1
|
Brown AP, Parameswaran S, Cai L, Elston S, Pham C, Barski A, Weirauch MT, Ji H. TET1 regulates responses to house dust mite by altering chromatin accessibility, DNA methylation, and gene expression in airway epithelial cells. RESEARCH SQUARE 2023:rs.3.rs-3726852. [PMID: 38168374 PMCID: PMC10760239 DOI: 10.21203/rs.3.rs-3726852/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background Previous studies have identified TET1 as a potential key regulator of genes linked to asthma. TET1 has been shown to transcriptionally respond to house dust mite extract, an allergen known to directly cause allergic asthma development, and regulate the expression of genes involved in asthma. How TET1 regulates expression of these genes, however, is unknown. TET1 is a DNA demethylase; therefore, most prior research on TET1-based gene regulation has focused on how TET1 affects methylation. However, TET1 can also interact directly with transcription factors and histone modifiers to regulate gene expression. Understanding how TET1 regulates expression to contribute to allergic responses and asthma development thus requires a comprehensive approach. To this end, we measured mRNA expression, DNA methylation, chromatin accessibility and histone modifications in control and TET1 knockdown human bronchial epithelial cells treated or untreated with house dust mite extract. Results Throughout our analyses, we detected strong similarities between the effects of TET1 knockdown alone and the effects of HDM treatment alone. One especially striking pattern was that both TET1 knockdown and HDM treatment generally led to decreased chromatin accessibility at largely the same genomic loci. Transcription factor enrichment analyses indicated that altered chromatin accessibility following the loss of TET1 may affect, or be affected by, CTCF and CEBP binding. TET1 loss also led to changes in DNA methylation, but these changes were generally in regions where accessibility was not changing. Conclusions TET1 regulates gene expression through different mechanisms (DNA methylation and chromatin accessibility) in different parts of the genome in the airway epithelial cells, which mediates inflammatory responses to allergen. Collectively, our data suggest novel molecular mechanisms through which TET1 regulates critical pathways following allergen challenges and contributes to the development of asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Ji
- University of California Davis
| |
Collapse
|
2
|
Xu P, Lin H, Jiao H, Zhao J, Wang X. Chicken embryo thermal manipulation alleviates postnatal heat stress-induced jejunal inflammation by inhibiting Transient Receptor Potential V4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114851. [PMID: 37004430 DOI: 10.1016/j.ecoenv.2023.114851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Intestinal inflammation induced by heat stress is an important factor restricting the healthy growth of broilers. The aim of this study was to evaluate the effect of chicken embryo thermal manipulation (39.5 ℃ and 65 % RH for 3 h daily during 16-18 th embryonic age) on intestinal inflammation in broilers under postnatal heat stress and to investigate whether transient receptor potential V4 (TRPV4) plays a role in this process. Our results suggest that broilers with embryo thermal manipulation experience could delay the rising of rectal temperature during postnatal heat stress (P < 0.05), and had better production performance (P < 0.05), intestinal morphological parameters (P < 0.05) and higher expression of tight junction related genes (P < 0.05). The increased serum lipopolysaccharide (LPS) content, activation of nuclear factor-kappa B (NF-κB) signaling pathway and the increased expression of pro-inflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor alpha (TNF-α) in jejunum during postnatal heat stress were alleviated by embryo thermal manipulation (P < 0.05). Postnatal heat stress induced an increase in mRNA and protein expression of TRPV4 in jejunum (P < 0.05), but had no effect on broilers which experienced embryo thermal manipulation (P > 0.05). Inhibition of TRPV4 reduced LPS-induced Ca2+ influx and restrained the activation of NF-κB signaling pathway and the expression of downstream pro-inflammatory cytokines (P < 0.05). The expression of DNA methyltransferase (DNMT) in the jejunum of broilers exposed to postnatal heat stress was increased by embryo thermal manipulation (P < 0.05). The DNA methylation level of TRPV4 promoter region was detected, and the results showed that embryo thermal manipulation increased the DNA methylation level of TRPV4 promoter region (P < 0.05). In conclusion, Chicken embryo thermal manipulation can alleviate jejunal inflammation in broilers under postnatal heat stress. This may be due to the decreased circulating LPS or the increased DNA methylation level in the promoter region of TRPV4, which inhibits TRPV4 expression, thereby reducing Ca2+ influx, and finally alleviating inflammation by affecting NF-κB signaling pathway. The work is an attempt to understand the mechanism involved in alleviation of adverse effects of heat stress during postnatal life through prenatal thermal manipulation and to reveal the important role of epigenetics.
Collapse
Affiliation(s)
- Peng Xu
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Lin
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Hongchao Jiao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Jingpeng Zhao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaojuan Wang
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
3
|
Korimerla N, Wahl DR. Interactions between Radiation and One-Carbon Metabolism. Int J Mol Sci 2022; 23:1919. [PMID: 35163841 PMCID: PMC8836916 DOI: 10.3390/ijms23031919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer. Cancer cells rewire one-carbon metabolism, a central metabolic pathway, to turn nutritional inputs into essential biomolecules required for cancer cell growth and maintenance. Radiation therapy, a common cancer therapy, also interacts and alters one-carbon metabolism. This review discusses the interactions between radiation therapy, one-carbon metabolism and its component metabolic pathways.
Collapse
Affiliation(s)
- Navyateja Korimerla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R. Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Kuzmina NS. Radiation-Induced DNA Methylation Disorders: In Vitro and In Vivo Studies. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics 2022; 17:59-80. [PMID: 33522387 PMCID: PMC8812767 DOI: 10.1080/15592294.2021.1873628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
6
|
Kucher OV, Vydyborets SV. LONG/TERM GENETIC AND EPIGENETIC DISORDERS IN PERSONS EXPOSED TO IONIZING RADIATION AND THEIR DESCENDANTS (review). PROBLEMY RADIATSIINOI MEDYTSYNY TA RADIOBIOLOHII 2021; 26:36-56. [PMID: 34965542 DOI: 10.33145/2304-8336-2021-26-36-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 06/14/2023]
Abstract
The review is devoted to long-term genetic and epigenetic disorders in exposed individuals and their descendants,namely to cytogenetic effects in the Chornobyl NPP accident clean-up workers and their children, DNA methylation as an epigenetic modification of human genome. Data presented in review expand the understanding of risk of the prolonged exposure for the present and future generations, which is one of key problems posed by fundamental radiation genetics and human radiobiology.
Collapse
Affiliation(s)
- O V Kucher
- Shupyk National Healthcare University of Ukraine, 9 Dorohozhytska Str., Kyiv, 04112, Ukraine
| | - S V Vydyborets
- Shupyk National Healthcare University of Ukraine, 9 Dorohozhytska Str., Kyiv, 04112, Ukraine
| |
Collapse
|
7
|
Priya R, Das B. Global DNA methylation profile at LINE-1 repeats and promoter methylation of genes involved in DNA damage response and repair pathways in human peripheral blood mononuclear cells in response to γ-radiation. Mol Cell Biochem 2021; 477:267-281. [PMID: 34708334 DOI: 10.1007/s11010-021-04265-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/17/2021] [Indexed: 02/02/2023]
Abstract
DNA methylation is an epigenetic mechanism, which plays an important role in gene regulation. The present study evaluated DNA methylation profile of LINE1 repeats and promoter methylation of DNA damage response (DDR) and DNA repair (DR) genes (PARP1, ATM, BRCA1, MLH1, XPC, RAD23B, APC, TNFα, DNMT3A, MRE11A, MGMT, CDKN2A, MTHFR) in human peripheral blood mononuclear cells (PBMCs) of healthy donors in response to γ-radiation. Methylation level was correlated with gene expression profile of selected DDR and DR genes (APC, MLH1, PARP1, MRE11A, TNFα, MGMT) to understand their role in gene regulation. Blood samples were collected from 15 random healthy donors, PBMCs were isolated, exposed to 0.1 Gy (low) and 2.0 Gy (high) doses of γ-radiation and proliferated for 48 h and 72 h. Genomic DNA and total RNA were isolated from irradiated PBMCs along with un-irradiated control. Methylation profile was determined from bisulphite converted DNA and amplified by methylation sensitive high resolution melting (MS-HRM) method. Total RNA was converted to cDNA and relative expression was analysed using real time quantitative-PCR. Our results revealed that at 0.1 Gy, MRE11A and TNFα showed significant (P < 0.05) increase in methylation at 72 h. At 2.0 Gy, significant increase (P < 0.05) in methylation profile was observed at LINE1, MRE11A, PARP1, BRCA1, DNMT3A and RAD23B at 48 h and 72 h. PARP1 showed significant positive correlation of methylation status with gene expression. In conclusion, low and high doses of γ-radiation have significant influence on DNA methylation status of LINE1, DDR and DR genes suggesting their potential role as epigenetic signatures in human PBMCs, which can be further explored in human populations.
Collapse
Affiliation(s)
- Rashmi Priya
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai, 400 094, India.
| |
Collapse
|
8
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
9
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
10
|
He JJ, Li Z, Rong ZX, Gao J, Mu Y, Guan YD, Ren XX, Zi YY, Liu LY, Fan Q, Zhou M, Duan YM, Zhou Q, Deng YZ, Sun LQ. m 6A Reader YTHDC2 Promotes Radiotherapy Resistance of Nasopharyngeal Carcinoma via Activating IGF1R/AKT/S6 Signaling Axis. Front Oncol 2020; 10:1166. [PMID: 32850334 PMCID: PMC7411471 DOI: 10.3389/fonc.2020.01166] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022] Open
Abstract
N6-methyladenosine (m6A) modification has been reported as a critical regulator of gene transcript expression. Although m6A modification plays important roles in tumor development, its role in therapeutic resistance remains unknown. In this study, we aimed to examine the expression level of m6A-modification related proteins and elucidate the effect of m6A-related proteins on radiation response in nasopharyngeal carcinoma (NPC). Among the genes that participated in m6A modification, YTHDC2, a m6A reader, was found to be consistently highly expressed in radioresistant NPC cells. Knocking down of YTHDC2 expression in radioresistant NPC cells improved the therapeutic effect of radiotherapy in vitro and in vivo, whereas overexpression of YTHDC2 in radiosensitive NPC cells exerted an opposite effect. Bioinformatics and mechanistic studies revealed that YTHDC2 could physically bound to insulin-like growth factor 1 receptor (IGF1R) messenger RNA and promoted translation initiation of IGF1R mRNA, which in turn activated the IGF1R-AKT/S6 signaling pathway. Thus, the present study suggests that YTHDC2 promotes radiotherapy resistance of NPC cells by activating the IGF1R/ATK/S6 signaling axis and may serve as a potential therapeutic target in radiosensitization of NPC cells.
Collapse
Affiliation(s)
- Jun-Ju He
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Zhi Li
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Zhuo-Xian Rong
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Jie Gao
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Yun Mu
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Yi-Di Guan
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Xin-Xin Ren
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Yu-Yuan Zi
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Li-Yu Liu
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Qi Fan
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yu-Mei Duan
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Yue-Zhen Deng
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Lun-Quan Sun
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China.,National Clinical Research Center for Gerontology, Changsha, China
| |
Collapse
|
11
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
12
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
13
|
Zhu T, Brown AP, Ji H. The Emerging Role of Ten-Eleven Translocation 1 in Epigenetic Responses to Environmental Exposures. Epigenet Insights 2020; 13:2516865720910155. [PMID: 32166220 PMCID: PMC7054729 DOI: 10.1177/2516865720910155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Mounting evidence from epidemiological studies and animal models has linked exposures to environmental factors to changes in epigenetic markers, especially in DNA methylation. These epigenetic changes may lead to dysregulation of molecular processes and functions and mediate the impact of environmental exposures in complex diseases. However, detailed molecular events that result in epigenetic changes following exposures remain unclear. Here, we review the emerging evidence supporting a critical role of ten-eleven translocation 1 (TET1) in mediating these processes. Targeting TET1 and its associated pathways may have therapeutic potential in alleviating negative impacts of environmental exposures, preventing and treating exposure-related diseases.
Collapse
Affiliation(s)
- Tao Zhu
- California National Primate Research
Center, University of California, Davis, Davis, CA, USA
| | - Anthony P Brown
- California National Primate Research
Center, University of California, Davis, Davis, CA, USA
| | - Hong Ji
- California National Primate Research
Center, University of California, Davis, Davis, CA, USA
- Department of Anatomy, Physiology &
Cell Biology, School of Veterinary Medicine, University of California, Davis, CA,
USA
| |
Collapse
|
14
|
Chen B, Dai Q, Zhang Q, Yan P, Wang A, Qu L, Jin Y, Zhang D. The relationship among occupational irradiation, DNA methylation status, and oxidative damage in interventional physicians. Medicine (Baltimore) 2019; 98:e17373. [PMID: 31574886 PMCID: PMC6775365 DOI: 10.1097/md.0000000000017373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ionizing radiation can induce deoxyribonucleic acid (DNA) methylation pattern change, and ionizing radiation-induced oxidative damage may also affect DNA methylation status. However, the influence of low-dose ionizing radiation, such as occupational radiation exposure, on DNA methylation is still controversial.By investigating the relationship between occupational radiation exposure and DNA methylation changes, we evaluated whether radiation-induced oxidative damage was related to DNA methylation alterations and then determined the relationship among occupational radiation level, DNA methylation status, and oxidative damage in interventional physicians.The study population included 117 interventional physicians and 117 controls. We measured global methylation levels of peripheral blood leukocyte DNA and expression level of DNA methyltransferase (Dnmts) and homocysteine (Hcy) in serum to assess the DNA methylation status of the body. We measured 8-hydroxy-2'-deoxyguanosine (8-OHDG) and 4-hydroxynonenal (4-HNE) levels as indices of oxidative damage. Relevance analysis between multiple indices can reflect the relationship among occupational radiation exposure, DNA methylation changes, and oxidative damage in interventional physicians.The expression levels of Dnmts, 4-HNE, and 8-OHDG in interventional physicians were higher than those in controls, while there was no statistical difference in total DNA methylation rate and expression of Hcy between interventional physicians and controls. Total cumulative personal dose equivalent in interventional physicians was positively correlated with the expression levels of Dnmts, 8-OHDG, and 4-HNE. The expression levels of 8-OHDG in interventional physicians were negatively correlated with global DNA methylation levels and positively correlated with the expression levels of Hcy.Occupational radiation exposure of interventional physicians has a certain effect on the expression of related enzymes in the process of DNA methylation, while ionizing radiation-induced oxidative damage also has a certain effect on DNA methylation. However, there was no evidence that dose burden of occupational exposure was associated to changes of DNA methylation status of interventional physicians, since it is rather unclear which differences are observed among the effects produced by radiation exposure and oxidative damage.
Collapse
Affiliation(s)
- Bin Chen
- Department of Radiology, HwaMei Hospital, University of Chinese Academy of Sciences
| | - Qi Dai
- Department of Radiology, HwaMei Hospital, University of Chinese Academy of Sciences
| | - Qun Zhang
- Department of Environmental and Occupational Health, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Peng Yan
- Department of Environmental and Occupational Health, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Aihong Wang
- Department of Environmental and Occupational Health, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Linyan Qu
- Department of Environmental and Occupational Health, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| | - Yinhua Jin
- Department of Radiology, HwaMei Hospital, University of Chinese Academy of Sciences
| | - Dandan Zhang
- Department of Environmental and Occupational Health, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, China
| |
Collapse
|
15
|
Kim EJ, Lee M, Kim DY, Kim KI, Yi JY. Mechanisms of Energy Metabolism in Skeletal Muscle Mitochondria Following Radiation Exposure. Cells 2019; 8:E950. [PMID: 31438652 PMCID: PMC6770322 DOI: 10.3390/cells8090950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/09/2019] [Accepted: 08/18/2019] [Indexed: 12/30/2022] Open
Abstract
An understanding of cellular processes that determine the response to ionizing radiation exposure is essential for improving radiotherapy and assessing risks to human health after accidental radiation exposure. Radiation exposure leads to many biological effects, but the mechanisms underlying the metabolic effects of radiation are not well known. Here, we investigated the effects of radiation exposure on the metabolic rate and mitochondrial bioenergetics in skeletal muscle. We show that ionizing radiation increased mitochondrial protein and mass and enhanced proton leak and mitochondrial maximal respiratory capacity, causing an increase in the fraction of mitochondrial respiration devoted to uncoupling reactions. Thus, mice and cells treated with radiation became energetically efficient and displayed increased fatty acid and amino acid oxidation metabolism through the citric acid cycle. Finally, we demonstrate that radiation-induced alterations in mitochondrial energy metabolism involved adenosine monophosphate-activated kinase signaling in skeletal muscle. Together, these results demonstrate that alterations in mitochondrial mass and function are important adaptive responses of skeletal muscle to radiation.
Collapse
Affiliation(s)
- Eun Ju Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea.
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Daejeon 34113, Korea.
| | - Minyoung Lee
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Daejeon 34113, Korea
- Division of Radiation Research Infrastructure Operation, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Da Yeon Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Daejeon 34113, Korea
| | - Kwang Il Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - Jae Youn Yi
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| |
Collapse
|
16
|
Flunkert J, Maierhofer A, Dittrich M, Müller T, Horvath S, Nanda I, Haaf T. Genetic and epigenetic changes in clonal descendants of irradiated human fibroblasts. Exp Cell Res 2018; 370:322-332. [PMID: 29964050 DOI: 10.1016/j.yexcr.2018.06.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
To study delayed genetic and epigenetic radiation effects, which may trigger radiation-induced carcinogenesis, we have established single-cell clones from irradiated and non-irradiated primary human fibroblasts. Stable clones were endowed with the same karyotype in all analyzed metaphases after 20 population doublings (PDs), whereas unstable clones displayed mosaics of normal and abnormal karyotypes. To account for variation in radiation sensitivity, all experiments were performed with two different fibroblast strains. After a single X-ray dose of 2 Gy more than half of the irradiated clones exhibited radiation-induced genome instability (RIGI). Irradiated clones displayed an increased rate of loss of chromosome Y (LOY) and copy number variations (CNVs), compared to controls. CNV breakpoints clustered in specific chromosome regions, in particular 3p14.2 and 7q11.21, coinciding with common fragile sites. CNVs affecting the FHIT gene in FRA3B were observed in independent unstable clones and may drive RIGI. Bisulfite pyrosequencing of control clones and the respective primary culture revealed global hypomethylation of ALU, LINE-1, and alpha-satellite repeats as well as rDNA hypermethylation during in vitro ageing. Irradiated clones showed further reduced ALU and alpha-satellite methylation and increased rDNA methylation, compared to controls. Methylation arrays identified several hundred differentially methylated genes and several enriched pathways associated with in vitro ageing. Methylation changes in 259 genes and the MAP kinase signaling pathway were associated with delayed radiation effects (after 20 PDs). Collectively, our results suggest that both genetic (LOY and CNVs) and epigenetic changes occur in the progeny of exposed cells that were not damaged directly by irradiation, likely contributing to radiation-induced carcinogenesis. We did not observe epigenetic differences between stable and unstable irradiated clones. The fact that the DNA methylation (DNAm) age of clones derived from the same primary culture varied greatly suggests that DNAm age of a single cell (represented by a clone) can be quite different from the DNAm age of a tissue. We propose that DNAm age reflects the emergent property of a large number of individual cells whose respective DNAm ages can be highly variable.
Collapse
Affiliation(s)
- Julia Flunkert
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Anna Maierhofer
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany.
| |
Collapse
|
17
|
Abstract
Next year will mark 60 years since Dr. Leslie Foulds outlined his hypothesis that cancer is "a dynamic process advancing through stages that are qualitatively different," leading the way to our view of cancer progression as we know it today. Our understanding of the mechanisms of these stages has been continuously evolving this past half-century, and there has always been an active discussion of the roles of both genetic and epigenetic changes in directing this progression. In this review, we focus on the roles one particular epigenetic mark-DNA methylation-plays in these various "discontinuous" stages of cancer. Understanding these steps not only gives us a better picture of how this fascinating biological process operates, but also opens the doors to new prognostic biomarkers and therapies against these malignancies.
Collapse
|
18
|
Wei S, Hua HR, Chen QQ, Zhang Y, Chen F, Li SQ, Li F, Li JL. Dynamic changes in DNA demethylation in the tree shrew ( Tupaia belangeri chinensis) brain during postnatal development and aging. Zool Res 2018; 38:96-102. [PMID: 28409505 PMCID: PMC5396032 DOI: 10.24272/j.issn.2095-8137.2017.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5-hydroxymethylcytosine (5hmC) ten-eleven translocation (TET) enzyme-mediated active DNA demethylation products were dynamically changed and involved in postnatal brain development and aging in tree shrews (Tupaia belangeri chinensis). The levels of 5hmC in multiple anatomic structures showed a gradual increase throughout postnatal development, whereas a significant decrease in 5hmC was found in several brain regions in aged tree shrews, including in the prefrontal cortex and hippocampus, but not the cerebellum. Active changes in Tet mRNA levels indicated that TET2 and TET3 predominantly contributed to the changes in 5hmC levels. Our findings provide new insight into the dynamic changes in 5hmC levels in tree shrew brains during postnatal development and aging processes.
Collapse
Affiliation(s)
- Shu Wei
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Hai-Rong Hua
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming Yunnan 650500, China
| | - Qian-Quan Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Ying Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Fei Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; School of Life Science, University of Science and Technology of China, Hefei Anhui 230027, China
| | - Shu-Qing Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming Yunnan 650500, China.
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, Kunming Yunnan 650500, China.
| | - Jia-Li Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.
| |
Collapse
|
19
|
Tharmalingam S, Sreetharan S, Kulesza AV, Boreham DR, Tai TC. Low-Dose Ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programing of Health and Disease. Radiat Res 2017; 188:525-538. [PMID: 28753061 DOI: 10.1667/rr14587.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation exposure from medical diagnostic imaging has greatly increased over the last few decades. Approximately 80% of patients who undergo medical imaging are exposed to low-dose ionizing radiation (LDIR). Although there is widespread consensus regarding the harmful effects of high doses of radiation, the biological effects of low-linear energy transfer (LET) LDIR is not well understood. LDIR is known to promote oxidative stress, however, these levels may not be large enough to result in genomic mutations. There is emerging evidence that oxidative stress causes heritable modifications via epigenetic mechanisms (DNA methylation, histone modification, noncoding RNA regulation). These epigenetic modifications result in permanent cellular transformations without altering the underlying DNA nucleotide sequence. This review summarizes the major concepts in the field of epigenetics with a focus on the effects of low-LET LDIR (<100 mGy) and oxidative stress on epigenetic gene modification. In this review, we show evidence that suggests that LDIR-induced oxidative stress provides a mechanistic link between LDIR and epigenetic gene regulation. We also discuss the potential implication of LDIR exposure during pregnancy where intrauterine fetal development is highly susceptible to oxidative stress-induced epigenetic programing.
Collapse
Affiliation(s)
| | | | - Adomas V Kulesza
- b Department of Biology, McMaster University, Hamilton, Canada, L8S 4K1
| | - Douglas R Boreham
- a Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada, P3E 2C6.,c Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada, L8S 4K1
| | - T C Tai
- a Northern Ontario School of Medicine, Laurentian University, Sudbury, Canada, P3E 2C6
| |
Collapse
|
20
|
Analysis of global DNA methylation changes in primary human fibroblasts in the early phase following X-ray irradiation. PLoS One 2017; 12:e0177442. [PMID: 28489894 PMCID: PMC5425224 DOI: 10.1371/journal.pone.0177442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/27/2017] [Indexed: 01/09/2023] Open
Abstract
Epigenetic alterations may contribute to the generation of cancer cells in a multi-step process of tumorigenesis following irradiation of normal body cells. Primary human fibroblasts with intact cell cycle checkpoints were used as a model to test whether X-ray irradiation with 2 and 4 Gray induces direct epigenetic effects (within the first cell cycle) in the exposed cells. ELISA-based fluorometric assays were consistent with slightly reduced global DNA methylation and hydroxymethylation, however the observed between-group differences were usually not significant. Similarly, bisulfite pyrosequencing of interspersed LINE-1 repeats and centromeric α-satellite DNA did not detect significant methylation differences between irradiated and non-irradiated cultures. Methylation of interspersed ALU repeats appeared to be slightly increased (one percentage point; p = 0.01) at 6 h after irradiation with 4 Gy. Single-cell analysis showed comparable variations in repeat methylation among individual cells in both irradiated and control cultures. Radiation-induced changes in global repeat methylation, if any, were much smaller than methylation variation between different fibroblast strains. Interestingly, α-satellite DNA methylation positively correlated with gestational age. Finally, 450K methylation arrays mainly targeting genes and CpG islands were used for global DNA methylation analysis. There were no detectable methylation differences in genic (promoter, 5' UTR, first exon, gene body, 3' UTR) and intergenic regions between irradiated and control fibroblast cultures. Although we cannot exclude minor effects, i.e. on individual CpG sites, collectively our data suggest that global DNA methylation remains rather stable in irradiated normal body cells in the early phase of DNA damage response.
Collapse
|
21
|
Chen X, Liu L, Mims J, Punska EC, Williams KE, Zhao W, Arcaro KF, Tsang AW, Zhou X, Furdui CM. Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors. Epigenetics 2016; 10:545-61. [PMID: 25961636 DOI: 10.1080/15592294.2015.1048953] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Resistance to radiation therapy constitutes a significant challenge in the treatment of head and neck squamous cell cancer (HNSCC). Alteration in DNA methylation is thought to play a role in this resistance. Here, we analyzed DNA methylation changes in a matched model of radiation resistance for HNSCC using the Illumina HumanMethylation450 BeadChip. Our results show that compared to radiation-sensitive cells (SCC-61), radiation-resistant cells (rSCC-61) had a significant increase in DNA methylation. After combining these results with microarray gene expression data, we identified 84 differentially methylated and expressed genes between these 2 cell lines. Ingenuity Pathway Analysis revealed ILK signaling, glucocorticoid receptor signaling, fatty acid α-oxidation, and cell cycle regulation as top canonical pathways associated with radiation resistance. Validation studies focused on CCND2, a protein involved in cell cycle regulation, which was identified as hypermethylated in the promoter region and downregulated in rSCC-61 relative to SCC-61 cells. Treatment of rSCC-61 and SCC-61 with the DNA hypomethylating agent 5-aza-2'deoxycitidine increased CCND2 levels only in rSCC-61 cells, while treatment with the control reagent cytosine arabinoside did not influence the expression of this gene. Further analysis of HNSCC data from The Cancer Genome Atlas found increased methylation in radiation-resistant tumors, consistent with the cell culture data. Our findings point to global DNA methylation status as a biomarker of radiation resistance in HNSCC, and suggest a need for targeted manipulation of DNA methylation to increase radiation response in HNSCC.
Collapse
Key Words
- 5-Aza, 5-aza-2′deoxycitidine
- AKT, Protein kinase B
- AraC, Cytosine arabinoside
- CCNA1, Cyclin A1
- CCND2, Cyclin D2
- CDK4, Cyclin-dependent kinase 4
- CDKN1A, Cyclin-dependent kinase inhibitor 1A (p21, Cip1)
- DNA methylation
- DNMT, DNA methyltransferase
- EIF2AK2, Eukaryotic translation initiation factor 2-αkinase 2
- FASN, Fatty acid synthase
- GSK-3, Glycogen synthase kinase 3
- Gene expression
- HM450, HumanMethylation450
- HNSCC, Head and neck squamous cell cancer
- Head and neck squamous cell cancer (HNSCC)
- IGFBP3, Insulin-like growth factor-binding protein 3
- ILK, Integrin linked kinase
- IPA, Ingenuity pathway analysis
- IRF1, Interferon regulatory factor 1
- KLF4, Kruppel-like factor 4
- KRT19, Keratin 19, LIPG, Endothelial lipase
- LXR, Liver X receptor
- MGMT, O6-methylguanine DNA methyltransferase
- NFATC2, Nuclear factor of activated t-cells cytoplasmic 2
- PCNA, Proliferating cell nuclear antigen
- PTEN, Phosphatase and tensin homolog
- RXR, Retinoid X receptor
- Radiation resistance
- SAM, S-Adenosylmethionine
- SOCS3, Suppressor of cytokine signaling 3
- STAT1, Signal transducers and activators of transcription 1
- TCGA, The Cancer Genome Atlas
- The Cancer Genome Atlas (TCGA)
- VHL, Von Hippel–Lindau tumor suppressor
- dmCpG, differentially methylated CpG
- hTERT, human telomerase reverse transcriptase
Collapse
Affiliation(s)
- Xiaofei Chen
- a Section on Molecular Medicine; Department of Internal Medicine; Wake Forest School of Medicine ; Winston-Salem , NC , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jiang D, Zhang Y, Hart RP, Chen J, Herrup K, Li J. Alteration in 5-hydroxymethylcytosine-mediated epigenetic regulation leads to Purkinje cell vulnerability in ATM deficiency. Brain 2015; 138:3520-36. [PMID: 26510954 DOI: 10.1093/brain/awv284] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/05/2015] [Indexed: 11/13/2022] Open
Abstract
A long-standing mystery surrounding ataxia-telangiectasia is why it is mainly cerebellar neurons, Purkinje cells in particular, that appear vulnerable to ATM deficiency. Here we present data showing that 5-hydroxymethylcytosine (5hmC), a newly recognized epigenetic marker found at high levels in neurons, is substantially reduced in human ataxia-telangiectasia and Atm(-/-) mouse cerebellar Purkinje cells. We further show that TET1, an enzyme that converts 5-methylcytosine (5mC) to 5hmC, responds to DNA damage and manipulation of TET1 activity directly affects the DNA damage signalling and ATM-deficient neuronal cell cycle re-entry and death. Quantitative genome-wide analysis of 5hmC-containing sequences shows that in ATM deficiency there is a cerebellum- and Purkinje cell-specific shift in 5hmC enrichment in both regulatory elements and repeated sequences. Finally, we verify that TET1-mediated 5hmC production is linked to the degenerative process of Purkinje cells and behavioural deficits in Atm(-/-) mice. Taken together, the selective loss of 5hmC plays a critical role in driving Purkinje cell vulnerability in ATM deficiency.
Collapse
Affiliation(s)
- Dewei Jiang
- 1 Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China 2 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Ying Zhang
- 1 Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Ronald P Hart
- 3 Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Jianmin Chen
- 3 Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Karl Herrup
- 4 Division of Life Science and the State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiali Li
- 1 Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| |
Collapse
|
23
|
Cacan E, Greer SF, Garnett-Benson C. Radiation-induced modulation of immunogenic genes in tumor cells is regulated by both histone deacetylases and DNA methyltransferases. Int J Oncol 2015; 47:2264-75. [PMID: 26458736 DOI: 10.3892/ijo.2015.3192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/16/2015] [Indexed: 11/06/2022] Open
Abstract
Radiation treatment is a pivotal therapy for several cancer types, including colorectal cancer. It has been shown that sublethal doses of radiation modulate gene expression, making tumor cells more susceptible to T-cell-mediated immune attack. We have recently shown that low dose radiation enhances expression of multiple death receptors (Fas, DR4 and DR5) and co-stimulatory molecules (4-1BBL and OX-40L) in colorectal cancer (CRC) cells; however, it is unclear how ionizing radiation (IR) enhances expression of these molecules mechanistically. In the present study, we elucidate the molecular mechanisms by which radiation controls expression of these molecules in CRC. Here we report that, enhanced expression of these genes following radiation treatment of CRC cells is due, in part, to changes in DNA methylation and histone acetylation. We observed that radiation (5 Gy) significantly increased histone acetylation at the promoter regions of 4-1BBL, Fas and DR5 but not OX-40L. However, radiation did not induce changes in the global levels of acetylated histone H3 suggesting specificity of IR-induced changes. Furthermore, evaluation of epigenetic controlling enzymes revealed that IR did not alter overall cellular levels of HDACs (HDAC1, HDAC2 or HDAC3) or DNMTs (DNMT1, DNMT3a, or DNMT3b). Instead, radiation decreased binding of HDAC2 and HDAC3 at the promoter regions of Fas and 4-1BBL, respectively. Radiation also resulted in reduced DNMT1 at both the Fas and 4-1BBL promoter regions but not a control gene. We conclude that single dose radiation can influence the expression of immune response relevant genes in colorectal tumor cells by altering the binding of epigenetic enzymes, and modulating histone acetylation, at specific gene promoters.
Collapse
Affiliation(s)
- Ercan Cacan
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | - Susanna F Greer
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | |
Collapse
|
24
|
Juo YY, Gong XJ, Mishra A, Cui X, Baylin SB, Azad NS, Ahuja N. Epigenetic therapy for solid tumors: from bench science to clinical trials. Epigenomics 2015; 7:215-35. [PMID: 25942532 DOI: 10.2217/epi.14.73] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cancer epigenome is characterized by global DNA methylation and chromatin changes, such as the hypermethylation of specific CpG island promoters. Epigenetic agents like DNA methyltransferase or histone deacetylase inhibitors induce phenotype changes by reactivation of epigenetically silenced tumor suppressor genes. Despite initial promise in hematologic malignancies, epigenetic agents have not shown significant efficacy as monotherapy against solid tumors. Recent trials showed that epigenetic agents exert favorable modifier effects when combined with chemotherapy, hormonal therapy, or other epigenetic agents. Due to the novel nature of their mechanism, it is important to reconsider the optimal patient selection, drug regimen, study design, and outcome measures when pursuing future trials in order to discover the full potential of this new therapeutic modality.
Collapse
Affiliation(s)
- Yen-Yi Juo
- Department of Surgery, George Washington University Medical Center, 2150 Pennsylvania Ave. NW, Suite 6B, Washington, DC 20037, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Nie J, Peng C, Pei W, Zhu W, Zhang S, Cao H, Qi X, Tong J, Jiao Y. A novel role of long non-coding RNAs in response to X-ray irradiation. Toxicol In Vitro 2015; 30:536-44. [PMID: 26363204 DOI: 10.1016/j.tiv.2015.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/05/2015] [Accepted: 09/07/2015] [Indexed: 01/30/2023]
Abstract
In the present study, the role of lncRNAs in response to radiation-induced DNA damage and oxidative stress were explored to improve our understanding of the biological pathways activated upon radiation-induced toxicity. The toxicity of X-ray radiation on human bronchial epithelial cell lines (HBE) was determined through a dose-dependent increase in ROS production and γ-H2AX formation and changes to lncRNA expression was observed and quantified using lncRNA-specific microarrays. 115 lncRNAs expression was increased in a dose-dependent manner following X-ray irradiation. Bioinformatic prediction algorithms determined that these lncRNAs significantly affect the p53 signaling pathway, and, more specifically, the BRCA 1 transcription factor and coding genes adjacent to BRCA 1. Our results highlight a previously uncharacterized role for lncRNAs to act via the p53-pathway in response to X-ray-induced DNA damage, and suggest lncRNAs may serve as novel indicators for radiation toxicity.
Collapse
Affiliation(s)
- Jihua Nie
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China; School of Public Health, Medical College of Soochow University, Suzhou 215123, P. R. China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou 215123, P. R. China
| | - Chaojun Peng
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Weiwei Pei
- School of Public Health, Medical College of Soochow University, Suzhou 215123, P. R. China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou 215123, P. R. China
| | - Wei Zhu
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Han Cao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Xiaofei Qi
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China
| | - Jian Tong
- School of Public Health, Medical College of Soochow University, Suzhou 215123, P. R. China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou 215123, P. R. China.
| | - Yang Jiao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China; Department of Radiation Genetics, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123,P. R. China.
| |
Collapse
|
26
|
Lattanzio L, Lo Nigro C. Epigenetics and DNA methylation in cancer. World J Transl Med 2015; 4:11-24. [DOI: 10.5528/wjtm.v4.i1.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/10/2014] [Accepted: 03/20/2015] [Indexed: 02/05/2023] Open
Abstract
Epigenetic is the study of those alterations regulating gene expression without altering DNA sequence and inherited by transmission through cell division. Mutational and epimutational events that alterate cellular growth and division are combined in carcinogenesis. Advances in genome and epigenome-wide analysis identify DNA hypomethylation, hypermethylation of tumor suppressor genes, aberrant histone modifications and/or specific miRNA expression profiles to contribute to tumor initiation and progression. The major challenge for cancer researchers is to enlighten the complex relationship between the epigenetic and genetic machinery in order to optimize combined therapies, reducing chemoresistance and minimizing adverse effects in cancer patients. In this review we will cover many distinct aspects of epigenetic phenomenon. Firstly, we will globally explain the most common epigenetic events and their effects on gene expression regulation. Secondly, we will review the evidence of the correlation between epigenetics and cancer progression, focusing in particular on the effect of aberrant hypo- and hyper-methylation. We will also consider the main methods currently used for methylation analysis, covering both locus-specific technologies and genome-wide analysis. Finally, we will discuss the introduction of novel epigenetic drugs in combination with conventional treatments in order to develop more effective cancer therapies. Such information could help in understanding the important role of epigenetics in cancer.
Collapse
|
27
|
Kim JS, Kim SY, Lee M, Kim SH, Kim SM, Kim EJ. Radioresistance in a human laryngeal squamous cell carcinoma cell line is associated with DNA methylation changes and topoisomerase II α. Cancer Biol Ther 2015; 16:558-66. [PMID: 25719218 DOI: 10.1080/15384047.2015.1017154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence suggests that changes in methylation patterns may help mediate the sensitivity or resistance of cancer cells to ionizing radiation. The present study provides evidence for the involvement of radioresistance-induced DNA methylation changes in tumor radioresistance. We established radioresistant laryngeal cancer cells via long-term fractionated irradiation, and examined differences in DNA methylation between control and radioresistant laryngeal cancer cells. Interestingly, we found that the promoter-CpG islands of 5 previously identified radioresistance-related genes (TOPO2A, PLXDC2, ETNK2, GFI1, and IL12B) were significantly altered in the radioresistant laryngeal cancer cells. Furthermore, the demethylation of these gene promoters with a DNA methyltransferase inhibitor (5-aza-2'-deoxycytidine) increased their transcription levels. Treatment with 5-aza-2'-deoxycytidine also sensitized the radioresistant laryngeal cancer cells to irradiation, indicating that changes in DNA methylation contributed to their radioresistance. Of the tested genes, the expression and activity levels of TOPO2A were tightly associated with the radioresistant phenotype in our system, suggesting that the hypermethylation of TOPO2A might be involved in this radioresistance. Collectively, our data suggest that radiation-induced epigenetic changes can modulate the radioresistance of laryngeal cancer cells, and thus may prove useful as prognostic indicators for radiotherapy.
Collapse
Affiliation(s)
- Jae-Sung Kim
- a Division of Radiation Cancer Research; Korea Institute of Radiological & Medical Sciences ; Seoul , Korea
| | | | | | | | | | | |
Collapse
|
28
|
Saito Y, Abiko R, Kishida A, Kuwahara Y, Yamamoto Y, Yamamoto F, Fukumoto M, Ohkubo Y. Loss of EGF-dependent cell proliferation ability on radioresistant cell HepG2-8960-R. Cell Biochem Funct 2015; 33:73-9. [PMID: 25663666 DOI: 10.1002/cbf.3090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 01/29/2023]
Abstract
Acquired radioresistance of cancer cells interferes with radiotherapy and increases the probability of cancer recurrence. HepG2-8960-R, which is one of several clinically relevant radioresistant (CRR) cell lines, has a high tolerance to the repeated clinically relevant doses of X-ray radiation. In this study, HepG2-8960-R had slightly lower cell proliferation ability than HepG2 in the presence of FBS. In particular, epidermal growth factor (EGF) hardly enhanced cell proliferation and DNA synthesis in HepG2-8960-R. Additionally, EGF could not induce the activation of Erk1/2, because the expression of EGF receptor (EGFR) protein decreased in HepG2-8960-R in accordance with the methylation of the EGFR promoter region. Therefore, cetuximab did not inhibit HepG2-8960-R cell proliferation. Our study showed that HepG2-8960-R had radioresistant and cetuximab-resistant abilities.
Collapse
Affiliation(s)
- Yohei Saito
- Department of Radiopharmacy, Tohoku Pharmaceutical University, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bae JH, Kim JG, Heo K, Yang K, Kim TO, Yi JM. Identification of radiation-induced aberrant hypomethylation in colon cancer. BMC Genomics 2015; 16:56. [PMID: 25887185 PMCID: PMC4342812 DOI: 10.1186/s12864-015-1229-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 01/09/2015] [Indexed: 12/22/2022] Open
Abstract
Background Exposure to ionizing radiation (IR) results in the simultaneous activation or downregulation of multiple signaling pathways that play critical roles in cell type-specific control of survival or death. IR is a well-known genotoxic agent and human carcinogen that induces cellular damage through direct and indirect mechanisms. However, its impact on epigenetic mechanisms has not been elucidated, and more specifically, little information is available regarding genome-wide DNA methylation changes in cancer cells after IR exposure. Recently, genome-wide DNA methylation profiling technology using the Illumina HumanMethylation450K platform has emerged that allows us to query >450,000 loci within the genome. This improved technology is capable of identifying genome-wide DNA methylation changes in CpG islands and other CpG island-associated regions. Results In this study, we employed this technology to test the hypothesis that exposure to IR not only induces differential DNA methylation patterns at a genome-wide level, but also results in locus- and gene-specific DNA methylation changes. We screened for differential DNA methylation changes in colorectal cancer cells after IR exposure with 2 and 5 Gy. Twenty-nine genes showed radiation-induced hypomethylation in colon cancer cells, and of those, seven genes showed a corresponding increase in gene expression by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, we performed chromatin immunoprecipitation (ChIP) to confirm that the DNA-methyltransferase 1 (DNMT1) level associated with the promoter regions of these genes correlated with their methylation level and gene expression changes. Finally, we used a gene ontology (GO) database to show that a handful of hypomethylated genes induced by IR are associated with a variety of biological pathways related to cancer. Conclusion We identified alterations in global DNA methylation patterns and hypomethylation at specific cancer-related genes following IR exposure, which suggests that radiation exposure plays a critical role in conferring epigenetic alterations in cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1229-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin-Han Bae
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| | - Joong-Gook Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea. .,Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul, 139-709, Korea.
| | - Tae-Oh Kim
- Department of Internal Medicine, Inje University Haeundae Paik hospital, Busan, 612-896, South Korea.
| | - Joo Mi Yi
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| |
Collapse
|
30
|
Abstract
Head and neck cancers are characterized by both genetic and epigenetic aberrations. In treating head and neck cancers, ionizing radiation (IR) is an essential modality in either definitive or adjuvant setting. However, radiation-resistant head and neck cancers are not uncommon. The major biological determinator for IR resistance was previously considered at genetic level because DNA is the major target of irradiation damage. However, in head and neck cancers, recent evidence demonstrated epigenetic disturbance after IR, implicating its role in IR resistance. Hence, this chapter intends to establish an in vitro model for investigating DNA methylation changes in IR-resistant head and neck cancer cells. Bisulfite pyrosequencing is the main methodology it introduced.
Collapse
|
31
|
Weigel C, Schmezer P, Plass C, Popanda O. Epigenetics in radiation-induced fibrosis. Oncogene 2014; 34:2145-55. [PMID: 24909163 DOI: 10.1038/onc.2014.145] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 02/06/2023]
Abstract
Radiotherapy is a major cancer treatment option but dose-limiting side effects such as late-onset fibrosis in the irradiated tissue severely impair quality of life in cancer survivors. Efforts to explain radiation-induced fibrosis, for example, by genetic variation remained largely inconclusive. Recently published molecular analyses on radiation response and fibrogenesis showed a prominent role of epigenetic gene regulation. This review summarizes the current knowledge on epigenetic modifications in fibrotic disease and radiation response, and it points out the important role for epigenetic mechanisms such as DNA methylation, microRNAs and histone modifications in the development of this disease. The synopsis illustrates the complexity of radiation-induced fibrosis and reveals the need for investigations to further unravel its molecular mechanisms. Importantly, epigenetic changes are long-term determinants of gene expression and can therefore support those mechanisms that induce and perpetuate fibrogenesis even in the absence of the initial damaging stimulus. Future work must comprise the interconnection of acute radiation response and long-lasting epigenetic effects in order to assess their role in late-onset radiation fibrosis. An improved understanding of the underlying biology is fundamental to better comprehend the origin of this disease and to improve both preventive and therapeutic strategies.
Collapse
Affiliation(s)
- C Weigel
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Schmezer
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Plass
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - O Popanda
- Department of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Halvorsen AR, Helland A, Fleischer T, Haug KM, Grenaker Alnaes GI, Nebdal D, Syljuåsen RG, Touleimat N, Busato F, Tost J, Saetersdal AB, Børresen-Dale AL, Kristensen V, Edvardsen H. Differential DNA methylation analysis of breast cancer reveals the impact of immune signaling in radiation therapy. Int J Cancer 2014; 135:2085-95. [PMID: 24658971 PMCID: PMC4298788 DOI: 10.1002/ijc.28862] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/27/2014] [Accepted: 03/12/2014] [Indexed: 01/26/2023]
Abstract
Radiotherapy (RT) is a central treatment modality for breast cancer patients. The purpose of our study was to investigate the DNA methylation changes in tumors following RT, and to identify epigenetic markers predicting treatment outcome. Paired biopsies from patients with inoperable breast cancer were collected both before irradiation (n = 20) and after receiving 10-24 Gray (Gy) (n = 19). DNA methylation analysis was performed by using Illumina Infinium 27K arrays. Fourteen genes were selected for technical validation by pyrosequencing. Eighty-two differentially methylated genes were identified in irradiated (n = 11) versus nonirradiated (n = 19) samples (false discovery rate, FDR = 1.1%). Methylation levels in pathways belonging to the immune system were most altered after RT. Based on methylation levels before irradiation, a panel of five genes (H2AFY, CTSA, LTC4S, IL5RA and RB1) were significantly associated with clinical response (p = 0.041). Furthermore, the degree of methylation changes for 2,516 probes correlated with the given radiation dose. Within the 2,516 probes, an enrichment for pathways involved in cellular immune response, proliferation and apoptosis was identified (FDR < 5%). Here, we observed clear differences in methylation levels induced by radiation, some associated with response to treatment. Our study adds knowledge on the molecular mechanisms behind radiation response.
Collapse
Affiliation(s)
- Ann Rita Halvorsen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
O’Hagan HM. Chromatin modifications during repair of environmental exposure-induced DNA damage: a potential mechanism for stable epigenetic alterations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:278-91. [PMID: 24259318 PMCID: PMC4020002 DOI: 10.1002/em.21830] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 05/22/2023]
Abstract
Exposures to environmental toxicants and toxins cause epigenetic changes that likely play a role in the development of diseases associated with exposure. The mechanism behind these exposure-induced epigenetic changes is currently unknown. One commonality between most environmental exposures is that they cause DNA damage either directly or through causing an increase in reactive oxygen species, which can damage DNA. Like transcription, DNA damage repair must occur in the context of chromatin requiring both histone modifications and ATP-dependent chromatin remodeling. These chromatin changes aid in DNA damage accessibility and signaling. Several proteins and complexes involved in epigenetic silencing during both development and cancer have been found to be localized to sites of DNA damage. The chromatin-based response to DNA damage is considered a transient event, with chromatin being restored to normal as DNA damage repair is completed. However, in individuals chronically exposed to environmental toxicants or with chronic inflammatory disease, repeated DNA damage-induced chromatin rearrangement may ultimately lead to permanent epigenetic alterations. Understanding the mechanism behind exposure-induced epigenetic changes will allow us to develop strategies to prevent or reverse these changes. This review focuses on epigenetic changes and DNA damage induced by environmental exposures, the chromatin changes that occur around sites of DNA damage, and how these transient chromatin changes may lead to heritable epigenetic alterations at sites of chronic exposure.
Collapse
Affiliation(s)
- Heather M. O’Hagan
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN
| |
Collapse
|
34
|
Chaudhry MA. Radiation-induced microRNA: Discovery, functional analysis, and cancer radiotherapy. J Cell Biochem 2014; 115:436-49. [DOI: 10.1002/jcb.24694] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 12/26/2022]
Affiliation(s)
- M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences; University of Vermont; Burlington Vermont 05405
| |
Collapse
|
35
|
Kim JE, Lee MH, Cho EJ, Kim JH, Chung BY, Kim JH. Characterization of non-CG genomic hypomethylation associated with gamma-ray-induced suppression of CMT3 transcription in Arabidopsis thaliana. Radiat Res 2013; 180:638-48. [PMID: 24279389 DOI: 10.1667/rr13394.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing radiation causes various epigenetic changes, as well as a variety of DNA lesions such as strand breaks, cross-links, oxidative damages, etc., in genomes. However, radiation-induced epigenetic changes have rarely been substantiated in plant genomes. The current study investigates whether DNA methylation of Arabidopsis thaliana genome is altered by gamma rays. We found that genomic DNA methylation decreased in wild-type plants with increasing doses of gamma rays (5, 50 and 200 Gy). Irradiation with 200 Gy significantly increased the expression of transcriptionally inactive centromeric 180-bp (CEN) and transcriptionally silent information (TSI) repeats. This increase suggested that there was a substantial release of transcriptional gene silencing by gamma rays, probably by induction of DNA hypomethylation. High expression of the DNA demethylase ROS1 and low expression of the DNA methyltransferase CMT3 supported this hypothesis. Moreover, Southern blot analysis following digestion of genomic DNA with methylation-sensitive enzymes revealed that the DNA hypomethylation occured preferentially at CHG or CHH sites rather than CG sites, depending on the radiation dose. Unlike CEN and TSI repeats, the number of Ta3, AtSN1 and FWA repeats decreased in transcription but increased in non-CG methylation. In addition, the cmt3-11 mutant showed neither DNA hypomethylation nor transcriptional activation of silenced repeats upon gamma irradiation. Furthermore, profiles of genome-wide transcriptomes in response to gamma rays differed between the wild-type and cmt3-11 mutant. These results suggest that gamma irradiation induced DNA hypomethylation preferentially at non-CG sites of transcriptionally inactive repeats in a locus-specific manner, which depends on CMT3 activity.
Collapse
Affiliation(s)
- Ji Eun Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Genmgu-gil, Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
de Arruda ITS, Persuhn DC, de Oliveira NFP. The MTHFR C677T polymorphism and global DNA methylation in oral epithelial cells. Genet Mol Biol 2013; 36:490-3. [PMID: 24385849 PMCID: PMC3873177 DOI: 10.1590/s1415-47572013005000035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/16/2013] [Indexed: 11/25/2022] Open
Abstract
DNA methylation is mediated by DNA methyltransferases (DNMTs) that add a methyl group to the 5′-carbon of cytosine. The enzyme methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate in the rate-limiting step of the cycle involving the methyl donor S-adenosyl-L-methionine (SAM). The MTHFR C677T polymorphism results in a thermolabile enzyme with reduced activity that is predicted to influence the DNA methylation status. In this study, we investigated the impact of the MTHFR C677T polymorphism on the global DNA methylation of oral epithelial cells obtained from 54 healthy subjects. There were no significant differences in global DNA methylation among the MTHFR CC, CT and TT genotypes (p = 0.75; Kruskal-Wallis test).
Collapse
Affiliation(s)
- Isabela Tatiana Sales de Arruda
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Darlene Camati Persuhn
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | - Naila Francis Paulo de Oliveira
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| |
Collapse
|
37
|
Chaudhry MA, Omaruddin RA, Brumbaugh CD, Tariq MA, Pourmand N. Identification of radiation-induced microRNA transcriptome by next-generation massively parallel sequencing. JOURNAL OF RADIATION RESEARCH 2013; 54:808-822. [PMID: 23447695 PMCID: PMC3766286 DOI: 10.1093/jrr/rrt014] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 05/29/2023]
Abstract
Gene regulation in cells exposed to ionizing radiation (IR) occurs at the transcriptional and post-transcriptional levels. Recent studies have suggested that micro-RNA (miRNA) play a significant role in post-transcriptional gene regulation in irradiated cells. miRNA are RNA molecules 18-24 nucleotides in length that are involved in negatively regulating the stability or translation of target messenger RNA. Previous studies from our laboratory have shown that the expression of various miRNA is altered in IR-treated cells. In the present study we monitored genome-wide expression changes of miRNA transcriptome by massively parallel sequencing of human cells irradiated with X-rays. The baseline expression of 402 miRNA indicated a wide range of modulation without exposure to IR. Differences in the expression of many miRNA were observed in a time-dependent fashion following radiation treatment. The Short Time-series Expression Miner (STEM) clustering tool was used to characterize 190 miRNA to six statistically significant temporal expression profiles. miR-19b and miR-93 were induced and miR-222, miR-92a, and miR-941 were repressed after radiation treatment. miR-142-3p, miR-142-5p, miR-107, miR-106b, miR-191, miR-21, miR-26a, miR-182, miR-16, miR-146a, miR-22 and miR-30e exhibited two peaks of induction: one at 8 h and the other at 24 h post-irradiation. miR-378, miR-let-7a, miR-let-7g, miR-let-7f, miR-103b, miR-486-3p, miR-423-5p, miR-4448, miR-3607-5p, miR-20b, miR-130b, miR-155, miR-181, miR-30d and miR-378c were induced only at the 8-h time-point. This catalogue of the inventory of miRNA that are modulated as a response to radiation exposure will be useful for explaining the mechanisms of gene regulation under conditions of stress.
Collapse
Affiliation(s)
- M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Romaica A. Omaruddin
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Christopher D. Brumbaugh
- Department of Biomolecular Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Muhammad A. Tariq
- Department of Biomolecular Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nader Pourmand
- Department of Biomolecular Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
38
|
Epigenetics meets radiation biology as a new approach in cancer treatment. Int J Mol Sci 2013; 14:15059-73. [PMID: 23873297 PMCID: PMC3742287 DOI: 10.3390/ijms140715059] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease that results from both genetic and epigenetic changes. In recent decades, a number of people have investigated the disparities in gene expression resulting from variable DNA methylation alteration and chromatin structure modification in response to the environment. Especially, colon cancer is a great model system for investigating the epigenetic mechanism for aberrant gene expression alteration. Ionizing radiation (IR) could affect a variety of processes within exposed cells and, in particular, cause changes in gene expression, disruption of cell cycle arrest, and apoptotic cell death. Even though there is growing evidence on the importance of epigenetics and biological processes induced by radiation exposure in various cancer types including colon cancer, specific epigenetic alterations induced by radiation at the molecular level are incompletely defined. This review focuses on discussing possible IR-mediated changes of DNA methylation and histone modification in cancer.
Collapse
|
39
|
Antwih DA, Gabbara KM, Lancaster WD, Ruden DM, Zielske SP. Radiation-induced epigenetic DNA methylation modification of radiation-response pathways. Epigenetics 2013; 8:839-48. [PMID: 23880508 DOI: 10.4161/epi.25498] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DNA methylation can regulate gene expression and has been shown to modulate cancer cell biology and chemotherapy resistance. Therapeutic radiation results in a biological response to counter the subsequent DNA damage and genomic stress in order to avoid cell death. In this study, we analyzed DNA methylation changes at>450,000 loci to determine a potential epigenetic response to ionizing radiation in MDA-MB-231 cells. Cells were irradiated at 2 and 6 Gy and analyzed at 7 time points from 1-72 h. Significantly differentially methylated genes were enriched in gene ontology categories relating to cell cycle, DNA repair, and apoptosis pathways. The degree of differential methylation of these pathways varied with radiation dose and time post-irradiation in a manner consistent with classical biological responses to radiation. A cell cycle arrest was observed 24 h post-irradiation and DNA damage, as measured by γH2AX, resolved at 24 h. In addition, cells showed low levels of apoptosis 2-48 h post-6 Gy and cellular senescence became significant at 72 h post-irradiation. These DNA methylation changes suggest an epigenetic role in the cellular response to radiation.
Collapse
Affiliation(s)
- Deborah A Antwih
- Department of Radiation Oncology; Wayne State University and Karmanos Cancer Institute; Detroit, MI USA
| | | | | | | | | |
Collapse
|
40
|
Expression pattern of small nucleolar RNA host genes and long non-coding RNA in X-rays-treated lymphoblastoid cells. Int J Mol Sci 2013; 14:9099-110. [PMID: 23698766 PMCID: PMC3676775 DOI: 10.3390/ijms14059099] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 01/02/2023] Open
Abstract
A wide variety of biological effects are induced in cells that are exposed to ionizing radiation. The expression changes of coding mRNA and non-coding micro-RNA have been implicated in irradiated cells. The involvement of other classes of non-coding RNAs (ncRNA), such as small nucleolar RNAs (snoRNAs), long ncRNAs (lncRNAs), and PIWI-interacting RNAs (piRNAs) in cells recovering from radiation-induced damage has not been examined. Thus, we investigated whether these ncRNA were undergoing changes in cells exposed to ionizing radiation. The modulation of ncRNAs expression was determined in human TK6 (p53 positive) and WTK1 (p53 negative) cells. The snoRNA host genes SNHG1, SNHG6, and SNHG11 were induced in TK6 cells. In WTK1 cells, SNHG1 was induced but SNHG6, and SNHG11 were repressed. SNHG7 was repressed in TK6 cells and was upregulated in WTK1 cells. The lncRNA MALAT1 and SOX2OT were induced in both TK6 and WTK1 cells and SRA1 was induced in TK6 cells only. Interestingly, the MIAT and PIWIL1 were not expressed in TK6 cells before or after the ionizing radiation treatment. The MIAT and PIWIL1 were upregulated in WTK1 cells. This data provides evidence that altered ncRNA expression is a part of the complex stress response operating in radiation-treated cells and this response depends on functional p53.
Collapse
|
41
|
Lee JR, Kim HS. Radiation-induced retroelement-mediated genomic instability. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-012-0008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|