1
|
Rust S, Randau L. Real-time imaging of bacterial colony growth dynamics for cells with Type IV-A1 CRISPR-Cas activity. MICROLIFE 2025; 6:uqaf006. [PMID: 40230958 PMCID: PMC11995694 DOI: 10.1093/femsml/uqaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/08/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
The Type IV-A1 CRISPR-Cas system of Pseudomonas oleovorans provides defense against mobile genetic elements in the absence of target DNA degradation. In recent studies, Escherichia coli BL21-AI cells with Type IV-A1 CRISPR-Cas activity displayed a heterogeneous colony growth phenotype. Here, we developed a convenient smartphone-mediated automatic remote-controlled time-lapse imaging system (SMARTIS), that enables monitoring of growing bacteria over time. The system's design includes a custom-built imaging box equipped with LED lights, an adjustable heating system and a smartphone that can be remotely controlled using freely available, user-friendly applications. SMARTIS allowed long-term observation of growing colonies and was utilized to analyze different growth behaviors of E. coli cells expressing Type IV-A1 CRISPR ribonucleoproteins. Our findings reveal that heterogeneity in colonies can emerge within hours of initial growth. We further examined the influence of different expression systems on bacterial growth and CRISPR interference activity and demonstrated that the observed heterogeneity of colony-forming units is strongly influenced by plasmid design and backbone identity. This study highlights the importance of careful assessment of heterogenous colony growth dynamics and describes a real-time imaging system with wide applications beyond the study of CRISPR-Cas activity in bacterial hosts.
Collapse
Affiliation(s)
- Selina Rust
- Prokaryotic RNA Biology, Department of Biology, Philipps-Universität Marburg, D-35043 Marburg, Germany
| | - Lennart Randau
- Prokaryotic RNA Biology, Department of Biology, Philipps-Universität Marburg, D-35043 Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, D-35043 Marburg, Germany
| |
Collapse
|
2
|
Cheng K. Structure, function and evolution of the bacterial DinG-like proteins. Comput Struct Biotechnol J 2025; 27:1124-1139. [PMID: 40206346 PMCID: PMC11981726 DOI: 10.1016/j.csbj.2025.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
The damage-inducible G (DinG)-like proteins represent a widespread superfamily 2 (SF2) of DNA helicases, exhibiting remarkable diversity in domain architecture, substrate specificity, regulatory mechanisms, biological functions, interaction partners, and taxonomic distribution. Many characterized DinG-like proteins play critical roles in bacterial stress responses and immunity, including the SOS response, DNA repair, and phage interference. This review aims to provide a summary of bacterial DinG-like proteins, categorizing them into subgroups such as DinG, YoaA, CasDinG, CasDinG-HNH, ExoDinG, pExoDinG, EndoDinG, RadC-like DinG, sDinG, and others. This classification provides an analysis of sequence-structure-function relationships within this superfamily. Further sequence clustering revealed inter-cluster relationships and subgroup heterogeneity, suggesting potential functional divergence. Integrating sequence analysis, domain architecture, structural data, and genomic context enabled functional predictions for these DinG-like protein subgroups, shedding light on their evolutionary and biological significance.
Collapse
Affiliation(s)
- Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
3
|
Williams AA, Redman O, Domgaard H, Armbrust MJ, Jackson RN. Determining the biochemical function of type IV CRISPR ribonucleoprotein complexes and accessory proteins. Methods Enzymol 2025; 712:79-114. [PMID: 40121088 DOI: 10.1016/bs.mie.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Type IV CRISPR systems are phylogenetically diverse and poorly understood. However, recently, major strides have been made toward understanding type IV-A systems. In type IV-A systems, a multi-subunit ribonucleoprotein complex, called the Csf complex, uses a CRISPR-derived guide to bind double-stranded DNA, forming an R-loop to which a helicase called CRISPR-associated DinG (CasDinG) is recruited. It is proposed that the ATP-dependent helicase activity of CasDinG then unwinds duplex DNA near the targeting site, impairing RNA transcription, and gene expression. Here we describe methods used to investigate the type IV-A system from Pseudomonas aeruginosa strain 83 including a plasmid clearance assay, expression and purification of type IV ribonucleoprotein complexes and proteins, nucleic acid binding assays, and CasDinG helicase assays. These methods provide a foundation for future work aimed at understanding these enigmatic systems.
Collapse
Affiliation(s)
- Andrew A Williams
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Olivine Redman
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Hannah Domgaard
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Matthew J Armbrust
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Ryan N Jackson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States.
| |
Collapse
|
4
|
Ma J, Lu Z. Developing a Versatile Arsenal: Novel Antimicrobials as Offensive Tools Against Pathogenic Bacteria. Microorganisms 2025; 13:172. [PMID: 39858940 PMCID: PMC11767912 DOI: 10.3390/microorganisms13010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The pervasive and often indiscriminate use of antibiotics has accelerated the emergence of drug-resistant bacterial strains, thus presenting an acute threat to global public health. Despite a growing acknowledgment of the severity of this crisis, the current suite of strategies to mitigate antimicrobial resistance remains markedly inadequate. This paper asserts the paramount need for the swift development of groundbreaking antimicrobial strategies and provides a comprehensive review of an array of innovative techniques currently under scrutiny. Among these, nano-antimicrobials, antimicrobials derived from ribosomal proteins, CRISPR/Cas-based systems, agents that undermine bacterial bioenergetics, and antimicrobial polysaccharides hold particular promise. This analysis gives special attention to CRISPR/Cas-based antimicrobials, scrutinizing their underlying mechanisms, exploring their potential applications, delineating their distinct advantages, and noting their likely limitations. Furthermore, we extend our exploration by proposing theoretical advancements in antimicrobial technology and evaluating feasible methods for the effective delivery of these agents. This includes leveraging these advances for broader biomedical applications, potentially revolutionizing how we confront bacterial pathogens in the future, and laying a foundation for extended research in multimodal therapeutic strategies.
Collapse
Affiliation(s)
- Junze Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, Institute of Marine Sciences, Shantou University, Shantou 515063, China;
| | - Zheng Lu
- Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Delgado-Nungaray JA, Figueroa-Yáñez LJ, Reynaga-Delgado E, Corona-España AM, Gonzalez-Reynoso O. Unveiling the endogenous CRISPR-Cas system in Pseudomonas aeruginosa PAO1. PLoS One 2024; 19:e0312783. [PMID: 39739718 DOI: 10.1371/journal.pone.0312783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/13/2024] [Indexed: 01/02/2025] Open
Abstract
Multidrug resistance in Pseudomonas aeruginosa, a high-priority pathogen per the World Health Organization, poses a global threat due to carbapenem resistance and limited antibiotic treatments. Using the bioinformatic tools CRISPRCasFinder, CRISPRCasTyper, CRISPRloci, and CRISPRImmunity, we analyzed the genome of P. aeruginosa PAO1 and revealed an orphan CRISPR system, suggesting it may be a remnant of a type IV system due to the presence of the DinG protein. This system comprises two CRISPR arrays and noteworthy DinG and Cas3 proteins, supporting recent evidence about the association between type IV and I CRISPR systems. Additionally, we demonstrated a co-evolutionary relationship between the orphan CRISPR system in P. aeruginosa PAO1 and the mobile genetic element and prophages identified. One self-targeting spacer was identified, often associated with bacterial evolution and autoimmunity, and no Acr proteins. This research opens avenues for studying how these CRISPR arrays regulate pathogenicity and for developing alternative strategies using its endogenous orphan CRISPR system against carbapenem-resistant P. aeruginosa strains.
Collapse
Affiliation(s)
- Javier Alejandro Delgado-Nungaray
- Chemical Engineering Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Luis Joel Figueroa-Yáñez
- Industrial Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Eire Reynaga-Delgado
- Pharmacobiology Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ana Montserrat Corona-España
- Chemical Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Orfil Gonzalez-Reynoso
- Chemical Engineering Department, University Center for Exact and Engineering Sciences, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
6
|
Koonin EV, Makarova KS. CRISPR in mobile genetic elements: counter-defense, inter-element competition and RNA-guided transposition. BMC Biol 2024; 22:295. [PMID: 39696488 DOI: 10.1186/s12915-024-02090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
CRISPR are adaptive immunity systems that protect bacteria and archaea from viruses and other mobile genetic elements (MGE) via an RNA-guided interference mechanism. However, in the course of the host-parasite co-evolution, CRISPR systems have been recruited by MGE themselves for counter-defense or other functions. Some bacteriophages encode fully functional CRISPR systems that target host defense systems, and many others recruited individual components of CRISPR systems, such as single repeat units that inhibit host CRISPR systems and CRISPR mini-arrays that target related viruses contributing to inter-virus competition. Many plasmids carry type IV or subtype V-M CRISPR systems that appear to be involved in inter-plasmid competition. Numerous Tn7-like and Mu-like transposons encode CRISPR-associated transposases (CASTs) in which interference-defective CRISPR systems of type I or type V mediate RNA-guided, site-specific transposition. The recruitment of CRISPR systems and their components by MGE is a manifestation of extensive gene shuttling between host immune systems and MGE, a major trend in the coevolution of MGE with their hosts.
Collapse
Affiliation(s)
- Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Kira S Makarova
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| |
Collapse
|
7
|
Sanchez-Londono M, Rust S, Hernández-Tamayo R, Gomes-Filho J, Thanbichler M, Randau L. Visualization of Type IV-A1 CRISPR-mediated repression of gene expression and plasmid replication. Nucleic Acids Res 2024; 52:12592-12603. [PMID: 39380487 PMCID: PMC11551745 DOI: 10.1093/nar/gkae879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Type IV CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) effector complexes are often encoded on plasmids and are proposed to prevent the replication of competing plasmids. The Type IV-A1 CRISPR-Cas system of Pseudomonas oleovorans additionally harbors a CRISPR RNA (crRNA) that tightly regulates the transcript levels of a chromosomal target and represents a natural CRISPR interference (CRISPRi) tool. This study investigates CRISPRi effects of this system using synthetic crRNAs against genome and plasmid sequences. Targeting of reporter genes revealed extended interference in P. oleovorans and Escherichia coli cells producing recombinant CRISPR ribonucleoprotein (crRNP) complexes. RNA sequencing (RNA-seq) analyses of Type IV-A1 CRISPRi-induced transcriptome alterations demonstrated highly effective long-range downregulation of histidine operon expression, whereas CRISPRi effects of dCas9 remained limited to the vicinity of its binding site. Single-molecule microscopy uncovered the localization dynamics of crRNP complexes. The tracks of fluorescently labeled crRNPs co-localized with regions of increased plasmid replication, supporting efficient plasmid targeting. These results identify mechanistic principles that facilitate the application of Type IV-A1 CRISPRi for the regulation of gene expression and plasmid replication.
Collapse
Affiliation(s)
- Mariana Sanchez-Londono
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Selina Rust
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Rogelio Hernández-Tamayo
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| | - José Vicente Gomes-Filho
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| | - Lennart Randau
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| |
Collapse
|
8
|
Čepaitė R, Klein N, Mikšys A, Camara-Wilpert S, Ragožius V, Benz F, Skorupskaitė A, Becker H, Žvejytė G, Steube N, Hochberg GKA, Randau L, Pinilla-Redondo R, Malinauskaitė L, Pausch P. Structural variation of types IV-A1- and IV-A3-mediated CRISPR interference. Nat Commun 2024; 15:9306. [PMID: 39468082 PMCID: PMC11519345 DOI: 10.1038/s41467-024-53778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024] Open
Abstract
CRISPR-Cas mediated DNA-interference typically relies on sequence-specific binding and nucleolytic degradation of foreign genetic material. Type IV-A CRISPR-Cas systems diverge from this general mechanism, using a nuclease-independent interference pathway to suppress gene expression for gene regulation and plasmid competition. To understand how the type IV-A system associated effector complex achieves this interference, we determine cryo-EM structures of two evolutionarily distinct type IV-A complexes (types IV-A1 and IV-A3) bound to cognate DNA-targets in the presence and absence of the type IV-A signature DinG effector helicase. The structures reveal how the effector complexes recognize the protospacer adjacent motif and target-strand DNA to form an R-loop structure. Additionally, we reveal differences between types IV-A1 and IV-A3 in DNA interactions and structural motifs that allow for in trans recruitment of DinG. Our study provides a detailed view of type IV-A mediated DNA-interference and presents a structural foundation for engineering type IV-A-based genome editing tools.
Collapse
Affiliation(s)
- R Čepaitė
- LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - N Klein
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - A Mikšys
- LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- ATEM Structural Discovery GmbH, Remscheid, Germany
| | - S Camara-Wilpert
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - V Ragožius
- LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - F Benz
- Synthetic Biology, Institut Pasteur, Université Paris Cité, CNRS UMR6047, Paris, France
- Microbial Evolutionary Genomics, Institut Pasteur, Université Paris Cité, CNRS UMR3525, Paris, France
| | - A Skorupskaitė
- LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - H Becker
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - G Žvejytė
- LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - N Steube
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - G K A Hochberg
- Evolutionary Biochemistry Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Chemistry, Philipps-Universität Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - L Randau
- Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - R Pinilla-Redondo
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - L Malinauskaitė
- LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
- BioNTech UK Ltd, Francis Crick Ave, Cambridge Biomedical Campus, Cambridge, UK.
| | - P Pausch
- LSC-EMBL Partnership Institute for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
9
|
Benz F, Camara-Wilpert S, Russel J, Wandera KG, Čepaitė R, Ares-Arroyo M, Gomes-Filho JV, Englert F, Kuehn JA, Gloor S, Mestre MR, Cuénod A, Aguilà-Sans M, Maccario L, Egli A, Randau L, Pausch P, Rocha EPC, Beisel CL, Madsen JS, Bikard D, Hall AR, Sørensen SJ, Pinilla-Redondo R. Type IV-A3 CRISPR-Cas systems drive inter-plasmid conflicts by acquiring spacers in trans. Cell Host Microbe 2024; 32:875-886.e9. [PMID: 38754416 DOI: 10.1016/j.chom.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Plasmid-encoded type IV-A CRISPR-Cas systems lack an acquisition module, feature a DinG helicase instead of a nuclease, and form ribonucleoprotein complexes of unknown biological functions. Type IV-A3 systems are carried by conjugative plasmids that often harbor antibiotic-resistance genes and their CRISPR array contents suggest a role in mediating inter-plasmid conflicts, but this function remains unexplored. Here, we demonstrate that a plasmid-encoded type IV-A3 system co-opts the type I-E adaptation machinery from its host, Klebsiella pneumoniae (K. pneumoniae), to update its CRISPR array. Furthermore, we reveal that robust interference of conjugative plasmids and phages is elicited through CRISPR RNA-dependent transcriptional repression. By silencing plasmid core functions, type IV-A3 impacts the horizontal transfer and stability of targeted plasmids, supporting its role in plasmid competition. Our findings shed light on the mechanisms and ecological function of type IV-A3 systems and demonstrate their practical efficacy for countering antibiotic resistance in clinically relevant strains.
Collapse
Affiliation(s)
- Fabienne Benz
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Synthetic Biology, Paris 75015, France; Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France; Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark; Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Sarah Camara-Wilpert
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Katharina G Wandera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Rimvydė Čepaitė
- Life Sciences Center - European Molecular Biology Laboratory (LSC-EMBL) Partnership for Genome Editing Technologies, Vilnius University - Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Manuel Ares-Arroyo
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | | | - Frank Englert
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Johannes A Kuehn
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Silvana Gloor
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Mario Rodríguez Mestre
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Aline Cuénod
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Mònica Aguilà-Sans
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Lorrie Maccario
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland; Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Lennart Randau
- Department of Biology, Philipps Universität Marburg, Marburg, Germany; SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
| | - Patrick Pausch
- Life Sciences Center - European Molecular Biology Laboratory (LSC-EMBL) Partnership for Genome Editing Technologies, Vilnius University - Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris 75015, France
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany; Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Jonas Stenløkke Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - David Bikard
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Synthetic Biology, Paris 75015, France
| | - Alex R Hall
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Søren Johannes Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
10
|
Hallmark T, Williams AA, Redman O, Guinn B, Judd C, Jackson RN. The N-terminal domain of Type IV-A1 CRISPR-associated DinG is vulnerable to proteolysis. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001226. [PMID: 38911435 PMCID: PMC11193112 DOI: 10.17912/micropub.biology.001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
CasDinG is an ATP-dependent 5'-3' DNA helicase essential for bacterial Type IV-A1 CRISPR associated immunity. CasDinG contains an essential N-terminal domain predicted to bind DNA. To better understand the role of the N-terminal domain, we attempted to co-crystallize CasDinG with DNA substrates. We successfully crystallized CasDinG in a tightly packed, crystal conformation with previously unobserved unit cell dimensions. However, the structure lacked electron density for a bound DNA substrate and the CasDinG N-terminal domain. Additionally, the tight crystal packing disallowed space for the N-terminal domain, indicating that the N-terminal domain was proteolyzed before crystallization. Follow up experiments revealed that the N-terminal domain of CasDinG is proteolyzed after a few days at room temperature, but is protected from proteolysis at 4°C. These data provide a distinct x-ray crystal structure of CasDinG and indicate the essential N-terminal domain of CasDinG is prone to proteolysis.
Collapse
Affiliation(s)
- Thomson Hallmark
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States
| | - Andrew A. Williams
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States
| | - Olivine Redman
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States
| | - Brendon Guinn
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States
| | - Calvin Judd
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States
| | - Ryan N. Jackson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, United States
| |
Collapse
|
11
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
12
|
Cui Y, Qu X. CRISPR-Cas systems of lactic acid bacteria and applications in food science. Biotechnol Adv 2024; 71:108323. [PMID: 38346597 DOI: 10.1016/j.biotechadv.2024.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
CRISPR-Cas (Clustered regularly interspaced short palindromic repeats-CRISPR associated proteins) systems are widely distributed in lactic acid bacteria (LAB), contributing to their RNA-mediated adaptive defense immunity. The CRISPR-Cas-based genetic tools have exhibited powerful capability. It has been highly utilized in different organisms, accelerating the development of life science. The review summarized the components, adaptive immunity mechanisms, and classification of CRISPR-Cas systems; analyzed the distribution and characteristics of CRISPR-Cas system in LAB. The review focuses on the development of CRISPR-Cas-based genetic tools in LAB for providing latest development and future trend. The diverse and broad applications of CRISPR-Cas systems in food/probiotic industry are introduced. LAB harbor a plenty of CRISPR-Cas systems, which contribute to generate safer and more robust strains with increased resistance against bacteriophage and prevent the dissemination of plasmids carrying antibiotic-resistance markers. Furthermore, the CRISPR-Cas system from LAB could be used to exploit novel, flexible, programmable genome editing tools of native host and other organisms, resolving the limitation of genetic operation of some LAB species, increasing the important biological functions of probiotics, improving the adaptation of probiotics in complex environments, and inhibiting the growth of foodborne pathogens. The development of the genetic tools based on CRISPR-Cas system in LAB, especially the endogenous CRISPR-Cas system, will open new avenues for precise regulation, rational design, and flexible application of LAB.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, China
| |
Collapse
|
13
|
Altae-Tran H, Kannan S, Suberski AJ, Mears KS, Demircioglu FE, Moeller L, Kocalar S, Oshiro R, Makarova KS, Macrae RK, Koonin EV, Zhang F. Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering. Science 2023; 382:eadi1910. [PMID: 37995242 PMCID: PMC10910872 DOI: 10.1126/science.adi1910] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023]
Abstract
Microbial systems underpin many biotechnologies, including CRISPR, but the exponential growth of sequence databases makes it difficult to find previously unidentified systems. In this work, we develop the fast locality-sensitive hashing-based clustering (FLSHclust) algorithm, which performs deep clustering on massive datasets in linearithmic time. We incorporated FLSHclust into a CRISPR discovery pipeline and identified 188 previously unreported CRISPR-linked gene modules, revealing many additional biochemical functions coupled to adaptive immunity. We experimentally characterized three HNH nuclease-containing CRISPR systems, including the first type IV system with a specified interference mechanism, and engineered them for genome editing. We also identified and characterized a candidate type VII system, which we show acts on RNA. This work opens new avenues for harnessing CRISPR and for the broader exploration of the vast functional diversity of microbial proteins.
Collapse
Affiliation(s)
- Han Altae-Tran
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Soumya Kannan
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Anthony J. Suberski
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Kepler S. Mears
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - F. Esra Demircioglu
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Lukas Moeller
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Selin Kocalar
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Rachel Oshiro
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health; Bethesda, MD 20894, USA
| | - Rhiannon K. Macrae
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health; Bethesda, MD 20894, USA
| | - Feng Zhang
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Liu Z, Liu J, Yang Z, Zhu L, Zhu Z, Huang H, Jiang L. Endogenous CRISPR-Cas mediated in situ genome editing: State-of-the-art and the road ahead for engineering prokaryotes. Biotechnol Adv 2023; 68:108241. [PMID: 37633620 DOI: 10.1016/j.biotechadv.2023.108241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The CRISPR-Cas systems have shown tremendous promise as heterologous tools for genome editing in various prokaryotes. However, the perturbation of DNA homeostasis and the inherent toxicity of Cas9/12a proteins could easily lead to cell death, which led to the development of endogenous CRISPR-Cas systems. Programming the widespread endogenous CRISPR-Cas systems for in situ genome editing represents a promising tool in prokaryotes, especially in genetically intractable species. Here, this review briefly summarizes the advances of endogenous CRISPR-Cas-mediated genome editing, covering aspects of establishing and optimizing the genetic tools. In particular, this review presents the application of different types of endogenous CRISPR-Cas tools for strain engineering, including genome editing and genetic regulation. Notably, this review also provides a detailed discussion of the transposon-associated CRISPR-Cas systems, and the programmable RNA-guided transposition using endogenous CRISPR-Cas systems to enable editing of microbial communities for understanding and control. Therefore, they will be a powerful tool for targeted genetic manipulation. Overall, this review will not only facilitate the development of standard genetic manipulation tools for non-model prokaryotes but will also enable more non-model prokaryotes to be genetically tractable.
Collapse
Affiliation(s)
- Zhenlei Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiayu Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
15
|
Zhao J, Xi Y, Zhang J, Jin Y, Yang H, Duan G, Chen S, Long J. Characterization and diversity of CRISPR/Cas systems in Klebsiella oxytoca. Mol Genet Genomics 2023; 298:1407-1417. [PMID: 37684555 DOI: 10.1007/s00438-023-02065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) system is a crucial adaptive immune system for bacteria to resist foreign DNA infection. In this study, we investigated the prevalence and diversity of CRISPR/Cas systems in 175 Klebsiella oxytoca (K. oxytoca) strains. Specifically, 58.86% (103/175) of these strains possessed at least one confirmed CRISPR locus. Two CRISPR/Cas system types, I-F and IV-A3, were identified in 69 strains. Type I-F system was the most prevalent in this species, which correlated well with MLST. Differently, type IV-A3 system was randomly distributed. Moreover, the type IV-A3 system was separated into two subgroups, with subgroup-specific cas genes and repeat sequences. In addition, spacer origin analysis revealed that approximately one-fifth of type I-F spacers and one-third of type IV-A3 spacers had a significant match to MGEs. The phage tail tape measure protein and conjunctive transfer system protein were important targets of type I-F and IV-A3 systems in K. oxytoca, respectively. PAM sequences were inferred to be 5'-NCC-3' for type I-F, 5'-AAG-3' for subgroup IV-A3-a, and 5'-AAN-3' for subgroup IV-A3-b. Collectively, our findings will shed light on the prevalence, diversity, and functional effects of the CRISPR/Cas system in K. oxytoca.
Collapse
Affiliation(s)
- Jiaxue Zhao
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yanyan Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | | | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
16
|
Domgaard H, Cahoon C, Armbrust MJ, Redman O, Jolley A, Thomas A, Jackson R. CasDinG is a 5'-3' dsDNA and RNA/DNA helicase with three accessory domains essential for type IV CRISPR immunity. Nucleic Acids Res 2023; 51:8115-8132. [PMID: 37395408 PMCID: PMC10450177 DOI: 10.1093/nar/gkad546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
CRISPR-associated DinG protein (CasDinG) is essential to type IV-A CRISPR function. Here, we demonstrate that CasDinG from Pseudomonas aeruginosa strain 83 is an ATP-dependent 5'-3' DNA translocase that unwinds double-stranded (ds)DNA and RNA/DNA hybrids. The crystal structure of CasDinG reveals a superfamily 2 helicase core of two RecA-like domains with three accessory domains (N-terminal, arch, and vestigial FeS). To examine the in vivo function of these domains, we identified the preferred PAM sequence for the type IV-A system (5'-GNAWN-3' on the 5'-side of the target) with a plasmid library and performed plasmid clearance assays with domain deletion mutants. Plasmid clearance assays demonstrated that all three domains are essential for type IV-A immunity. Protein expression and biochemical assays suggested the vFeS domain is needed for protein stability and the arch for helicase activity. However, deletion of the N-terminal domain did not impair ATPase, ssDNA binding, or helicase activities, indicating a role distinct from canonical helicase activities that structure prediction tools suggest involves interaction with dsDNA. This work demonstrates CasDinG helicase activity is essential for type IV-A CRISPR immunity as well as the yet undetermined activity of the CasDinG N-terminal domain.
Collapse
Affiliation(s)
- Hannah Domgaard
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Christian Cahoon
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Matthew J Armbrust
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Olivine Redman
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Alivia Jolley
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Aaron Thomas
- Center for Integrated Biosystems, Utah State University, Logan, UT, USA
| | - Ryan N Jackson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| |
Collapse
|
17
|
Paredes-Santos TC, Bitew MA, Swale C, Rodriguez F, Krishnamurthy S, Wang Y, Maru P, Sangaré LO, Saeij JPJ. Genome-wide CRISPR screen identifies genes synthetically lethal with GRA17, a nutrient channel encoding gene in Toxoplasma. PLoS Pathog 2023; 19:e1011543. [PMID: 37498952 PMCID: PMC10409377 DOI: 10.1371/journal.ppat.1011543] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/08/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Toxoplasma gondii is a parasite that replicates within a specialized compartment called the parasitophorous vacuole (PV), which is surrounded by the PV membrane (PVM). To obtain essential nutrients, Toxoplasma must transport molecules across the PVM, a process mediated by the secreted parasite proteins GRA17 and GRA23. These proteins form pores in the PVM through which small molecules can diffuse in and out of the PV. GRA17 and GRA23 are synthetically lethal, suggesting that at least one pore type is essential for parasite survival. In the 'nutrient sensitized' Δgra17 strain it is likely that other Toxoplasma genes become essential, because they mediate nutrient acquisition from the host or are involved in the trafficking of GRA23 to the PVM. To identify these genes, a genome-wide loss-of-function screen was performed in wild-type and Δgra17 parasites, which identified multiple genes that were synthetically sick/lethal with GRA17. Several of these genes were involved in the correct localization of GRAs, including GRA17/GRA23, to the PVM. One of the top hits, GRA72, was predicted to form a pore on the PVM, and its deletion led to the formation of enlarged "bubble vacuoles" with reduced PVM small molecule permeability, similar to what was previously observed for Δgra17 parasites. Furthermore, Δgra72 parasites had reduced in vitro growth and virulence in mice. These findings suggest that in the absence of GRA17, other genes become essential, likely because they play a role in the proper localization of GRA23 (and other GRAs) or because they determine host-derived nutrient acquisition at the PVM.
Collapse
Affiliation(s)
- Tatiana C. Paredes-Santos
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Christopher Swale
- Team Host-Pathogen Interactions and Immunity to Infection, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble, France
| | - Felipe Rodriguez
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Shruthi Krishnamurthy
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Yifan Wang
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Parag Maru
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Lamba Omar Sangaré
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
18
|
Cui N, Zhang JT, Liu Y, Liu Y, Liu XY, Wang C, Huang H, Jia N. Type IV-A CRISPR-Csf complex: Assembly, dsDNA targeting, and CasDinG recruitment. Mol Cell 2023:S1097-2765(23)00420-3. [PMID: 37343553 DOI: 10.1016/j.molcel.2023.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
Type IV CRISPR-Cas systems, which are primarily found on plasmids and exhibit a strong plasmid-targeting preference, are the only one of the six known CRISPR-Cas types for which the mechanistic details of their function remain unknown. Here, we provide high-resolution functional snapshots of type IV-A Csf complexes before and after target dsDNA binding, either in the absence or presence of CasDinG, revealing the mechanisms underlying CsfcrRNA complex assembly, "DWN" PAM-dependent dsDNA targeting, R-loop formation, and CasDinG recruitment. Furthermore, we establish that CasDinG, a signature DinG family helicase, harbors ssDNA-stimulated ATPase activity and ATP-dependent 5'-3' DNA helicase activity. In addition, we show that CasDinG unwinds the non-target strand (NTS) and target strand (TS) of target dsDNA from the CsfcrRNA complex. These molecular details advance our mechanistic understanding of type IV-A CRISPR-Csf function and should enable Csf complexes to be harnessed as genome-engineering tools for biotechnological applications.
Collapse
Affiliation(s)
- Ning Cui
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Tao Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yongrui Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanhong Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiao-Yu Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chongyuan Wang
- Faculty of Pharmaceutical Sciences, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China; Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518055, China
| | - Hongda Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ning Jia
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China; Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
19
|
Wang X, Zhang R, Yang D, Li G, Fan Z, Du H, Wang Z, Liu Y, Lin J, Wu X, Shi L, Yang H, Zhou Y. Develop a Compact RNA Base Editor by Fusing ADAR with Engineered EcCas6e. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206813. [PMID: 37098587 DOI: 10.1002/advs.202206813] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/02/2023] [Indexed: 06/15/2023]
Abstract
Catalytically inactive CRISPR-Cas13 (dCas13)-based base editors can achieve the conversion of adenine-to-inosine (A-to-I) or cytidine-to-uridine (C-to-U) at the RNA level, however, the large size of dCas13 protein limits its in vivo applications. Here, a compact and efficient RNA base editor (ceRBE) is reported with high in vivo editing efficiency. The larger dCas13 protein is replaced with a 199-amino acid EcCas6e protein, derived from the Class 1 CRISPR family involved in pre-crRNA processing, and conducted optimization for toxicity and editing efficiency. The ceRBE efficiently achieves both A-to-I and C-to-U base editing with low transcriptome off-target in HEK293T cells. The efficient repair of the DMD Q1392X mutation (68.3±10.1%) is also demonstrated in a humanized mouse model of Duchenne muscular dystrophy (DMD) after AAV delivery, achieving restoration of expression for gene products. The study supports that the compact and efficient ceRBE has great potential for treating genetic diseases.
Collapse
Affiliation(s)
- Xing Wang
- HuidaGene Therapeutics Co. Ltd., 6th Floor, Unit 3, Building 5, No. 160 Basheng Road, Pudong New Area, Shanghai, 200131, China
| | - Renxia Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, 320 Yueyang Road, Shanghai, 200031, China
| | - Dong Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, 320 Yueyang Road, Shanghai, 200031, China
| | - Guoling Li
- HuidaGene Therapeutics Co. Ltd., 6th Floor, Unit 3, Building 5, No. 160 Basheng Road, Pudong New Area, Shanghai, 200131, China
| | - Zhanqing Fan
- HuidaGene Therapeutics Co. Ltd., 6th Floor, Unit 3, Building 5, No. 160 Basheng Road, Pudong New Area, Shanghai, 200131, China
| | - Hongting Du
- HuidaGene Therapeutics Co. Ltd., 6th Floor, Unit 3, Building 5, No. 160 Basheng Road, Pudong New Area, Shanghai, 200131, China
| | - Zikang Wang
- HuidaGene Therapeutics Co. Ltd., 6th Floor, Unit 3, Building 5, No. 160 Basheng Road, Pudong New Area, Shanghai, 200131, China
| | - Yuanhua Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, 320 Yueyang Road, Shanghai, 200031, China
| | - Jiajia Lin
- Department of Neurology, First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, China
| | - Xiaoqing Wu
- HuidaGene Therapeutics Co. Ltd., 6th Floor, Unit 3, Building 5, No. 160 Basheng Road, Pudong New Area, Shanghai, 200131, China
| | - Linyu Shi
- HuidaGene Therapeutics Co. Ltd., 6th Floor, Unit 3, Building 5, No. 160 Basheng Road, Pudong New Area, Shanghai, 200131, China
| | - Hui Yang
- HuidaGene Therapeutics Co. Ltd., 6th Floor, Unit 3, Building 5, No. 160 Basheng Road, Pudong New Area, Shanghai, 200131, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, 320 Yueyang Road, Shanghai, 200031, China
| | - Yingsi Zhou
- HuidaGene Therapeutics Co. Ltd., 6th Floor, Unit 3, Building 5, No. 160 Basheng Road, Pudong New Area, Shanghai, 200131, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, 320 Yueyang Road, Shanghai, 200031, China
| |
Collapse
|
20
|
Chen Y, Zeng Z, She Q, Han W. The abortive infection functions of CRISPR-Cas and Argonaute. Trends Microbiol 2023; 31:405-418. [PMID: 36463018 DOI: 10.1016/j.tim.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
CRISPR-Cas and prokaryotic Argonaute (pAgo) are nucleic acid (NA)-guided defense systems that protect prokaryotes against the invasion of mobile genetic elements. Previous studies established that they are directed by NA fragments (guides) to recognize invading complementary NA (targets), and that they cleave the targets to silence the invaders. Nevertheless, growing evidence indicates that many CRISPR-Cas and pAgo systems exploit the abortive infection (Abi) strategy to confer immunity. The CRISPR-Cas and pAgo Abi systems typically sense invaders using the NA recognition ability and activate various toxic effectors to kill the infected cells to prevent the invaders from spreading. This review summarizes the diverse mechanisms of these CRISPR-Cas and pAgo systems, and highlights their critical roles in the arms race between microbes and invaders.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhifeng Zeng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Jimo, 266237, Qingdao, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070 Wuhan, China.
| |
Collapse
|
21
|
Characterization of the self-targeting Type IV CRISPR interference system in Pseudomonas oleovorans. Nat Microbiol 2022; 7:1870-1878. [PMID: 36175516 DOI: 10.1038/s41564-022-01229-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/04/2022] [Indexed: 11/08/2022]
Abstract
Bacterial Type IV CRISPR-Cas systems are thought to rely on multi-subunit ribonucleoprotein complexes to interfere with mobile genetic elements, but the substrate requirements and potential DNA nuclease activities for many systems within this type are uncharacterized. Here we show that the native Pseudomonas oleovorans Type IV-A CRISPR-Cas system targets DNA in a PAM-dependent manner and elicits interference without showing DNA nuclease activity. We found that the first crRNA of P. oleovorans contains a perfect match in the host gene coding for the Type IV pilus biogenesis protein PilN. Deletion of the native Type IV CRISPR array resulted in upregulation of pilN operon transcription in the absence of genome cleavage, indicating that Type IV-A CRISPR-Cas systems can function in host gene regulation. These systems resemble CRISPR interference (CRISPRi) methodology but represent a natural CRISPRi-like system that is found in many Pseudomonas and Klebsiella species and allows for gene silencing using engineered crRNAs.
Collapse
|
22
|
Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah SA, Garrett RA, Nesme J, Madsen JS, Fineran PC, Sørensen SJ. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res 2022; 50:4315-4328. [PMID: 34606604 DOI: 10.1093/nar/gkab859/40506127/gkab859.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 10/02/2021] [Indexed: 05/27/2023] Open
Abstract
Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonas S Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Hong SH, Lee G, Park C, Koo J, Kim EH, Bae E, Suh JY. The structure of AcrIE4-F7 reveals a common strategy for dual CRISPR inhibition by targeting PAM recognition sites. Nucleic Acids Res 2022; 50:2363-2376. [PMID: 35166843 PMCID: PMC8887544 DOI: 10.1093/nar/gkac096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/02/2022] Open
Abstract
Bacteria and archaea use the CRISPR-Cas system to fend off invasions of bacteriophages and foreign plasmids. In response, bacteriophages encode anti-CRISPR (Acr) proteins that potently inhibit host Cas proteins to suppress CRISPR-mediated immunity. AcrIE4-F7, which was isolated from Pseudomonas citronellolis, is a fused form of AcrIE4 and AcrIF7 that inhibits both type I-E and type I-F CRISPR-Cas systems. Here, we determined the structure of AcrIE4-F7 and identified its Cas target proteins. The N-terminal AcrIE4 domain adopts a novel α-helical fold that targets the PAM interaction site of the type I-E Cas8e subunit. The C-terminal AcrIF7 domain exhibits an αβ fold like native AcrIF7, which disables target DNA recognition by the PAM interaction site in the type I-F Cas8f subunit. The two Acr domains are connected by a flexible linker that allows prompt docking onto their cognate Cas8 targets. Conserved negative charges in each Acr domain are required for interaction with their Cas8 targets. Our results illustrate a common mechanism by which AcrIE4-F7 inhibits divergent CRISPR-Cas types.
Collapse
Affiliation(s)
- Sung-Hyun Hong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Gyujin Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Changkon Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jasung Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Eun-Hee Kim
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Ochang 28119, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
24
|
Olesen AK, Pinilla-Redondo R, Hansen MF, Russel J, Dechesne A, Smets BF, Madsen JS, Nesme J, Sørensen SJ. IncHI1A plasmids potentially facilitate a horizontal flow of antibiotic resistance genes to pathogens in microbial communities of urban residential sewage. Mol Ecol 2022; 31:1595-1608. [PMID: 35014098 DOI: 10.1111/mec.16346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/29/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Horizontal gene transfer via plasmids is important for the dissemination of antibiotic resistance genes among medically relevant pathogens. Specifically, the transfer of IncHI1A plasmids is believed to facilitate the spread of antibiotic resistance genes, such as carbapenemases, within the clinically important family Enterobacteriaceae. The microbial community of urban wastewater treatment plants has been shown to be highly permissive towards conjugal transfer of IncP1 plasmids. Here, we tracked the transfer of the P1 plasmid pB10 and the clinically relevant HI1A plasmid R27 in the microbial communities present in urban residential sewage entering full-scale wastewater treatment plants. We found that both plasmids readily transferred to these communities and that strains in the sewage were able to further disseminate them. Furthermore, that R27 has a broad potential host range, but a low host divergence. Interestingly, although the majority of R27 transfer events were to members of Enterobacteriaceae, we found a subset of transfer to other families, even other phyla. Indicating, that HI1A plasmids facilitate horizontal gene transfer both within Enterobacteriaceae, but also across families of especially Gammaproteobacteria, such as Moraxellaceae, Pseudomonadaceae and Shewanellaceae. pB10 displayed a similar potential host range as R27. In contrast to R27, pB10 had a high host divergence. By culture enrichment of the transconjugant communities, we show that sewage strains of Enterobacteriaceae and Aeromonadaceae can stably maintain R27 and pB10, respectively. Our results suggest that dissemination in the urban residual water system of HI1A plasmids may result in an accelerated acquisition of antibiotic resistance genes among pathogens.
Collapse
Affiliation(s)
- Asmus K Olesen
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | - Mads F Hansen
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jakob Russel
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Jonas S Madsen
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Joseph Nesme
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
25
|
Alternative functions of CRISPR-Cas systems in the evolutionary arms race. Nat Rev Microbiol 2022; 20:351-364. [PMID: 34992260 DOI: 10.1038/s41579-021-00663-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
CRISPR-Cas systems of bacteria and archaea comprise chromosomal loci with typical repetitive clusters and associated genes encoding a range of Cas proteins. Adaptation of CRISPR arrays occurs when virus-derived and plasmid-derived sequences are integrated as new CRISPR spacers. Cas proteins use CRISPR-derived RNA guides to specifically recognize and cleave nucleic acids of invading mobile genetic elements. Apart from this role as an adaptive immune system, some CRISPR-associated nucleases are hijacked by mobile genetic elements: viruses use them to attack their prokaryotic hosts, and transposons have adopted CRISPR systems for guided transposition. In addition, some CRISPR-Cas systems control the expression of genes involved in bacterial physiology and virulence. Moreover, pathogenic bacteria may use their Cas nuclease activity indirectly to evade the human immune system or directly to invade the nucleus and damage the chromosomal DNA of infected human cells. Thus, the evolutionary arms race has led to the expansion of exciting variations in CRISPR mechanisms and functionalities. In this Review, we explore the latest insights into the diverse functions of CRISPR-Cas systems beyond adaptive immunity and discuss the implications for the development of CRISPR-based applications.
Collapse
|
26
|
Abstract
The principal biological function of bacterial and archaeal CRISPR systems is RNA-guided adaptive immunity against viruses and other mobile genetic elements (MGEs). These systems show remarkable evolutionary plasticity and functional versatility at multiple levels, including both the defense mechanisms that lead to direct, specific elimination of the target DNA or RNA and those that cause programmed cell death (PCD) or induction of dormancy. This flexibility is also evident in the recruitment of CRISPR systems for nondefense functions. Defective CRISPR systems or individual CRISPR components have been recruited by transposons for RNA-guided transposition, by plasmids for interplasmid competition, and by viruses for antidefense and interviral conflicts. Additionally, multiple highly derived CRISPR variants of yet unknown functions have been discovered. A major route of innovation in CRISPR evolution is the repurposing of diverged repeat variants encoded outside CRISPR arrays for various structural and regulatory functions. The evolutionary plasticity and functional versatility of CRISPR systems are striking manifestations of the ubiquitous interplay between defense and “normal” cellular functions. The CRISPR systems show remarkable functional versatility beyond their principal function as an adaptive immune mechanism. This Essay discusses how derived CRISPR systems have been recruited by transposons on multiple occasions and mediate RNA-guided transposition; derived CRISPR RNAs are frequently recruited for regulatory functions.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
27
|
Guzmán NM, Esquerra-Ruvira B, Mojica FJM. Digging into the lesser-known aspects of CRISPR biology. Int Microbiol 2021; 24:473-498. [PMID: 34487299 PMCID: PMC8616872 DOI: 10.1007/s10123-021-00208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
A long time has passed since regularly interspaced DNA repeats were discovered in prokaryotes. Today, those enigmatic repetitive elements termed clustered regularly interspaced short palindromic repeats (CRISPR) are acknowledged as an emblematic part of multicomponent CRISPR-Cas (CRISPR associated) systems. These systems are involved in a variety of roles in bacteria and archaea, notably, that of conferring protection against transmissible genetic elements through an adaptive immune-like response. This review summarises the present knowledge on the diversity, molecular mechanisms and biology of CRISPR-Cas. We pay special attention to the most recent findings related to the determinants and consequences of CRISPR-Cas activity. Research on the basic features of these systems illustrates how instrumental the study of prokaryotes is for understanding biology in general, ultimately providing valuable tools for diverse fields and fuelling research beyond the mainstream.
Collapse
Affiliation(s)
- Noemí M Guzmán
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Belén Esquerra-Ruvira
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Francisco J M Mojica
- Dpto. Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain.
- Instituto Multidisciplinar para el Estudio del Medio, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
28
|
Cheng YH, Chou SH, Huang PH, Yang TC, Juan YF, Kreiswirth BN, Lin YT, Chen L. Characterization of a mcr-1 and CRISPR-Cas System Co-harboring Plasmid in a Carbapenemase-Producing High-Risk ST11 Klebsiella pneumoniae Strain. Front Microbiol 2021; 12:762947. [PMID: 34777318 PMCID: PMC8579119 DOI: 10.3389/fmicb.2021.762947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
We set out to study the prevalence of the mcr-1 gene in carbapenemase-producing Klebsiella pneumoniae (CPKP) strains, and to determine whether its presence is associated with a fitness cost. A total of 234 clinical CPKP isolates were collected from a tertiary medical center in Taiwan from January 2018 to January 2019. The mcr-1 and carbapenemase genes were detected by polymerase chain reaction (PCR) followed by Sanger sequencing. The mcr-1-positive carbapenemase-producing strain was characterized by whole genome sequencing, a plasmid stability test and a conjugation assay. In vitro growth rate and an in vivo virulence test were compared between the parental mcr-1-positive strain and its mcr-1 plasmid-cured strain. We identified only one mcr-1 positive strain (KP2509), co-harboring bla KPC- 2 and bla OXA- 48, among 234 (1/234, 0.43%) CPKP strains. KP2509 and its Escherichia coli mcr-1 transconjugant showed moderate colistin resistance (MIC = 8 mg/L). The mcr-1 is located on a large conjugative plasmid (317 kb), pKP2509-MCR, with three replicons, IncHI, IncFIB, and IncN. Interestingly, a complete Type IV-A3 CRISPR-Cas system was identified in pKP2509-MCR. Plasmid pKP2509-MCR was highly stable in KP2509 after 270 generation of passage, and the pKP2509-MCR cured strain PC-KP2509 showed similar growth rate and in vivo virulence in comparison to KP2509. The prevalence of mcr-1 in CPKP strains remains low in our center. Notably, we identified a large plasmid with multiple replicons containing both the mcr-1 and the Type IV-3A CRISPR-Cas genes. The further spread of this highly stable plasmid raises concern that it may promote the increase of mcr-1 prevalence in CPKP.
Collapse
Affiliation(s)
- Yi-Hsiang Cheng
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Hua Chou
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Han Huang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Fan Juan
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Barry N. Kreiswirth
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, United States
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| |
Collapse
|
29
|
Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah SA, Garrett RA, Nesme J, Madsen JS, Fineran PC, Sørensen SJ. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Nucleic Acids Res 2021; 50:4315-4328. [PMID: 34606604 PMCID: PMC9071438 DOI: 10.1093/nar/gkab859] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/08/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences highlight the genetic independence of plasmids and suggest a major role for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.
Collapse
Affiliation(s)
- Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.,Department of Technological Educations, University College Copenhagen, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - David Mayo-Muñoz
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Roger A Garrett
- Danish Archaea Centre, Department of Biology, University of Copenhagen, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonas S Madsen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Bio-Protection Research Centre, University of Otago, Dunedin, New Zealand
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| |
Collapse
|
30
|
Moya-Beltrán A, Makarova KS, Acuña LG, Wolf YI, Covarrubias PC, Shmakov SA, Silva C, Tolstoy I, Johnson DB, Koonin EV, Quatrini R. Evolution of Type IV CRISPR-Cas Systems: Insights from CRISPR Loci in Integrative Conjugative Elements of Acidithiobacillia. CRISPR J 2021; 4:656-672. [PMID: 34582696 DOI: 10.1089/crispr.2021.0051] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Type IV CRISPR-Cas are a distinct variety of highly derived CRISPR-Cas systems that appear to have evolved from type III systems through the loss of the target-cleaving nuclease and partial deterioration of the large subunit of the effector complex. All known type IV CRISPR-Cas systems are encoded on plasmids, integrative and conjugative elements (ICEs), or prophages, and are thought to contribute to competition between these elements, although the mechanistic details of their function remain unknown. There is a clear parallel between the compositions and likely origin of type IV and type I systems recruited by Tn7-like transposons and mediating RNA-guided transposition. We investigated the diversity and evolutionary relationships of type IV systems, with a focus on those in Acidithiobacillia, where this variety of CRISPR is particularly abundant and always found on ICEs. Our analysis revealed remarkable evolutionary plasticity of type IV CRISPR-Cas systems, with adaptation and ancillary genes originating from different ancestral CRISPR-Cas varieties, and extensive gene shuffling within the type IV loci. The adaptation module and the CRISPR array apparently were lost in the type IV ancestor but were subsequently recaptured by type IV systems on several independent occasions. We demonstrate a high level of heterogeneity among the repeats with type IV CRISPR arrays, which far exceed the heterogeneity of any other known CRISPR repeats and suggest a unique adaptation mechanism. The spacers in the type IV arrays, for which protospacers could be identified, match plasmid genes, in particular those encoding the conjugation apparatus components. Both the biochemical mechanism of type IV CRISPR-Cas function and their role in the competition among mobile genetic elements remain to be investigated.
Collapse
Affiliation(s)
- Ana Moya-Beltrán
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile.,ANID-Millennium Science Initiative Program, Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - Lillian G Acuña
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - Paulo C Covarrubias
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - Cristian Silva
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile
| | - Igor Tolstoy
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - D Barrie Johnson
- School of Natural Sciences, Bangor University, Bangor, United Kingdom; Universidad San Sebastián, Santiago, Chile.,Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom; and Universidad San Sebastián, Santiago, Chile
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA; Universidad San Sebastián, Santiago, Chile
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Santiago, Chile; Universidad San Sebastián, Santiago, Chile.,ANID-Millennium Science Initiative Program, Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile; Universidad San Sebastián, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
31
|
Makarova KS, Wolf YI, Shmakov SA, Liu Y, Li M, Koonin EV. Unprecedented Diversity of Unique CRISPR-Cas-Related Systems and Cas1 Homologs in Asgard Archaea. CRISPR J 2021; 3:156-163. [PMID: 33555973 DOI: 10.1089/crispr.2020.0012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The principal function of archaeal and bacterial CRISPR-Cas systems is antivirus adaptive immunity. However, recent genome analyses identified a variety of derived CRISPR-Cas variants at least some of which appear to perform different functions. Here, we describe a unique repertoire of CRISPR-Cas-related systems that we discovered by searching archaeal metagenome-assemble genomes of the Asgard superphylum. Several of these variants contain extremely diverged homologs of Cas1, the integrase involved in CRISPR adaptation as well as casposon transposition. Strikingly, the diversity of Cas1 in Asgard archaea alone is greater than that detected so far among the rest of archaea and bacteria. The Asgard CRISPR-Cas derivatives also encode distinct forms of Cas4, Cas5, and Cas7 proteins, and/or additional nucleases. Some of these systems are predicted to perform defense functions, but possibly not programmable ones, whereas others are likely to represent previously unknown mobile genetic elements.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P.R. China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P.R. China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Taylor HN, Laderman E, Armbrust M, Hallmark T, Keiser D, Bondy-Denomy J, Jackson RN. Positioning Diverse Type IV Structures and Functions Within Class 1 CRISPR-Cas Systems. Front Microbiol 2021; 12:671522. [PMID: 34093491 PMCID: PMC8175902 DOI: 10.3389/fmicb.2021.671522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Type IV CRISPR systems encode CRISPR associated (Cas)-like proteins that combine with small RNAs to form multi-subunit ribonucleoprotein complexes. However, the lack of Cas nucleases, integrases, and other genetic features commonly observed in most CRISPR systems has made it difficult to predict type IV mechanisms of action and biological function. Here we summarize recent bioinformatic and experimental advancements that collectively provide the first glimpses into the function of specific type IV subtypes. We also provide a bioinformatic and structural analysis of type IV-specific proteins within the context of multi-subunit (class 1) CRISPR systems, informing future studies aimed at elucidating the function of these cryptic systems.
Collapse
Affiliation(s)
- Hannah N. Taylor
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Eric Laderman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Matt Armbrust
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Thomson Hallmark
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Dylan Keiser
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Ryan N. Jackson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| |
Collapse
|
33
|
Zhou Y, Bravo JP, Taylor HN, Steens JA, Jackson RN, Staals RH, Taylor DW. Structure of a type IV CRISPR-Cas ribonucleoprotein complex. iScience 2021; 24:102201. [PMID: 33733066 PMCID: PMC7937560 DOI: 10.1016/j.isci.2021.102201] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/03/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
We reveal the cryo-electron microscopy structure of a type IV-B CRISPR ribonucleoprotein (RNP) complex (Csf) at 3.9-Å resolution. The complex best resembles the type III-A CRISPR Csm effector complex, consisting of a Cas7-like (Csf2) filament intertwined with a small subunit (Cas11) filament, but the complex lacks subunits for RNA processing and target DNA cleavage. Surprisingly, instead of assembling around a CRISPR-derived RNA (crRNA), the complex assembles upon heterogeneous RNA of a regular length arranged in a pseudo-A-form configuration. These findings provide a high-resolution glimpse into the assembly and function of enigmatic type IV CRISPR systems, expanding our understanding of class I CRISPR-Cas system architecture, and suggesting a function for type IV-B RNPs that may be distinct from other class 1 CRISPR-associated systems.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Jack P.K. Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Hannah N. Taylor
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Jurre A. Steens
- Laboratory of Microbiology, Wageningen University and Research, The Netherlands
| | - Ryan N. Jackson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Raymond H.J. Staals
- Laboratory of Microbiology, Wageningen University and Research, The Netherlands
| | - David W. Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
- LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, USA
| |
Collapse
|
34
|
León LM, Park AE, Borges AL, Zhang JY, Bondy-Denomy J. Mobile element warfare via CRISPR and anti-CRISPR in Pseudomonas aeruginosa. Nucleic Acids Res 2021; 49:2114-2125. [PMID: 33544853 PMCID: PMC7913775 DOI: 10.1093/nar/gkab006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Bacteria deploy multiple defenses to prevent mobile genetic element (MGEs) invasion. CRISPR-Cas immune systems use RNA-guided nucleases to target MGEs, which counter with anti-CRISPR (Acr) proteins. Our understanding of the biology and co-evolutionary dynamics of the common Type I-C CRISPR-Cas subtype has lagged because it lacks an in vivo phage-host model system. Here, we show the anti-phage function of a Pseudomonas aeruginosa Type I-C CRISPR-Cas system encoded on a conjugative pKLC102 island, and its Acr-mediated inhibition by distinct MGEs. Seven genes with anti-Type I-C function (acrIC genes) were identified, many with highly acidic amino acid content, including previously described DNA mimic AcrIF2. Four of the acr genes were broad spectrum, also inhibiting I-E or I-F P. aeruginosa CRISPR-Cas subtypes. Dual inhibition comes at a cost, however, as simultaneous expression of Type I-C and I-F systems renders phages expressing the dual inhibitor AcrIF2 more sensitive to targeting. Mutagenesis of numerous acidic residues in AcrIF2 did not impair anti-I-C or anti-I-F function per se but did exacerbate inhibition defects during competition, suggesting that excess negative charge may buffer DNA mimics against competition. Like AcrIF2, five of the Acr proteins block Cascade from binding DNA, while two function downstream, likely preventing Cas3 recruitment or activity. One such inhibitor, AcrIC3, is found in an 'anti-Cas3' cluster within conjugative elements, encoded alongside bona fide Cas3 inhibitors AcrIF3 and AcrIE1. Our findings demonstrate an active battle between an MGE-encoded CRISPR-Cas system and its diverse MGE targets.
Collapse
Affiliation(s)
- Lina M León
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Allyson E Park
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adair L Borges
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jenny Y Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Innovative Genomics Institute, Berkeley, CA 94720, USA
| |
Collapse
|
35
|
Newsom S, Parameshwaran HP, Martin L, Rajan R. The CRISPR-Cas Mechanism for Adaptive Immunity and Alternate Bacterial Functions Fuels Diverse Biotechnologies. Front Cell Infect Microbiol 2021; 10:619763. [PMID: 33585286 PMCID: PMC7876343 DOI: 10.3389/fcimb.2020.619763] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
Bacterial and archaeal CRISPR-Cas systems offer adaptive immune protection against foreign mobile genetic elements (MGEs). This function is regulated by sequence specific binding of CRISPR RNA (crRNA) to target DNA/RNA, with an additional requirement of a flanking DNA motif called the protospacer adjacent motif (PAM) in certain CRISPR systems. In this review, we discuss how the same fundamental mechanism of RNA-DNA and/or RNA-RNA complementarity is utilized by bacteria to regulate two distinct functions: to ward off intruding genetic materials and to modulate diverse physiological functions. The best documented examples of alternate functions are bacterial virulence, biofilm formation, adherence, programmed cell death, and quorum sensing. While extensive complementarity between the crRNA and the targeted DNA and/or RNA seems to constitute an efficient phage protection system, partial complementarity seems to be the key for several of the characterized alternate functions. Cas proteins are also involved in sequence-specific and non-specific RNA cleavage and control of transcriptional regulator expression, the mechanisms of which are still elusive. Over the past decade, the mechanisms of RNA-guided targeting and auxiliary functions of several Cas proteins have been transformed into powerful gene editing and biotechnological tools. We provide a synopsis of CRISPR technologies in this review. Even with the abundant mechanistic insights and biotechnology tools that are currently available, the discovery of new and diverse CRISPR types holds promise for future technological innovations, which will pave the way for precision genome medicine.
Collapse
Affiliation(s)
- Sydney Newsom
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Hari Priya Parameshwaran
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Lindsie Martin
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Structural Biology Center, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
36
|
Mckay A, Burgio G. Harnessing CRISPR-Cas system diversity for gene editing technologies. J Biomed Res 2021; 35:91-106. [PMID: 33797415 PMCID: PMC8038530 DOI: 10.7555/jbr.35.20200184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The discovery and utilization of RNA-guided surveillance complexes, such as CRISPR-Cas9, for sequence-specific DNA or RNA cleavage, has revolutionised the process of gene modification or knockdown. To optimise the use of this technology, an exploratory race has ensued to discover or develop new RNA-guided endonucleases with the most flexible sequence targeting requirements, coupled with high cleavage efficacy and specificity. Here we review the constraints of existing gene editing and assess the merits of exploiting the diversity of CRISPR-Cas effectors as a methodology for surmounting these limitations.
Collapse
Affiliation(s)
- Alexander Mckay
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
37
|
Abstract
Prokaryotes have developed numerous defense strategies to combat the constant threat posed by the diverse genetic parasites that endanger them. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas loci guard their hosts with an adaptive immune system against foreign nucleic acids. Protection starts with an immunization phase, in which short pieces of the invader's genome, known as spacers, are captured and integrated into the CRISPR locus after infection. Next, during the targeting phase, spacers are transcribed into CRISPR RNAs (crRNAs) that guide CRISPR-associated (Cas) nucleases to destroy the invader's DNA or RNA. Here we describe the many different molecular mechanisms of CRISPR targeting and how they are interconnected with the immunization phase through a third phase of the CRISPR-Cas immune response: primed spacer acquisition. In this phase, Cas proteins direct the crRNA-guided acquisition of additional spacers to achieve a more rapid and robust immunization of the population.
Collapse
Affiliation(s)
- Philip M. Nussenzweig
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Luciano A. Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
38
|
Artamonova D, Karneyeva K, Medvedeva S, Klimuk E, Kolesnik M, Yasinskaya A, Samolygo A, Severinov K. Spacer acquisition by Type III CRISPR-Cas system during bacteriophage infection of Thermus thermophilus. Nucleic Acids Res 2020; 48:9787-9803. [PMID: 32821943 PMCID: PMC7515739 DOI: 10.1093/nar/gkaa685] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Type III CRISPR–Cas systems provide immunity to foreign DNA by targeting its transcripts. Target recognition activates RNases and DNases that may either destroy foreign DNA directly or elicit collateral damage inducing death of infected cells. While some Type III systems encode a reverse transcriptase to acquire spacers from foreign transcripts, most contain conventional spacer acquisition machinery found in DNA-targeting systems. We studied Type III spacer acquisition in phage-infected Thermus thermophilus, a bacterium that lacks either a standalone reverse transcriptase or its fusion to spacer integrase Cas1. Cells with spacers targeting a subset of phage transcripts survived the infection, indicating that Type III immunity does not operate through altruistic suicide. In the absence of selection spacers were acquired from both strands of phage DNA, indicating that no mechanism ensuring acquisition of RNA-targeting spacers exists. Spacers that protect the host from the phage demonstrate a very strong strand bias due to positive selection during infection. Phages that escaped Type III interference accumulated deletions of integral number of codons in an essential gene and much longer deletions in a non-essential gene. This and the fact that Type III immunity can be provided by plasmid-borne mini-arrays open ways for genomic manipulation of Thermus phages.
Collapse
Affiliation(s)
- Daria Artamonova
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Karyna Karneyeva
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Sofia Medvedeva
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Evgeny Klimuk
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Matvey Kolesnik
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna Yasinskaya
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Aleksei Samolygo
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Konstantin Severinov
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Waksman Institute, Rutgers, The State University of New Jersey, NJ 08854 USA
| |
Collapse
|
39
|
Zink IA, Wimmer E, Schleper C. Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales. Biomolecules 2020; 10:E1523. [PMID: 33172134 PMCID: PMC7694759 DOI: 10.3390/biom10111523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.
Collapse
|
40
|
Liu TY, Doudna JA. Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. J Biol Chem 2020; 295:14473-14487. [PMID: 32817336 PMCID: PMC7573268 DOI: 10.1074/jbc.rev120.007034] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Among the multiple antiviral defense mechanisms found in prokaryotes, CRISPR-Cas systems stand out as the only known RNA-programmed pathways for detecting and destroying bacteriophages and plasmids. Class 1 CRISPR-Cas systems, the most widespread and diverse of these adaptive immune systems, use an RNA-guided multiprotein complex to find foreign nucleic acids and trigger their destruction. In this review, we describe how these multisubunit complexes target and cleave DNA and RNA and how regulatory molecules control their activities. We also highlight similarities to and differences from Class 2 CRISPR-Cas systems, which use a single-protein effector, as well as other types of bacterial and eukaryotic immune systems. We summarize current applications of the Class 1 CRISPR-Cas systems for DNA/RNA modification, control of gene expression, and nucleic acid detection.
Collapse
Affiliation(s)
- Tina Y Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
- Department of Chemistry, University of California, Berkeley, California, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Gladstone Institutes, University of California, San Francisco, California, USA
| |
Collapse
|
41
|
Newire E, Aydin A, Juma S, Enne VI, Roberts AP. Identification of a Type IV-A CRISPR-Cas System Located Exclusively on IncHI1B/IncFIB Plasmids in Enterobacteriaceae. Front Microbiol 2020; 11:1937. [PMID: 32903441 PMCID: PMC7434947 DOI: 10.3389/fmicb.2020.01937] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are diverse immune systems found in many prokaryotic genomes that target invading foreign DNA such as bacteriophages and plasmids. There are multiple types of CRISPR with arguably the most enigmatic being Type IV. During an investigation of CRISPR carriage in clinical, multi-drug resistant, Klebsiella pneumoniae, a Type IV-A3 CRISPR-Cas system was detected on plasmids from two K. pneumoniae isolates from Egypt (isolated in 2002-2003) and a single K. pneumoniae isolate from the United Kingdom (isolated in 2017). Sequence analysis of all other genomes available in GenBank revealed that this CRISPR-Cas system was present on 28 other plasmids from various Enterobacteriaceae hosts and was never found on a bacterial chromosome. This system is exclusively located on IncHI1B/IncFIB plasmids and is associated with multiple putative transposable elements. Expression of the cas loci was confirmed in the available clinical isolates by RT-PCR. In all cases, the CRISPR-Cas system has a single CRISPR array (CRISPR1) upstream of the cas loci which has several, conserved, spacers which, amongst things, match regions within conjugal transfer genes of IncFIIK/IncFIB(K) plasmids. Our results reveal a Type IV-A3 CRISPR-Cas system exclusively located on IncHI1B/IncFIB plasmids in Enterobacteriaceae that is likely to be able to target IncFIIK/IncFIB(K) plasmids presumably facilitating intracellular, inter-plasmid competition.
Collapse
Affiliation(s)
- Enas Newire
- UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Alp Aydin
- Centre for Clinical Microbiology, Royal Free Hospital, University College London, London, United Kingdom
| | - Samina Juma
- Centre for Clinical Microbiology, Royal Free Hospital, University College London, London, United Kingdom
| | - Virve I. Enne
- Centre for Clinical Microbiology, Royal Free Hospital, University College London, London, United Kingdom
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
42
|
Zheng Y, Li J, Wang B, Han J, Hao Y, Wang S, Ma X, Yang S, Ma L, Yi L, Peng W. Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering. Front Bioeng Biotechnol 2020; 8:62. [PMID: 32195227 PMCID: PMC7064716 DOI: 10.3389/fbioe.2020.00062] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/24/2020] [Indexed: 12/18/2022] Open
Abstract
Establishment of production platforms through prokaryotic engineering in microbial organisms would be one of the most efficient means for chemicals, protein, and biofuels production. Despite the fact that CRISPR (clustered regularly interspaced short palindromic repeats)–based technologies have readily emerged as powerful and versatile tools for genetic manipulations, their applications are generally limited in prokaryotes, possibly owing to the large size and severe cytotoxicity of the heterogeneous Cas (CRISPR-associated) effector. Nevertheless, the rich natural occurrence of CRISPR-Cas systems in many bacteria and most archaea holds great potential for endogenous CRISPR-based prokaryotic engineering. The endogenous CRISPR-Cas systems, with type I systems that constitute the most abundant and diverse group, would be repurposed as genetic manipulation tools once they are identified and characterized as functional in their native hosts. This article reviews the major progress made in understanding the mechanisms of invading DNA immunity by type I CRISPR-Cas and summarizes the practical applications of endogenous type I CRISPR-based toolkits for prokaryotic engineering.
Collapse
Affiliation(s)
- Yanli Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Baiyang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Jiamei Han
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Yile Hao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Shengchen Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiangdong Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|