1, imprinted genes such as IGF2, PEG1 and PEG10, and telomerase activity related genes TERC and TERF2 were detected by immunofluorescence staining, reverse transcription PCR and quantitative real-time PCR analyses. Both PA and IVF blastocysts derived trophoblast cells possessed the ability to differentiate into mature trophoblast cells in vitro. The addition of Y-27632 improved the growth of both PA and IVF blastocyst derived cell lines and increased the expression of trophoblast genes. This study has provided an alternative highly efficient method to establish trophoblast for research focused on peri-implantation and placenta development in IVF and PA embryos.
Collapse
|
17
|
Kim D, Park S, Jung YG, Roh S. In vitro culture of stem-like cells derived from somatic cell nuclear transfer bovine embryos of the Korean beef cattle species, HanWoo. Reprod Fertil Dev 2015; 28:RD14071. [PMID: 25966803 DOI: 10.1071/rd14071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/12/2015] [Indexed: 12/27/2022] Open
Abstract
We established and maintained somatic cell nuclear transfer embryo-derived stem-like cells (SCNT-eSLCs) from the traditional Korean beef cattle species, HanWoo (Bos taurus coreanae). Each SCNT blastocyst was placed individually on a feeder layer with culture medium containing three inhibitors of differentiation (3i). Primary colonies formed after 2-3 days of culture and the intact colonies were passaged every 5-6 days. The cells in each colony showed embryonic stem cell-like morphologies with a distinct boundary and were positive to alkaline phosphatase staining. Immunofluorescence and reverse transcription-polymerase chain reaction analyses also confirmed that these colonies expressed pluripotent markers. The colonies were maintained over 50 passages for more than 270 days. The cells showed normal karyotypes consisting of 60 chromosomes at Passage 50. Embryoid bodies were formed by suspension culture to analyse in vitro differentiation capability. Marker genes representing the differentiation into three germ layers were expressed. Typical embryonal carcinoma was generated after injecting cells under the testis capsule of nude mice, suggesting that the cultured cells may also have the potential of in vivo differentiation. In conclusion, we generated eSLCs from SCNT bovine embryos, using a 3i system that sustained stemness, normal karyotype and pluripotency, which was confirmed by in vitro and in vivo differentiation.
Collapse
|
18
|
Bloise E, Feuer SK, Rinaudo PF. Comparative intrauterine development and placental function of ART concepti: implications for human reproductive medicine and animal breeding. Hum Reprod Update 2014; 20:822-39. [PMID: 24947475 PMCID: PMC4196686 DOI: 10.1093/humupd/dmu032] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The number of children conceived using assisted reproductive technologies (ART) has reached >5 million worldwide and continues to increase. Although the great majority of ART children are healthy, many reports suggest a forthcoming risk of metabolic complications, which is further supported by the Developmental Origins of Health and Disease hypothesis of suboptimal embryo/fetal conditions predisposing adult cardiometabolic pathologies. Accumulating evidence suggests that fetal and placental growth kinetics are important features predicting post-natal health, but the relationship between ART and intrauterine growth has not been systematically reviewed. METHODS Relevant studies describing fetoplacental intrauterine phenotypes of concepti generated by in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI) and somatic cell nuclear transfer (SCNT) in the mouse, bovine and human were comprehensively researched using PubMed and Google Scholar. Intrauterine growth plots were created from tabular formatted data available in selected reports. RESULTS ART pregnancies display minor but noticeable alterations in fetal and placental growth curves across mammalian species. In all species, there is evidence of fetal growth restriction in the earlier stages of pregnancy, followed by significant increases in placental size and accelerated fetal growth toward the end of gestation. However, there is a species-specific effect of ART on birthweights, that additionally vary in a culture condition-, strain-, and/or stage at transfer-specific manner. We discuss the potential mechanisms that underlie these changes, and how they are affected by specific components of ART procedures. CONCLUSIONS ART may promote measurable alterations to intrauterine growth trajectory and placental function. Key findings include evidence that birthweight is not a reliable marker of fetal stress, and that increases in embryo manipulation result in more deviant fetal growth curves. Because growth kinetics in early life are particularly relevant to adult metabolic physiology, we advise more rigorous assessment of fetal growth and placental function in human ART pregnancies, as well as continued follow-up of ART offspring throughout post-natal life. Finally, strategies to minimize embryo manipulations should be adopted whenever possible.
Collapse
Affiliation(s)
- Enrrico Bloise
- Laboratory of Molecular Endocrinology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sky K Feuer
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Paolo F Rinaudo
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Sugawara S, Ito T, Sato S, Sato Y, Sasaki A, Fukuda T, Yamanaka KI, Sakatani M, Takahashi M, Kobayashi M. Generation of aminoterminally truncated, stable types of bioactive bovine and porcine fibroblast growth factor 4 in Escherichia coli. Biotechnol Appl Biochem 2014; 62:164-72. [PMID: 24863735 DOI: 10.1002/bab.1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/21/2014] [Indexed: 11/08/2022]
Abstract
Fibroblast growth factor 4 (FGF4) is a crucial growth factor for the development of mammalian embryos. We previously produced hexahistidine-tagged, bovine and porcine FGF4 (Pro(32) to Leu(206) ) proteins without a secretory signal peptide at the aminoterminus in Escherichia coli. Here, we found that these were unstable; site-specific cleavage between Ser(54) and Leu(55) in both FGF4 derivatives was identified. In order to generate stable FGF4 derivatives and to investigate their biological activities, aminoterminally truncated and hexahistidine-tagged bovine and porcine FGF4 (Leu(55) to Leu(206) ) proteins, termed HisbFGF4L and HispFGF4L, respectively, were produced in E. coli. These FGF4 derivatives were sufficiently stable and exerted mitogenic activities in fibroblasts. Treatment with the FGF4 derivatives promoted the phosphorylation of ERK1/2, which are crucial kinases in the FGF signaling pathway. In the presence of PD173074, an FGF receptor inhibitor, the phosphorylation of ERK1/2 was inhibited and resulted in abolition of the growth-promoting activity of FGF4 derivatives. Taken together, we demonstrate that HisbFGF4L and HispFGF4L are capable of promoting the proliferation of bovine- and porcine-derived cells, respectively, via an authentic FGF signaling pathway. These FGF4 derivatives may be applicable for dissecting the roles of FGF4 during embryogenesis in cattle and pigs.
Collapse
Affiliation(s)
- Saiko Sugawara
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Common Amino Acid Sequences Deduced from Coding Exons of the PorcineFGF4Gene in Two Breeds and Production of the Encoded Protein inEscherichia coli. Biosci Biotechnol Biochem 2014; 77:173-7. [DOI: 10.1271/bbb.120698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Ramos-Ibeas P, Calle A, Pericuesta E, Laguna-Barraza R, Moros-Mora R, Lopera-Vásquez R, Maillo V, Yáñez-Mó M, Gutiérrez-Adán A, Rizos D, Ramírez MÁ. An efficient system to establish biopsy-derived trophoblastic cell lines from bovine embryos. Biol Reprod 2014; 91:15. [PMID: 24855108 DOI: 10.1095/biolreprod.114.118430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Trophoblastic cells play a crucial role in implantation and placentogenesis and can be used as a model to provide substantial information on the peri-implantation period. Unfortunately, there are few cell lines for this purpose in cattle because of the difficulty of raising successive cell stocks in the long-term. Our results show that the combination of a monolayer culture system in microdrops on a surface treated with gelatin and the employment of conditioned media from mouse embryonic fibroblasts support the growth of bovine trophoblastic cells lines from an embryo biopsy. Expression profiles of mononucleate- and binucleate-specific genes in established trophoblastic cells lines represented various stages of gestation. Moreover, the ability to expand trophoblastic cell lines for more than 2 yr together with pluripotency-related gene expression patterns revealed certain self-renewal capacity. In summary, we have developed a system to expand in vitro trophoblastic cells from an embryo biopsy that solves the limitations of using amplified DNA from a small number of cells for bovine embryo genotyping and epigenotyping and, on the other hand, facilitates the establishment of trophoblastic cell lines that can be useful as peri-implantation in vitro models.
Collapse
Affiliation(s)
| | | | - Eva Pericuesta
- Departamento de Reproduccion Animal, INIA, Madrid, Spain
| | | | | | | | | | - María Yáñez-Mó
- Hospital Universitario Santa Cristina, Instituto de Investigaciones Sanitarias Princesa, Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Sakurai N, Fujii T, Hashizume T, Sawai K. Effects of downregulating oct-4 transcript by RNA interference on early development of porcine embryos. J Reprod Dev 2013; 59:353-60. [PMID: 23628850 PMCID: PMC3944357 DOI: 10.1262/jrd.2013-003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The objective of this study was to investigate the role of the POU family transcription
factor, Oct-4, in the early development of porcine embryos. We attempted Oct-4
downregulation of porcine early embryos by RNA interference, and evaluated Oct-4
suppression of developmental competencies and gene transcripts in porcine embryos.
Injection of specific siRNA resulted in a distinct decrease in Oct-4 mRNA
and protein expression in porcine embryos until at least the morula stage. Although the
porcine embryos injected with Oct-4 siRNA were able to develop to the morula stage, these
embryos failed to form blastocysts. Gene transcripts of caudal-like transcription factor
(Cdx2) and fibroblast growth factor 4 (Fgf4), which
were involved in segregation of the trophectderm and functionalization of the inner cell
mass, were unchanged by Oct-4 siRNA injection. Our results indicated that Oct-4 is an
important factor for porcine embryos and, in particular, for the regulation of porcine
blastocyst formation.
Collapse
|
23
|
Morrison JT, Bantilan NS, Wang VN, Nellett KM, Cruz YP. Expression patterns of Oct4, Cdx2, Tead4, and Yap1 proteins during blastocyst formation in embryos of the marsupial,Monodelphis domesticaWagner. Evol Dev 2013; 15:171-85. [DOI: 10.1111/ede.12031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- J. T. Morrison
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - N. S. Bantilan
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - V. N. Wang
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - K. M. Nellett
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - Y. P. Cruz
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| |
Collapse
|
24
|
Goissis MD, Suhr ST, Cibelli JB. Effects of Donor Fibroblasts Expressing OCT4 on Bovine Embryos Generated by Somatic Cell Nuclear Transfer. Cell Reprogram 2013; 15:24-34. [DOI: 10.1089/cell.2012.0055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marcelo D. Goissis
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Capes Foundation, Ministry of Education, Brasília, Brazil
| | - Steven T. Suhr
- Department of Animal Science, Michigan State University, East Lansing, Michigan
| | - Jose B. Cibelli
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Programa Andaluz de Terapia Celular y Medicina Regenerativa, Andalucía, Spain
| |
Collapse
|
25
|
Akagi S, Geshi M, Nagai T. Recent progress in bovine somatic cell nuclear transfer. Anim Sci J 2013; 84:191-9. [PMID: 23480698 DOI: 10.1111/asj.12035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/02/2012] [Indexed: 11/30/2022]
Abstract
Bovine somatic cell nuclear transfer (SCNT) embryos can develop to the blastocyst stage at a rate similar to that of embryos produced by in vitro fertilization. However, the full-term developmental rate of SCNT embryos is very low, owing to the high embryonic and fetal losses after embryo transfer. In addition, increased birth weight and postnatal mortality are observed at high rates in cloned calves. The low efficiency of SCNT is probably attributed to incomplete reprogramming of the donor nucleus and most of the developmental problems of clones are thought to be caused by epigenetic defects. Applications of SCNT will depend on improvement in the efficiency of production of healthy cloned calves. In this review, we discuss problems and recent progress in bovine SCNT.
Collapse
Affiliation(s)
- Satoshi Akagi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Japan.
| | | | | |
Collapse
|
26
|
Sugawara S, Ito T, Sato S, Yokoo M, Mori Y, Kasuga K, Kojima I, Fukuda T, Yamanaka KI, Sakatani M, Takahashi M, Kobayashi M. Production of bioactive bovine fibroblast growth factor 4 inE. colibased on the common nucleotide sequence of its structural gene in three breeds. Anim Sci J 2013; 84:275-80. [DOI: 10.1111/asj.12036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/09/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Saiko Sugawara
- Graduate School of Bioresource Sciences; Akita Prefectural University; Akita
| | - Toshihiko Ito
- Graduate School of Bioresource Sciences; Akita Prefectural University; Akita
| | - Sho Sato
- Graduate School of Bioresource Sciences; Akita Prefectural University; Akita
| | - Mari Yokoo
- Graduate School of Bioresource Sciences; Akita Prefectural University; Akita
| | - Yuki Mori
- Graduate School of Bioresource Sciences; Akita Prefectural University; Akita
| | - Kano Kasuga
- Graduate School of Bioresource Sciences; Akita Prefectural University; Akita
| | - Ikuo Kojima
- Graduate School of Bioresource Sciences; Akita Prefectural University; Akita
| | - Tomokazu Fukuda
- Graduate School of Agricultural Sciences; Tohoku University; Sendai
| | | | - Miki Sakatani
- NARO Kyushu Okinawa Agricultural Research Center; Koshi; Japan
| | | | - Masayuki Kobayashi
- Graduate School of Bioresource Sciences; Akita Prefectural University; Akita
| |
Collapse
|
27
|
Fujii T, Sakurai N, Osaki T, Iwagami G, Hirayama H, Minamihashi A, Hashizume T, Sawai K. Changes in the expression patterns of the genes involved in the segregation and function of inner cell mass and trophectoderm lineages during porcine preimplantation development. J Reprod Dev 2012; 59:151-8. [PMID: 23257836 PMCID: PMC3934199 DOI: 10.1262/jrd.2012-122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In mouse embryos, segregation of the inner cell mass (ICM) and trophectoderm (TE)
lineages is regulated by genes, such as OCT-4, CDX2 and
TEAD4. However, the molecular mechanisms that regulate the segregation
of the ICM and TE lineages in porcine embryos remain unknown. To obtain insights regarding
the segregation of the ICM and TE lineages in porcine embryos, we examined the mRNA
expression patterns of candidate genes, OCT-4, CDX2,
TEAD4, GATA3, NANOG,
FGF4, FGFR1-IIIc and FGFR2-IIIc, in
blastocyst and elongated stage embryos. In blastocyst embryos, the expression levels of
OCT-4, FGF4 and FGFR1-IIIc were
significantly higher in the ICM than in the TE, while the CDX2,
TEAD4 and GATA3 levels did not differ between the ICM
and TE. The expression ratio of CDX2 to OCT-4
(CDX2/OCT-4) also did not differ between the ICM and
TE at the blastocyst stage. In elongated embryos, OCT-4,
NANOG, FGF4 and FGFR1-IIIc were
abundantly expressed in the embryo disc (ED; ICM lineage), but their expression levels
were very low in the TE. In contrast, the CDX2, TEAD4
and GATA3 levels were significantly higher in the TE than in the ED. In
addition, the CDX2/OCT-4 ratio was markedly higher in
the TE than in the ED. We demonstrated that differences in the expression levels of
OCT-4, CDX2, TEAD4,
GATA3, NANOG, FGF4,
FGFR1-IIIc and FGFR2-IIIc genes between ICM and TE
lineages cells become more clear during development from porcine blastocyst to elongated
embryos, which indicates the possibility that in porcine embryos, functions of ICM and TE
lineage cells depend on these gene expressions proceed as transition from blastocyst to
elongated stage.
Collapse
Affiliation(s)
- Takashi Fujii
- Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ozawa M, Sakatani M, Yao J, Shanker S, Yu F, Yamashita R, Wakabayashi S, Nakai K, Dobbs KB, Sudano MJ, Farmerie WG, Hansen PJ. Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst. BMC DEVELOPMENTAL BIOLOGY 2012; 12:33. [PMID: 23126590 PMCID: PMC3514149 DOI: 10.1186/1471-213x-12-33] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/30/2012] [Indexed: 01/08/2023]
Abstract
Background The first distinct differentiation event in mammals occurs at the blastocyst stage when totipotent blastomeres differentiate into either pluripotent inner cell mass (ICM) or multipotent trophectoderm (TE). Here we determined, for the first time, global gene expression patterns in the ICM and TE isolated from bovine blastocysts. The ICM and TE were isolated from blastocysts harvested at day 8 after insemination by magnetic activated cell sorting, and cDNA sequenced using the SOLiD 4.0 system. Results A total of 870 genes were differentially expressed between ICM and TE. Several genes characteristic of ICM (for example, NANOG, SOX2, and STAT3) and TE (ELF5, GATA3, and KRT18) in mouse and human showed similar patterns in bovine. Other genes, however, showed differences in expression between ICM and TE that deviates from the expected based on mouse and human. Conclusion Analysis of gene expression indicated that differentiation of blastomeres of the morula-stage embryo into the ICM and TE of the blastocyst is accompanied by differences between the two cell lineages in expression of genes controlling metabolic processes, endocytosis, hatching from the zona pellucida, paracrine and endocrine signaling with the mother, and genes supporting the changes in cellular architecture, stemness, and hematopoiesis necessary for development of the trophoblast.
Collapse
Affiliation(s)
- Manabu Ozawa
- Department of Animal Sciences and D,H, Barron Reproductive and Perinatal Biology Research Program, PO Box 110910, Gainesville, FL 32611-0910, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hue I, Degrelle SA, Turenne N. Conceptus elongation in cattle: Genes, models and questions. Anim Reprod Sci 2012; 134:19-28. [DOI: 10.1016/j.anireprosci.2012.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Degrelle SA, Jaffrezic F, Campion E, Lê Cao KA, Le Bourhis D, Richard C, Rodde N, Fleurot R, Everts RE, Lecardonnel J, Heyman Y, Vignon X, Yang X, Tian XC, Lewin HA, Renard JP, Hue I. Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer. PLoS One 2012; 7:e38309. [PMID: 22701625 PMCID: PMC3368877 DOI: 10.1371/journal.pone.0038309] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/04/2012] [Indexed: 02/04/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular “uncoupling”. Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters re-differentiation processes in vivo, SCNT reprogramming highlights temporally and spatially restricted interactions among cells and tissues in a unique way.
Collapse
Affiliation(s)
- Séverine A. Degrelle
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Florence Jaffrezic
- INRA, UMR1313, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Evelyne Campion
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Kim-Anh Lê Cao
- INRA, UR631, Station d’Amélioration Génétique des Animaux, Castanet, France
| | - Daniel Le Bourhis
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
- UNCEIA, R&D Department, Maisons Alfort, France
| | | | - Nathalie Rodde
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Renaud Fleurot
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Robin E. Everts
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | | | - Yvan Heyman
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Xavier Vignon
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Xiangzhong Yang
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Xiuchun C. Tian
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Harris A. Lewin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jean-Paul Renard
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
| | - Isabelle Hue
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
- ENVA, Maisons Alfort, France
- * E-mail:
| |
Collapse
|
31
|
Developmental expression of lineage specific genes in porcine embryos of different origins. J Assist Reprod Genet 2012; 29:723-33. [PMID: 22639061 DOI: 10.1007/s10815-012-9797-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/14/2012] [Indexed: 02/01/2023] Open
Abstract
PURPOSE This study compared the expression of genes involved in pluripotency, segregation of inner cell mass (ICM) and trophectoderm (TE), and primitive endoderm (PE) formation in porcine embryos produced by in vitro fertilization (IVF), parthenogenetic activation (PA), and nuclear transfer (NT) using either fetal fibroblasts (FF-NT) or mesenchymal stem cells (MSC-NT). METHODS Blastocyst formation and total cell number were analyzed. The expression patterns of transcripts, including SRY-related HMG-box gene 2 (SOX2), reduced expression gene 1 (REX1/ZFP42), LIN28, caudal type homeobox 2 (CDX2), TEA domain family member 4 (TEAD4), integrin beta 1 (ITGB1) and GATA6 were assessed at the 4-8 cell and blastocyst stage embryos by real-time PCR. RESULTS Developmental rates to blastocyst stage and total cell number were higher in IVF and PA embryos than in NT embryos. But MSC-NT embryos had increased blastocyst formation and higher total cell number compared to FF-NT embryos. The relative expressions of transcripts were higher in blastocysts than in 4-8 cell stage embryos. The mRNA expression levels of SOX2 and REX1 were largely similar in embryos of different origins. However, the genes such as LIN28, CDX2, TEAD4, ITGB1 and GATA6 showed the differential expression pattern in PA and NT embryos compared to IVF embryos. Importantly, the transcript levels in MSC-NT embryos were relatively less variable to IVF than those in FF-NT embryos. CONCLUSION MSCs seem to be better donors for porcine NT as they improved the developmental competency, and influenced the expression pattern of genes quite similar with IVF embryos than that of FFs.
Collapse
|
32
|
Abstract
This review summarises current knowledge about the specification, commitment and maintenance of the trophoblast lineage in mice and cattle. Results from gene expression studies, in vivo loss-of-function models and in vitro systems using trophoblast and embryonic stem cells have been assimilated into a model seeking to explain trophoblast ontogeny via gene regulatory networks. While trophoblast differentiation is quite distinct between cattle and mice, as would be expected from their different modes of implantation, recent studies have demonstrated that differences arise much earlier during trophoblast development.
Collapse
|
33
|
Sawai K, Fujii T, Hirayama H, Hashizume T, Minamihashi A. Epigenetic status and full-term development of bovine cloned embryos treated with trichostatin A. J Reprod Dev 2012; 58:302-9. [PMID: 22322145 DOI: 10.1262/jrd.2011-020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the comprehensive epigenetic status, including histone H3 and H4 acetylation, DNA methylation and level of mRNA transcripts of bovine somatic cell nuclear transfer (SCNT) embryos treated with trichostatin A (TSA), along with their full-term developmental efficacy. Treatment with 50 nM TSA enhanced early developmental competence; increased acetylation of two histones, H3K9K14 and H4K8, at the blastocyst stage; and maintained the DNA methylation status of the satelliteI sequence in bovine SCNT embryos. The difference in IGFBP-3 transcript levels between in vivo and SCNT embryos disappeared in SCNT embryos after treatment with 50 nM TSA. Pregnancy, full-term developmental competence and body weight at birth of offspring did not differ between SCNT embryos treated with 50 nM TSA and untreated embryos. These results suggest that treatment with TSA improves preimplantation development and changes the epigenetic status but does not promote the full-term development competence in bovine SCNT embryos.
Collapse
Affiliation(s)
- Ken Sawai
- Agriculture, Iwate University, Iwate 020-8550, Japan.
| | | | | | | | | |
Collapse
|
34
|
SATO S, TAKAHASHI T, NISHINOMIYA H, KATOH M, ITOH R, YOKOO M, YOKOO M, IHA M, MORI Y, KASUGA K, KOJIMA I, KOBAYASHI M. Common nucleotide sequence of structural gene encoding fibroblast growth factor 4 in eight cattle derived from three breeds. Anim Sci J 2012; 83:260-2. [DOI: 10.1111/j.1740-0929.2011.01000.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Ikeda S, Sugimoto M, Kume S. Importance of methionine metabolism in morula-to-blastocyst transition in bovine preimplantation embryos. J Reprod Dev 2011; 58:91-7. [PMID: 22052008 DOI: 10.1262/jrd.11-096h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of methionine metabolism in bovine preimplantation embryo development were investigated by using ethionine, an antimetabolite of methionine. In vitro produced bovine embryos that had developed to the 5-cell stage or more at 72 h after the commencement of in vitro fertilization (IVF) were then cultured until day 8 (IVF = day 0) in medium supplemented with 0 (control), 1, 5 and 10 mM ethionine. Compared with the blastocyst development in the control (40.0%), ethionine at 10 mM almost completely blocked blastocyst development (1.1%, P<0.001), and this concentration was used in the following experiments. Methionine added at the same concentration (10 mM, a concentration control of ethionine) did not cause such an intense developmental inhibition. Development to the compacted morula stage on day 6 was not affected by 10 mM ethionine treatment. S-adenosylmethionine (SAM) added to the ethionine treatment partly restored the blastocyst development. Semiquantitative reverse transcription-polymerase chain reaction analysis of cell lineage-related transcription factors in day 6 compacted morulae showed that the expressions of NANOG and TEAD4 were increased by ethionine treatment relative to the control (P<0.01). Furthermore, immunofluorescence analysis of 5-methylcytosine revealed that DNA was hypomethylated in the ethionine-treated day 6 morulae compared with the control (P<0.001). These results demonstrate that the disruption of methionine metabolism causes impairment of the morula-to-blastocyst transition during bovine preimplantation development in part via SAM deficiency, indicating the indispensable roles of methionine during this period. The disruption of methionine metabolism may cause hypomethylation of DNA and consequently lead to the altered expression of developmentally important genes, which then results in the impairment of blastocyst development.
Collapse
Affiliation(s)
- Shuntaro Ikeda
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
36
|
Yan H, Yan Z, Ma Q, Jiao F, Huang S, Zeng F, Zeng Y. Association between mitochondrial DNA haplotype compatibility and increased efficiency of bovine intersubspecies cloning. J Genet Genomics 2011; 38:21-8. [PMID: 21338949 DOI: 10.1016/j.jcg.2010.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 12/29/2022]
Abstract
Reconstructed embryos derived from intersubspecies somatic cell nuclear transfer (SCNT) have poorer developmental potential than those from intrasubspecies SCNT. Based on our previous study that Holstein dairy bovine (HD) mitochondrial DNA (mtDNA) haplotype compatibility between donor karyoplast and recipient cytoplast is crucial for SCNT embryo development, we performed intersubspecies SCNT using HD as donor karyoplast and Luxi yellow heifer (LY) as recipient cytoplast according to mtDNA haplotypes determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The results demonstrated that intersubspecies mtDNA homotype SCNT embryos had higher pre- and post-implantation developmental competence than intrasubspecies mtDNA heterotype embryos as well as improved blastocyst reprogramming status, including normal H3K9 dimethylation pattern and promoter hypomethylation of pluripotent genes such as Oct4 and Sox2, suggesting that intersubspecies SCNT using LY oocytes maintains HD cloning efficiency and may reprogram HD nuclei to develop into a normal cloned animal ultimately. Our results indicated that karyoplast-cytoplast interactions and mtDNA haplotype compatibility may affect bovine intersubspecies SCNT efficiency. This study on bovine intersubspecies SCNT is valuable for understanding the mechanisms of mtDNA haplotype compatibility between karyoplast and cytoplast impacting the bovine SCNT efficiency, and provides an alternative and economic resource for HD cloning.
Collapse
Affiliation(s)
- Hao Yan
- Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, 24/1400 West Beijing Road, Shanghai 200040, China
| | | | | | | | | | | | | |
Collapse
|