1
|
H. Baky M, Fahmy H, Farag MA. Recent Advances in Garcinia cambogia Nutraceuticals in Relation to Its Hydroxy Citric Acid Level. A Comprehensive Review of Its Bioactive Production, Formulation, and Analysis with Future Perspectives. ACS OMEGA 2022; 7:25948-25957. [PMID: 35936438 PMCID: PMC9352243 DOI: 10.1021/acsomega.2c02838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/07/2022] [Indexed: 05/14/2023]
Abstract
Garcinia cambogia (Gaertn.) Desr. (known as Malabar tamarind) is a popular traditional herbal medicine and is one of the well-known folk medicines reported for the treatment of obesity and incorporated in several nutraceuticals worldwide. These effects are mediated by a myriad of bioactive compounds with most effects attributed to its hydroxy citric acid (HCA) content. This review aims to present a holistic overview on novel trends in the production of G. cambogia bioactive components and how extraction optimization is important to ensure best product quality with its reported nanoformulations with particular emphasis on HCA content. Further, an overview of the different analytical approaches used for quality control assessment of G. cambogia plant and its nutraceuticals is presented highlighting both advantages and limitations. Moreover, analytical approaches for detecting G. cambogia metabolites in biological fluids with emphasis on HCA level to determine its pharmacokinetics and proof of efficacy are presented for the first time.
Collapse
Affiliation(s)
- Mostafa H. Baky
- Pharmacognosy
Department, Faculty of Pharmacy, Egyptian
Russian University, Badr City, Cairo 11829, Egypt
| | - Heba Fahmy
- Pharmacognosy
Department, Faculty of Pharmacy, Modern
University for Technology & Information, Cairo 11835, Egypt
| | - Mohamed A. Farag
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt
- . Tel: +011-202-2362245. Fax: +011-202-25320005
| |
Collapse
|
2
|
Pandita D, Pandita A. Omics Technology for the Promotion of Nutraceuticals and Functional Foods. Front Physiol 2022; 13:817247. [PMID: 35634143 PMCID: PMC9136416 DOI: 10.3389/fphys.2022.817247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
The influence of nutrition and environment on human health has been known for ages. Phytonutrients (7,000 flavonoids and phenolic compounds; 600 carotenoids) and pro-health nutrients—nutraceuticals positively add to human health and may prevent disorders such as cancer, diabetes, obesity, cardiovascular diseases, and dementia. Plant-derived bioactive metabolites have acquired an imperative function in human diet and nutrition. Natural phytochemicals affect genome expression (nutrigenomics and transcriptomics) and signaling pathways and act as epigenetic modulators of the epigenome (nutri epigenomics). Transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics are some of the main platforms of complete omics analyses, finding use in functional food and nutraceuticals. Now the recent advancement in the integrated omics approach, which is an amalgamation of multiple omics platforms, is practiced comprehensively to comprehend food functionality in food science.
Collapse
Affiliation(s)
- Deepu Pandita
- Government Department of School Education, Jammu, India
- *Correspondence: Deepu Pandita,
| | | |
Collapse
|
3
|
Maia-Landim A, Lancho C, Poblador MS, Lancho JL, Ramírez JM. Garcinia cambogia and Glucomannan reduce weight, change body composition and ameliorate lipid and glucose blood profiles in overweight/obese patients. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Li L, Zhang H, Yao Y, Yang Z, Ma H. (-)-Hydroxycitric Acid Suppresses Lipid Droplet Accumulation and Accelerates Energy Metabolism via Activation of the Adiponectin-AMPK Signaling Pathway in Broiler Chickens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3188-3197. [PMID: 30827101 DOI: 10.1021/acs.jafc.8b07287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
(-)-Hydroxycitric acid (HCA) inhibits the deposition of fat in animals and humans, while the molecular mechanism is still unclear. The present study investigated the effect and mechanism of (-)-HCA's regulation of lipid, glucose, and energy metabolism in broiler chickens. The current results showed that (-)-HCA decreased the accumulation of lipid droplets and triglyceride content by reducing fatty acid synthase protein level and enhancing phosphorylation of acetyl-CoA carboxylase protein level. (-)-HCA accelerated carbohydrate aerobic metabolisms by increasing the activities of phosphofructokinase-1, pyruvate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase. Furthermore, (-)-HCA increased adiponectin receptor 1 mRNA level and enhanced phospho-AMPKα, peroxisome proliferator-activated receptor gamma coactivator-1α, nuclear respiratory factor-1, and mitochondrial transcription factor A protein levels in broiler chickens. These data indicated that (-)-HCA reduced lipid droplet accumulation, improved glucose catabolism, and accelerated energy metabolism in broiler chickens, possibly via activation of adiponectin-AMPK signaling pathway. These results revealed the biochemical mechanism of (-)-HCA-mediated fat accumulation and the prevention of metabolic disorder-related diseases in broiler chickens.
Collapse
Affiliation(s)
- Longlong Li
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Huihui Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Zhongmiao Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
5
|
Medicinal plants and phytochemicals with anti-obesogenic potentials: A review. Biomed Pharmacother 2017; 89:1442-1452. [DOI: 10.1016/j.biopha.2017.02.108] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/03/2023] Open
|
6
|
DNA Microarray-Based Screening and Characterization of Traditional Chinese Medicine. MICROARRAYS 2017; 6:microarrays6010004. [PMID: 28146102 PMCID: PMC5374364 DOI: 10.3390/microarrays6010004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
The application of DNA microarray assay (DMA) has entered a new era owing to recent innovations in omics technologies. This review summarizes recent applications of DMA-based gene expression profiling by focusing on the screening and characterizationof traditional Chinese medicine. First, herbs, mushrooms, and dietary plants analyzed by DMA along with their effective components and their biological/physiological effects are summarized and discussed by examining their comprehensive list and a list of representative effective chemicals. Second, the mechanisms of action of traditional Chinese medicine are summarized by examining the genes and pathways responsible for the action, the cell functions involved in the action, and the activities found by DMA (silent estrogens). Third, applications of DMA for traditional Chinese medicine are discussed by examining reported examples and new protocols for its use in quality control. Further innovations in the signaling pathway based evaluation of beneficial effects and the assessment of potential risks of traditional Chinese medicine are expected, just as are observed in other closely related fields, such as the therapeutic, environmental, nutritional, and pharmacological fields.
Collapse
|
7
|
Li H, Kang JH, Han JM, Cho MH, Chung YJ, Park KH, Shin DH, Park HY, Choi MS, Jeong TS. Anti-Obesity Effects of Soy Leaf via Regulation of Adipogenic Transcription Factors and Fat Oxidation in Diet-Induced Obese Mice and 3T3-L1 Adipocytes. J Med Food 2015; 18:899-908. [PMID: 25826408 DOI: 10.1089/jmf.2014.3388] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The anti-obesity effects of extracts from soy leaves (SLE) cultivated for 8 weeks (8W) or 16 weeks (16W) were investigated in diet-induced obese mice. The effects of kaempferol, an aglycone of the kaempferol glycosides that are the major component of 8W-SLE, and coumestrol, the major component of 16W-SLE, were also investigated in 3T3-L1 adipocytes. Eight-week-old male C57BL/6J mice were randomly divided into normal diet, high-fat diet (HFD), 8W-SLE (HFD+8W-SLE 50 mg kg(-1) day(-1)), 16W-SLE (HFD+16W-SLE 50 mg kg(-1) day(-1)), and Garcinia cambogia extracts (GE) (HFD+GE 50 mg kg(-1) day(-1)) groups. Body weight gain and fat accumulation of white adipose tissue (WAT) were highly suppressed by daily oral administration of 8W-SLE and 16W-SLE for 10 weeks. Supplementing a HFD with 8W-SLE and 16W-SLE regulated the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (c/EBPα), sterol regulatory element-binding protein-1 (SREBP-1), adipocyte protein 2, and fatty acid synthase (FAS), which are related to adipogenesis, in addition to hormone-sensitive lipase (HSL), carnitine palmitoyl transferase 1 (CPT-1), and uncoupling protein 2 (UCP2), which are related to fat oxidation in WAT. In 3T3-L1 adipocytes, kaempferol and coumestrol exhibited anti-adipogenic effects via downregulation of PPARγ, c/EBPα, SREBP-1, and FAS. Kaempferol and coumestrol increased the expression of HSL, CPT-1, and UCP2.
Collapse
Affiliation(s)
- Hua Li
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
- 2 Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Korea University of Science and Technology , Daejeon, Korea
| | - Ji-Hyun Kang
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
- 3 Department of Food and Nutrition, Chungnam National University , Daejeon, Korea
| | - Jong-Min Han
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
| | - Moon-Hee Cho
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
| | - Young-Jin Chung
- 3 Department of Food and Nutrition, Chungnam National University , Daejeon, Korea
| | - Ki Hun Park
- 4 Division of Applied Life Science, Gyeongsang National University , Jinju, Korea
| | | | - Ho-Yong Park
- 6 Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
| | - Myung-Sook Choi
- 7 Center for Food and Nutritional Genomics Research, Kyungpook National University , Daegu, Korea
| | - Tae-Sook Jeong
- 1 National Research Laboratory of Lipid Metabolism and Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
- 2 Department of Biomolecular Science, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Korea University of Science and Technology , Daejeon, Korea
- 6 Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon, Korea
| |
Collapse
|
8
|
Barrier Function of the Repaired Skin Is Disrupted Following Arrest of Dicer in Keratinocytes. Mol Ther 2015; 23:1201-1210. [PMID: 25896246 DOI: 10.1038/mt.2015.65] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 04/07/2015] [Indexed: 02/07/2023] Open
Abstract
Tissue injury transiently silences miRNA-dependent posttranscriptional gene silencing in its effort to unleash adult tissue repair. Once the wound is closed, miRNA biogenesis is induced averting neoplasia. In this work, we report that Dicer plays an important role in reestablishing the barrier function of the skin post-wounding via a miRNA-dependent mechanism. MicroRNA expression profiling of skin and wound-edge tissue revealed global upregulation of miRNAs following wound closure at day 14 post-wounding with significant induction of Dicer expression. Barrier function of the skin, as measured by trans-epidermal water loss, was compromised in keratinocyte-specific conditional (K14/Lox-Cre) Dicer-ablated mice because of malformed cornified epithelium lacking loricrin expression. Studies on human keratinocytes recognized that loricrin expression was inversely related to the expression of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). Compared to healthy epidermis, wound-edge keratinocytes from Dicer-ablated skin epidermis revealed elevated p21(Waf1/Cip1) expression. Adenoviral and pharmacological suppression of p21(Waf1/Cip1) in keratinocyte-specific conditional Dicer-ablated mice improved wound healing indicating a role of Dicer in the suppression of p21(Waf1/Cip1). This work upholds p21(Waf1/Cip1) as a druggable target to restore barrier function of skin suffering from loss of Dicer function as would be expected in diabetes and other forms of oxidant insult.
Collapse
|
9
|
Liu G, Han N, Han J, Chen D, Kang J, Ma H. Garcinia Cambogia Extracts Prevented Fat Accumulation via Adiponectin-AMPK Signaling Pathway in Developing Obesity Rats. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.835] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Guanxing Liu
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University
| | - Ningning Han
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University
| | - Jing Han
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University
| | - Di Chen
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University
| | - Jian Kang
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University
| | - Haitian Ma
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University
| |
Collapse
|
10
|
Updates on Antiobesity Effect of Garcinia Origin (-)-HCA. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:751658. [PMID: 23990846 PMCID: PMC3748738 DOI: 10.1155/2013/751658] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/07/2013] [Indexed: 12/11/2022]
Abstract
Garcinia is a plant under the family of Clusiaceae that is commonly used as a flavouring agent. Various phytochemicals including flavonoids and organic acid have been identified in this plant. Among all types of organic acids, hydroxycitric acid or more specifically (−)-hydroxycitric acid has been identified as a potential supplement for weight management and as antiobesity agent. Various in vivo studies have contributed to the understanding of the anti-obesity effects of Garcinia/hydroxycitric acid via regulation of serotonin level and glucose uptake. Besides, it also helps to enhance fat oxidation while reducing de novo lipogenesis. However, results from clinical studies showed both negative and positive antiobesity effects of Garcinia/hydroxycitric acid. This review was prepared to summarise the update of chemical constituents, significance of in vivo/clinical anti-obesity effects, and the importance of the current market potential of Garcinia/hydroxycitric acid.
Collapse
|
11
|
Márquez F, Babio N, Bulló M, Salas-Salvadó J. Evaluation of the safety and efficacy of hydroxycitric acid or Garcinia cambogia extracts in humans. Crit Rev Food Sci Nutr 2012; 52:585-594. [PMID: 22530711 DOI: 10.1080/10408398.2010.500551] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Several studies have shown that Garcinia cambogia plays an important role in the regulation of endogenous lipid biosynthesis. This effect is specially attributed to (-)-hydroxycitric acid (HCA) inhibiting the enzyme ATP-dependent citrate lyase, which catalyzes the cleavage of citrate to oxaloacetate and acetyl-CoA. Although several studies have found that the administration of G. cambogia extracts is associated with body weight and fat loss in both experimental animals and humans, we should be cautious when interpreting the results as other randomized, placebo-controlled clinical trials have not reported the same outcomes. Furthermore, most studies in humans have been conducted on small samples and mainly in the short term. None of them have shown whether these effects persist beyond 12 weeks of intervention. Therefore, there is still little evidence to support the potential effectiveness and long-term benefits of G. cambogia extracts. With regard to toxicity and safety, it is important to note that except in rare cases, studies conducted in experimental animals have not reported increased mortality or significant toxicity. Furthermore, at the doses usually administered, no differences have been reported in terms of side effects or adverse events (those studied) in humans between individuals treated with G. cambogia and controls.
Collapse
Affiliation(s)
- Fabiola Márquez
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Reus, Spain
| | | | | | | |
Collapse
|
12
|
Anton SD. Investigations of botanicals on food intake, satiety, weight loss and oxidative stress: study protocol of a double-blind, placebo-controlled, crossover study. ACTA ACUST UNITED AC 2011; 9:1190-8. [DOI: 10.3736/jcim20111106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Kim JE, Jeon SM, Park KH, Lee WS, Jeong TS, McGregor RA, Choi MS. Does Glycine max leaves or Garcinia Cambogia promote weight-loss or lower plasma cholesterol in overweight individuals: a randomized control trial. Nutr J 2011; 10:94. [PMID: 21936892 PMCID: PMC3189865 DOI: 10.1186/1475-2891-10-94] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/21/2011] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Natural food supplements with high flavonoid content are often claimed to promote weight-loss and lower plasma cholesterol in animal studies, but human studies have been more equivocal. The aim of this study was firstly to determine the effectiveness of natural food supplements containing Glycine max leaves extract (EGML) or Garcinia cambogia extract (GCE) to promote weight-loss and lower plasma cholesterol. Secondly to examine whether these supplements have any beneficial effect on lipid, adipocytokine or antioxidant profiles. METHODS Eighty-six overweight subjects (Male:Female = 46:40, age: 20~50 yr, BMI > 23 < 29) were randomly assigned to three groups and administered tablets containing EGML (2 g/day), GCE (2 g/day) or placebo (starch, 2 g/day) for 10 weeks. At baseline and after 10 weeks, body composition, plasma cholesterol and diet were assessed. Blood analysis was also conducted to examine plasma lipoproteins, triglycerides, adipocytokines and antioxidants. RESULTS EGML and GCE supplementation failed to promote weight-loss or any clinically significant change in %body fat. The EGML group had lower total cholesterol after 10 weeks compared to the placebo group (p < 0.05). EGML and GCE had no effect on triglycerides, non-HDL-C, adipocytokines or antioxidants when compared to placebo supplementation. However, HDL-C was higher in the EGML group (p < 0.001) after 10 weeks compared to the placebo group. CONCLUSIONS Ten weeks of EGML or GCE supplementation did not promote weight-loss or lower total cholesterol in overweight individuals consuming their habitual diet. Although, EGML did increase plasma HDL-C levels which is associated with a lower risk of atherosclerosis.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea
| | - Seon-Min Jeon
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Republic of Korea
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK 21 Program), EB-NCRC, Institute of Agriculture and Life Science, Graduate School of Gyeongsang National University, Jinju, Republic of Korea
| | - Woo Song Lee
- Eco-Friendly Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Tae-Sook Jeong
- National Research Laboratory of Lipid Metabolism & Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Robin A McGregor
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Republic of Korea
| | - Myung-Sook Choi
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Republic of Korea
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
14
|
Tamama K, Kawasaki H, Kerpedjieva SS, Guan J, Ganju RK, Sen CK. Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. J Cell Biochem 2011; 112:804-17. [PMID: 21328454 DOI: 10.1002/jcb.22961] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell therapy with bone marrow multipotential stromal cells (MSCs) represents a promising approach to promote wound healing and tissue regeneration. MSCs expanded in vitro lose early progenitors with differentiation and therapeutic potentials under normoxic condition, whereas hypoxic condition promotes MSC self-renewal through preserving colony forming early progenitors and maintaining undifferentiated phenotypes. Hypoxia inducible factor (HIF) pathway is a crucial signaling pathway activated in hypoxic condition. We evaluated the roles of HIFs in MSC differentiation, colony formation, and paracrine activity under hypoxic condition. Hypoxic condition reversibly decreased osteogenic and adipogenic differentiation. Decrease of osteogenic differentiation depended on HIF pathway; whereas decrease of adipogenic differentiation depended on the activation of unfolded protein response (UPR), but not HIFs. Hypoxia-mediated increase of MSC colony formation was not HIF-dependent also. Hypoxic exposure increased secretion of VEGF, HGF, and basic FGF in a HIF-dependent manner. These findings suggest that HIF has a limited, but pivotal role in enhancing MSC self-renewal and growth factor secretions under hypoxic condition.
Collapse
Affiliation(s)
- Kenichi Tamama
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Amin KA, Kamel HH, Abd Eltawab MA. Protective effect of Garcinia against renal oxidative stress and biomarkers induced by high fat and sucrose diet. Lipids Health Dis 2011; 10:6. [PMID: 21235803 PMCID: PMC3034692 DOI: 10.1186/1476-511x-10-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 01/14/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Obesity became major health problem in the world, the objective of this work was to examine the effect of high sucrose and high fat diet to induce obesity on antioxidant defense system, biochemical changes in blood and tissue of control, non treated and treated groups by administration of Garcinia cambogia, and explore the mechanisms that link obesity with altered renal function. METHODS Rats were fed a standard control diet for 12 week (wk) or a diet containing 65% high sucrose (HSD) or 35% fat (HFD) for 8 wk and then HFD group divided into two groups for the following 4 wks. One group was given Garcinia+HFD, the second only high fat, Also the HSD divided into two groups, 1st HSD+Garcinia and 2nd HSD. Blood and renal, mesenteric, Perirenal and epididymal adipose tissues were collected for biochemical assays. RESULTS HFD and HSD groups of rats showed a significant increase in feed intake, Body weight (BW) and body mass index (BMI). Also there were significant increases in weights of mesenteric, Perirenal and epididymal adipose tissues in HFD and HSD groups.HFD and HSD affect the kidney by increasing serum urea and creatinine levels and decreased level of nitric oxide (NO) and increased blood glucose, low density lipoproteins (LDL), triacylglycerol (TG), total cholesterol (TC) and malondialdehyde (MDA). Glucose 6-phosphate dehydrogenase (G6PD) activities were significantly decreased in HFD while there were significant increases in HSD and HSD+G groups p ≤ 0.05 compared with control. Moreover, renal catalase activities and MDA levels were significantly increased while NO level was lowered. These changes improved by Garcinia that decreased the oxidative stress biomarkers and increased NO level.There were significant positive correlations among BMI, kidney functions (Creatinine and urea), TG and Oxidative markers (renal MDA and catalase). CONCLUSIONS Rats fed a diet with HFD or HSD showed, hypertriglyceridemia, increased LDL production, increased oxidative stress and renal alteration. Moreover, suggesting association between lipid peroxidation, obesity and nephropathy, while Garcinia ameliorated the damaging effects of the HFD or HSD and decreased feed intake, MDA level and decreased oxidative stress in renal tissues.
Collapse
Affiliation(s)
- Kamal A Amin
- Biochemistry Department, Faculty of Vete, Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | | | | |
Collapse
|
16
|
Chan YC, Khanna S, Roy S, Sen CK. miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem 2010; 286:2047-56. [PMID: 21081489 DOI: 10.1074/jbc.m110.158790] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The miR-200 family plays a crucial role in epithelial to mesenchymal transition via controlling cell migration and polarity. We hypothesized that miR-200b, one miR-200 family member, could regulate angiogenic responses via modulating endothelial cell migration. Delivery of the miR-200b mimic in human microvascular endothelial cells (HMECs) suppressed the angiogenic response, whereas miR-200b-depleted HMECs exhibited elevated angiogenesis in vitro, as evidenced by Matrigel® tube formation and cell migration. Using in silico studies, miR target reporter assay, and Western blot analysis revealed that v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1), a crucial angiogenesis-related transcription factor, serves as a novel direct target of miR-200b. Knocking down endogenous Ets-1 simulated an anti-angiogenic response of the miR-200b mimic-transfected cells. Certain Ets-1-associated genes, namely matrix metalloproteinase 1 and vascular endothelial growth factor receptor 2, were negatively regulated by miR-200b. Overexpression of Ets-1 rescued miR-200b-dependent impairment in angiogenic response and suppression of Ets-1-associated gene expression. Both hypoxia as well as HIF-1α stabilization inhibited miR-200b expression and elevated Ets-1 expression. Experiments to identify how miR-200b modulates angiogenesis under a low oxygen environment illustrated that hypoxia-induced miR-200b down-regulation de-repressed Ets-1 expression to promote angiogenesis. This study provides the first evidence that hypoxia-sensitive miR-200b is involved in induction of angiogenesis via directly targeting Ets-1 in HMECs.
Collapse
Affiliation(s)
- Yuk Cheung Chan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
17
|
Stohs SJ, Lau FC, Kim D, Kim SU, Bagchi M, Bagchi D. Safety assessment of a calcium-potassium salt of (−)-hydroxycitric acid. Toxicol Mech Methods 2010; 20:515-25. [DOI: 10.3109/15376516.2010.521207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Khanna S, Park HA, Sen CK, Golakoti T, Sengupta K, Venkateswarlu S, Roy S. Neuroprotective and antiinflammatory properties of a novel demethylated curcuminoid. Antioxid Redox Signal 2009; 11:449-68. [PMID: 18724833 PMCID: PMC2787730 DOI: 10.1089/ars.2008.2230] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 12/24/2022]
Abstract
A demethylated derivative of curcumin (DC; 67.8% bisdemethylcurcumin, 20.7% demethylmonodemethoxycurcumin, 5.86% bisdemethoxycurcumin, 2.58% demethylcurcumin) was prepared by using a 95% extract of curcumin (C(95); 72.2% curcumin, 18.8% monodemethoxycurcumin, 4.5% bisdemethoxycurcumin). DC increased glutathione and reduced reactive oxygen species (ROS) in HT4 neuronal cells. In a model of glutamate-induced death of HT4, DC was more effective than C(95) in neuroprotection. The protective effects of DC were retained even when DC was withdrawn from culture media after pretreatment. DC treatment, unlike an equal dose of C(95), completely spared glutamate-induced loss of cellular GSH. Both DC and C(95) prevented glutamate-induced elevation of cellular ROS but failed to attenuate glutamate-induced elevation of intracellular calcium. In human microvascular endothelial cells (HMECs) challenged with TNF-alpha, GeneChip analysis revealed that only a subcluster of 23 TNF-alpha-inducible genes were uniquely sensitive to C(95). In sharp contrast, 1,065 TNF-alpha-inducible genes were sensitive to DC but not to C(95), suggesting that DC was more effective in antagonizing the effects of TNF-alpha on HMECs. Functional analysis identified that the genes uniquely sensitive to DC belonged in four functional categories: cytokine-receptor interaction, focal adhesion, cell adhesion, and apoptosis. Real-time PCR as well as ELISA studies demonstrated that TNF-alpha-inducible CXCL10 and CXCL11 expression was sensitive to DC but not to C(95). Flow-cytometry studies recognized ICAM-1 and VCAM-1 as TNF-alpha-inducible adhesion molecules that were uniquely sensitive to DC. Taken together, DC exhibited promising neuroprotective and antiinflammatory properties that must be characterized in vivo.
Collapse
Affiliation(s)
- Savita Khanna
- Departments of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Han-A Park
- Departments of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | - Chandan K. Sen
- Departments of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| | | | | | | | - Sashwati Roy
- Departments of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio
| |
Collapse
|
19
|
Acute effects of pharmacological modifications of fatty acid metabolism on human satiety. Br J Nutr 2008; 101:1867-77. [DOI: 10.1017/s0007114508143604] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The role of NEFA in eating behaviour is still poorly known. Our objective was to examine whether etomoxir (ETO), an inhibitor of NEFA oxidation, or ( − )-hydroxycitrate (HCA), an inhibitor of lipogenesis which may indirectly stimulate NEFA oxidation, alters satiety. Post-lunch satiety was measured in eight normal-weight male subjects who were deprived of time cues and received on three occasions either ETO (320 mg), HCA (2 g) or placebo (PLA) in random order. Between lunch and dinner, blood was withdrawn continuously and collected every 10 min for measures of plasma concentrations of glucose, insulin, lactate, TAG, NEFA, β-hydroxybutyrate (BHB), leptin and ghrelin. Results showed that HCA began to decrease hunger and desire to eat compared to PLA and ETO 210 min after lunch and increased satiety duration compared to PLA by 70 (se23) min (P < 0·05), but did not modify energy intake at dinner. ETO did not affect any variable of satiety. HCA increased NEFA concentrations during the pre-dinner period, whereas ETO increased and decreased plasma concentrations of NEFA and BHB, respectively. Mean differences in plasma NEFA concentrations between HCA and PLA were predictive of the differences in satiety duration between treatments (r20·71,P < 0·01). Among treatments, plasma leptin concentration at dinner onset was the only blood variable correlated with energy intake at this meal (r− 0·75,P < 0·0005). In healthy, normal-weight men, acute HCA increased the intensity and duration of satiety possibly via increased NEFA disposal for oxidation.
Collapse
|
20
|
Deshmukh NS, Bagchi M, Yasmin T, Bagchi D. Safety of a Novel Calcium/Potassium Salt of Hydroxycitric Acid (HCA-SX): I. Two-Generation Reproduction Toxicity Study. Toxicol Mech Methods 2008; 18:433-42. [DOI: 10.1080/15376510802084030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Deshmukh NS, Bagchi M, Yasmin T, Bagchi D. Safety of a Novel Calcium/Potassium Saltof (-)-Hydroxycitric Acid (HCA-SX): II.Developmental Toxicity Study in Rats. Toxicol Mech Methods 2008; 18:443-51. [DOI: 10.1080/15376510802055022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Lau FC, Bagchi M, Sen C, Roy S, Bagchi D. Nutrigenomic analysis of diet-gene interactions on functional supplements for weight management. Curr Genomics 2008; 9:239-51. [PMID: 19452041 PMCID: PMC2682937 DOI: 10.2174/138920208784533638] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 04/10/2008] [Accepted: 04/14/2008] [Indexed: 12/24/2022] Open
Abstract
Recent advances in molecular biology combined with the wealth of information generated by the Human Genome Project have fostered the emergence of nutrigenomics, a new discipline in the field of nutritional research. Nutrigenomics may provide the strategies for the development of safe and effective dietary interventions against the obesity epidemic. According to the World Health Organization, more than 60% of the global disease burden will be attributed to chronic disorders associated with obesity by 2020. Meanwhile in the US, the prevalence of obesity has doubled in adults and tripled in children during the past three decades. In this regard, a number of natural dietary supplements and micronutrients have been studied for their potential in weight management. Among these supplements, (-)-hydroxycitric acid (HCA), a natural extract isolated from the dried fruit rind of Garcinia cambogia, and the micronutrient niacin-bound chromium(III) (NBC) have been shown to be safe and efficacious for weight loss. Utilizing cDNA microarrays, we demonstrated for the first time that HCA-supplementation altered the expression of genes involved in lipolytic and adipogenic pathways in adipocytes from obese women and up-regulated the expression of serotonin receptor gene in the abdominal fat of rats. Similarly, we showed that NBC-supplementation up-regulated the expression of myogenic genes while suppressed the expression of genes that are highly expressed in brown adipose tissue in diabetic obese mice. The potential biological mechanisms underlying the observed beneficial effects of these supplements as elucidated by the state-of-the-art nutrigenomic technologies will be systematically discussed in this review.
Collapse
Affiliation(s)
| | | | - Chandan Sen
- Laboratory of Molecular Medicine, Department of Surgery, Ohio State University Medical Center, Columbus, OH, USA
| | - Sashwati Roy
- Laboratory of Molecular Medicine, Department of Surgery, Ohio State University Medical Center, Columbus, OH, USA
| | - Debasis Bagchi
- InterHealth Research Center, Benicia, CA, USA
- Department of Pharmacy Sciences, Creighton University Medical Center, Omaha, NE, USA
| |
Collapse
|