1
|
Wang CW, Ma M, Lu WG, Luo RQ. Association between prodynorphin gene polymorphisms and opioid dependence susceptibility: a meta-analysis. BMC Psychiatry 2019; 19:281. [PMID: 31510971 PMCID: PMC6737717 DOI: 10.1186/s12888-019-2272-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/04/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Prodynorphin (PDYN) gene polymorphisms have been linked with opioid dependence (OD) with conflicting outcomes, the aim of this study is to synthesize the existing evidence of the association between PDYN polymorphisms and OD susceptibility. METHODS Four databases including PubMed, EMBASE, Web of Science, and Wanfang were retrieved for relevant studies before August, 2018. All identified studies were evaluated using predetermined inclusion and exclusion criteria. Summary odds ratio (OR) and 95% confidence interval (95%CI) were calculated to appraise the association. Statistical analysis was performed using RevMan 5.3 software. RESULTS A total of seven case-control studies with 3129 cases and 3289 controls were recruited in the meta-analysis. For rs910080, rs1997794, rs1022563, and rs2235749 polymorphisms of PDYN gene, there were six, four, five, and four studies eventually included, respectively. The findings indicated that rs910080 polymorphism was significantly correlated with OD among Asian population under allelic model (A vs. G, OR = 1.30, 95% CI 1.04-1.62, P = 0.02, FDR = 0.05) and dominant model (AA+AG vs. GG, OR = 1.25, 95% CI 1.04-1.51, P = 0.02, FDR = 0.05). However, rs1022563, rs1997794 and rs2235749 polymorphisms did not appear to associate with OD susceptibility. CONCLUSIONS There existed a significant association between rs1022563 polymorphism and OD among Asian population. As the included studies were not adequate to guarantee a robust and convincing conclusion, future studies with larger sample size among more ethnicities are recommended.
Collapse
Affiliation(s)
- Chang-wang Wang
- Department of Psychiatry, Wuchang Hospital, South Luoshi Avenue 505#, Hongshan District, Wuhan, 430070 China
| | - Min Ma
- grid.413247.7Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Wei-guang Lu
- Department of Psychiatry, Wuchang Hospital, South Luoshi Avenue 505#, Hongshan District, Wuhan, 430070 China
| | - Ru-qin Luo
- Department of Psychiatry, Wuchang Hospital, South Luoshi Avenue 505#, Hongshan District, Wuhan, 430070 China
| |
Collapse
|
2
|
Untangling the complexity of opioid receptor function. Neuropsychopharmacology 2018; 43:2514-2520. [PMID: 30250308 PMCID: PMC6224460 DOI: 10.1038/s41386-018-0225-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Mu opioid receptor agonists are among the most powerful analgesic medications but also among the most addictive. The current opioid crisis has energized a quest to develop opioid analgesics that are devoid of untoward effects. Since their discovery in the 1970's, there have been major advances in our understanding of the endogenous opioid systems that these drugs target. Yet many questions remain and the development of non-addictive opioid analgesics has not been achieved. However, access to new molecular, genetic and computational tools have begun to elucidate the structural dynamics of opioid receptors, the scaffolding that links them to intracellular signaling cascades, their cellular trafficking and the distinct ways that various opioid drugs modify them. This mini-review highlights some of the chemical and pharmacological findings and new perspectives that have arisen from studies using these tools. They reveal multiple layers of complexity of opioid receptor function, including a spatiotemporal specificity in opioid receptor-induced cellular signaling, ligand-directed biased signaling, allosteric modulation of ligand interactions, heterodimerization of different opioid receptors, and the existence of slice variants with different ligand specificity. By untangling these layers, basic research into the chemistry and pharmacology of opioid receptors is guiding the way towards deciphering the mysteries of tolerance and physical dependence that have plagued the field and is providing a platform for the development of more effective and safer opioids.
Collapse
|
3
|
Clarke TK, Krause K, Li T, Schumann G. An association of prodynorphin polymorphisms and opioid dependence in females in a Chinese population. Addict Biol 2009; 14:366-70. [PMID: 19298317 DOI: 10.1111/j.1369-1600.2009.00151.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prodynorphin (PDYN) binds to kappa-opioid receptors and is known to regulate dopaminergic tone, making this system important for the reinforcing and rewarding properties of drugs of abuse such as opioids. The binding of dynorphins to kappa-opioid receptors also produces aversive states that may affect the development of opioid dependence. Recent animal results have shown that PDYNknockout mice show decreased ethanol consumption; however, this finding was restricted to female mice. We were interested to analyse a possible gender specificity of dynorphin effects in humans and to this end three single-nucleotide polymorphisms (SNPs) in PDYN were genotyped in a Chinese population of 484 opioid dependents and 374 controls. An interaction between sex and genotype was found in female opioid dependents. Chi-squared tests for association revealed that the genotype distributions of SNPs rs1997794 (P = 0.019) and rs1022563 (P = 0.006) in the promoter and 3' region of PDYN, respectively, were found to be associated with opioid dependence. Therefore, SNPs in PDYN are significantly associated with the risk of developing opioid dependence; however, this effect may only be seen in females. These data suggest that PDYN polymorphisms should be studied in additional female opioid-dependent populations with an emphasis on the promoter and 3' regions of the gene.
Collapse
Affiliation(s)
- Toni-Kim Clarke
- Section of Addiction Biology, Institute of Psychiatry, King's College, London, UK.
| | | | | | | |
Collapse
|
4
|
Williams TJ, LaForge KS, Gordon D, Bart G, Kellogg S, Ott J, Kreek MJ. Prodynorphin gene promoter repeat associated with cocaine/alcohol codependence. Addict Biol 2007; 12:496-502. [PMID: 17559549 DOI: 10.1111/j.1369-1600.2007.00069.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is strong evidence for a genetic contribution to individual differences in vulnerability to drug addictions. Studies have shown that the 68-base pair repeat polymorphism in the promoter region of the human prodynorphin gene contains a putative AP-1 binding site, and that three or four repeat copies result in greater transcriptional activation. Here, we report on a separate cohort of 302 subjects ascertained and characterized extensively by Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition and Addiction Severity Index criteria as: (1) a control group of 127 subjects with no history of alcohol or drug abuse or dependence; (3) a case group of 82 with cocaine dependence only; and (3) a case group of 93 with cocaine and alcohol codependence. The promoter region of the prodynorphin gene containing the repeat was amplified from genomic DNA by polymerase chain reaction and analyzed via gel electrophoresis. Statistical tests were performed with data stratified by the three major ethnic groups studied: African American, Caucasian and Hispanic. For analyses, genotypes were grouped into short (1,1; 1,2; 2,2), short/long (1,3; 2,3; 1,4; 2,4) and long (3,3; 3,4; 4,4) repeats. Deviation from Hardy-Weinberg Equilibrium in the African American control group necessitated testing for association using grouped genotypes rather than grouped alleles. In controls, a significant difference was found in grouped genotype distribution among ethnicities. We found a point-wise, but not experiment-wise across-ethnicities, significant difference in grouped genotype frequency between the cocaine/alcohol-codependent group and the controls in African Americans, with genotypes containing longer alleles found at higher frequency in the codependent group.
Collapse
Affiliation(s)
- Tanya J Williams
- The Laboratories of the Biology of Addictive Diseases and Statistical Genetics, The Rockefeller University, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Kreek MJ, Schlussman SD, Bart G, Laforge KS, Butelman ER. Evolving perspectives on neurobiological research on the addictions: celebration of the 30th anniversary of NIDA. Neuropharmacology 2004; 47 Suppl 1:324-44. [PMID: 15464148 DOI: 10.1016/j.neuropharm.2004.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2004] [Revised: 07/02/2004] [Accepted: 07/20/2004] [Indexed: 01/31/2023]
Abstract
The roots of the Laboratory of the Biology of the Addictive Diseases are in the development of methadone maintenance for the treatment of opiate addiction. Methadone maintenance therapy continues to be one of the major effective forms of addiction pharmacotherapy and underscores the importance of biological factors in the physiology and treatment of the addictive diseases. Recent work in the Laboratory has focused on the neurobiological, neurochemical, neuroendocrine and behavioral aspects of addictive diseases (principally cocaine and the opiate addictions), using an interdisciplinary approach. The models we have focused on range from in vitro molecular biology and neuroscience, to in vivo animal models, to experiments in normal human populations and patients with specific addictive diseases, and most recently to the human molecular genetics of different addictive diseases. Two long-term corollary hypotheses have guided the Laboratory's work: (1) That the endogenous opioid peptide/receptor systems play a central role in the addictive states and therefore in their treatment. (2) That atypical responsivity to stressors (e.g., in the hypothalamic-pituitary-adrenal axis) plays a role in vulnerability and relapse to specific addictive diseases. This atypical responsivity may be drug-induced, environmentally acquired, and/or due to genetic variation.
Collapse
Affiliation(s)
- Mary Jeanne Kreek
- Laboratory of the Biology of the Addictive Diseases, The Rockefeller University, 1230 York Avenue, Box 171, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
6
|
LaForge KS, Nyberg F, Kreek MJ. Primary structure of guinea pig preprodynorphin and preproenkephalin mRNAs: multiple transcription initiation sites for preprodynorphin. Brain Res Bull 2004; 63:119-26. [PMID: 15130700 DOI: 10.1016/j.brainresbull.2004.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 01/28/2004] [Accepted: 01/30/2004] [Indexed: 11/16/2022]
Abstract
Preprodynorphin and preproenkephalin are protein precursors from which are derived two classes of opioid neurotransmitter peptides. Dynorphin A((1-17)) is produced by proteolytic processing of prodynorphin, and processing of proenkephalin yields the enkephalin peptides. We report here on the isolation and sequencing of multiple clones for these two mRNAs from a cDNA library. Two cDNA clones of preprodynorphin contained the full-length sequence (2.35 kb) with the primary structure predicted from the guinea pig gene sequence. In contrast, one clone encoded the full-length sequence but also an additional 192 nt at the 5' end. This sequence has high homology to the 5' flanking region of the human preprodynorphin gene, and RNase protection assays demonstrated that in addition to a primary initiation site, transcription of this mRNA is initiated at several sites 160-190 nt 5' with respect to the primary site. This difference may alter translational efficiency or mRNA stability. The sequence of preproenkephalin cDNA clones confirmed the structure predicted from the gene sequence. One clone, however, contained sequences encoded by exons 2 and 3, and initiated within the first intron (intron A) of the gene. We used RNase protection mapping to assess the abundance in the brain and pituitary of preproenkephalin transcripts that initiate within intron A. These studies confirmed that the primary transcription start site is 28 nucleotides downstream from the TATAA site, and that intron A sequences are not present in significant amounts in these tissues.
Collapse
Affiliation(s)
- K Steven LaForge
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
7
|
Dores RM, Lecaudé S, Bauer D, Danielson PB. Analyzing the evolution of the opioid/orphanin gene family. MASS SPECTROMETRY REVIEWS 2002; 21:220-243. [PMID: 12533798 DOI: 10.1002/mas.10029] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Advances in molecular biology have made it possible to rapidly obtain the amino acid sequence of neuropeptide precursors-either by cloning and sequencing the cDNA that encodes the precursor, or by reconstructing the arrangement of exons and introns in a neuropeptide-coding gene through genomic approaches. The databases generated from these molecular approaches have been used to design probes to identify the cells that express the gene, or to ascertain the rate of expression of the gene, and even to predict the post-translational modifications that can generate functional neuropeptides from a biologically inert precursor. Although the power of these approaches is substantial, it is appreciated that a gene sequence or an mRNA sequence reflects the potential products that may be assembled in a secretory cell. To understand the functional capabilities of the secretory cell, the molecular genetics approaches must be combined with procedures that actually characterize the end-products generated by the secretory cell. Recent advances in two-dimensional gel electrophoresis and mass spectrometry now make it possible to analyze neuropeptides from a relatively small amount of tissue. These procedures can reveal novel end-products, tissue-specific endoproteolytic cleavage events, and developmental shifts in post-translational processing schemes. A gene family that illustrates all of these processes and the advantages of combining genomics with proteomics is the opioid/orphanin gene family.
Collapse
Affiliation(s)
- Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210, USA.
| | | | | | | |
Collapse
|
8
|
Danielson PB, Hoversten MT, Fitzpatrick M, Schreck C, Akil H, Dores RM. Sturgeon orphanin, a molecular "fossil" that bridges the gap between the opioids and orphanin FQ/nociceptin. J Biol Chem 2001; 276:22114-9. [PMID: 11290742 DOI: 10.1074/jbc.m011741200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The elucidation of the cDNA sequence for sturgeon proorphanin provides a unique window for interpreting the evolutionary history of the opioid/orphanin gene family. The molecular "fossil" status of this precursor can be seen in several ancestral sequence characteristics that point to its origin as a duplication of either a prodynorphin- or proenkephalin-like gene. The sturgeon proorphanin cDNA encodes a precursor protein of 194 residues, and the orphanin heptadecapeptide itself binds not only the opioid receptor-like 1 (ORL1) receptor but also the classical (mu, kappa, and delta) opioid receptors with near equal affinity. Allowing for this broad receptor specificity are several amino acid substitutions at key positions in the heptadecapeptide sequence, relative to its mammalian orthologs, that have been linked by amino acid scans and site-directed mutagenic studies to the exclusion of mammalian orphanin FQ/nociceptin from classic opioid ligands (i.e. F1Y and L14W). The unique receptor binding profile of sturgeon orphanin not only provides insight into the evolutionary history of the opioid and opioid-related peptides but also provides an ideal context in which to investigate the underlying mechanisms by which novel and often divergent physiological functions arise in receptor-ligand systems.
Collapse
Affiliation(s)
- P B Danielson
- Department of Biological Sciences, University of Denver, Denver, Colorado 80210, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Yuferov V, Zhou Y, LaForge KS, Spangler R, Ho A, Kreek MJ. Elevation of guinea pig brain preprodynorphin mRNA expression and hypothalamic-pituitary-adrenal axis activity by "binge" pattern cocaine administration. Brain Res Bull 2001; 55:65-70. [PMID: 11427339 DOI: 10.1016/s0361-9230(01)00496-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The endogenous opioid system and the hypothalamic-pituitary-adrenal (HPA) axis have been implicated in many of the neurobiological effects of cocaine. Previous studies in our laboratory showed that "binge" pattern cocaine administration increases preprodynorphin (ppDyn) mRNA levels in the caudate putamen and circulating levels of corticosterone in the rat. The present study extended these findings to guinea pigs, a species known to have a kappa opioid receptor profile similar to that of humans. Male guinea pigs were treated with: (a) "binge" pattern cocaine for 7 days (subchronic) (3 x 15 mg/kg/day, hourly, intraperitoneal); (b) "binge" pattern saline for 5 days followed by "binge" pattern cocaine for 2 days (subacute); or (c) "binge" pattern saline for 7 days. Thirty minutes after the final injection, levels of ppDyn mRNA were quantitated in the nucleus accumbens, caudate putamen, frontal cortex, amygdala, hippocampus, and hypothalamus using a solution hybridization RNase protection assay. Regional distribution of ppDyn mRNA levels in the guinea pig brain was similar to that found in rat, with highest levels in the nucleus accumbens and caudate putamen. In the caudate putamen, ppDyn mRNA was significantly increased following either 2 days (38% increase) or 7 days (32% increase) of "binge" pattern cocaine administration as compared to saline-treated controls. No significant changes in ppDyn mRNA levels were found in any other brain region. Both subacute and subchronic "binge" cocaine administration significantly elevated plasma levels of adrenocorticotropin hormone (ACTH) and cortisol. However, the ACTH and cortisol increases were significantly blunted following 7 days of "binge" cocaine administration as compared to 2 days of drug treatment, reflecting the development of HPA tolerance or adaptation to repeated cocaine administration. Thus, the ppDyn mRNA and HPA responses to cocaine in guinea pigs are similar to those observed in rats.
Collapse
Affiliation(s)
- V Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Shuster SJ, Riedl M, Li X, Vulchanova L, Elde R. The kappa opioid receptor and dynorphin co-localize in vasopressin magnocellular neurosecretory neurons in guinea-pig hypothalamus. Neuroscience 2000; 96:373-83. [PMID: 10683577 DOI: 10.1016/s0306-4522(99)00472-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The relationship between the cloned kappa opioid receptor, dynorphin, and the neurohypophysial hormones vasopressin and oxytocin was analysed in the guinea-pig hypothalamic magnocellular neurosecretory neurons. This analysis was performed in order to understand better which population of neuroendocrine neurons in the guinea-pig is modulated by kappa opioid receptors and its endogenous ligand dynorphin. Extensive co-localization was observed between kappa opioid receptor immunoreactivity and preprodynorphin immunoreactivity in neuronal cell bodies in the paraventricular and supraoptic nuclei. Cells positive for either the kappa opioid receptor or both the kappa opioid receptor and preprodynorphin were restricted to the vasopressin expressing neuronal population and not found in the oxytocin expressing neuronal population. The kappa opioid receptor and dynorphin were examined in the posterior pituitary and both were found to be extensively distributed. Staining for the kappa opioid receptor and dynorphin B co-localized in posterior pituitary. In addition, immunogold electron microscopy confirmed that kappa opioid receptor and dynorphin B immunoreactivity were found in the same nerve terminals. Ultrastructural analysis also revealed that kappa opioid receptor immunoreactivity was associated with both nerve terminals and pituicytes. Within nerve terminals, kappa opioid receptor immunoreactivity was often associated with large secretory vesicles and rarely associated with the plasma membrane. Our data suggest that the cloned kappa opioid receptor may directly modulate the release of vasopressin but not oxytocin in guinea-pig hypothalamic magnocellular neurosecretory neurons and posterior pituitary. Furthermore, we propose that this receptor is an autoreceptor in this system because our results demonstrate a high degree of co-localization between kappa opioid receptor and dynorphin peptide immunoreactivity in magnocellular nerve terminals.
Collapse
Affiliation(s)
- S J Shuster
- Department of Neuroscience, University of Minnesota, Minneapolis 55108, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Gene duplication is a recurring theme in the evolution of vertebrate polypeptide hormones and neuropeptides. These duplication events can lead to the formation of gene families in which divergence of function is the usual outcome. In the case of the opioid/orphanin family of genes, duplication events have proceeded along two paths: (a) an apparent duplication of function as seen in the analgesic activity of Proenkephalin and Prodynorphin end-products; and (b) divergence of function as seen in the nociceptic activity of Proorphanin end-products or the melanocortin (color change and chronic stress regulation) activity of Proopiomelanocortin end-products. Although genes coding for Proopiomelanocortin, Proenkephalin, Prodynorphin, and Proorphanin have been extensively studied in mammals, the distribution and radiation of these genes in nonmammalian vertebrates is less well understood. This review will present the hypothesis that the radiation of the opioid/orphanin gene family is the result of the duplication and divergence of the Proenkephalin gene during the radiation of the chordates. To evaluate the Proenkephalin gene duplication hypothesis, a 3'RACE procedure was used to screen for the presence of Prodynorphin-related, Proenkephalin-related, and Proorphanin-related cDNAs expressed in the brains of nonmammalian vertebrates.
Collapse
Affiliation(s)
- P B Danielson
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208,
| | | |
Collapse
|
12
|
Yuferov VP, Culpepper-Morgan JA, LaForge KS, Ho A, Kreek MJ. Regional quantitation of preprodynorphin mRNA in guinea pig gastrointestinal tract. Neurochem Res 1998; 23:505-11. [PMID: 9566584 DOI: 10.1023/a:1022426400545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endogenous opioid peptide dynorphin has been shown by immunochemical studies to be widely distributed in the gastrointestinal tract. The aim of this study was to determine basal levels of preprodynorphin (ppDyn) mRNA in different regions of the gastrointestinal tract of the guinea pig. A modified sensitive and specific solution hybridization RNase protection assay was used to quantitate ppDyn mRNA, with confirmation by gel analysis of the RNase protected hybrids and PCR amplified cDNA. This method combines high sensitivity and sufficient throughput to analyze large number of samples in a single assay. Low but measurable amounts of ppDyn mRNA were detected in fundus, duodenum, jejunum, ileum, cecum, and rectum. The rectum contained significantly more ppDyn mRNA than the stomach, small bowel, and cecum. The muscularis/myenteric plexus layer of both ileum and rectum contained a higher concentration of ppDyn mRNA per microg total RNA compared to the mucosa/submucosa/submucosal plexus. However, a greater absolute amount of ppDyn mRNA (80-85%) localized to the mucosal layer. The greater absolute amount of ppDyn mRNA in the mucosal layer may indicate the presence of dynorphin in the endocrine cells of the mucosa.
Collapse
Affiliation(s)
- V P Yuferov
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10021-6399, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Neurobiological and behavioral studies, as well as basic and applied clinical research studies, may all contribute to the development of a pharmacotherapy for a specific addictive disease. This paper reviews recent findings from research work, primarily from one laboratory along with collaborative laboratories, that could have some relevance for the development of pharmacotherapy for cocaine dependency. The much earlier experiences of this laboratory in the development of a pharmacotherapy for opiate addiction will be addressed in the context of providing both some specific suggestions for addictive disease pharmacotherapy development and some warnings about the complexities of the introduction and implementation of a pharmacotherapy once developed. Finally, based on both the earlier perspectives and the more recent research findings, some very specific, though speculative, suggestions will be made about the development of novel pharmacotherapies for early opiate addiction, especially for cocaine abuse or addiction and prevention of relapse to cocaine use. The complex and diverse nature of the challenge for pharmacotherapy for the addictive diseases is presented, including specifically a mandate for broadening educational efforts concerning the basis of addictive diseases and the need for treatment, in parallel with the scientific efforts to develop increasingly sophisticated and targeted pharmacotherapies.
Collapse
Affiliation(s)
- M J Kreek
- Laboratory on the Biology of Addictive Diseases, Rockefeller University, New York, NY 10021, USA
| |
Collapse
|
14
|
Kreek MJ. Opioid receptors: some perspectives from early studies of their role in normal physiology, stress responsivity, and in specific addictive diseases. Neurochem Res 1996; 21:1469-88. [PMID: 8947936 DOI: 10.1007/bf02532387] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The early history of research on the possible existence of specific opioid receptors and on developing a new form of pharmacotherapy for the treatment of heroin addiction in New York City, from 1960-1973, along with the special relationships between two leading scientists conducting these research efforts, Dr. Eric Simon and Dr. Vincent P. Dole Jr., are presented in a historical perspective. The linkage of these early efforts and the subsequent identification and the elucidation of the effects of exogenous opiates acting at specific opiate receptors in human physiology, including some findings from perspective studies of heroin addicts at time of entry to and during methadone maintenance treatment, are presented in the context of the important clues which thereby were provided concerning the possible roles of the endogenous opioids in normal mammalian physiology. From many of these early clinical research findings and studies in animal models, the hypothesis that the endogenous opioids system may play an important role in stress responsivity was formulated along with the related hypothesis, first presented in the early 1970s, that an atypical responsivity to stress and stressors might be involved in the acquisition and persistence of, and relapse to specific addictive diseases, including heroin addiction, cocaine dependency and alcoholism. More recent studies of the possible involvement of the specific opioid receptors in these three addictive diseases-heroin addiction, cocaine addiction and alcoholism-from our laboratory are discussed in a historical perspective of the development of these ideas from the early research findings of not only Dr. Eric Simon, but his numerous colleagues in opioid research in the United States and throughout the world.
Collapse
Affiliation(s)
- M J Kreek
- Laboratory on the Biology of Addictive Diseases, Rockefeller University, New York, NY 10021, USA
| |
Collapse
|