1
|
Jalali-Zefrei F, Mousavi SM, Delpasand K, Shourmij M, Farzipour S. Role of Non-coding RNAs on the Radiotherapy Sensitivity and Resistance in Cancer Cells. Curr Gene Ther 2025; 25:113-135. [PMID: 38676526 DOI: 10.2174/0115665232301727240422092311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
Radiotherapy (RT) is an integral part of treatment management in cancer patients. However, one of the limitations of this treatment method is the resistance of cancer cells to radiotherapy. These restrictions necessitate the introduction of modalities for the radiosensitization of cancer cells. It has been shown that Noncoding RNAs (ncRNAs), along with modifiers, can act as radiosensitivity and radioresistant regulators in a variety of cancers by affecting double strand break (DSB), wnt signaling, glycolysis, irradiation induced apoptosis, ferroptosis and cell autophagy. This review will provide an overview of the latest research on the roles and regulatory mechanisms of ncRNA after RT in in vitro and preclinical researches.
Collapse
Affiliation(s)
- Fatemeh Jalali-Zefrei
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Mehdi Mousavi
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kourosh Delpasand
- Razi Clinical Research Development Unit, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shourmij
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Soghra Farzipour
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
2
|
Saha B, Pallatt S, Banerjee A, Banerjee AG, Pathak R, Pathak S. Current Insights into Molecular Mechanisms and Potential Biomarkers for Treating Radiation-Induced Liver Damage. Cells 2024; 13:1560. [PMID: 39329744 PMCID: PMC11429644 DOI: 10.3390/cells13181560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Highly conformal delivery of radiation therapy (RT) has revolutionized the treatment landscape for primary and metastatic liver cancers, yet concerns persist regarding radiation-induced liver disease (RILD). Despite advancements, RILD remains a major dose-limiting factor due to the potential damage to normal liver tissues by therapeutic radiation. The toxicity to normal liver tissues is associated with a multitude of physiological and pathological consequences. RILD unfolds as multifaceted processes, intricately linking various responses, such as DNA damage, oxidative stress, inflammation, cellular senescence, fibrosis, and immune reactions, through multiple signaling pathways. The DNA damage caused by ionizing radiation (IR) is a major contributor to the pathogenesis of RILD. Moreover, current treatment options for RILD are limited, with no established biomarker for early detection. RILD diagnosis often occurs at advanced stages, highlighting the critical need for early biomarkers to adjust treatment strategies and prevent liver failure. This review provides an outline of the diverse molecular and cellular mechanisms responsible for the development of RILD and points out all of the available biomarkers for early detection with the aim of helping clinicians decide on advance treatment strategies from a single literature recourse.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sneha Pallatt
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Abhijit G. Banerjee
- R&D, Genomic Bio-Medicine Research and Incubation (GBMRI), Durg 491001, Chhattisgarh, India
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| |
Collapse
|
3
|
Jia M, Wang Z, Liu X, Zhang H, Fan Y, Cai D, Li Y, Shen L, Wang Z, Wang Q, Qi Z. Serum miR-192-5p is a promising biomarker for lethal radiation injury. Toxicol Lett 2024; 399:43-51. [PMID: 39032790 DOI: 10.1016/j.toxlet.2024.07.911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
In the event of a nuclear or radiation accident, rapid identification is required for those who exposed to potentially lethal dose irradiation. However, existing techniques are not adequate for the classification of lethal injury. Several studies have explored the potential of miRNAs as biomarkers for ionizing radiation injury, however, there are few miRNAs with specific expression for lethal radiation injury. Therefore, the aim of this study was to screen and validate the possibility of serum miRNAs as biomarkers of lethal radiation injury. We found the specific expression of mmu-miR-374c-5p / mmu-miR-194-5p on first day and mmu-miR-192-5p / mmu-miR-223-3p on third day in the mouse serum only under 10 Gy irradiation by miRNA sequencing and all significantly correlated with lymphocyte counts by Pearson's correlation analysis. In addition, it was found that among the 4 candidate serum miRNAs, only highly-expressed mmu-miR-192-5p in mouse serum irradiated at lethal doses was returned to sham-like expression levels at 3 days post-irradiation with amifostine pretreatment and closely correlated with survival rate. We demonstrated for the first time that mmu-miR-192-5p screened from lethally irradiated mice sera can be used as a potential biomarker for lethal irradiation injury, which will be helpful to improve efficiency of medical treatment to minimize casualties after a large-scale nuclear accident.
Collapse
Affiliation(s)
- Meng Jia
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Zhanyu Wang
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Xin Liu
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Hong Zhang
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ying Fan
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Dan Cai
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yaqiong Li
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Liping Shen
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Zhidong Wang
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Qi Wang
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Zhenhua Qi
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
4
|
Jenni R, Chikhaoui A, Nabouli I, Zaouak A, Khanchel F, Hammami-Ghorbel H, Yacoub-Youssef H. Differential Expression of ATM, NF-KB, PINK1 and Foxo3a in Radiation-Induced Basal Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24087181. [PMID: 37108343 PMCID: PMC10138907 DOI: 10.3390/ijms24087181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Research in normal tissue radiobiology is in continuous progress to assess cellular response following ionizing radiation exposure especially linked to carcinogenesis risk. This was observed among patients with a history of radiotherapy of the scalp for ringworm who developed basal cell carcinoma (BCC). However, the involved mechanisms remain largely undefined. We performed a gene expression analysis of tumor biopsies and blood of radiation-induced BCC and sporadic patients using reverse transcription-quantitative PCR. Differences across groups were assessed by statistical analysis. Bioinformatic analyses were conducted using miRNet. We showed a significant overexpression of the FOXO3a, ATM, P65, TNF-α and PINK1 genes among radiation-induced BCCs compared to BCCs in sporadic patients. ATM expression level was correlated with FOXO3a. Based on receiver-operating characteristic curves, the differentially expressed genes could significantly discriminate between the two groups. Nevertheless, TNF-α and PINK1 blood expression showed no statistical differences between BCC groups. Bioinformatic analysis revealed that the candidate genes may represent putative targets for microRNAs in the skin. Our findings may yield clues as to the molecular mechanism involved in radiation-induced BCC, suggesting that deregulation of ATM-NF-kB signaling and PINK1 gene expression may contribute to BCC radiation carcinogenesis and that the analyzed genes could represent candidate radiation biomarkers associated with radiation-induced BCC.
Collapse
Affiliation(s)
- Rim Jenni
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Asma Chikhaoui
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Imen Nabouli
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| | - Anissa Zaouak
- Department of Dermatology, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Fatma Khanchel
- Anatomopathology Department, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Houda Hammami-Ghorbel
- Department of Dermatology, Habib Thameur Hospital (LR12SP03), Medicine Faculty, University Tunis El Manar, Tunis 1008, Tunisia
| | - Houda Yacoub-Youssef
- Laboratory of Biomedical Genomics and Oncogenetics (LR16IPT05), Institut Pasteur de Tunis, University Tunis El Manar, Tunis1002, Tunisia
| |
Collapse
|
5
|
Zhou YJ, Tang Y, Liu SJ, Zeng PH, Qu L, Jing QC, Yin WJ. Radiation-induced liver disease: beyond DNA damage. Cell Cycle 2023; 22:506-526. [PMID: 36214587 PMCID: PMC9928481 DOI: 10.1080/15384101.2022.2131163] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022] Open
Abstract
Radiation-induced liver disease (RILD), also known as radiation hepatitis, is a serious side effect of radiotherapy (RT) for hepatocellular carcinoma. The therapeutic dose of RT can damage normal liver tissue, and the toxicity that accumulates around the irradiated liver tissue is related to numerous physiological and pathological processes. RILD may restrict treatment use or eventually deteriorate into liver fibrosis. However, the research on the mechanism of radiation-induced liver injury has seen little progress compared with that on radiation injury in other tissues, and no targeted clinical pharmacological treatment for RILD exists. The DNA damage response caused by ionizing radiation plays an important role in the pathogenesis and development of RILD. Therefore, in this review, we systematically summarize the molecular and cellular mechanisms involved in RILD. Such an analysis is essential for preventing the occurrence and development of RILD and further exploring the potential treatment of this disease.
Collapse
Affiliation(s)
- Ying Jie Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Si Jian Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng Hui Zeng
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Qu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Cheng Jing
- The Affiliated Changsha Central Hospital, Department of Otolaryngology Head and Neck Surgery,Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Wen Jun Yin
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, China
| |
Collapse
|
6
|
Li JJ, Xu L, Wang CL, Niu JW, Zou X, Feng XQ, Lu RJ. Changes in patient peripheral blood cell microRNAs after total body irradiation during hematopoietic stem cell transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:857. [PMID: 36110996 PMCID: PMC9469155 DOI: 10.21037/atm-22-3411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022]
Abstract
Background Ionizing radiation exposure is a great threat to human health. MicroRNAs (miRNAs) have been shown to play an important role in radiation-induced biological effects. Here, we investigated plasma miRNA expression changes and differentially expressed miRNAs in radiotherapy patients exposed to cobalt-60 (60Co) gamma rays to provide an experimental basis for human plasma miRNAs as an estimation indicator for ionizing radiation injury. Methods Six patients with acute lymphoblastic leukemia (ALL) received continuous 5 gray (Gy) total body irradiation (TBI) twice. At 12 hours after irradiation, miRNA microarray was applied to screen for differentially expressed miRNAs, with some miRNAs confirmed by real-time polymerase chain reaction (RT-PCR) assay. Bioinformatic analysis was carried out to identify the relevant target genes and biological function of the differentially expressed miRNAs. Results After radiotherapy patients were exposed to 5 Gy gamma radiation, the expression of 9 plasma miRNAs was significantly upregulated, and the expression of 2 miRNAs was downregulated. After irradiation with 10 Gy gamma radiation, the blood plasma of radiotherapy patients contained 18 differentially expressed miRNAs, of which 17 were upregulated and 1 was downregulated (P<0.05). The expression of miR-4532, miR-4634, miR-4655-5p, miR-4763-3p, miR-4785, miR-6087, miR-6850-5p, and miR-6869-5p were significantly upregulated in both the 5-Gy and 10-Gy dose groups, showing a certain dose-response relationship. The RT-PCR results were consistent with the findings of high-throughput sequencing. In addition, the target genes of the differentially expressed miRNAs were mainly involved in RNA transcription and DNA damage. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these miRNAs participated in phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), Ras, mitogen-activated protein kinase (MAPK), and other signaling pathways. Conclusions The expression of differential plasma miRNAs of radiotherapy patients was associated with irradiation injury and showed a certain dose-effect relationship. These differentially coexpressed plasma miRNAs could be used as an early indicator for estimating radiation injury.
Collapse
Affiliation(s)
- Juan-Juan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Lei Xu
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Cheng-Long Wang
- Department of Stomatology, Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing-Wen Niu
- Department of Hematopoietic Stem Cell Transplantation, Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuan Zou
- Department of Stomatology, Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | | | - Rong-Jian Lu
- Department of Stomatology, Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Su L, Zhang J, Zhang X, Zheng L, Zhu Z. Identification of cell cycle as the critical pathway modulated by exosome-derived microRNAs in gallbladder carcinoma. Med Oncol 2021; 38:141. [PMID: 34655361 PMCID: PMC8520510 DOI: 10.1007/s12032-021-01594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
Gallbladder cancer (GBC), the most common malignancy in the biliary tract, is highly lethal malignant due to seldomly specific symptoms in the early stage of GBC. This study aimed to identify exosome-derived miRNAs mediated competing endogenous RNAs (ceRNA) participant in GBC tumorigenesis. A total of 159 differentially expressed miRNAs (DEMs) was identified as exosome-derived miRNAs, contains 34 upregulated exo-DEMs and 125 downregulated exo-DEMs based on the expression profiles in GBC clinical samples downloaded from the Gene Expression Omnibus database with the R package. Among them, 2 up-regulated exo-DEMs, hsa-miR-125a-3p and hsa-miR-4647, and 5 down-regulated exo-DEMs, including hsa-miR-29c-5p, hsa-miR-145a-5p, hsa-miR-192-5p, hsa-miR-194-5p, and hsa-miR-338-3p, were associated with the survival of GBC patients. Results of the gene set enrichment analysis showed that the cell cycle-related pathways were activated in GBC tumor tissues, mainly including cell cycle, M phase, and cell cycle checkpoints. Furthermore, the dysregulated ceRNA network was constructed based on the lncRNA-miRNA-mRNA interactions using miRDB, TargetScan, miRTarBase, miRcode, and starBase v2.0., consisting of 27 lncRNAs, 6 prognostic exo-DEMs, and 176 mRNAs. Together with prognostic exo-DEMs, the STEAP3-AS1/hsa-miR-192-5p/MAD2L1 axis was identified, suggesting lncRNA STEAP3-AS1, might as a sponge of exosome-derived hsa-miR-192-5p, modulates cell cycle progression via affecting MAD2L1 expression in GBC tumorigenesis. In addition, the biological functions of genes in the ceRNA network were also annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Our study promotes exploration of the molecular mechanisms associated with tumorigenesis and provide potential targets for GBC diagnosis and treatment.
Collapse
Affiliation(s)
- Li Su
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
- Center of Integrated Traditional and Western Medicine in Oncology, Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Jicheng Zhang
- Anhui University of Traditional Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Xinglong Zhang
- Anhui University of Traditional Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Lei Zheng
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Center of Integrated Traditional and Western Medicine in Oncology, Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Zhifa Zhu
- Department of Integrated Traditional and Western Medicine in Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Center of Integrated Traditional and Western Medicine in Oncology, Anhui Medical University, Hefei, 230022, People's Republic of China
| |
Collapse
|
8
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
9
|
Zhu W, Zhang X, Yu M, Lin B, Yu C. Radiation-induced liver injury and hepatocyte senescence. Cell Death Discov 2021; 7:244. [PMID: 34531376 PMCID: PMC8446062 DOI: 10.1038/s41420-021-00634-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Radiation-induced liver injury (RILI) is a major complication of radiotherapy during treatment for liver cancer and other upper abdominal malignant tumors that has poor pharmacological therapeutic options. A series of pathological changes can be induced by radiation. However, the underlying mechanism of RILI remains unclear. Radiation can induce cell damage via direct energy deposition or reactive free radical generation. Cellular senescence can be observed due to the DNA damage response (DDR) caused by radiation. The senescence-associated secretory phenotype (SASP) secreted from senescent cells can cause chronic inflammation and aggravate liver dysfunction for a long time. Oxidative stress further activates the signaling pathway of the inflammatory response and affects cellular metabolism. miRNAs clearly have differential expression after radiation treatment and take part in RILI development. This review aims to systematically profile the overall mechanism of RILI and the effects of radiation on hepatocyte senescence, laying foundations for the development of new therapies.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofen Zhang
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengli Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bingru Lin
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Soares S, Guerreiro SG, Cruz-Martins N, Faria I, Baylina P, Sales MG, Correa-Duarte MA, Fernandes R. The Influence of miRNAs on Radiotherapy Treatment in Prostate Cancer - A Systematic Review. Front Oncol 2021; 11:704664. [PMID: 34414113 PMCID: PMC8369466 DOI: 10.3389/fonc.2021.704664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022] Open
Abstract
In the last years, extensive investigation on miRNomics have shown to have great advantages in cancer personalized medicine regarding diagnosis, treatment and even clinical outcomes. Prostate cancer (PCa) is the second most common male cancer and about 50% of all PCa patients received radiotherapy (RT), despite some of them develop radioresistance. Here, we aim to provide an overview on the mechanisms of miRNA biogenesis and to discuss the functional impact of miRNAs on PCa under radiation response. As main findings, 23 miRNAs were already identified as being involved in genetic regulation of PCa cell response to RT. The mechanisms of radioresistance are still poorly understood, despite it has been suggested that miRNAs play an important role in cell signaling pathways. Identification of miRNAs panel can be thus considered an upcoming and potentially useful strategy in PCa diagnosis, given that radioresistance biomarkers, in both prognosis and therapy still remains a challenge.
Collapse
Affiliation(s)
- Sílvia Soares
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal.,LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Faculty of Chemistry, University of Vigo, Vigo, Spain.,CEB, Centre of Biological Engineering of Minho University, Braga, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Susana G Guerreiro
- Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto-IPATIMUP, Porto, Portugal.,Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Natália Cruz-Martins
- Institute for Research and Innovation in Health (i3S), Porto, Portugal.,Department of Biomedicine, Biochemistry Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra, Portugal
| | - Isabel Faria
- School of Health, Polytechnic of Porto, Porto, Portugal
| | - Pilar Baylina
- LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,School of Health, Polytechnic of Porto, Porto, Portugal
| | - Maria Goreti Sales
- BioMark@ISEP, School of Engineering, Polytechnic Institute of Porto, Porto, Portugal.,CEB, Centre of Biological Engineering of Minho University, Braga, Portugal.,Biomark@UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Miguel A Correa-Duarte
- Faculty of Chemistry, University of Vigo, Vigo, Spain.,CINBIO, University of Vigo, Vigo, Spain.,Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Vigo, Spain
| | - Rúben Fernandes
- LaBMI - Laboratory of Medical & Industrial Biotechnology, Porto Research, Technology & Innovation Center (PORTIC), P.PORTO - Polytechnic Institute of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), Porto, Portugal.,School of Health, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
11
|
Nguyen L, Schilling D, Dobiasch S, Raulefs S, Santiago Franco M, Buschmann D, Pfaffl MW, Schmid TE, Combs SE. The Emerging Role of miRNAs for the Radiation Treatment of Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123703. [PMID: 33317198 PMCID: PMC7763922 DOI: 10.3390/cancers12123703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Pancreatic cancer is an aggressive disease with a high mortality rate. Radiotherapy is one treatment option within a multimodal therapy approach for patients with locally advanced, non-resectable pancreatic tumors. However, radiotherapy is only effective in about one-third of the patients. Therefore, biomarkers that can predict the response to radiotherapy are of utmost importance. Recently, microRNAs, small non-coding RNAs regulating gene expression, have come into focus as there is growing evidence that microRNAs could serve as diagnostic, predictive and prognostic biomarkers in various cancer entities, including pancreatic cancer. Moreover, their high stability in body fluids such as serum and plasma render them attractive candidates for non-invasive biomarkers. This article describes the role of microRNAs as suitable blood biomarkers and outlines an overview of radiation-induced microRNAs changes and the association with radioresistance in pancreatic cancer. Abstract Today, pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide with a five-year overall survival rate of less than 7%. Only 15–20% of patients are eligible for curative intent surgery at the time of diagnosis. Therefore, neoadjuvant treatment regimens have been introduced in order to downsize the tumor by chemotherapy and radiotherapy. To further increase the efficacy of radiotherapy, novel molecular biomarkers are urgently needed to define the subgroup of pancreatic cancer patients who would benefit most from radiotherapy. MicroRNAs (miRNAs) could have the potential to serve as novel predictive and prognostic biomarkers in patients with pancreatic cancer. In the present article, the role of miRNAs as blood biomarkers, which are associated with either radioresistance or radiation-induced changes of miRNAs in pancreatic cancer, is discussed. Furthermore, the manuscript provides own data of miRNAs identified in a pancreatic cancer mouse model as well as radiation-induced miRNA changes in the plasma of tumor-bearing mice.
Collapse
Affiliation(s)
- Lily Nguyen
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Daniela Schilling
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Sophie Dobiasch
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
| | - Susanne Raulefs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Marina Santiago Franco
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
| | - Dominik Buschmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany; (D.B.); (M.W.P.)
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), 85354 Freising, Germany; (D.B.); (M.W.P.)
| | - Thomas E. Schmid
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
| | - Stephanie E. Combs
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany; (L.N.); (D.S.); (S.D.); (S.R.); (M.S.F.); (T.E.S.)
- Department of Radiation Oncology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-4501
| |
Collapse
|
12
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
13
|
Rana S, Espinosa-Diez C, Ruhl R, Chatterjee N, Hudson C, Fraile-Bethencourt E, Agarwal A, Khou S, Thomas CR, Anand S. Differential regulation of microRNA-15a by radiation affects angiogenesis and tumor growth via modulation of acid sphingomyelinase. Sci Rep 2020; 10:5581. [PMID: 32221387 PMCID: PMC7101391 DOI: 10.1038/s41598-020-62621-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/17/2020] [Indexed: 12/28/2022] Open
Abstract
Activation of acid sphingomyelinase (SMPD1) and the generation of ceramide is a critical regulator of apoptosis in response to cellular stress including radiation. Endothelial SMPD1 has been shown to regulate tumor responses to radiation therapy. We show here that the SMPD1 gene is regulated by a microRNA (miR), miR-15a, in endothelial cells (ECs). Standard low dose radiation (2 Gy) upregulates miR-15a and decreases SMPD1 levels. In contrast, high dose radiation (10 Gy and above) decreases miR-15a and increases SMPD1. Ectopic expression of miR-15a decreases both mRNA and protein levels of SMPD1. Mimicking the effects of high dose radiation with a miR-15a inhibitor decreases cell proliferation and increases active Caspase-3 & 7. Mechanistically, inhibition of miR-15a increases inflammatory cytokines, activates caspase-1 inflammasome and increases Gasdermin D, an effector of pyroptosis. Importantly, both systemic and vascular-targeted delivery of miR-15a inhibitor decreases angiogenesis and tumor growth in a CT26 murine colorectal carcinoma model. Taken together, our findings highlight a novel role for miR mediated regulation of SMPD1 during radiation responses and establish proof-of-concept that this pathway can be targeted with a miR inhibitor.
Collapse
Affiliation(s)
- Shushan Rana
- Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Cristina Espinosa-Diez
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Rebecca Ruhl
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Namita Chatterjee
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Clayton Hudson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Eugenia Fraile-Bethencourt
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Anupriya Agarwal
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.,Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Sokchea Khou
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Sudarshan Anand
- Department of Radiation Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA. .,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
14
|
Fu H, Su F, Zhu J, Zheng X, Ge C. Effect of simulated microgravity and ionizing radiation on expression profiles of miRNA, lncRNA, and mRNA in human lymphoblastoid cells. LIFE SCIENCES IN SPACE RESEARCH 2020; 24:1-8. [PMID: 31987473 DOI: 10.1016/j.lssr.2019.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/26/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
In space, multiple unique environmental factors, particularly microgravity and space radiation, pose a constant threat to astronaut health. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are functional RNAs that play critical roles in regulating multiple cellular processes. To gain insight into the role of non-coding RNAs in response to radiation and microgravity, we analyzed RNA expression profiles in human lymphoblastoid TK6 cells incubated for 24 h under static or rotating conditions to stimulate microgravity in space, after 2-Gy γ-ray irradiation. The expression of 14 lncRNAs and 17 mRNAs (differentially-expressed genes, DEGs) was found to be significantly downregulated under simulated microgravity conditions. In contrast, irradiation upregulated 55 lncRNAs and 56 DEGs, whereas only one lncRNA, but no DEGs, was downregulated. Furthermore, two miRNAs, 70 lncRNAs, and 87 DEGs showed significantly altered expression in response to simulated microgravity after irradiation, and these changes were independently induced by irradiation and simulated microgravity. GO enrichment and KEGG pathway analyses indicated that the associated target genes showed similar patterns to the noncoding RNAs and were suggested to be involved in the immune/inflammatory response including LPS/TLR, TNF, and NF-κB signaling pathways. However, synergistic effects on RNA expression and cellular responses were also observed with a combination of simulated microgravity and irradiation based on microarray and RT-PCR analysis. Together, our results indicate that simulated microgravity and irradiation additively alter expression patterns but synergistically modulate the expression levels of RNAs and their target genes in human lymphoblastoid cells.
Collapse
Affiliation(s)
- Hanjiang Fu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China
| | - Fei Su
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China
| | - Jie Zhu
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China
| | - Xiaofei Zheng
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China.
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, #27 Taiping Rd. Haidian Dist., Beijing 100850, China.
| |
Collapse
|
15
|
Wang F, Mao A, Tang J, Zhang Q, Yan J, Wang Y, Di C, Gan L, Sun C, Zhang H. microRNA‐16‐5p enhances radiosensitivity through modulating Cyclin D1/E1–pRb–E2F1 pathway in prostate cancer cells. J Cell Physiol 2018; 234:13182-13190. [DOI: 10.1002/jcp.27989] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Fang Wang
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Aihong Mao
- Institute of Gansu Medical Science Research Lanzhou People's Republic of China
| | - Jinzhou Tang
- School of Life Science, Lanzhou University Lanzhou People's Republic of China
| | - Qianjing Zhang
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Junfang Yan
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Yupei Wang
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- School of Life Science, University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Chinese, Academy of Sciences Lanzhou People's Republic of China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province Lanzhou People's Republic of China
- Gansu Wuwei Tumor Hospital Wuwei People's Republic of China
| |
Collapse
|
16
|
Story MD, Durante M. Radiogenomics. Med Phys 2018; 45:e1111-e1122. [DOI: 10.1002/mp.13064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Michael D. Story
- Department of Radiation Oncology University of Texas, Southwestern Medical Center Dallas TX USA
- Simmons Comprehensive Cancer Center University of Texas, Southwestern Medical Center Dallas TX USA
| | - Marco Durante
- Trento Institute for Fundamental Physics Applications National Institute for Nuclear Physics Trento Italy
- Department of Physics University of Trento Trento Italy
| |
Collapse
|
17
|
Hellweg CE, Chishti AA, Diegeler S, Spitta LF, Henschenmacher B, Baumstark-Khan C. Molecular Signaling in Response to Charged Particle Exposures and its Importance in Particle Therapy. Int J Part Ther 2018; 5:60-73. [PMID: 31773020 PMCID: PMC6871585 DOI: 10.14338/ijpt-18-00016.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022] Open
Abstract
Energetic, charged particles elicit an orchestrated DNA damage response (DDR) during their traversal through healthy tissues and tumors. Complex DNA damage formation, after exposure to high linear energy transfer (LET) charged particles, results in DNA repair foci formation, which begins within seconds. More protein modifications occur after high-LET, compared with low-LET, irradiation. Charged-particle exposure activates several transcription factors that are cytoprotective or cytodestructive, or that upregulate cytokine and chemokine expression, and are involved in bystander signaling. Molecular signaling for a survival or death decision in different tumor types and healthy tissues should be studied as prerequisite for shaping sensitizing and protective strategies. Long-term signaling and gene expression changes were found in various tissues of animals exposed to charged particles, and elucidation of their role in chronic and late effects of charged-particle therapy will help to develop effective preventive measures.
Collapse
Affiliation(s)
- Christine E. Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Arif Ali Chishti
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Sebastian Diegeler
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Luis F. Spitta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Bernd Henschenmacher
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| | - Christa Baumstark-Khan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Köln, Germany
| |
Collapse
|
18
|
Rastogi S, Hwang A, Chan J, Wang JYJ. Extracellular vesicles transfer nuclear Abl-dependent and radiation-induced miR-34c into unirradiated cells to cause bystander effects. Mol Biol Cell 2018; 29:2228-2242. [PMID: 29975106 PMCID: PMC6249796 DOI: 10.1091/mbc.e18-02-0130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ionizing radiation (IR) not only activates DNA damage response (DDR) in irradiated cells but also induces bystander effects (BE) in cells not directly targeted by radiation. How DDR pathways activated in irradiated cells stimulate BE is not well understood. We show here that extracellular vesicles secreted by irradiated cells (EV-IR), but not those from unirradiated controls (EV-C), inhibit colony formation in unirradiated cells by inducing reactive oxygen species (ROS). We found that µEV-IR from Abl nuclear localization signal-mutated ( Abl-µNLS) cells could not induce ROS, but expression of wild-type Abl restored that activity. Because nuclear Abl stimulates miR-34c biogenesis, we measured miR-34c in EV and found that its levels correlated with the ROS-inducing activity of EV. We then showed that EV from miR-34c minigene-transfected, but unirradiated cells induced ROS; and transfection with miR-34c-mimic, without radiation or EV addition, also induced ROS. Furthermore, EV-IR from miR34-family triple-knockout cells could not induce ROS, whereas EV-IR from wild-type cells could cause miR-34c increase and ROS induction in the miR-34 triple-knockout cells. These results establish a novel role for extracellular vesicles in transferring nuclear Abl-dependent and radiation-induced miR-34c into unirradiated cells to cause bystander oxidative stress.
Collapse
Affiliation(s)
- Shubhra Rastogi
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Amini Hwang
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Josolyn Chan
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| | - Jean Y J Wang
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0644
| |
Collapse
|
19
|
da Silva Neto Trajano LA, Trajano ETL, da Silva Sergio LP, Teixeira AF, Mencalha AL, Stumbo AC, de Souza da Fonseca A. Photobiomodulation effects on mRNA levels from genomic and chromosome stabilization genes in injured muscle. Lasers Med Sci 2018; 33:1513-1519. [DOI: 10.1007/s10103-018-2510-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/17/2018] [Indexed: 01/09/2023]
|
20
|
Circulating microRNAs: are they indicators for the prediction of radiotherapy-induced normal tissue injury. JOURNAL OF RADIOTHERAPY IN PRACTICE 2017. [DOI: 10.1017/s1460396916000261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Mikhailov VF, Shulenina LV, Vasilyeva IM, Startsev MI, Zasukhina GD. The miRNA as human cell gene activity regulator after ionizing radiation. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Lee HC, Her NG, Kang D, Jung SH, Shin J, Lee M, Bae IH, Kim YN, Park HJ, Ko YG, Lee JS. Radiation-inducible miR-770-5p sensitizes tumors to radiation through direct targeting of PDZ-binding kinase. Cell Death Dis 2017; 8:e2693. [PMID: 28333152 PMCID: PMC5386522 DOI: 10.1038/cddis.2017.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/09/2017] [Accepted: 02/22/2017] [Indexed: 11/17/2022]
Abstract
Radiotherapy represents the most effective non-surgical modality in cancer treatment. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression, and are involved in many biological processes and diseases. To identify miRNAs that influence the radiation response, we performed miRNA array analysis using MCF7 cells at 2, 8, and 24 h post irradiation. We demonstrated that miR-770-5p is a novel radiation-inducible miRNA. When miR-770-5p was overexpressed, relative cell number was reduced due to increased apoptosis in MCF7 and A549 cells. Transcriptomic and bioinformatic analyses revealed that PDZ-binding kinase (PBK) might be a possible target of miR-770-5p for regulation of radiosensitivity. PBK regulation mediated by direct targeting of miR-770-5p was demonstrated using luciferase reporter assays along with wild-type and mutant PBK-3′untranslated region constructs. Radiation sensitivity increased and decreased in miR-770-5p- and anti-miR-770-5p-transfected cells, respectively. Consistent with this result, transfection of short interfering RNA against PBK inhibited cell proliferation, while ectopic expression of PBK restored cell survival from miR-770-5p-induced cell death. In addition, miR-770-5p suppressed tumor growth, and miR-770-5p and PBK levels were inversely correlated in xenograft model mice. Altogether, these data demonstrated that miR-770-5p might be a useful therapeutic target miRNA that sensitizes tumors to radiation via negative regulation of PBK.
Collapse
Affiliation(s)
- Hyung Chul Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| | - Nam-Gu Her
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Donghee Kang
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| | - Seung Hee Jung
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| | - Jinwook Shin
- Department of Microbiology, Inha University College of Medicine, Incheon, Korea
| | - Minyoung Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - In Hwa Bae
- Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Young-Nyun Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Korea
| | - Heon Joo Park
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea.,Department of Microbiology, Inha University College of Medicine, Incheon, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
23
|
Herskind C, Talbot CJ, Kerns SL, Veldwijk MR, Rosenstein BS, West CML. Radiogenomics: A systems biology approach to understanding genetic risk factors for radiotherapy toxicity? Cancer Lett 2016; 382:95-109. [PMID: 26944314 PMCID: PMC5016239 DOI: 10.1016/j.canlet.2016.02.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 02/06/2023]
Abstract
Adverse reactions in normal tissue after radiotherapy (RT) limit the dose that can be given to tumour cells. Since 80% of individual variation in clinical response is estimated to be caused by patient-related factors, identifying these factors might allow prediction of patients with increased risk of developing severe reactions. While inactivation of cell renewal is considered a major cause of toxicity in early-reacting normal tissues, complex interactions involving multiple cell types, cytokines, and hypoxia seem important for late reactions. Here, we review 'omics' approaches such as screening of genetic polymorphisms or gene expression analysis, and assess the potential of epigenetic factors, posttranslational modification, signal transduction, and metabolism. Furthermore, functional assays have suggested possible associations with clinical risk of adverse reaction. Pathway analysis incorporating different 'omics' approaches may be more efficient in identifying critical pathways than pathway analysis based on single 'omics' data sets. Integrating these pathways with functional assays may be powerful in identifying multiple subgroups of RT patients characterised by different mechanisms. Thus 'omics' and functional approaches may synergise if they are integrated into radiogenomics 'systems biology' to facilitate the goal of individualised radiotherapy.
Collapse
Affiliation(s)
- Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany.
| | | | - Sarah L Kerns
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, USA; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, USA
| | - Marlon R Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Barry S Rosenstein
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, USA; Department of Radiation Oncology, New York University School of Medicine, USA; Department of Dermatology, Mount Sinai School of Medicine, New York, USA
| | - Catharine M L West
- Institute of Cancer Sciences, University of Manchester, Christie Hospital, Manchester, UK
| |
Collapse
|
24
|
Halimi M, Shahabi A, Moslemi D, Parsian H, Asghari SM, Sariri R, Yeganeh F, Zabihi E. Human serum miR-34a as an indicator of exposure to ionizing radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:423-429. [PMID: 27561942 DOI: 10.1007/s00411-016-0661-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Radiation exposure in industrial accidents or nuclear device attacks is a major public health concern. There is an urgent need for markers that rapidly identify people exposed to ionizing radiation (IR). Finding a blood-based marker is advantageous because of the ease of sample collection. This study was designed to test the hypothesis that serum miR-34a could serve as an indicator of exposure to IR. Therefore, 44 women with breast cancer, where radiotherapy was part of their therapeutic protocol, were investigated in this study. After demonstrating the appropriateness of our microRNA (miRNA) extraction efficiency and miRNA assay in human serum, we analyzed the miR-34a level in paired serum samples before and after radiotherapy. Fifty Gy X-ray irradiation in daily dose fractions of 2 Gy, 5 days per week, was used in this study. We demonstrated that IR significantly increased serum level of miR-34a. By measuring miR-34a in serum, we could distinguish irradiated patients with sensitivity of 65 % and specificity of 75 %. According to this study, serum miR-34a has the potential to be used as an indicator of radiation exposure.
Collapse
Affiliation(s)
- Mohammad Halimi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
- Young Researchers and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Ahmad Shahabi
- Department of Biology, Babol Branch, Islamic Azad University, Babol, Iran
- Young Researchers and Elite Club, Babol Branch, Islamic Azad University, Babol, Iran
| | - Dariush Moslemi
- Department of Radiation Oncology, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and molecular biology research center, Health research institute, Babol University of Medical Sciences, Babol, Iran.
- Clinical biochemistry department, Babol University of Medical Sciences, Babol, Iran.
| | - S Mohsen Asghari
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Reyhaneh Sariri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Farshid Yeganeh
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Zabihi
- Cellular and molecular biology research center, Health research institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
25
|
Liu N, Boohaker RJ, Jiang C, Boohaker JR, Xu B. A radiosensitivity MiRNA signature validated by the TCGA database for head and neck squamous cell carcinomas. Oncotarget 2016; 6:34649-57. [PMID: 26452218 PMCID: PMC4741479 DOI: 10.18632/oncotarget.5299] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 09/24/2015] [Indexed: 01/22/2023] Open
Abstract
MicroRNA, a class of small non-coding RNAs, play critical roles in the cellular response to DNA damage induced by ionizing irradiation (IR). Growing evidence shows alteration of miRNAs, in response to radiation, controls cellular radiosensitivity in DNA damage response pathways. However, it is less clear about the clinical relevance of miRNA regulation in radiosensitivity. Using an in vitro system, we conducted microarray to identify a miRNA signature to assess radiosensitivity. The data were validated by analyzing available Head and Neck Squamous Cell Carcinoma (HNSCC) samples in the cancer genome atlas (TCGA) database. A total of 27 miRNAs showed differential alteration in response to IR in an Ataxia-Telangiectasia Mutated (ATM) kinase-dependent manner. We validated the list and identified a five miRNA signature that can predict radiation responsiveness in HNSCC. Furthermore, we found that the expression level of ATM in these patients was correlated with the radiation responsiveness. Together, we demonstrate the feasibility of using a miRNA signature to predict the clinical responsiveness of HNSCC radiotherapy.
Collapse
Affiliation(s)
- Ning Liu
- Department of Oncology, Southern Research Institute, Birmingham, AL 35205, USA.,Department of Gastric Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Rebecca J Boohaker
- Department of Oncology, Southern Research Institute, Birmingham, AL 35205, USA
| | - Chunling Jiang
- Nanchang University Graduate School, Nanchang 330047, China.,Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang 330029, China
| | - James R Boohaker
- Department of Economics, American University, Washington, DC 20016, USA
| | - Bo Xu
- Department of Oncology, Southern Research Institute, Birmingham, AL 35205, USA.,Cancer Cell Biology Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, USA
| |
Collapse
|
26
|
Giono LE, Nieto Moreno N, Cambindo Botto AE, Dujardin G, Muñoz MJ, Kornblihtt AR. The RNA Response to DNA Damage. J Mol Biol 2016; 428:2636-2651. [PMID: 26979557 DOI: 10.1016/j.jmb.2016.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 02/01/2023]
Abstract
Multicellular organisms must ensure genome integrity to prevent accumulation of mutations, cell death, and cancer. The DNA damage response (DDR) is a complex network that senses, signals, and executes multiple programs including DNA repair, cell cycle arrest, senescence, and apoptosis. This entails regulation of a variety of cellular processes: DNA replication and transcription, RNA processing, mRNA translation and turnover, and post-translational modification, degradation, and relocalization of proteins. Accumulated evidence over the past decades has shown that RNAs and RNA metabolism are both regulators and regulated actors of the DDR. This review aims to present a comprehensive overview of the current knowledge on the many interactions between the DNA damage and RNA fields.
Collapse
Affiliation(s)
- Luciana E Giono
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Nicolás Nieto Moreno
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Adrián E Cambindo Botto
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Gwendal Dujardin
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Centre for Genomic Regulation, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Manuel J Muñoz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
27
|
Gao Y, Li S, Xu D, Wang J, Sun Y. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission. JOURNAL OF RADIATION RESEARCH 2015; 56:872-82. [PMID: 26286471 PMCID: PMC4628221 DOI: 10.1093/jrr/rrv050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/21/2015] [Indexed: 05/07/2023]
Abstract
Radiation and microgravity exposure have been proven to induce abnormal apoptosis in microRNA (miRNA) and mRNA expression, but whether space conditions, including radiation and microgravity, activate miRNAs to regulate the apoptosis is undetermined. For that purpose, we investigated miRNome and mRNA expression in the ced-1 Caenorhabditis elegans mutant vs the wild-type, both of which underwent spaceflight, spaceflight 1g-centrifuge control and ground control conditions during the Shenzhou-8 mission. Results showed that no morphological changes in the worms were detected, but differential miRNA expression increased from 43 (ground control condition) to 57 and 91 in spaceflight and spaceflight control conditions, respectively. Microgravity altered miRNA expression profiling by decreasing the number and significance of differentially expressed miRNA compared with 1 g incubation during spaceflight. Alterations in the miRNAs were involved in alterations in apoptosis, neurogenesis larval development, ATP metabolism and GTPase-mediated signal transduction. Among these, 17 altered miRNAs potentially involved in apoptosis were screened and showed obviously different expression signatures between space conditions. By integrated analysis of miRNA and mRNA, miR-797 and miR-81 may be involved in apoptosis by targeting the genes ced-10 and both drp-1 and hsp-1, respectively. Compared with ground condition, space conditions regulated apoptosis though a different manner on transcription, by altering expression of seven core apoptotic genes in spaceflight condition, and eight in spaceflight control condition. Results indicate that, miRNA of Caenorhabditis elegans probably regulates apoptotic gene expression in response to space environmental stress, and shows different behavior under microgravity condition compared with 1 g condition in the presence of space radiation.
Collapse
Affiliation(s)
- Ying Gao
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Shuai Li
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Dan Xu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Junjun Wang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, China
| |
Collapse
|
28
|
miR-449a enhances radiosensitivity through modulating pRb/E2F1 in prostate cancer cells. Tumour Biol 2015; 37:4831-40. [DOI: 10.1007/s13277-015-4336-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/26/2015] [Indexed: 11/27/2022] Open
|
29
|
Chen J, Shen Z, Zheng Y, Wang S, Mao W. Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated HOTAIR. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7878-7886. [PMID: 26339352 PMCID: PMC4555680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/22/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE HOTAIR, a long intervening non-coding Hox transcript antisense intergenic RNA, negatively regulates transcription on another chromosome and is reported to reprogram chromatin organization and promote tumor progression. Nevertheless, little is known about its roles in the development of radiation therapy of lung cancer. In this study, we established a xenografed model of Lewis lung carcinoma in C57BL/6 mice and investigated the possible involvement of HOTAIR in this radiotherapy. METHODS C57BL/6 mice were subcutaneously transplanted with Lewis lung carcinoma cells and locally irradiated followed by measurement in tumor volume. Levels of HOTAIR and WIF-1 mRNA expression were determined by using Quantitative Real-Time PCR. Levels of WIF-1 and β-catenin were determined by using western blot assay. Cell viability was evaluated by MTT assay. Cell apoptosis was examined by using TUNEL assay. RESULTS In mice bearing Lewis lung carcinoma tumor, local radiotherapy suppressed tumor growth and it also reduced level of HOTAIR but increased WIF-1 expression. When HOTAIR was overexpressed, radio-sensitivity was reduced. In vitro experiments, irradiation inhibited HOTAIR transportation to the nucleus. However, it was reversed by over-expressed HOTAIR. Cells transfected with pcDNA-HOTAIR or siRNA-HOTAIR resulted in decline or increase in radiosensitivity, which was abrogated by co-tansfected with siRNA-β-catenin. CONCLUSION Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated HOTAIR.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Apoptosis/radiation effects
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/radiotherapy
- Cell Line, Tumor
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Male
- Mice, Inbred C57BL
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/metabolism
- Signal Transduction/radiation effects
- Time Factors
- Transfection
- Tumor Burden/radiation effects
- Up-Regulation
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Jianxiang Chen
- Department of Radiation Oncology, Zhejiang, Cancer HospitalHangzhou, China
| | - Zhuping Shen
- Department of Thoracic Oncology, Zhejiang, Cancer HospitalHangzhou, China
| | - Yuanda Zheng
- Department of Radiation Oncology, Zhejiang, Cancer HospitalHangzhou, China
| | - Shengye Wang
- Department of Radiation Oncology, Zhejiang, Cancer HospitalHangzhou, China
| | - Weimin Mao
- Department of Thoracic Oncology, Zhejiang, Cancer HospitalHangzhou, China
| |
Collapse
|
30
|
Lin C, Li X, Zhang Y, Guo Y, Zhou J, Gao K, Dai J, Hu G, Lv L, Du J, Zhang Y. The microRNA feedback regulation of p63 in cancer progression. Oncotarget 2015; 6:8434-53. [PMID: 25726529 PMCID: PMC4496160 DOI: 10.18632/oncotarget.3020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/31/2014] [Indexed: 12/14/2022] Open
Abstract
The transcription factor p63 is a member of the p53 gene family that plays a complex role in cancer due to its involvement in epithelial differentiation, cell cycle arrest and apoptosis. MicroRNAs are a class of small, non-coding RNAs with an important regulatory role in various cellular processes, as well as in the development and progression of cancer. A number of microRNAs have been shown to function as transcriptional targets of p63. Conversely, microRNAs also can modulate the expression and activity of p63. However, the p63-microRNA regulatory circuit has not been addressed in depth so far. Here, computational genomic analysis was performed using miRtarBase, Targetscan, microRNA.ORG, DIANA-MICROT, RNA22-HSA and miRDB to analyze miRNA binding to the 3'UTR of p63. JASPAR (profile score threshold 80%) and TFSEARCH datasets were used to search transcriptional start sites for p53/p63 response elements. Remarkably, these data revealed 63 microRNAs that targeted p63. Furthermore, there were 39 microRNAs targeting p63 that were predicted to be regulated by p63. These analyses suggest a crosstalk between p63 and microRNAs. Here, we discuss the crosstalk between p63 and the microRNA network, and the role of their interactions in cancer.
Collapse
Affiliation(s)
- Changwei Lin
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaorong Li
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Zhang
- Department of General Surgery, The XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yihang Guo
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jianyu Zhou
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Kai Gao
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jing Dai
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Gui Hu
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Lv Lv
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Juan Du
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Zhang
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
31
|
Zhang C, Peng G. Non-coding RNAs: An emerging player in DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 763:202-11. [DOI: 10.1016/j.mrrev.2014.11.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/02/2023]
|