1
|
Zago FC, Schütz LF, Gerger RPDC, de Aguiar LH, Pinzón-Osorio CA, Mezzallira A, Rodrigues JL, Forell F, Bertolini M. In vitro and in vivo embryo production efficiency in Flemish and Holstein donor females. Anim Reprod 2023; 20:e20230080. [PMID: 38025999 PMCID: PMC10681134 DOI: 10.1590/1984-3143-ar2023-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/10/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of this study was to compare embryo production efficiency in Flemish and Holstein donor females using ovum pick-up and in vitro fertilization (OPU-IVF) or in vivo production (superovulation; SOV) procedures. The study was conducted using a split-plot design, with eight Flemish and eight Holstein non-lactating cycling females. Females were subjected to ten weekly OPU/IVF sessions and/or two SOV/embryo collections sessions at a 63-day interval, for a total of 160 OPU-IVF and 32 SOV sessions. Mean numbers of follicles and corpora lutea, and cumulus-oocyte complex (COC) recovery rates were similar between breeds after the OPU and SOV sessions. However, Flemish donors yielded better quality grade II COCs (301, 41.9%) than Holstein females (609, and 202, 33.1%). Also, cleavage and blastocyst rates, and the total number and the mean number of viable embryos obtained after OPU-IVF were higher in Flemish (49.6% and 11.8%, and 63 and 11.8 per donor, respectively) than in Holstein (32.8% and 7.2%, and 34 and 7.2 per donor, respectively) females. Flemish females were also more efficient in yielding viable embryos after SOV (111, 7.3 per donor) than Holstein (48, 3.3 per donor) females. Overall, Flemish donor females had better responses to OPU-IVF or SOV procedures than Holstein counterparts. Irrespective of the breeds, SOV procedures were more efficient than OPU-IVF in yielding more viable embryos, under the conditions of this study. Both reproductive procedures were useful tools for the genetic conservation of the Flemish cattle breed in Southern Brazil.
Collapse
Affiliation(s)
- Fabiano Carminatti Zago
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina, Lages, SC, Brasil
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brasil
| | - Luís Fernando Schütz
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brasil
| | | | - Luís Henrique de Aguiar
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brasil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | - Alceu Mezzallira
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brasil
| | - José Luiz Rodrigues
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Fabiana Forell
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brasil
| | - Marcelo Bertolini
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
2
|
Abstract
The objective of this study was to investigate the effects of adding β-mercaptoethanol (βME) to culture medium of bovine in vitro-produced (IVP) embryos prior to or after vitrification on embryo development and cryotolerance. In Experiment I, Day-7 IVP blastocysts were vitrified and, after warming, cultured in medium containing 0, 50 or 100 μM βME for 72 h. Embryos cultured in 100 μM βME attained higher hatching rates (66.7%) than those culture in 0 (47.7%) and 50 (52.4%) μM βME. In Experiment II, IVP embryos were in vitro-cultured (IVC) to the blastocyst stage in 0 (control) or 100 μM βME, followed by vitrification. After warming, embryos were cultured for 72 h (post-warming culture, PWC) in 0 (control) or 100 μM βME, in a 2 × 2 factorial design: (i) CTRL-CTRL, control IVC and control PWC; (ii) CTRL-βME, control IVC and βME-supplemented PWC; (iii) βME-CTRL, βME-supplemented IVC and control PWC; or (iv) βME-βME, βME-supplemented IVC and βME-supplemented PWC. βME during IVC reduced embryo development (28.0% vs. 43.8%) but, following vitrification, higher re-expansion rates were seen in βME-CTRL (84.0%) and βME-βME (87.5%) than in CTRL-CTRL (71.0%) and CTRL-βME (73.1%). Hatching rates were higher in CTRL-βME (58.1%) and βME-βME (63.8%) than in CTRL-CTRL (36.6%) and βME-CTRL (42.0%). Total cell number in hatched blastocysts was higher in βME-βME (181.2 ± 7.4 cells) than CTRL-CTRL (139.0 ± 9.9 cells). Adding βME to the IVC medium reduced development but increased cryotolerance, whereas adding βME to the PWC medium improved embryo survival, hatching rates, and total cell numbers.
Collapse
|
3
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|
4
|
Savy V, Alberio V, Vans Landschoot G, Moro LN, Olea FD, Rodríguez-Álvarez L, Salamone DF. Effect of Embryo Aggregation on In Vitro Development of Adipose-Derived Mesenchymal Stem Cell-Derived Bovine Clones. Cell Reprogram 2021; 23:277-289. [PMID: 34648384 DOI: 10.1089/cell.2021.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a method with unique ability to reprogram the epigenome of a fully differentiated cell. However, its efficiency remains extremely low. In this work, we assessed and combined two simple strategies to improve the SCNT efficiency in the bovine. These are the use of less-differentiated donor cells to facilitate nuclear reprogramming and the embryo aggregation (EA) strategy that is thought to compensate for aberrant epigenome reprogramming. We carefully assessed the optimal time of EA by using in vitro-fertilized (IVF) embryos and evaluated whether the use of adipose-derived mesenchymal stem cells (ASCs) as donor for SCNT together with EA improves the blastocyst rates and quality. Based on our results, we determined that the EA improves the preimplantation embryo development per well of IVF and SCNT embryos. We also demonstrated that day 0 (D0) is the optimal aggregation time that leads to a single blastocyst with uniform distribution of the original blastomeres. This was confirmed in bovine IVF embryos and then, the optimal condition was translated to SCNT embryos. Notably, the relative expression of the trophectoderm (TE) marker KRT18 was significantly different between aggregated and nonaggregated ASC-derived embryos. In the bovine, no effect of the donor cell is observed on the developmental rate, or the embryo quality. Therefore, no synergistic effect of the use of both strategies is observed. Our results suggest that EA at D0 is a simple and accessible strategy that improves the blastocyst rate per well in bovine SCNT and IVF embryos and influence the expression of a TE-related marker. The aggregation of two ASC-derived embryos seems to positively affect the embryo quality, which may improve the postimplantation development.
Collapse
Affiliation(s)
- Virginia Savy
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Virgilia Alberio
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Geraldina Vans Landschoot
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Fernanda Daniela Olea
- Laboratorio de Medicina Regenerativa Cardiovascular, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Favaloro, Buenos Aires, Argentina
| | - Lleretny Rodríguez-Álvarez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Concepción, Chile
| | - Daniel Felipe Salamone
- Laboratorio Biotecnología Animal (LabBA), Dto Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Producción Animal (INPA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Vajta G, Parmegiani L, Machaty Z, Chen WB, Yakovenko S. Back to the future: optimised microwell culture of individual human preimplantation stage embryos. J Assist Reprod Genet 2021; 38:2563-2574. [PMID: 33864207 PMCID: PMC8581087 DOI: 10.1007/s10815-021-02167-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Although in vitro culture of human embryos is a crucial step in assisted reproduction, the lack of focused research hampers worldwide standardisation and consistent outcomes. Only 1.2% of research papers published in five leading journals in human reproduction in 2019 focused on in vitro culture conditions, creating the impression that the optimisation process has approached its limits. On the other hand, in vitro culture of mammalian embryos is based on old principles, while there is no consensus on basic issues as density, time, medium change, gas atmosphere and small technical details including the way of drop preparation. This opinion paper aims to highlight and analyse the slow advancement in this field and stimulate research for simple and affordable solutions to meet the current requirements. A possible way for advancement is discussed in detail. Selection of embryos with the highest developmental competence requires individual culture and modification of the widely used "drop under oil" approach. Current use of three-dimensional surfaces instead of large flat bottoms is restricted to time-lapse systems, but these wells are designed for optical clarity, not for the needs of embryos. The size and shape of the original microwells (Well of the Well; WOW) offer a practical and straightforward solution to combine the benefits of communal and individual incubation and improve the overall quality of cultured embryos.
Collapse
Affiliation(s)
- Gábor Vajta
- RVT Australia, Cairns, QLD 4870 Australia
- VitaVitro Biotech Co., Ltd., Shenzhen, China
| | | | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN USA
| | | | - Sergey Yakovenko
- Altravita IVF Clinic, Moscow, Russia
- Biophysics Department, Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Vajta G, Parmegiani L, Machaty Z, Chen WB, Yakovenko S. Back to the future: optimised microwell culture of individual human preimplantation stage embryos. J Assist Reprod Genet 2021. [PMID: 33864207 DOI: 10.1007/s10815-021-02167-4.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
Although in vitro culture of human embryos is a crucial step in assisted reproduction, the lack of focused research hampers worldwide standardisation and consistent outcomes. Only 1.2% of research papers published in five leading journals in human reproduction in 2019 focused on in vitro culture conditions, creating the impression that the optimisation process has approached its limits. On the other hand, in vitro culture of mammalian embryos is based on old principles, while there is no consensus on basic issues as density, time, medium change, gas atmosphere and small technical details including the way of drop preparation. This opinion paper aims to highlight and analyse the slow advancement in this field and stimulate research for simple and affordable solutions to meet the current requirements. A possible way for advancement is discussed in detail. Selection of embryos with the highest developmental competence requires individual culture and modification of the widely used "drop under oil" approach. Current use of three-dimensional surfaces instead of large flat bottoms is restricted to time-lapse systems, but these wells are designed for optical clarity, not for the needs of embryos. The size and shape of the original microwells (Well of the Well; WOW) offer a practical and straightforward solution to combine the benefits of communal and individual incubation and improve the overall quality of cultured embryos.
Collapse
Affiliation(s)
- Gábor Vajta
- RVT Australia, Cairns, QLD, 4870, Australia. .,VitaVitro Biotech Co., Ltd., Shenzhen, China.
| | | | - Zoltan Machaty
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Sergey Yakovenko
- Altravita IVF Clinic, Moscow, Russia.,Biophysics Department, Moscow State University, Moscow, Russia
| |
Collapse
|
7
|
Effect of Triclosan Exposure on Developmental Competence in Parthenogenetic Porcine Embryo during Preimplantation. Int J Mol Sci 2020; 21:ijms21165790. [PMID: 32806749 PMCID: PMC7461051 DOI: 10.3390/ijms21165790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023] Open
Abstract
Triclosan (TCS) is included in various healthcare products because of its antimicrobial activity; therefore, many humans are exposed to TCS daily. While detrimental effects of TCS exposure have been reported in various species and cell types, the effects of TCS exposure on early embryonic development are largely unknown. The aim of this study was to determine if TCS exerts toxic effects during early embryonic development using porcine parthenogenetic embryos in vitro. Porcine parthenogenetic embryos were cultured in in vitro culture medium with 50 or 100 µM TCS for 6 days. Developmental parameters including cleavage and blastocyst formation rates, developmental kinetics, and the number of blastomeres were assessed. To determine the toxic effects of TCS, apoptosis, oxidative stress, and mitochondrial dysfunction were assessed. TCS exposure resulted in a significant decrease in 2-cell rate and blastocyst formation rate, as well as number of blastomeres, but not in the cleavage rate. TCS also increased the number of apoptotic blastomeres and the production of reactive oxygen species. Finally, TCS treatment resulted in a diffuse distribution of mitochondria and decreased the mitochondrial membrane potential. Our results showed that TCS exposure impaired porcine early embryonic development by inducing DNA damage, oxidative stress, and mitochondrial dysfunction.
Collapse
|
8
|
Campagnolo K, Ledur Ongaratto F, Rodrigues de Freitas C, Peña Bello CA, Rodrigues Willhelm B, de Mattos K, Rigo Rodrigues JL, Bertolini M. In vitro development of IVF-derived bovine embryos following cytoplasmic microinjection for the episomal expression of the IGF2 gene. Reprod Domest Anim 2020; 55:574-583. [PMID: 32056325 DOI: 10.1111/rda.13654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/05/2020] [Indexed: 01/20/2023]
Abstract
Important genomic imprinting changes usually occur following the in vitro production (IVP) of bovine embryos, especially in the imprinting pattern of components of the IGF system. This study aimed to evaluate the effects of a transient episomal overexpression of the IGF2 gene in bovine IVP embryos following embryo cytoplasmic microinjection (CMI) at the 1-cell stage on embryo survival, early and late developmental kinetics and morphological quality up to Day 7 of development. Selected cumulus-oocyte complexes (COCs) were matured and fertilized in vitro and subsequently segregated into six experimental groups: non-CMI control group and five CMI groups at increasing doses (0, 10, 20, 40 and 80 ng/μl) of a GFP vector built for the episomal expression of bovine IGF2. Zygote CMI was effective in delivering the expression vector into the ooplasm, irrespective of the groups, with 58% of positive GFP fluorescence in Day 7 blastocysts. Considering developmental rates and late embryo kinetics, the 10-ng/μl CMI vector dose promoted a lower blastocyst rate (10.4%), but for blastocysts at more advanced stages of development (93.0% blastocysts and expanded blastocysts), and higher number of cells (116.0 ± 3.0) than non-CMI controls (23.3%, 75.0% and 75.0 ± 6.8 were obtained, respectively). In conclusion, CMI at the 1-cell stage did not compromise subsequent in vitro development of surviving embryos, with the 10-ng/μl group demonstrating a possible growth-promoting effect of the IGF2 gene on embryo development, from the 1-cell to the blastocyst stage.
Collapse
Affiliation(s)
- Karine Campagnolo
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Ledur Ongaratto
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Camilo Andrés Peña Bello
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Bruna Rodrigues Willhelm
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Karine de Mattos
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - José Luiz Rigo Rodrigues
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcelo Bertolini
- School of Veterinary Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
9
|
Zheng HY, Yang CY, Yu NQ, Huang JX, Zheng W, Abdelnour SA, Shang JH. Effect of season on the in-vitro maturation and developmental competence of buffalo oocytes after somatic cell nuclear transfer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7729-7735. [PMID: 31904101 DOI: 10.1007/s11356-019-07470-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Somatic cell nuclear transfer (SCNT) is a valuable technology tool with various uses in transgenic animals, regenerative medicine, and stem cell research. However, the efficiency of SCNT embryos appears to have poor developmental competency. Environmental issues may adversely affect SCNT embryos in buffalo. Thereafter, the present study aimed to explore the effect of season on the maturation of buffalo oocytes and subsequent developmental capability after parthenogenetic activation and SCNT in buffalo. Buffalo oocytes (n = 6353) were collected from local slaughterhouse at various seasons; spring (March-April), summer (May-August), autumn (September-November), and winter (December-January). A significant increase (p < 0.05) was recorded in the maturation rate (57.07%) at autumn compared with spring, summer, and winter (50.46, 50.93, and 50.66%, respectively). No significant differences were recorded in the fusion and the cleavage rates among all seasons. Blastocyst development rate was higher (p < 0.05) in autumn and winter (16.52 ± 8.45% and 15.98 ± 7.17%, respectively) than in spring and summer (9.47 ± 6.71% and 10.84 ± 6.58%, respectively) seasons. It could be concluded that the season had a significant effect on oocyte development competence which can be used for SCNT in buffalo.
Collapse
Affiliation(s)
- Hai-Ying Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Chun-Yan Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Nong-Qi Yu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Jia-Xiang Huang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Wei Zheng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Sameh A Abdelnour
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
- College of Animal Science & Technology, Guangxi University, Nanning, 530004, Guangxi, China
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Jiang-Hua Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China.
| |
Collapse
|
10
|
Xu L, Mesalam A, Lee KL, Song SH, Khan I, Chowdhury MMR, Lv W, Kong IK. Improves the In Vitro Developmental Competence and Reprogramming Efficiency of Cloned Bovine Embryos by Additional Complimentary Cytoplasm. Cell Reprogram 2019; 21:51-60. [PMID: 30735075 PMCID: PMC6383574 DOI: 10.1089/cell.2018.0050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a useful technology; however, its efficiency is low. In this study, we investigated the effects of cytoplasmic transfer into enucleated oocytes on the developmental competence and quality of cloned preimplantation bovine embryos via terminal deoxynucleotidyl transferase dUTP nick-end labeling, quantitative reverse transcription PCR, and immunocytochemistry. We used cytoplasm injection cloning technology (CICT), a new technique via which the cytoplasmic volume of an enucleated oocyte could be restored by injecting ∼30% of the cytoplasm of a donor oocyte. The percentages of embryos that underwent cleavage and formed a blastocyst were significantly higher (p < 0.05) in the CICT group than in the SCNT group (28.9 ± 0.8% vs. 20.2 ± 1.3%, respectively). Furthermore, the total cell number per day 8 blastocyst was significantly higher in the CICT group than in the SCNT group (176.2 ± 6.5 vs. 119.3 ± 7.7, p < 0.05). Moreover, CICT increased mitochondrial activity, as detected using MitoTracker® Green. The mRNA levels of DNA methyltransferase 1 and DNA methyltransferase 3a were significantly lower (p < 0.05) in the CICT group than in the SCNT group. The mRNA level of DNA methyltransferase 3b was lower in the CICT group than in the SCNT group; however, this difference was not significant (p > 0.05). Taken together, these data suggest that CICT improves the in vitro developmental competence and quality of cloned bovine embryos.
Collapse
Affiliation(s)
- Lianguang Xu
- 1 Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Ayman Mesalam
- 1 Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Republic of Korea.,2 Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Kyeong-Lim Lee
- 1 Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Seok-Hwan Song
- 1 Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Imran Khan
- 1 Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - M M R Chowdhury
- 1 Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Republic of Korea.,3 Animal Genetic Resources Research Center, National Institute of Animal Science, RDA, Namwon, Republic of Korea
| | - Wenfa Lv
- 4 Division of Animal Reproduction and Breeding, Department of Animal Science, Jilin Agricultural University, Changchun, Republic of China
| | - Il-Keun Kong
- 1 Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Republic of Korea.,5 Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
11
|
Song SH, Lee KL, Xu L, Joo MD, Hwang JY, Oh SH, Kong IK. Production of cloned cats using additional complimentary cytoplasm. Anim Reprod Sci 2019; 208:106125. [PMID: 31405460 DOI: 10.1016/j.anireprosci.2019.106125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is an important technique for producing cloned animals. It, however, is inefficient when there is use of SCNT for cloned animal production. Cytoplasm injection cloning technology (CICT) was developed to overcome the inefficiencies of SCNT use of this purpose. The use of CICT involves additional cytoplasm fusing with enucleated oocytes to restore the cytoplasmic volume, thus improving the in vitro developmental competence and quality of cloned embryos. In this study, there was application of CICT in cats to improve the in vitro developmental competence of cloned embryos, as well as the production of the offspring. The results of this study were that fusion rate of the cloned embryos with use of the CICT method was greater than that with SCNT (80.0 ± 4.8% compared with 67.8 ± 11.3%, respectively), and more blastocysts developed with use of CICT than SCNT (20.0 ± 2.0% compared with 13.5 ± 5.0%, respectively). The 62 cloned embryos that were produced with use of CICT were transferred into five estrous synchronized recipients, and 151 cloned embryos produced using SCNT were transferred to 13 estrous-synchronized recipients. After the embryo transfer, there was birth from surrogate mothers of one live-born kitten that resulted using SCNT compared with three live-born kittens using CICT. The number of CICT-cloned embryos born was greater than that of SCNT-cloned embryos (4.8 ± 2.3% compared with 0.7 ± 1.3%, P < 0.05). These results indicate that the CICT technique can be used to produce cloned kittens, including endangered feline species.
Collapse
Affiliation(s)
- Seok-Hwan Song
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Kyeong-Lim Lee
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Lianguang Xu
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Ji-Yoon Hwang
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Seon-Hwa Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea.
| |
Collapse
|
12
|
Abstract
The first 20 years of somatic cell nuclear transfer can hardly be described as a success story. Controversially, many factors leading to the fiasco are not intrinsic features of the technique itself. Misunderstandings and baseless accusations alongside with unsupported fears and administrative barriers hampered cloners to overcome the initial challenging period with obvious difficulties that are common features of a radically new approach. In spite of some promising results of mostly sporadic and small-scale experiments, the future of cloning is still uncertain. On the other hand, a reincarnation, just like the idea of electric cars, may result in many benefits in various areas of science and economy. One can only hope that-in contrast to electric cars-the ongoing paralyzed phase will not last for 100 years, and breakthroughs achieved in some promising areas will provide enough evidence to intensify research and large-scale application of cloning in the next decade.
Collapse
|
13
|
Costa Gerger RPD, Souza Ribeiro ED, Zago FC, Aguiar LHD, Rodriguez-Villamil P, Ongaratto FL, Ambrósio CE, Miglino MA, Rodrigues JL, Forell F, Bertolini LR, Bertolini M. Effects of fusion-activation interval and embryo aggregation on in vitro and in vivo development of bovine cloned embryos. Res Vet Sci 2019; 123:91-98. [PMID: 30597478 DOI: 10.1016/j.rvsc.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 11/16/2018] [Accepted: 12/13/2018] [Indexed: 11/27/2022]
Abstract
Nuclear reprogramming in somatic cell cloning is one of the key factors for proper development, with variations in the protocol appearing to improve cloning efficiency. This study aimed to determine the effects of two fusion-activation intervals and the aggregation of bovine cloned embryos on subsequent in vitro and in vivo development. Zygotes produced by handmade cloning were exposed to two fusion-activation intervals (2 h or 4 h), and then cultured in microwells either individually (1 × 100%) or after aggregation of two structures (2 × 100%). Zona-intact oocytes and zona-free oocytes and hemi-oocytes were used as parthenote controls under the same fusion-activation intervals. Day-7 cloned blastocysts were transferred to synchronous recipients. Cleavage (Day 2), blastocyst (Day 7) and pregnancy (Day 30) rates were compared by the χ2 test (P < .05). Extending fusion-activation interval from 2 to 4 h reduced cleavage (91.0 vs. 74.4%) but not blastocyst (34.8 vs. 42.0%) rates. On a microwell basis, cloned embryo aggregation (2 × 100%) increased cleavage (91.5% vs. 74.4%) and blastocyst (46.0% vs. 31.3%) rates compared to controls (1 × 100%), but did not improve the overall embryo production efficiency on Day 7 (23.0% vs. 31.3%), on a per reconstructed embryo basis, respectively. Treatments had no effects on in vitro developmental kinetics, embryo quality, and in vivo development. In summary, the fusion-activation interval and/or the aggregation of cloned bovine embryos did not affect cloning efficiency based on the in vitro development to the blastocyst stage and on pregnancy outcome.
Collapse
Affiliation(s)
- Renato Pereira da Costa Gerger
- Center of Agronomy and Veterinary Sciences, Santa Catarina State University, Lages, SC, Brazil; School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Luís Henrique de Aguiar
- School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Rodriguez-Villamil
- School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Ledur Ongaratto
- School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - José Luiz Rodrigues
- School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabiana Forell
- Center of Agronomy and Veterinary Sciences, Santa Catarina State University, Lages, SC, Brazil
| | | | - Marcelo Bertolini
- School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Qiu X, Xiao X, Martin GB, Li N, Ling W, Wang M, Li Y. Strategies for improvement of cloning by somatic cell nuclear transfer. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is a powerful tool that is being applied in a variety of fields as diverse as the cloning and production of transgenic animals, rescue of endangered species and regenerative medicine. However, cloning efficiency is still very low and SCNT embryos generally show poor developmental competency and many abnormalities. The low efficiency is probably due to incomplete reprogramming of the donor nucleus and most of the developmental problems are thought to be caused by epigenetic defects. Applications of SCNT will, therefore, depend on improvements in the efficiency of production of healthy clones. This review has summarised the progress and strategies that have been used to make improvements in various animal species, especially over the period 2010–2017, including strategies based on histone modification, embryo aggregation and mitochondrial function. There has been considerable investiagation into the mechanisms that underpin each strategy, helping us better understand the nature of genomic reprogramming and nucleus–cytoplasm interactions.
Collapse
|
15
|
Liu X, Luo C, Deng K, Wu Z, Wei Y, Jiang J, Lu F, Shi D. Cytoplasmic volume of recipient oocytes affects the nucleus reprogramming and the developmental competence of HMC buffalo (Bubalus bubalis) embryos. J Vet Med Sci 2018; 80:1291-1300. [PMID: 29925699 PMCID: PMC6115262 DOI: 10.1292/jvms.18-0043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was undertaken to examine the effects of cytoplasmic volume on nucleus
reprogramming and developmental competence of buffalo handmade cloning (HMC) embryos. We
found that both HMC embryos derived from ~150% cytoplasm or ~225% cytoplasm resulted in a
higher blastocyst rate and total cell number of blastocyst in comparison with those from
~75% cytoplasm (25.4 ± 2.0, 27.9 ± 1.6% vs. 17.9 ± 3.1%; 150 ± 10, 169 ± 12 vs. 85 ± 6,
P<0.05). Meanwhile, the proportions of nuclear envelope breakdown
(NEBD) and premature chromosome condensation (PCC) were also increased in the embryos
derived from ~150 or ~225% enucleated cytoplasm compared to those from ~75% cytoplasm.
Moreover, HMC embryos derived from ~225% cytoplasm showed a decrease of global DNA
methylation from the 2-cell to the 4-cell stage in comparison with those of ~75% cytoplasm
(P<0.05). Furthermore, the expression of embryonic genome activation
(EGA) relative genes (eIF1A and U2AF) in HMC embryos
derived from ~225% cytoplasm at the 8-cell stages was also found to be enhanced compared
with that of the ~75% cytoplasm. Two of seven recipients were confirmed to be pregnant
following transfer of blastocysts derived from ~225% cytoplasm, and one healthy cloned
calf was delivered at the end of the gestation period, whereas no recipients were pregnant
after the transfer of blastocysts derived from ~75% cytoplasm. These results indicate that
the cytoplasmic volume of recipient oocytes affects donor nucleus reprogramming, and then
further accounted for the developmental ability of the reconstructed embryos.
Collapse
Affiliation(s)
- Xiaohua Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Chan Luo
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Kai Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Zhulian Wu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Yingming Wei
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Jianrong Jiang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| |
Collapse
|
16
|
Gerger R, Rossetto R, Ribeiro E, Ortigari I, Zago FC, Aguiar L, Costa U, Lopes RFF, Ambrósio CE, Miglino MA, Rodrigues JL, Forell F, Bertolini LR, Bertolini M. Impact of cumulative gain in expertise on the efficiency of handmade cloning in cattle. Theriogenology 2017; 95:24-32. [DOI: 10.1016/j.theriogenology.2017.02.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
|
17
|
Gerger RPC, Zago FC, Ribeiro ES, Gaudencio Neto S, Martins LT, Aguiar LH, Rodrigues VHV, Furlan FH, Ortigari I, Sainz RD, Ferrell CL, Miglino MA, Ambrósio CE, Rodrigues JL, Rossetto R, Forell F, Bertolini LR, Bertolini M. Morphometric developmental pattern of bovine handmade cloned concepti in late pregnancy. Reprod Fertil Dev 2017; 29:950-967. [DOI: 10.1071/rd15215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 01/15/2016] [Indexed: 11/23/2022] Open
Abstract
Cloning procedures often interfere with conceptus growth and life ex utero, in a set of symptoms known as abnormal offspring syndrome (AOS). The aim of the present study was to compare the developmental pattern of in vivo-derived (IVD), IVF-derived and handmade cloning-derived (NT-HMC) Day 225 bovine concepti using established procedures. Pregnancy diagnosis was performed on Day 30 following blastocyst transfer on Day 7. Conceptus morphometry was assessed by ultrasonography on Day 51, and on Day 225 pregnant cows were killed for morphological examination of concepti. Pregnancy outcome was similar between groups, with greater pregnancy losses in the first trimester (70.6%) and smaller fetuses on Day 51 in the NT-HMC group than in the IVD (14.3%) and IVF (20.0%) groups. However, NT-HMC-derived concepti were twofold larger on Day 225 of gestation than controls. A higher frequency (63.5%) of placentomes larger than the largest in the IVD group was observed in the NT-HMC group, which may be relevant to placental function. Conceptus traits in the IVF group were similar to the IVD controls, with only slight changes in placentome types. Morphological changes in cloned concepti likely affected placental function and metabolism, disrupting the placental constraining mechanism on fetal growth in mid- to late pregnancy.
Collapse
|
18
|
Embryo aggregation does not improve the development of interspecies somatic cell nuclear transfer embryos in the horse. Theriogenology 2016; 86:1081-1091. [PMID: 27157390 DOI: 10.1016/j.theriogenology.2016.03.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/03/2016] [Accepted: 03/28/2016] [Indexed: 11/22/2022]
Abstract
The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes from domestic animals tested in our study, the feline ooplasm might be the most appropriate recipient to partially allow preimplantation embryo development of iSCNT equine embryos.
Collapse
|
19
|
Buemo CP, Gambini A, Moro LN, Hiriart MI, Fernández-Martín R, Collas P, Salamone DF. Embryo Aggregation in Pig Improves Cloning Efficiency and Embryo Quality. PLoS One 2016; 11:e0146390. [PMID: 26894831 PMCID: PMC4760708 DOI: 10.1371/journal.pone.0146390] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/16/2015] [Indexed: 11/19/2022] Open
Abstract
In this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos. DNA fragmentation levels in 3x aggregated cloned blastocysts were significantly decreased compared to 1x blastocysts. Levels of Oct4, Klf4, Igf2, Bax and Dnmt 1 transcripts were significantly higher in aggregated embryos, whereas Nanog levels were not affected. Transcripts of Cdx2 and Bcl-xl were essentially non-detectable. Our study suggests that embryo aggregation in the porcine may be beneficial for cloned embryo development and embryo quality, through a reduction in apoptotic levels and an improvement in cell reprogramming.
Collapse
Affiliation(s)
- Carla Paola Buemo
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
- National Institute of Scientific and Technological Research, Buenos Aires, Argentina
| | - Andrés Gambini
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
- National Institute of Scientific and Technological Research, Buenos Aires, Argentina
| | - Lucia Natalia Moro
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
- National Institute of Scientific and Technological Research, Buenos Aires, Argentina
| | - María Inés Hiriart
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
- National Institute of Scientific and Technological Research, Buenos Aires, Argentina
| | - Rafael Fernández-Martín
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
- National Institute of Scientific and Technological Research, Buenos Aires, Argentina
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, and Norwegian Center for Stem Cell Research, Oslo, Norway
| | - Daniel Felipe Salamone
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
- National Institute of Scientific and Technological Research, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
20
|
Handmade cloning: recent advances, potential and pitfalls. J Anim Sci Biotechnol 2015; 6:43. [PMID: 26473031 PMCID: PMC4606838 DOI: 10.1186/s40104-015-0043-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/21/2015] [Indexed: 12/02/2022] Open
Abstract
Handmade cloning (HMC) is the most awaited, simple and micromanipulator-free version of somatic cell nuclear transfer (SCNT). The requirement of expensive micromanipulators and skilled expertise is eliminated in this technique, proving it as a major revolution in the field of embryology. During the past years, many modifications have been incorporated in this technique to boost its efficiency. This alternative approach to micromanipulator based traditional cloning (TC) works wonder in generating comparable or even higher birth rates in addition to declining costs drastically and enabling cryopreservation. This technique is not only applicable to intraspecies nuclear transfer but also to interspecies nuclear transfer (iSCNT) thus permitting conservation of endangered species. It also offers unique possibilities for automation of SCNT which aims at production of transgenic animals that can cure certain human diseases by producing therapeutics hence, providing a healthier future for the wellbeing of humans. The present review aims at highlighting certain aspects of HMC including recent advancements in procedure and factors involved in elevating its efficiency besides covering the potentials and pitfalls of this technique.
Collapse
|
21
|
Bang J, Jin J, Ghanem N, Choi B, Fakruzzaman M, Ha A, Lee K, Uhm S, Ko D, Koo B, Lee J, Kong I. Quality improvement of transgenic cloned bovine embryos using an aggregation method: Effects on cell number, cell ratio, embryo perimeter, mitochondrial distribution, and gene expression profile. Theriogenology 2015; 84:509-23. [DOI: 10.1016/j.theriogenology.2015.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 02/26/2015] [Accepted: 04/11/2015] [Indexed: 01/16/2023]
|
22
|
Moro LN, Jarazo J, Buemo C, Hiriart MI, Sestelo A, Salamone DF. Tiger, Bengal and Domestic Cat Embryos Produced by Homospecific and Interspecific Zona-Free Nuclear Transfer. Reprod Domest Anim 2015; 50:849-57. [DOI: 10.1111/rda.12593] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/20/2015] [Indexed: 11/27/2022]
Affiliation(s)
- LN Moro
- Laboratory of Animal Biotechnology; Agriculture Faculty; University of Buenos Aires; Buenos Aires Argentina
| | - J Jarazo
- Laboratory of Animal Biotechnology; Agriculture Faculty; University of Buenos Aires; Buenos Aires Argentina
| | - C Buemo
- Laboratory of Animal Biotechnology; Agriculture Faculty; University of Buenos Aires; Buenos Aires Argentina
| | - MI Hiriart
- Laboratory of Animal Biotechnology; Agriculture Faculty; University of Buenos Aires; Buenos Aires Argentina
| | - A Sestelo
- Laboratory of Reproductive Biotechnology; Zoological Garden of Buenos Aires; Buenos Aires Argentina
| | - DF Salamone
- Laboratory of Animal Biotechnology; Agriculture Faculty; University of Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
23
|
Moro LN, Hiriart MI, Buemo C, Jarazo J, Sestelo A, Veraguas D, Rodriguez-Alvarez L, Salamone DF. Cheetah interspecific SCNT followed by embryo aggregation improves in vitro development but not pluripotent gene expression. Reproduction 2015; 150:1-10. [DOI: 10.1530/rep-15-0048] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/27/2015] [Indexed: 11/08/2022]
Abstract
The aim of this study was to evaluate the capacity of domestic cat (Dc,Felis silvestris) oocytes to reprogram the nucleus of cheetah (Ch,Acinonyx jubatus) cells by interspecies SCNT (iSCNT), by using embryo aggregation. Dc oocytes werein vitromatured and subjected to zona pellucida free (ZP-free) SCNT or iSCNT, depending on whether the nucleus donor cell was of Dc or Ch respectively. ZP-free reconstructed embryos were then cultured in microwells individually (Dc1X and Ch1X groups) or in couples (Dc2X and Ch2X groups). Embryo aggregation improvedin vitrodevelopment obtaining 27.4, 47.7, 16.7 and 28.3% of blastocyst rates in the Dc1X, Dc2X, Ch1X and Ch2X groups, respectively (P<0.05). Moreover, aggregation improved the morphological quality of blastocysts from the Dc2X over the Dc1X group. Gene expression analysis revealed that Ch1X and Ch2X blastocysts had significantly lower relative expression of OCT4, CDX2 and NANOG than the Dc1X, Dc2X and IVF control groups. The OCT4, NANOG, SOX2 and CDX2 genes were overexpressed in Dc1X blastocysts, but the relative expression of these four genes decreased in the Dc2X, reaching similar relative levels to those of Dc IVF blastocysts. In conclusion, Ch blastocysts were produced using Dc oocytes, but with lower relative expression of pluripotent and trophoblastic genes, indicating that nuclear reprogramming could be still incomplete. Despite this, embryo aggregation improved the development of Ch and Dc embryos, and normalized Dc gene expression, which suggests that this strategy could improve full-term developmental efficiency of cat and feline iSCNT embryos.
Collapse
|
24
|
Gambini A, De Stefano A, Bevacqua RJ, Karlanian F, Salamone DF. The aggregation of four reconstructed zygotes is the limit to improve the developmental competence of cloned equine embryos. PLoS One 2014; 9:e110998. [PMID: 25396418 PMCID: PMC4232247 DOI: 10.1371/journal.pone.0110998] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/26/2014] [Indexed: 12/22/2022] Open
Abstract
Embryo aggregation has been demonstrated to improve cloning efficiency in mammals. However, since no more than three embryos have been used for aggregation, the effect of using a larger number of cloned zygotes is unknown. Therefore, the goal of the present study was to determine whether increased numbers of cloned aggregated zygotes results in improved in vitro and in vivo embryo development in the equine. Zona-free reconstructed embryos (ZFRE's) were cultured in the well of the well system in four different experimental groups: I. 1x, only one ZFRE per microwell; II. 3x, three per microwell; III. 4x, four per microwell; and IV. 5x, five ZFRE's per microwell. Embryo size was measured on day 7, after which blastocysts from each experimental group were either a) maintained in culture from day 8 until day 16 to follow their growth rates, b) fixed to measure DNA fragmentation using the TUNEL assay, or c) transferred to synchronized mares. A higher blastocyst rate was observed on day 7 in the 4x group than in the 5x group. Non-aggregated embryos were smaller on day 8 compared to those aggregated, but from then on the in vitro growth was not different among experimental groups. Apoptotic cells averaged 10% of total cells of day 8 blastocysts, independently of embryo aggregation. Only pregnancies resulting from the aggregation of up to four embryos per microwell went beyond the fifth month of gestation, and two of these pregnancies, derived from experimental groups 3x and 4x, resulted in live cloned foals. In summary, we showed that the in vitro and in vivo development of cloned zona-free embryos improved until the aggregation of four zygotes and declined when five reconstructed zygotes were aggregated.
Collapse
Affiliation(s)
- Andrés Gambini
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
- National Institute of Scientific and Technological Research, Buenos Aires, Argentina
| | - Adrian De Stefano
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina Jimena Bevacqua
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
- National Institute of Scientific and Technological Research, Buenos Aires, Argentina
| | - Florencia Karlanian
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniel Felipe Salamone
- Laboratory of Animal Biotechnology, Faculty of Agriculture, University of Buenos Aires, Buenos Aires, Argentina
- National Institute of Scientific and Technological Research, Buenos Aires, Argentina
| |
Collapse
|
25
|
Gambini A, De Stéfano A, Bevaqua R, Salamone D. Effect of the number of aggregated structures on quality and development of cloned equine aggregated embryos. J Equine Vet Sci 2014. [DOI: 10.1016/j.jevs.2013.10.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Abstract
The effects of cytoplasmic volumes on development and developmental kinetics of in vitro produced porcine embryos were investigated. During hand-made cloning (HMC), selected cytoplasts were separated into two groups according to their size in relation to the initial oocyte: ~75% or ~50%. Following two fusion steps and activation (day 0), reconstructed embryos were cultured in vitro for 6 days. Cleavage rates on day 2 as well as blastocyst rates and cell numbers on day 6 were recorded. Results showed that embryo development was no different for ~50% versus ~75% cytoplasm at first fusion. This result was used in the following experiments, where the effect of varying cytoplasm volume in second fusion to obtain a final cytoplasm volume of ~75% to ~200% was tested. The results showed that the lowest quality was obtained when the final cytoplasm volume was ~75% and the highest quality at ~200% of the original oocyte. Similar results were observed in parthenogenetic (PA) embryos activated with different cytoplasmic volumes. A common pattern for the developmental kinetics of HMC and PA embryos was observed: the smaller group tended to have a longer time for the first two cell cycles, but subsequently a shorter time to form morula and blastocyst. In conclusion, the developmental kinetics of in vitro produced embryos was affected by the cytoplasm volume of the initial oocyte, and this further accounted for the developmental ability of the reconstructed embryos.
Collapse
|
27
|
Production of chimeric embryos by aggregation of bovine egfp eight-cell stage blastomeres with two-cell fused and asynchronic embryos. Theriogenology 2013; 80:357-64. [DOI: 10.1016/j.theriogenology.2013.04.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 01/13/2023]
|
28
|
Pereira A, Feltrin C, Almeida K, Carneiro I, Avelar S, Neto AA, Sousa F, Melo C, Moura R, Teixeira D, Bertolini L, Freitas V, Bertolini M. Analysis of factors contributing to the efficiency of the in vitro production of transgenic goat embryos (Capra hircus) by handmade cloning (HMC). Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2012.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Selokar N, Shah R, Saha A, Muzaffar M, Saini M, Chauhan M, Manik R, Palta P, Singla S. Effect of post-fusion holding time, orientation and position of somatic cell-cytoplasts during electrofusion on the development of handmade cloned embryos in buffalo (Bubalus bubalis). Theriogenology 2012; 78:930-6. [DOI: 10.1016/j.theriogenology.2012.03.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 02/27/2012] [Accepted: 03/04/2012] [Indexed: 11/29/2022]
|
30
|
Gambini A, Jarazo J, Olivera R, Salamone DF. Equine cloning: in vitro and in vivo development of aggregated embryos. Biol Reprod 2012; 87:15, 1-9. [PMID: 22553223 DOI: 10.1095/biolreprod.112.098855] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The production of cloned equine embryos remains highly inefficient. Embryo aggregation has not yet been tested in the equine, and it might represent an interesting strategy to improve embryo development. This study evaluated the effect of cloned embryo aggregation on in vitro and in vivo equine embryo development. Zona-free reconstructed embryos were individually cultured in microwells (nonaggregated group) or as 2- or 3-embryo aggregates (aggregated groups). For in vitro development, they were cultured until blastocyst stage and then either fixed for Oct-4 immunocytochemical staining or maintained in in vitro culture where blastocyst expansion was measured daily until Day 17 or the day on which they collapsed. For in vivo assays, Day 7-8 blastocysts were transferred to synchronized mares and resultant vesicles, and cloned embryos were measured by ultrasonography. Embryo aggregation improved blastocyst rates on a per well basis, and aggregation did not imply additional oocytes to obtain blastocysts. Embryo aggregation improved embryo quality, nevertheless it did not affect Day 8 and Day 16 blastocyst Oct-4 expression patterns. Equine cloned blastocysts expanded and increased their cell numbers when they were maintained in in vitro culture, describing a particular pattern of embryo growth that was unexpectedly independent of embryo aggregation, as all embryos reached similar size after Day 7. Early pregnancy rates were higher using blastocysts derived from aggregated embryos, and advanced pregnancies as live healthy foals also resulted from aggregated embryos. These results indicate that the strategy of aggregating embryos can improve their development, supporting the establishment of equine cloned pregnancies.
Collapse
Affiliation(s)
- Andrés Gambini
- Laboratory of Animal Biotechnology, Agriculture Faculty, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
31
|
Muzaffar M, Selokar NL, Singh KP, Zandi M, Singh MK, Shah RA, Chauhan MS, Singla SK, Palta P, Manik R. Equivalency of buffalo (Bubalus bubalis) embryonic stem cells derived from fertilized, parthenogenetic, and hand-made cloned embryos. Cell Reprogram 2012; 14:267-79. [PMID: 22582863 DOI: 10.1089/cell.2011.0090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study was aimed at establishing buffalo embryonic stem cells (ESCs) from in vitro fertilized (IVF), parthenogenetic, and hand-made cloned (HMC) embryos and to check their equivalency in terms of stem cell marker expression, longevity, proliferation, and differentiation pattern. ESCs derived from all three sources were found by immunofluorescence to express the pluripotency markers SSEA-4, TRA-1-60, TRA-1-81, OCT4, and SOX2 and were able to form embryoid bodies containing cells expressing genes specific to endoderm (AFP, HNF4, and GATA4), mesoderm (MSX1, BMP4, and ASA), and ectoderm (cytokeratin 8 and NF68). Reverse transcriptase PCR (RT-PCR) showed cells from all sources to be positive for pluripotency markers OCT4, SOX2, NANOG, STAT3, REX1, FOXD3, NUCLEOSTEMIN, and TELOMERASE. Pluripotency markers OCT4, SOX2, NANOG, and c-MYC were also analyzed by real-time PCR. No significant differences were observed among ESCs from all three sources for all these genes except NANOG, whose expression was higher (p<0.05) in HMC-derived ESCs (6.897±2.3) compared to that in parthenogenesis- and IVF-derived cells (1.603±0.315 and 1±0, respectively). Pluripotent, stable buffalo ESC lines derived from IVF, parthenogenesis, and HMC embryos may be genetically manipulated to provide a powerful tool for studies involving embryonic development, genomic imprinting, gene targeting, cloning, chimera formation, and transgenic animal production.
Collapse
Affiliation(s)
- Musharifa Muzaffar
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal-132001, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mezzalira JC, Ohlweiler LU, da Costa Gerger RP, Casali R, Vieira FK, Ambrósio CE, Miglino MA, Rodrigues JL, Mezzalira A, Bertolini M. Production of bovine hand-made cloned embryos by zygote-oocyte cytoplasmic hemi-complementation. Cell Reprogram 2011; 13:65-76. [PMID: 21241164 DOI: 10.1089/cell.2010.0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the effect of the cytoplast type and activation process on development of cloned embryos. Bovine oocytes (MII) or zygotes at the one-cell stage (IVF) were manually bisected and segregated in MII or IVF hemi-cytoplasts or hemi-karyoplasts. Adult skin cells from a bovine female were used as nucleus donors (SC). Experimental groups were composed of IVF embryos; parthenogenetic embryos; hand-made cloned (HMC) embryos; and reconstructed HMC embryos using IVF hemi-cytoplast + MII hemi-cytoplast + SC (G-I); IVF hemi-cytoplast + IVF hemi-cytoplast + SC (G-II); MII hemi-cytoplast + IVF hemi-karyoplast (G-III); and IVF hemi-cytoplast + IVF hemi-karyoplast (G-IV). Embryos from G-I to G-IV were allocated to subgroups as sperm-activated (SA) or were further chemically activated (SA + CA). Embryos from all groups and subgroups were in vitro cultured in the WOW system. Blastocyst development in subgroup G-I SA (28.2%) was similar to IVF (27.0%) and HMC (31.4%) controls, perhaps due to a to a more suitable activation process and/or better complementation of cytoplasmic reprogramming factors, with the other groups and subgroups having lower levels of development. No blastocyst development was observed when using IVF hemi-karyoplasts (G-III and G-IV), possibly due to the manipulation process during a sensitive biological period. In summary, the presence of cytoplasmic factors from MII hemi-oocytes and the sperm activation process from hemi-zygotes appear to be necessary for adequate in vitro development, as only the zygote-oocyte hemi-complementation was as efficient as controls for the generation of bovine cloned blastocysts.
Collapse
Affiliation(s)
- Joana Claudia Mezzalira
- Animal Reproduction Laboratory, Center of Agronomy and Veterinary Sciences (CAV), Santa Catarina State University (UDESC) , Santa Catarina, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gerger R, Ribeiro E, Forell F, Bertolini L, Rodrigues J, Ambrsio C, Miglino M, Mezzalira A, Bertolini M. In vitro development of cloned bovine embryos produced by handmade cloning using somatic cells from distinct levels of cell culture confluence. GENETICS AND MOLECULAR RESEARCH 2010; 9:295-302. [DOI: 10.4238/vol9-1gmr690] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|