1
|
Wang JA, Aryal O, Brownstein LN, Shwwa H, Rickard AL, Stephens AE, Lanzarini-Lopes M, Ismail NS. Zooplankton protect viruses from sunlight disinfection. Appl Environ Microbiol 2025; 91:e0254024. [PMID: 40162778 PMCID: PMC12016492 DOI: 10.1128/aem.02540-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/01/2025] [Indexed: 04/02/2025] Open
Abstract
Sunlight disinfection is an important inactivation process for enteric viruses in water. Understanding how dark biotic processes, such as zooplankton filter feeding, impact sunlight disinfection for viruses has important implications for public health. This research quantifies the uptake of MS2, a model for enteric viruses, by the filter feeder Branchionus plicatilis (rotifer) and the effects of such uptake on subsequent sunlight inactivation of MS2. Experiments co-incubating MS2 with rotifers showed 2.6 log viral removal over 120 hours. Viable virus was recovered from rotifer bodies after co-incubation, indicating incomplete viral inactivation via ingestion. When live rotifers were co-incubated with MS2 and the system was treated with sunlight, experimental treatments with rotifers showed that the virus was protected with 2-3 log viral inactivation compared to 4.5 log inactivation for sunlight controls without rotifers. Dead rotifers placed in the system did not show the same magnitude of protection effects, indicating that active filter feeding of rotifers is associated with protection from sunlight. Data from this study show that zooplankton may serve as a vector for viruses and reduce the efficiency of sunlight inactivation.IMPORTANCEEnteric viral contamination in water is a leading global cause of waterborne disease outbreaks. Sunlight inactivation is an important disinfection mechanism in natural waters, but accurately modeling inactivation is challenging due to the complex nature of aquatic systems. Zooplankton play a critical role in natural systems and are known to inactivate bacteria, but their interaction with viruses is not well understood. Our research examines the impact of a model zooplankton species on the sunlight disinfection of viruses. The results from this study address knowledge gaps in the importance of dark processes such as zooplankton filter feeding and their impact on viral fate.
Collapse
Affiliation(s)
- J. A. Wang
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| | - O. Aryal
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| | - L. N. Brownstein
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| | - H. Shwwa
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| | - A. L. Rickard
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| | - A. E. Stephens
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| | - M. Lanzarini-Lopes
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - N. S. Ismail
- Picker Engineering Program, Smith College, Northampton, Massachusetts, USA
| |
Collapse
|
2
|
Arden S, Anderson M, Blue J, Ma XC, Jahne M, Garland J. Towards the definition of treatment wetland pathogen log reduction credits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177613. [PMID: 39561901 PMCID: PMC11907694 DOI: 10.1016/j.scitotenv.2024.177613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Treatment wetlands have the potential to treat a range of water and wastewater pollutants while using less energy and chemicals than conventional treatment processes, making them a viable option for improving the sustainability of water treatment systems. However, water treatment systems used for water reuse must also be protective of human health. To date, the human health protection benefits of treatment wetlands have not been rigorously quantified in the context of current human health risk frameworks. This study presents a comprehensive review of the ability of treatment wetlands to provide reliable pathogen reduction to meet risk-based treatment targets for water reuse. Following an existing protocol for establishing log reduction credits, we systematically reviewed the documented pathogen reduction performance of major treatment wetland types in terms of core components of that protocol, including pathogen removal mechanisms, identification of target pathogens, and influencing factors. Results of the review point to design and operational conditions under which treatment wetlands could likely be credited with a log reduction value of approximately 0.5 or greater for virus, protozoa and bacteria. These conditions are specified in terms of preliminary operating envelopes, or design and operational parameter windows associated with optimal performance. Important caveats are noted, as are specific and tractable recommendations for future research and data collection efforts that would help refine operating envelopes and define log reduction credits for these promising water treatment technologies. As a resource to other practitioners, we have also included the detailed performance characterization database as Supplemental Information. This database includes a detailed tracking of log reduction values as well as design and operational parameters reported in the literature.
Collapse
Affiliation(s)
- Sam Arden
- Eastern Research Group, Inc. (ERG), Lexington, MA, USA
| | | | - Julie Blue
- Eastern Research Group, Inc. (ERG), Lexington, MA, USA
| | - Xin Cissy Ma
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH, USA
| | - Michael Jahne
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH, USA.
| | - Jay Garland
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH, USA
| |
Collapse
|
3
|
Lu S, Peng J, Shang C, Yin R. Dissolved Organic Matter-Mediated Photosensitized Activation of Monochloramine for Micropollutant Abatement in Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9370-9380. [PMID: 38743251 DOI: 10.1021/acs.est.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Utilizing solar light and water matrix components in situ to reduce the chemical and energy demands would make treatment technologies more sustainable for micropollutant abatement in wastewater effluents. We herein propose a new strategy for micropollutant abatement through dissolved organic matter (DOM)-mediated photosensitized activation of monochloramine (NH2Cl). Exposing the chlorinated wastewater effluent with residual NH2Cl to solar irradiation (solar/DOM/NH2Cl process) degrades six structurally diverse micropollutants at rate constants 1.26-34.2 times of those by the solar photolysis of the dechlorinated effluent (solar/DOM process). Notably, among the six micropollutants, the degradation rate constants of estradiol, acetaminophen, bisphenol A, and atenolol by the solar/DOM/NH2Cl process are 1.13-4.32 times the summation of those by the solar/DOM and solar/NH2Cl processes. The synergism in micropollutant degradation is attributed to the generation of reactive nitrogen species (RNS) and hydroxyl radicals (HO·) from the photosensitized activation of NH2Cl. Triplet state-excited DOM (3DOM*) dominates the activation of NH2Cl, leading to the generation of RNS, while HO· is produced from the interactions between RNS and other photochemically produced reactive intermediates (e.g., O2·- and DOM·+/·-). The findings advance the knowledge of DOM-mediated photosensitization and offer a sustainable method for micropollutant abatement in wastewater effluents containing residual NH2Cl.
Collapse
Affiliation(s)
- Senhao Lu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiadong Peng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ran Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou 215163, China
| |
Collapse
|
4
|
Wang W, Root CW, Peel HF, Garza M, Gidley N, Romero-Mariscal G, Morales-Paredes L, Arenazas-Rodríguez A, Ticona-Quea J, Vanneste J, Vanzin GF, Sharp JO. Photosynthetic pretreatment increases membrane-based rejection of boron and arsenic. WATER RESEARCH 2024; 252:121200. [PMID: 38309061 DOI: 10.1016/j.watres.2024.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
The metalloids boron and arsenic are ubiquitous and difficult to remove during water treatment. As chemical pretreatment using strong base and oxidants can increase their rejection during membrane-based nanofiltration (NF), we examined a nature-based pretreatment approach using benthic photosynthetic processes inherent in a unique type of constructed wetland to assess whether analogous gains can be achieved without the need for exogenous chemical dosing. During peak photosynthesis, the pH of the overlying clear water column above a photosynthetic microbial mat (biomat) that naturally colonizes shallow, open water constructed wetlands climbs from circumneutral to approximately 10. This biological increase in pH was reproduced in a laboratory bioreactor and resulted in analogous increases in NF rejection of boron and arsenic that is comparable to chemical dosing. Rejection across the studied pH range was captured using a monoprotic speciation model. In addition to this mechanism, the biomat accelerated the oxidation of introduced arsenite through a combination of abiotic and biotic reactions. This resulted in increases in introduced arsenite rejection that eclipsed those achieved solely by pH. Capital, operation, and maintenance costs were used to benchmark the integration of this constructed wetland against chemical dosing for water pretreatment, manifesting long-term (sub-decadal) economic benefits for the wetland-based strategy in addition to social and environmental benefits. These results suggest that the integration of nature-based pretreatment approaches can increase the sustainability of membrane-based and potentially other engineered treatment approaches for challenging water contaminants.
Collapse
Affiliation(s)
- Weishi Wang
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru
| | - Colin Wilson Root
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru
| | - Henry F Peel
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Maximilian Garza
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Nicholas Gidley
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA
| | - Giuliana Romero-Mariscal
- Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa. Santa Catalina 117, Arequipa 04001, Peru
| | - Lino Morales-Paredes
- Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa. Santa Catalina 117, Arequipa 04001, Peru
| | - Armando Arenazas-Rodríguez
- Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa. Santa Catalina 117, Arequipa 04001, Peru
| | - Juana Ticona-Quea
- Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa. Santa Catalina 117, Arequipa 04001, Peru
| | - Johan Vanneste
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru
| | - Gary F Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401, USA; Center for Mining Sustainability (Centro para Minería Sostenible), Colorado School of Mines and Universidad Nacional de San Agustín de Arequipa, Santa Catalina 117, Arequipa 04001, Peru; Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA.
| |
Collapse
|
5
|
Wang S, Jiang L, Li J, Cheng X, Luo C, Zhang G. The uptake and degradation of polychlorinated biphenyls in constructed wetlands planted with Myriophyllum aquaticum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17115-17123. [PMID: 38332419 DOI: 10.1007/s11356-024-32138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
The unregulated dismantling and improper disposal of electronic waste lead to severe soil contamination by polychlorinated biphenyls (PCBs). Constructed wetlands (CWs) play an important role in PCBs removal as a result of the co-existence of anaerobic and aerobic conditions. However, the effects and mechanisms of different PCBs concentrations in soils on plant uptake and PCBs degradation within CWs are unclear. We evaluated the uptake and degradation of PCBs at different concentrations by Myriophyllum aquaticum (Vell.) Verdc. Planting significantly increased PCBs removal by 8.70% (p < 0.05) in soils with 1500 and 2500 μg/kg PCBs, whereas no significant effect was observed at 500 and 1000 μg/kg. PCBs levels did not significantly affect plant growth and PCBs accumulation. The contribution of plant uptake to PCBs removal was only 0.10-0.12%, indicating that microbial degradation was the dominant pathway for PCBs removal after planting with M. aquaticum. In the treatments with PCBs ≥ 1500 μg/kg, M. aquaticum increased the microbial population, altered the microbial community structure and enriched PCB-degrading bacteria. Functional prediction revealed that microbes in M. aquaticum rhizosphere secreted more peroxidase and glycosyltransferase than non-plant control, which were likely involved in PCBs metabolism.
Collapse
Affiliation(s)
- Shuang Wang
- Joint Laboratory for Environmental Pollution and Control, State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- School of Materials and Environmental Engineering, Chengdu Technological University, Chengdu, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Longfei Jiang
- Joint Laboratory for Environmental Pollution and Control, State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| | - Jibing Li
- Joint Laboratory for Environmental Pollution and Control, State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| | - Xianghui Cheng
- Joint Laboratory for Environmental Pollution and Control, State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunling Luo
- Joint Laboratory for Environmental Pollution and Control, State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China.
| | - Gan Zhang
- Joint Laboratory for Environmental Pollution and Control, State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou, China
| |
Collapse
|
6
|
Biswas A, Chakraborty S. Assessment of microbial population in integrated CW-MFC system and investigation of organics and fecal coliform removal pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168809. [PMID: 38016543 DOI: 10.1016/j.scitotenv.2023.168809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
The current study is focused on understanding the operational mechanism of an integrated constructed wetland-microbial fuel cell (CW-MFC) reactor emphasizing fecal coliform (FC) removal. Few studies are available in the literature investigating the inherent mechanisms of pathogen inactivation in a CW-MFC system. Raw domestic wastewater was treated in three vertical reactors, one planted constructed wetland (R1), one planted CW-MFC (R2), and one unplanted CW-MFC (R3). Spatial analysis of treated effluents showed a considerable amount of organics and fecal coliform removal at the vicinity of the anode in R2. Assessment of the microbial population inside all the reactors revealed that EABs (Firmicutes, Bacteroidetes, and Actinobacteria) were more abundant in R2 compared to R1 and R3. During the activity study, biomass obtained from R2 showed a maximum substrate utilization rate of 1.27 mg COD mgVSS-1 d-1. Kinetic batch studies were carried out for FC removal in all the reactors, and the maximum first order FC removal rate was obtained at the anode of R2 as 2.13 d-1 when operated in closed circuit mode. This value was much higher than the natural die-off rate of FCs in raw wastewater which was 1.16 d-1. Simultaneous bioelectricity monitoring inferred that voltage generation can be correlated to faster FC inactivation, which was probably due to EABs outcompeting other exogenous microbes in a preferable anaerobic environment with the presence of an anode. Reactor R2 was found to be functioning as a symbiotic bio-electrochemical mesocosm.
Collapse
Affiliation(s)
- Anjishnu Biswas
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Saswati Chakraborty
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
7
|
Jena G, Dutta K, Daverey A. Surfactants in water and wastewater (greywater): Environmental toxicity and treatment options. CHEMOSPHERE 2023; 341:140082. [PMID: 37689147 DOI: 10.1016/j.chemosphere.2023.140082] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Surfactant, an emerging pollutant present in greywater, raises the toxicity levels in the water body. Soap, detergent, and personal care items add surfactant to greywater. Due to excessive washing and cleaning procedures brought on by the COVID-19 pandemic, the release of surfactants in greywater has also increased. Considering the environmental toxicity and problems it creates during the treatment, it's essential to remove surfactants from the wastewater. This review intends to explain and address the environmental toxicity of the surfactant released via greywater and current techniques for surfactant removal from wastewater. Various physical, chemical, and biological methods are reported. Modern adsorbents such as hydrophilic silica nanoparticles, chitosan, fly ash, and iron oxide remove surfactants by adsorption. Membrane filtration effectively removes surfactants but is not cost-effective. Coagulants (chemical and natural coagulants) neutralize surfactant charges and help remove them as bigger particles. Electrocoagulation/electroflotation causes surfactants to coagulate and float. Microorganisms break down surfactants in microbial fuel cells to generate power. Surfactants are removed by natural processes and plants in constructed wetlands where traditional aerobic and anaerobic approaches use microbes to break down surfactants. Constructed wetlands, natural coagulation-flocculation, and microbial fuel cells are environmentally beneficial methods to remove surfactants from wastewater.
Collapse
Affiliation(s)
- Gyanaranjan Jena
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India.
| |
Collapse
|
8
|
Sen K, Llewellyn M, Taheri B, Turner RJ, Berglund T, Maloney K. Mechanism of fungal remediation of wetland water: Stropharia rugosoannulata as promising fungal species for the development of biofilters to remove clinically important pathogenic and antibiotic resistant bacteria in contaminated water. Front Microbiol 2023; 14:1234586. [PMID: 37965549 PMCID: PMC10642173 DOI: 10.3389/fmicb.2023.1234586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/20/2023] [Indexed: 11/16/2023] Open
Abstract
Mycoremediation uses mushroom forming fungi for remediation of sites contaminated with biotic and abiotic contaminants. The root-like hyphae of many fungi, the mycelia, have been used to remediate soil and water. In this study mushroom mycelia biofilters were evaluated for remediation efficacy of wetland water polluted with crow feces containing antibiotic resistant (AMR) bacteria. Three strains of fungi, Pleurotus ostreatus, Stropharia rugosoannulata, and Pleurotus pulmonarius, were allowed to develop dense mycelia for 3-5 weeks on wood chips within cylindrical jars. Biofilter jars were incubated with wetland water (WW) obtained from a crow roost area that was additionally spiked with AMR bacteria isolated from previous crow fecal collections. E. coli, Staphylococcus aureus, Enterococcus faecium, Campylobacter jejuni, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Salmonella enteritidis were added at concentrations of 1,500-3,500 CFU/100 ml. Remediation was calculated from bacterial counts or gene copy numbers (GCN), before and after passage of water through jars. Stropharia and P. pulmonarius biofilters remediated all bacteria, but Klebsiella, in the range of 43-78%, after 1 h. Incubation of water for 24 h showed Stropharia remediation to be superior relative to other tested fungi. Percent remediation varied as follows: S. aureus-100%, E. faecium-97%, C. jejuni-59%, P. aeruginosa-54%, E. coli-65% and S. enteritidis-27%. The mechanism of remediation was tested by removing the mycelium from the biofilter column after passage of water, followed by extraction of DNA. Association of bacterial DNA with the mycelia was demonstrated by qPCR for all bacteria, except S. aureus and Salmonella. Depending on the bacteria, the GCN ranged from 3,500 to 54,000/250 mg of mycelia. Thus, some of the ways in which mycelia biofilters decrease bacteria from water are through bio-filtration and bio-absorption. Active fungal growth and close contact with bacteria appear necessary for removal. Overall these results suggest that mushroom mycelia biofilters have the potential to effectively remediate water contaminated with pathogenic and AMR bacteria.
Collapse
Affiliation(s)
- Keya Sen
- Division of Biological Sciences, School of Science, Technology, Engineering and Mathematics (STEM), University of Washington, Bothell, WA, United States
| | - Marina Llewellyn
- Division of Biological Sciences, School of Science, Technology, Engineering and Mathematics (STEM), University of Washington, Bothell, WA, United States
| | - Babak Taheri
- Division of Biological Sciences, School of Science, Technology, Engineering and Mathematics (STEM), University of Washington, Bothell, WA, United States
| | - Robert J. Turner
- School of Interdisciplinary Arts and Sciences, University of Washington, Bothell, WA, United States
| | - Tanner Berglund
- Division of Biological Sciences, School of Science, Technology, Engineering and Mathematics (STEM), University of Washington, Bothell, WA, United States
| | - Kellen Maloney
- School of Interdisciplinary Arts and Sciences, University of Washington, Bothell, WA, United States
| |
Collapse
|
9
|
Mosquera-Romero S, Ntagia E, Rousseau DP, Esteve-Núñez A, Prévoteau A. Water treatment and reclamation by implementing electrochemical systems with constructed wetlands. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100265. [PMID: 37101565 PMCID: PMC10123341 DOI: 10.1016/j.ese.2023.100265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Seasonal or permanent water scarcity in off-grid communities can be alleviated by recycling water in decentralized wastewater treatment systems. Nature-based solutions, such as constructed wetlands (CWs), have become popular solutions for sanitation in remote locations. Although typical CWs can efficiently remove solids and organics to meet water reuse standards, polishing remains necessary for other parameters, such as pathogens, nutrients, and recalcitrant pollutants. Different CW designs and CWs coupled with electrochemical technologies have been proposed to improve treatment efficiency. Electrochemical systems (ECs) have been either implemented within the CW bed (ECin-CW) or as a stage in a sequential treatment (CW + EC). A large body of literature has focused on ECin-CW, and multiple scaled-up systems have recently been successfully implemented, primarily to remove recalcitrant organics. Conversely, only a few reports have explored the opportunity to polish CW effluents in a downstream electrochemical module for the electro-oxidation of micropollutants or electro-disinfection of pathogens to meet more stringent water reuse standards. This paper aims to critically review the opportunities, challenges, and future research directions of the different couplings of CW with EC as a decentralized technology for water treatment and recovery.
Collapse
Affiliation(s)
- Suanny Mosquera-Romero
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, BOX9050, Ecuador
- Department of Green Chemistry and Technology, Ghent University, Sint-Martens-Latemlaan 2B, B-8500, Kortrijk, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium
| | - Eleftheria Ntagia
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Université Paris-Saclay, INRAE, PROSE, 92160, Antony, France
| | - Diederik P.L. Rousseau
- Department of Green Chemistry and Technology, Ghent University, Sint-Martens-Latemlaan 2B, B-8500, Kortrijk, Belgium
| | - Abraham Esteve-Núñez
- Universidad de Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Alcalá de Henares, Spain
| | - Antonin Prévoteau
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium
| |
Collapse
|
10
|
Yang Z, Acker SM, Brady AR, Rodríguez AA, Paredes LM, Ticona J, Mariscal GR, Vanzin GF, Ranville JF, Sharp JO. Heavy metal removal by the photosynthetic microbial biomat found within shallow unit process open water constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162478. [PMID: 36871713 DOI: 10.1016/j.scitotenv.2023.162478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Nature-based solutions offer a sustainable alternative to labor and chemical intensive engineered treatment of metal-impaired waste streams. Shallow, unit process open water (UPOW) constructed wetlands represent a novel design where benthic photosynthetic microbial mats (biomat) coexist with sedimentary organic matter and inorganic (mineral) phases, creating an environment for multiple-phase interactions with soluble metals. To query the interplay of dissolved metals with inorganic and organic fractions, biomat was harvested from two distinct systems: the demonstration-scale UPOW within the Prado constructed wetlands complex ("Prado biomat", 88 % inorganic) and a smaller pilot-scale system ("Mines Park (MP) biomat", 48 % inorganic). Both biomats accumulated detectable background concentrations of metals of toxicological concern (Zn, Cu, Pb, and Ni) by assimilation from waters that did not exceed regulatory thresholds for these metals. Augmentation in laboratory microcosms with a mixture of these metals at ecotoxicologically relevant concentrations revealed a further capacity for metal removal (83-100 %). Experimental concentrations encapsulated the upper range of surface waters in the metal-impaired Tambo watershed in Peru, where a passive treatment technology such as this could be applied. Sequential extractions demonstrated that metal removal by mineral fractions is more important in Prado than MP biomat, possibly due to a higher proportion and mass of iron and other minerals from Prado-derived materials. Geochemical modeling using PHREEQC suggests that in addition to sorption/surface complexation of metals to mineral phases (modeled as iron (oxyhydr)oxides), diatom and bacterial functional groups (carboxyl, phosphoryl, and silanol) also play an important role in soluble metal removal. By comparing sequestered metal phases across these biomats with differing inorganic content, we propose that sorption/surface complexation and incorporation/assimilation of both inorganic and organic constituents of the biomat play a dominant role in metal removal potential by UPOW wetlands. This knowledge could be applied to passively treat metal impaired waters in analogous and remote regions.
Collapse
Affiliation(s)
- Zhaoxun Yang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America; Center for Mining Sustainability, United States of America
| | - Sarah M Acker
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America; Center for Mining Sustainability, United States of America
| | - Adam R Brady
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Armando Arenazas Rodríguez
- Center for Mining Sustainability, United States of America; Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Lino Morales Paredes
- Center for Mining Sustainability, United States of America; Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Juana Ticona
- Center for Mining Sustainability, United States of America; Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Giuliana Romero Mariscal
- Center for Mining Sustainability, United States of America; Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Gary F Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America; Center for Mining Sustainability, United States of America
| | - James F Ranville
- Center for Mining Sustainability, United States of America; Department of Chemistry, Colorado School of Mines, Golden, CO 80401, United States of America
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America; Center for Mining Sustainability, United States of America; Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO 80401, United States of America.
| |
Collapse
|
11
|
Neumann RB, Paredes Fernández S, Andrews L, Alarcón JA, InterACTION Labs Working Group. Influence of Water Hyacinth ( Eichhornia crassipes) on Concentration and Distribution of Escherichia coli in Water Surrounding an Informal Floating Community in Iquitos, Peru. GEOHEALTH 2023; 7:e2022GH000768. [PMID: 37091292 PMCID: PMC10121155 DOI: 10.1029/2022gh000768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Floating communities exist throughout the world. Many live on water with a high pathogen load due to difficulties associated with sewage management. In Claverito, an informal floating community in Iquitos, Peru, we conducted a controlled experiment to test the ability of water hyacinth (Eichhornia crassipes) to remove Escherichia coli from water. When river E. coli concentrations were at or below ∼1,500 CFU 100 mL-1, water hyacinth reduced shallow concentrations (8 cm depth) down to levels deemed safe by U.S. EPA for recreational use. Above this threshold, plants were able to reduce E. coli levels within shallow water, but not down to "safe" levels. At deeper depths (>25 cm), there was evidence that plants increased E. coli concentrations. Water hyacinth removed E. coli from shallow water by providing a surface (i.e., submerged roots) onto which E. coli sorbed and by protecting organisms that can potentially consume E. coli. Unfortunately, because of root association, the total E. coli load within the water column was greater with water hyacinth present. The use of water hyacinth to keep surface water around floating communities low in E. coli could be beneficial as this is the water layer with which people most likely interact. Aquatic vegetation naturally proliferates in and around Claverito. While this study was based on curating aquatic plants in order to achieve a water-quality outcome, it nonetheless supports concrete actions for Claverito residents under non-curated conditions, which are outlined at the end of the manuscript.
Collapse
|
12
|
Scalable and customizable parallel flow-through reactors to quantify biological processes related to contaminant attenuation by photosynthetic wetland microbial mats. MethodsX 2023; 10:102074. [PMID: 36865651 PMCID: PMC9971053 DOI: 10.1016/j.mex.2023.102074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Shallow, unit process open water wetlands harbor a benthic microbial mat capable of removing nutrients, pathogens, and pharmaceuticals at rates that rival or exceed those of more traditional systems. A deeper understanding of the treatment capabilities of this non-vegetated, nature-based system is currently hampered by experimentation limited to demonstration-scale field systems and static lab-based microcosms that integrate field-derived materials. This limits fundamental mechanistic knowledge, extrapolation to contaminants and concentrations not present at current field sites, operational optimization, and integration into holistic water treatment trains. Hence, we have developed stable, scalable, and tunable laboratory reactor analogs that offer the capability to manipulate variables such as influent rates, aqueous geochemistry, light duration, and light intensity gradations within a controlled laboratory environment. The design is composed of an experimentally adaptable set of parallel flow-through reactors and controls that can contain field-harvested photosynthetic microbial mats ("biomat") and could be adapted for analogous photosynthetically active sediments or microbial mats. The reactor system is contained within a framed laboratory cart that integrates programable LED photosynthetic spectrum lights. Peristaltic pumps are used to introduce specified growth media, environmentally derived, or synthetic waters at a constant rate, while a gravity-fed drain on the opposite end allows steady-state or temporally variable effluent to be monitored, collected, and analyzed. The design allows for dynamic customization based on experimental needs without confounding environmental pressures and can be easily adapted to study analogous aquatic, photosynthetically driven systems, particularly where biological processes are contained within benthos. The diel cycles of pH and dissolved oxygen (DO) are used as geochemical benchmarks for the interplay of photosynthetic and heterotrophic respiration and likeness to field systems. Unlike static microcosms, this flow-through system remains viable (based on pH and DO fluctuations) and has at present been maintained for more than a year with original field-based materials.•Lab-scale flow-through reactors enable controlled and accessible exploration of shallow, open water constructed wetland function and applications.•The footprint and operating parameters minimize resources and hazardous waste while allowing for hypothesis-driven experiments.•A parallel negative control reactor quantifies and minimizes experimental artifacts.
Collapse
|
13
|
Li Z, He X, Feng C. A review of freshwater benthic clams (Corbicula fluminea): Accumulation capacity, underlying physiological mechanisms and environmental applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159431. [PMID: 36244478 DOI: 10.1016/j.scitotenv.2022.159431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Asian clams (Corbicula fluminea) have been extensively applied in biomonitoring and other environmental fields based on their high enrichment capacity and rapid response to pollutants. This review first summarizes the kinetic process of metals and organic pollutants enriched by C. fluminea and discusses the environmental behavior and application. The accumulation ability of Cu, Zn, and Mn were significantly higher than that of other metals, which were attributed to their high uptake rate constant and low elimination rate constant. The visceral mass was found to be the major burden tissue. However, large knowledge gaps existed regarding the accumulation capacity of C. fluminea for organic pollutants and nanoparticles. Moreover, physiological mechanisms underlying the accumulation of environmental pollutants were proposed. C. fluminea can improve the niche of benthic algae by ingesting pelagic algae, mitigating water eutrophication. It can also remove pathogens and parasites based on the biological assimilation of nonspecific immunity, interrupting disease transmission. The novel insight into the application of C. fluminea in wastewater treatment further broadens the range of pest management strategies and offers the feasibility of blocking the spread of invasive bivalves.
Collapse
Affiliation(s)
- Zhenling Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Xiaokang He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
14
|
Analysis of pyridine-2-carbaldehyde thiosemicarbazone as an anti-biofouling cathodic agent in microbial fuel cell. Appl Microbiol Biotechnol 2022; 107:459-472. [DOI: 10.1007/s00253-022-12273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022]
|
15
|
Hernández-Crespo C, Fernández-Gonzalvo MI, Miglio RM, Martín M. Escherichia coli removal in a treatment wetland - pond system: A mathematical modelling experience. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156237. [PMID: 35623515 DOI: 10.1016/j.scitotenv.2022.156237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
A full-scale treatment wetland (TW) (100 inhabitants, 14 m3·d-1), composed of two horizontal subsurface flow wetlands (TW1-400 m2 and TW2-200 m2) and a small pond (13 m2), has been evaluated for Escherichia coli (E. coli) removal. The results indicate a global removal from 1.74·106 to 685 MPN·100 mL-1 (3.41 log units), reducing E. coli sufficiently to reach values suitable for reuse purposes such as agricultural reuse, without energy and reagent consumption. The small pond at the end of the treatment train plays an important role in E. coli removal and biodiversity enhancement. Data from TW1 and TW2 have been fitted to the P-k-C* model, giving values of 134 and 100 m·yr-1 for the first-order kinetic reaction coefficient. For the pond, a process-based model using continuous stirred-tank reactor (CSTR) and a 3d-CFD model have been implemented and compared. The models indicate that solar disinfection and predation by daphnids are the most important mechanisms in the studied pond, representing 65% and 25% of the removal respectively. It can be concluded that CSTR can provide good results for small ponds and 3d-CFD model provides extra information, useful to enhance their design.
Collapse
Affiliation(s)
- Carmen Hernández-Crespo
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente - Universitat Politècnica de València, Spain.
| | - Miriam I Fernández-Gonzalvo
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente - Universitat Politècnica de València, Spain
| | | | - Miguel Martín
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente - Universitat Politècnica de València, Spain
| |
Collapse
|
16
|
Uthirakrishnan U, Manthapuri V, Harafan A, Chellam PV, Karuppiah T. The regime of constructed wetlands in greywater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:3169-3183. [PMID: 35704403 DOI: 10.2166/wst.2022.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is an excellent need for supply-side threats due to the enhanced degradation and reclamation of existing water bodies in the present scenario. This led to the global water crisis. One of the easiest ways to fulfil the growing need for freshwater is the recycling of wastewater. Greywater is a form of wastewater from households, industries, etc., with some less toxic materials. The recycling of this greywater has provoked the development of new and sustainable technologies to meet the growing water demand. Engineered constructed wetlands are considered one of the most economically practical processes to treat greywater due to its minimal footprint. In this case study, we summarize several categories of constructed wetlands, operating conditions, and the effects of biological, physical, and chemical aspects of greywater on their treatment performance. On the other hand, the effluent quality from diverse wetlands is also summarized. Furthermore, it would be better to consider that constructed wetlands' integrated performance with disinfection may improve the effluent quality to desirable standards.
Collapse
Affiliation(s)
- Ushani Uthirakrishnan
- Department of Biotechnology, Karpaga Vinayaga College of Engineering and Technology, Chengalpattu, Tamil Nadu 603 308, India E-mail:
| | - Vineeth Manthapuri
- Environmental & Water Resources Engineering, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, TN 600036, India
| | - Afrah Harafan
- Environmental & Water Resources Engineering, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, TN 600036, India
| | | | - Tamilarasan Karuppiah
- Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Tamil Nadu 600 062, India
| |
Collapse
|
17
|
Tanmoy DS, Bezares-Cruz JC, LeFevre GH. The use of recycled materials in a biofilter to polish anammox wastewater treatment plant effluent. CHEMOSPHERE 2022; 296:134058. [PMID: 35192854 DOI: 10.1016/j.chemosphere.2022.134058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Anammox is gaining popularity for treating wastewater containing high-strength ammonia due to lower energy demand compared to conventional nitrification-denitrification processes; however, anammox is reported to increase nitrate loads in the effluent. The objective of this study was to assess the applicability of recycled materials [recycled concrete aggregate (RCA) and rice husks (RH)] as a polishing step to improve anammox reactor effluent quality. Anammox effluents were separately passed through two single-stage columns containing RCA and RH, and one two-stage column (50% RCA, 50% RH) to quantify total N, ammonia, nitrate, nitrite, and phosphate removal efficiencies. Langmuir isotherm experiments were conducted to quantify nitrate, nitrite, and phosphate sorption capacities in the columns. The RCA column exhibited the highest phosphate sorption capacity (0.074 mg/g), while the RH column exhibited higher nitrite and nitrate adsorption (0.063 mg/g and 0.023 mg/g respectively). We created a Hydrus-1D model to estimate pseudo-first-order reaction rates in the columns. Because RCA media can form metal-phosphate precipitates, the fastest phosphate reaction rate (1.58 min-1) occurred in the RCA column. The two-stage column demonstrated the greatest overall removals for all nutrients, and removal rates were consistent throughout the experimental period. The two-stage column achieved 15% total N, 94% ammonia-N, 38% nitrate-N, 75% nitrite-N, and 27% phosphate removal. The maximum nitrite, nitrate, and phosphate adsorption capacities in the two-stage column were 0.030 mg/g, 0.017 mg/g, and 0.014 mg/g respectively. This is the first study to demonstrate that recycled materials can successfully be integrated into a biofilter as an effluent polishing step to remove nutrients from anammox wastewater.
Collapse
Affiliation(s)
- Debojit S Tanmoy
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA, 52242, United States; IIHR-Hydroscience and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA, 52242, United States; Department of Environmental Engineering, Texas A&M University-Kingsville, MSC 213, 925 W. Avenue B, Kingsville, TX, 78363, USA
| | - Juan C Bezares-Cruz
- Department of Environmental Engineering, Texas A&M University-Kingsville, MSC 213, 925 W. Avenue B, Kingsville, TX, 78363, USA
| | - Gregory H LeFevre
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA, 52242, United States; IIHR-Hydroscience and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA, 52242, United States.
| |
Collapse
|
18
|
Sardana A, Weaver L, Aziz TN. Effects of dissolved organic matter characteristics on the photosensitized degradation of pharmaceuticals in wastewater treatment wetlands. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:805-824. [PMID: 35481471 DOI: 10.1039/d1em00545f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wastewater treatment wetlands are aquatic systems where diverse dissolved organic matter (DOM) compositions physically interact. Complex photochemical behaviors ensue, leading to uncertainties in the prediction of indirect photodegradation rates for organic contaminants. Here, we evaluate the photosensitization ability of whole water DOM samples from a treatment wetland and wastewater treatment plant (WWTP) in North Carolina to photodegrade target pharmaceuticals. Optical characterization using ultraviolet-visible and excitation-emission matrix spectroscopy shows that wetland DOM has higher aromaticity than WWTP DOM and that WWTP secondary treatment processes increase aromaticity, overall molecular weight, and humic character of wastewater DOM. Our application of a reversed-phase HPLC method to assess DOM polarity distinctly reveals that a subset of the wetland samples possesses an abundance of hydrophobic DOM moieties. Hydroxyl radicals (˙OH) mediate the majority (>50%) of the indirect photodegradation for amoxicillin (AMX), atenolol (ATL), and 17α-ethinylestradiol (EE2), while singlet oxygen (1O2) is presumed to be solely responsible for the photodegradation of cimetidine (CME). Our findings suggest that hydrophobic interactions and improved accessibility to photogenerated reactive intermediates lead to significant increases in photosensitization efficiencies and overall indirect photodegradation rates of AMX, ATL, and EE2 for the hydrophobic wetland samples. In contrast, CME photosensitization yields are unaffected by polarity and trend positively with optical indicators of sunlight-induced DOM photobleaching and humification, suggesting that wetland processing favors faster 1O2 photogeneration. These relationships highlight the uncertainties in photosensitization yields and effects of DOM optical properties and polarity on the photochemical fate of organic contaminants.
Collapse
Affiliation(s)
- Arpit Sardana
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 3250 Fitts-Woolard Hall, 915 Partners Way, Raleigh NC 27695, USA.
- Geosyntec Consultants Inc., 2501 Blue Ridge Road, Suite 430, Raleigh, NC, 27607, USA
| | - Leah Weaver
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 3250 Fitts-Woolard Hall, 915 Partners Way, Raleigh NC 27695, USA.
| | - Tarek N Aziz
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 3250 Fitts-Woolard Hall, 915 Partners Way, Raleigh NC 27695, USA.
| |
Collapse
|
19
|
Shah MF, Al Mamun MA, Hossain MT, Moniruzzaman M, Yeasmine S, Uddin MH, Jasim Uddin M. Clearance of Escherichia coli by the freshwater mussel Lamellidens marginalis in laboratory conditions. MOLLUSCAN RESEARCH 2022. [DOI: 10.1080/13235818.2022.2070101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Md. Firoz Shah
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Abdullah Al Mamun
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | | | - Selina Yeasmine
- Freshwater Station, Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh
| | - Md. Helal Uddin
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - M. Jasim Uddin
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
20
|
Hansen DJ, Horne AJ. The Effect of Drying/Re-Flooding on Trace Metal, As and Se Fluxes in a Treatment Wetland: Addressing Growing Environmental Concerns. BIOLOGY 2022; 11:188. [PMID: 35205055 PMCID: PMC8869573 DOI: 10.3390/biology11020188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023]
Abstract
The retention of heavy metals in water treatment wetlands is well documented, but little understood. Fluxes to and from sediments for moderate concentrations of dissolved metals are particularly unknown. Treatment wetlands are dried out seasonally or occasionally for maintenance. The extent to which heavy metals may be released by drying/re-flooding is of particular concern because of the potential for toxic levels of metals to be mobilized. A 36 ha treatment wetland receiving treated oil refinery effluent in California was dried for 6 months, then re-flooded to an average depth of >10 cm. The concentrations of 11 metals, As and Se in inflow, outflow, and porewaters were measured weekly for 4 months. Mass flux rates showed that the wetland acted as a sink for As and Se, six metals (Co, Cr, Mg, Mn, Ni, and Sr) and S were overall sources and five showed zero net flux (Ba, Cu, Fe, Mo, and Zn). Porewater results indicate that oxidation of the sediments caused the source metals to be released. Removal for As > Cu, Fe, Mo, Zn > Co, Mn, Ni was consistent with the thermodynamically-predicted 'sulfide ladder', suggesting that available sulfide was insufficient to re-sequester the entire pool of mobile chalcophile elements. Our results suggest that less-soluble sulfide metals may be immobilized prior to more-soluble metals following drying/re-flooding in coastal systems with multiple metal contaminants. Ponding for up to several weeks, depending on the metals of concern, will facilitate metal re-immobilization within sediments before waters are released and minimize impacts downstream. Research on how to speed-up the conversion of soluble metals to their insoluble sulfides or other immobilized forms is urgently needed.
Collapse
Affiliation(s)
- Drew J. Hansen
- Agricultural and Environmental Chemistry Group, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Alex J. Horne
- Ecological Engineering Group, Department of Civil Engineering, University of California, Berkeley, CA 94720, USA;
| |
Collapse
|
21
|
Amoatey P, Izady A, Al-Maktoumi A, Chen M, Al-Harthy I, Al-Jabri K, Msagati TAM, Nkambule TTI, Baawain MS. A critical review of environmental and public health impacts from the activities of evaporation ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149065. [PMID: 34328881 DOI: 10.1016/j.scitotenv.2021.149065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Evaporation ponds (EVPs) are among the most cost-effective, and simple wastewater treatment technologies used in many regions/countries with high solar radiation levels. However, its operational limitations, which include the overflow of wastewater, leakages via liners, and large surface area of the EVP that is exposed to atmosphere, creates a negative feedback to the environment. Therefore, the main aim of this review study of more than a hundred works published a little all over the continents is to provide a summary of various contaminations that are associated with EVPs activities through different environmental compartments. In addition, the impacts of EVP on fauna, human health including the current on-site sustainable mitigation strategies were also reviewed. The first conclusion from this study shows that the most commonly contaminants released into surface waters, groundwater, soil and sediments were heavy metals, pesticides, herbicides, selenium, including several major anions and cations. Non-methane hydrocarbons (NMHCs), volatile organic compounds (VOCs), and particulate matters (PMs) were the main air pollutants emitted from the surfaces of an EVP. Limited data is available about the emissions of atmospheric greenhouse gas (GHGs) especially carbon dioxide (CO2) and methane (CH4) from EVP surfaces. Migratory birds and aquatic organisms are the most vulnerable fauna as EVP wastewaters can cause obstruction of movements, affect diversity, and causes mortalities following the exposure to the toxic wastewater. The study revealed limited data about the potential health risk associated with occupational and environmental exposure to radiological hazards and contaminated drinking water from EVP activities. On-site EVP treatment strategies using bioremediation and electrochemical treatment technologies have shown to be a promising sustainable mitigation approach. Knowledge gaps in areas of GHGs monitoring/modeling, pollution exposure estimation and health risk assessments are urgently required to gain deeper understanding about the impact of EVP activities, and incorporate them into future EVP designs.
Collapse
Affiliation(s)
- Patrick Amoatey
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman
| | - Azizallah Izady
- Water Research Center, Sultan Qaboos University, Muscat, Oman.
| | - Ali Al-Maktoumi
- Water Research Center, Sultan Qaboos University, Muscat, Oman; Department of Soils, Water and Agricultural Engineering, Sultan Qaboos University, Muscat, Oman
| | - Mingjie Chen
- Water Research Center, Sultan Qaboos University, Muscat, Oman
| | - Issa Al-Harthy
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman
| | - Khalifa Al-Jabri
- Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Eng. and Technology, University of South Africa, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability, College of Science, Eng. and Technology, University of South Africa, South Africa
| | | |
Collapse
|
22
|
Sharma R, Vymazal J, Malaviya P. Application of floating treatment wetlands for stormwater runoff: A critical review of the recent developments with emphasis on heavy metals and nutrient removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146044. [PMID: 33689897 DOI: 10.1016/j.scitotenv.2021.146044] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Floating treatment wetlands (FTWs) are increasingly gaining popularity due to a set of valuable features like wastewater remediation under varied conditions, ecosystem quality preservation, landscape conservation, and aesthetic benefits. FTW is a phyto-technology in which macrophytes grow on a floating raft with their roots in permanent contact with water and remove pollutants via several physicochemical-biological processes. FTW is highly capable of overcoming technical and operational challenges that come way in stormwater treatment due to the erratic nature of hydrologic and input pollutant loads because this innovative buoyant hydroponic design can move up and down with fluctuating water levels in the stormwater pond and can treat highly variable flows. Plants and biofilms attached to the roots hanging beneath the floating mat play a pivotal role in FTWs. The present review encompasses the concept of FTWs, their structural designs, relevance in stormwater management, and mechanism of plant uptake for pollutant removal. The role of FTWs to remove heavy metals and nutrients is also critically analyzed. Understanding hydraulics and other parameters of FTW is vital to effective design. Hence, the role of vegetation coverage, vegetation type, sorption media, aeration frequency, and intensity, and plant density to enhance system efficiency is also highlighted. Due to their operational flexibility and environmentally friendly working with no additional burden on existing urban land use, FTWs entice broad international interest and offer a coherent solution for stormwater management. MAIN FINDINGS: The review delivers state-of-the-art analysis of the current understanding of hydraulics and other parameters of FTWs, and associated mechanisms to enhance the treatment efficiency of FTWs for nutrients and heavy metals removal.
Collapse
Affiliation(s)
- Rozi Sharma
- Department of Environmental Sciences, University of Jammu, Jammu 180006, J&K, India
| | - Jan Vymazal
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, 16521 Praha 6, Czech Republic
| | - Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu 180006, J&K, India.
| |
Collapse
|
23
|
Removal of Pathogens in Onsite Wastewater Treatment Systems: A Review of Design Considerations and Influencing Factors. WATER 2021. [DOI: 10.3390/w13091190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conventional onsite wastewater treatment systems (OWTSs) could potentially contribute to the transmission of infectious diseases caused by waterborne pathogenic microorganisms and become an important human health concern, especially in the areas where OWTSs are used as the major wastewater treatment units. Although previous studies suggested the OWTSs could reduce chemical pollutants as well as effectively reducing microbial contaminants from onsite wastewater, the microbiological quality of effluents and the factors potentially affecting the removal are still understudied. Therefore, the design and optimization of pathogen removal performance necessitate a better mechanistic understanding of the hydrological, geochemical, and biological processes controlling the water quality in OWTSs. To fill the knowledge gaps, the sources of pathogens and common pathogenic indicators, along with their major removal mechanisms in OWTSs were discussed. This review evaluated the effectiveness of pathogen removal in state-of-art OWTSs and investigated the contributing factors for efficient pathogen removal (e.g., system configurations, filter materials, environmental and operational conditions), with the aim to guide the future design for optimized treatment performance.
Collapse
|
24
|
Biomat Resilience to Desiccation and Flooding Within a Shallow, Unit Process Open Water Engineered Wetland. WATER 2021. [DOI: 10.3390/w13060815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Projections of increased hydrological extremes due to climate change heighten the need to understand and improve the resilience of our water infrastructure. While constructed natural treatment analogs, such as raingardens, wetlands, and aquifer recharge, hold intuitive promise for variable flows, the impacts of disruption on water treatment processes and outcomes are not well understood and limit widespread adoption. To this end, we studied the impact of desiccation and flooding extremes on demonstration-scale shallow, unit process open water (UPOW) wetlands designed for water treatment. System resilience was evaluated as a function of physical characteristics, nitrate removal, photosynthetic activity, and microbial ecology. Rehydrated biomat that had been naturally desiccated re-established nitrate removal consistent with undisrupted biomat in less than a week; however, a pulse of organic carbon and nitrogen accompanied the initial rehydration phase. Conversely, sediment intrusion due to flooding had a negative impact on the biomat’s photosynthetic activity and decreased nitrate attenuation rates by nearly 50%. Based upon past mechanistic inferences, attenuation potential for trace organics is anticipated to follow similar trends as nitrate removal. While the microbial community was significantly altered in both extremes, our results collectively suggest that UPOW wetlands have potential for seasonal or intermittent use due to their promise of rapid re-establishment after rehydration. Flooding extremes and associated sediment intrusion provide a greater barrier to system resilience indicating a need for proactive designs to prevent this outcome; however, residual treatment potential after disruption could provide operators with time to triage and manage the system should a flood occur again.
Collapse
|
25
|
Innovative Feasibility Study for the Reclamation of the Cascajo Wetlands in Peru Utilizing Sustainable Technologies. WATER 2020. [DOI: 10.3390/w12041097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Wetlands are an important feature for our society that provides versatile benefits, such as habitat for diverse wildlife, shoreline erosion protection, flood control, and mitigation of climate change through capture and storage of carbon. The aim of this work was to assess the application of nanotechnologies for the restoration of the water quality in the Cascajo Wetlands, Peru, where the water quality was deteriorated. Ceramic-based bio-filters (CBBFs) were used to reduce and buffer the contamination rates of pollutants, whereas micro-nano bubbles (MNBs) were applied to increase the dissolved oxygen and release free radicals in water. Additionally, bio-fence was implemented to prevent water intrusion from the ocean. Remote sensing data through the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) was used to monitor the water surface condition. With treatment of CBBFs and MNBs for 13 months, we observed reduction in the chemical oxygen demand (COD), biological oxygen demand (BOD), total nitrogen (TN), and total phosphate (TP) in the water body, showing removal percentages of 98.5%, 97.5%, 98.1%, 98.5%, and 94.6%, respectively, in comparison with values before starting the implementation. The trends of NDVI and EVI over seasons are not completely aligned with the results taken from the wetlands treated with MNBs, CBBFs and bio-fence. While TN was highly correlated with the empirical value of TN based on remote sensing, no correlation was observed between COD and empirical COD. The use of eco-friendly techniques has performed efficiently to remove the pollutant.
Collapse
|
26
|
Patnaik P, Abbasi SA. Ability of Indian pennywort Bacopa monnieri (L.) Pennell in the phytoremediation of sewage (greywater). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6078-6087. [PMID: 31863386 DOI: 10.1007/s11356-019-07259-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
The freely and abundantly available amphibious plant Indian pennywort Bacopa monnieri (L.) Pennell was able to phytoremediate sewage (greywater) quickly and substantially in SHEFROL® ("sheet flow root level") bioreactors, achieving reductions in the levels of several indicator parameters: suspended solids, chemical oxygen demand, biological oxygen demand, nitrogen, phosphorus, zinc, copper, nickel, and manganese to the extents of about 90%, 76-77%, 80%, 65%, 55%, 56%, 42%, and 41%, respectively at hydraulic retention times of just 6 h. As these indicators of primary, secondary, and tertiary treatments were achieved simultaneously in a single reactor compartment, the system presented in this paper promises to be simple, rapid, and economical, in achieving significant treatment of greywater.
Collapse
Affiliation(s)
- Pratiksha Patnaik
- Centre for Pollution Control & Environmental Engineering, Pondicherry University, Chinakalapet, Puducherry, 605014, India
| | - Shahid Abbas Abbasi
- Centre for Pollution Control & Environmental Engineering, Pondicherry University, Chinakalapet, Puducherry, 605014, India.
| |
Collapse
|
27
|
Abstract
The role of aquatic plants in treating wastewater contaminated with inorganic and organic pollutants is well established. Recent studies have shown that aquatic plants possess potential to remove pathogens from wastewater. High removal (90%) of pathogenic microbes such as Enterococci, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Clostridium perfringens, Staphylococcus aureus, and Salmonella have been achieved using aquatic plant species viz. Typha latifolia, Cyperus papyrus, Cyperus alternifolius, Phragmites mauritianus, Pistia stratiotes, Lemna paucicostata, Spirodela polyrhiza, Eichhornia crassipes. Pathogen removal by aquatic plants mainly occurs because of toxicity exerted by exudates produced by them or attachment of pathogens to plant roots followed by filtration. Constructed wetlands have proved very efficient in treating pathogen-contaminated water. More studies are required to find out the exact mechanism of pathogen removal by these plants so that their role in phytoremediation technologies can be emphasized.
Collapse
|
28
|
Impact of Metazooplankton Filter Feeding on Escherichia coli under Variable Environmental Conditions. Appl Environ Microbiol 2019; 85:AEM.02006-19. [PMID: 31562176 DOI: 10.1128/aem.02006-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
The fecal indicator bacterial species Escherichia coli is an important measure of water quality and a leading cause of impaired surface waters. We investigated the impact of the filter-feeding metazooplankton Daphnia magna on the inactivation of E. coli The E. coli clearance rates of these daphnids were calculated from a series of batch experiments conducted under variable environmental conditions. Batch system experiments of 24 to 48 h in duration were completed to test the impacts of bacterial concentration, organism density, temperature, and water type. The maximum clearance rate for adult D. magna organisms was 2 ml h-1 organism-1 Less than 5% of E. coli removed from water by daphnids was recoverable from excretions. Sorption of E. coli on daphnid carapaces was not observed. As a comparison, the clearance rates of the freshwater rotifer Branchionus calyciflorus were also calculated for select conditions. The maximum clearance rate for B. calyciflorus was 6 × 10-4 ml h-1 organism-1 This research furthers our understanding of the impacts of metazooplankton predation on E. coli inactivation and the effects of environmental variables on filter feeding. Based on our results, metazooplankton can play an important role in the reduction of E. coli in natural treatment systems under environmentally relevant conditions.IMPORTANCE Escherichia coli is a fecal indicator bacterial species monitored by the U.S. Environmental Protection Agency to assess microbial water quality. Due to the potential human health implications linked to high levels of E. coli, it is important to understand the inactivation or reduction mechanisms in surface waters. Our research examines the capacities of two types of widespread filter-feeding freshwater metazooplankton, Daphnia magna and Brachionus calyciflorus, to reduce E. coli concentrations. We examine the impacts of different environmentally relevant conditions on the clearance rates. Our results contribute to a better understanding of the importance of metazooplankton in controlling E. coli concentrations and what conditions will reduce or increase grazing. These results provide baseline data to support future efforts to develop a quantitative model relating zooplankton uptake rates to relevant environmental variables.
Collapse
|
29
|
Samal K, Kar S, Trivedi S. Ecological floating bed (EFB) for decontamination of polluted water bodies: Design, mechanism and performance. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109550. [PMID: 31539700 DOI: 10.1016/j.jenvman.2019.109550] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/29/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Worldwide water quality is degrading and most of the water bodies are now being contaminated by heavy load of pollutants from various industries. Aquatic ecosystems are also disrupted affecting various flora and fauna adversely. Water bodies dominated with aquatic plants have high yielding capacity. These plants are capable of high nutrient accumulation and creating favorable condition in rhizosphere for microbial organic degradation, which can be applied in the restoration process of polluted lakes, natural streams and wetlands, etc. Ecological Floating Bed (EFB) is designed by using aquatic plants, floating like mat on the surface of water. The plant roots hang beneath the floating mat and provide a large surface area for biofilm growth. This paper reviewed the EFB concept, structure, mechanisms and functions. Screening of suitable macrophyte species, involvement of biofilm in organic removal process and necessity of growth media have been discussed briefly. Apart from this, effect of depth, buoyancy, vegetation coverage ratio are also represented. Detail mechanisms of oxygen transfer from top to bottom of water biomass have been well analyzed. Various pollutants present in wastewater like organics, solids, nitrogen, phosphorous, heavy metals etc. and their removal mechanism have also mentioned. Again biomass needs to be harvested in regular interval, else the absorbed nutrients may re-enter to the water body. Overall, EFB is an efficient and effective wastewater treatment technology and further research is necessary for its better utilization. Finally, based on reviews, recommendations have been made for future research.
Collapse
Affiliation(s)
- Kundan Samal
- School of Civil Engineering, Kalinga Institute of Industrial Technology-Deemed to be University Bhubaneswar, 751024, Odisha, India.
| | - Soham Kar
- School of Civil Engineering, Kalinga Institute of Industrial Technology-Deemed to be University Bhubaneswar, 751024, Odisha, India
| | - Shivanshi Trivedi
- School of Civil Engineering, Kalinga Institute of Industrial Technology-Deemed to be University Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
30
|
Shingare RP, Thawale PR, Raghunathan K, Mishra A, Kumar S. Constructed wetland for wastewater reuse: Role and efficiency in removing enteric pathogens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:444-461. [PMID: 31200179 DOI: 10.1016/j.jenvman.2019.05.157] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Water stress has become a perennial concern in most of the developing countries due to rapid urbanization and population growth. As the growing population requires more fresh water and better ways for wastewater disposal, the demand for wastewater reclamation has increased drastically in recent years. Wastewater, either raw or treated, is being widely used for agricultural irrigation in developing countries, which cause a serious threat to human health mainly because of its pathogenic content. One of the alternative methods to treat wastewater and make it reusable for agricultural irrigation is to implement constructed wetland (CW); a sustainable and cost-effective technology that is applicable for the elimination of both pollutants and pathogens from wastewater. Despite its wide application, the role of macrophytes that form an integral part of CW and specific mechanisms involved in pathogen removal by them is still barely understood due to complexities involved and influencing factors. This has, therefore, attracted various scientific studies to reveal further functional mechanisms involved in vegetated CW to increase its proficiencies. This review paper illustrates the comparative studies of different CW and their pathogen removal efficiencies with major emphasis on macrophytes involved and factors influencing related mechanism. Further, the paper also covers detailed information on the enteric pathogens present in wastewater and the associated health risks involved in its reuse. The ultimate objective is to further clarify the role of CW in enteric pathogen removal and its efficiency for wastewater purification in perspective with safe reuse in agriculture.
Collapse
Affiliation(s)
- Rita P Shingare
- Environmental Biotechnology and Genomics Division, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, 201 002, India.
| | | | - Karthik Raghunathan
- Environmental Biotechnology and Genomics Division, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Apurva Mishra
- Environmental Biotechnology and Genomics Division, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Sunil Kumar
- Technology Development Centre, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440 020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
31
|
Wenk J, Nguyen MT, Nelson KL. Natural Photosensitizers in Constructed Unit Process Wetlands: Photochemical Characterization and Inactivation of Pathogen Indicator Organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7724-7735. [PMID: 31149822 DOI: 10.1021/acs.est.9b01180] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dissolved organic matter (DOM) is a natural photosensitizer that contributes to the inactivation of microbial pathogens. In constructed treatment wetlands with open water areas DOM can promote sunlight disinfection of wastewater effluent, but a better understanding of DOM spectroscopic and photochemical properties and how they are impacted by different unit process wetlands is needed to inform design. The goals of this study were: (1) to investigate whether DOM isolates realistically represent the photochemistry of the source DOM in its original water and (2) to observe how changes of DOM along a treatment wetland affect its photochemistry, including pathogen inactivation. A pilot scale unit process wetland was studied that consisted of three different cells (open water, cattail, and bulrush) fed by secondary wastewater effluent. DOM was isolated using solid-phase extraction (SPE), photochemically characterized, and compared to the original water samples and standard DOMs. For MS2 coliphage, a virus indicator, the most efficient photosensitizer was the wastewater DOM isolated from the influent of the wetland, while for the bacterial indicator Enterococcus faecalis, inactivation results were comparable across wetland isolates. SPE resulted in isolation of 47% to 59% of whole water DOM and enriched for colored DOM. Singlet oxygen precursors were efficiently isolated, while some excited triplet state precursors remained in the extraction discharge. DOM processing indicators such as SUVA254, SUVA280, and spectral slopes including E2/ E3 ratios were reflected in the isolates. Photoinactivation of MS2 was significantly lower in both the reconstituted water samples and isolates compared to the original water sample, possibly due to disturbance of the trans-molecular integrity of DOM molecules by SPE that affects distance between MS2 and DOM sites with locally higher singlet oxygen production. For E. faecalis, results were similar in original water samples and isolates. Higher sorption of DOM to E. faecalis was roughly correlated with higher photoinactivation rates. To enhance sunlight disinfection in unit process wetlands, there is no advantage to placing open water cells after vegetated cells, as passage through the vegetated cells led to increased light absorption and lower singlet oxygen and triplet-state quantum yields and steady state concentrations.
Collapse
Affiliation(s)
- Jannis Wenk
- Department of Civil & Environmental Engineering , University of California , Berkeley , California 94720-1710 , United States
- Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt) Engineering Research Center (ERC) , University of California , Berkeley , California 94720-1710 , United States
| | - Mi T Nguyen
- Department of Civil & Environmental Engineering , University of California , Berkeley , California 94720-1710 , United States
- Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt) Engineering Research Center (ERC) , University of California , Berkeley , California 94720-1710 , United States
| | - Kara L Nelson
- Department of Civil & Environmental Engineering , University of California , Berkeley , California 94720-1710 , United States
- Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt) Engineering Research Center (ERC) , University of California , Berkeley , California 94720-1710 , United States
| |
Collapse
|
32
|
Sardana A, Cottrell B, Soulsby D, Aziz TN. Dissolved organic matter processing and photoreactivity in a wastewater treatment constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:923-934. [PMID: 30144760 DOI: 10.1016/j.scitotenv.2018.08.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Constructed wetlands have the capacity to degrade a host of contaminants of emerging concern through photodegradation via sunlight produced reactive oxygen species. Dissolved organic matter (DOM) is a critical intermediary in photodegradation as it influences the production of reactive oxygen species. In this study, the photochemical behavior of DOM of wastewater treated in constructed wetlands was characterized. Whole water samples and fractionated DOM were characterized using SUVA254, spectral slope ratios, excitation emission matrix fluorescence spectroscopy (EEMs), and proton nuclear magnetic resonance (1H NMR). Photoreactivity was assessed by measuring formation rates and steady state concentrations of hydroxyl radical (•OH), singlet oxygen (1O2), and the triplet excited states of DOM (3DOM⁎). The effluent was observed to transition from a microbially sourced protein-like DOM to a terrestrial DOM with higher aromaticity. Size exclusion chromatography revealed an 18% increase in larger molecular weight fractions of vegetated wetland effluent DOM. Additionally, wetland effluent DOM was observed to have a 32% increase in the aromatic region of 1H NMR spectra as compared to untreated wastewater. 1H NMR analysis also indicated an increase in the complexity of wetland effluent DOM. Fluorescence intensity fraction of the protein-like Peak T (Ex/Em:278/342 nm) of EEMs decreased by 16% from the untreated wastewater to wetland effluent. A negative correlation between the percent fluorescence of Peak T (Ex/Em:278/342 nm) and Peaks A (Ex/Em:245/460 nm), C (Ex/Em:336/435 nm), and M (Ex/Em:312/400 nm) of the excitation emission spectra confirmed the transition from a spectrum of pure wastewater to a spectrum characteristic of terrestrially derived DOM. Microbial uptake of bio-labile DOM and leaching of humic like substances from vegetated wetland cells were the predominant processes involved in this transition. This transition coincided with an increase in the formation rates of 1O2 and 3DOM⁎ and in the steady state concentration of 1O2.
Collapse
Affiliation(s)
- Arpit Sardana
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 208 Mann Hall, 2501 Stinson Drive, Raleigh, NC 27695-7908, United States
| | - Barbara Cottrell
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, United States
| | - David Soulsby
- Department of Chemistry, University of Redlands, Redlands CA, 92374, United States
| | - Tarek N Aziz
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 208 Mann Hall, 2501 Stinson Drive, Raleigh, NC 27695-7908, United States.
| |
Collapse
|
33
|
Abbasi SA, Ponni G, Tauseef SM. Potential of joyweed Alternanthera sessilis for rapid treatment of domestic sewage in SHEFROL ® bioreactor. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:160-169. [PMID: 30701990 DOI: 10.1080/15226514.2018.1488814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In a first-ever report on this subject, it is shown that a common amphibious plant joyweed (Alternanthera sessilis) can be used in rapid and efficient treatment of biodegradable wastewaters, typified by domestic sewage. The plant was effective when used indoors under artificial lighting, as well as outdoors. It enabled treatment of sewage, varying widely in strength (from 300 mg/L to 1800 mg/L in chemical oxygen demand), to the extent of 78.9-83.9%. It was also able to remove biological oxygen demand, suspended solids, phosphorous, nitrogen, and the heavy metal copper to the extent of 87%, 93%, 45%, and 43%, respectively. Over 99% of total coliforms, faecal coliforms, and faecal streptococci were also removed. The treatment was very swiftly achieved, at a hydraulic retention time of just 6 h, in the "sheet flow root level" (SHEFROL®) bioreactor developed earlier by us and of which a patent claim has been registered. The findings indicate that A. sessilis has the potential to affect primary, secondary, and tertiary treatment of domestic sewage along with significant pathogen removal in a single process step when used in SHEFROL® bioreactors.
Collapse
Affiliation(s)
- S A Abbasi
- a Centre for Pollution Control & Environmental Engineering , Pondicherry University , Puducherry , India
| | - G Ponni
- a Centre for Pollution Control & Environmental Engineering , Pondicherry University , Puducherry , India
| | - S M Tauseef
- b Department of Health, Safety, Environment and Civil Engineering , University of Petroleum and Energy Studies , Dehradun , India
| |
Collapse
|
34
|
Omondi DO, Wairimu MA, Maingi MS, Otieno OG, Jepkorir KC, Okoth OJ, Bangding X. Integrating MFT-qPCR techniques in constructed wetland faecal bacterial purification monitoring; a case of a typical tropical hybrid constructed wetland system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:2008-2018. [PMID: 30566104 DOI: 10.2166/wst.2018.475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sanitation control of pathogens in the tropical effluents needs much more attention to ensure ecosystem health integrity and the safety of human health. The common use of chemicals in achieving this in wastewater treatment has remained unsustainable due to much health concern. Indeed, based on the numerous challenges associated with faecal pathogenic bacteria in wastewaters, the focus is now on achieving higher purification efficiencies in the elimination of the human pathogens from wastewater through eco-sustainable systems such as constructed wetlands (CWs). Hence, the need to explore the application of constructed wetlands in wastewater treatment under specific local environmental conditions for accurate understanding and improved treatment efficiency. This study therefore aimed at monitoring constructed wetlands faecal bacteria purification efficiency through integrated non-molecular membrane filtration technique and molecular quantitative polymerase chain reaction (MFT-qPCR) technique. The results showed some shortfall in the treatment system and also proved that integrating MFT-qPCR in faecal bacterial purification monitoring within a constructed wetland system provides a more accurate and reliable outcome. Additionally, the wetland purification efficiency was low (<80%) with the dissolved oxygen posing the strongest influence on faecal pathogenic bacterial purification trend across the wetland. Hence, the need to regularly carry out dredging and macrophyte harvesting as well as the use of holistic and more integrative approaches such as MFT-qPCR in managing and monitoring the performance of CWs in faecal pathogen eradication for improved CWs purification efficiency.
Collapse
Affiliation(s)
- Donde Oscar Omondi
- Key Laboratory of Algal Biology of Chinese Academy of Sciences - Lake Restoration Research Group, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China E-mail: ; International College, University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Science, Egerton University, P. O. Box 536-20115, Nakuru, Kenya
| | - Muia Anastasia Wairimu
- Department of Biological Sciences, Egerton University, P. O. Box 536-20115, Nakuru, Kenya
| | - Makindi Stanley Maingi
- Department of Environmental Science, Egerton University, P. O. Box 536-20115, Nakuru, Kenya
| | | | - Kibet Caroline Jepkorir
- International College, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, No. 7 Donghu South Road, Wuhan 430072, China
| | - Ogalo Joseph Okoth
- State Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, No. 44, Xiahong Shan Zhong Qu Fruit Lake Street 430071, Wuhan, China
| | - Xiao Bangding
- Key Laboratory of Algal Biology of Chinese Academy of Sciences - Lake Restoration Research Group, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China E-mail:
| |
Collapse
|
35
|
Charbonnet JA, Duan Y, van Genuchten CM, Sedlak DL. Chemical Regeneration of Manganese Oxide-Coated Sand for Oxidation of Organic Stormwater Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10728-10736. [PMID: 30160107 DOI: 10.1021/acs.est.8b03304] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Urban stormwater, municipal wastewater effluent, and agricultural runoff contain trace amounts of organic contaminants that can compromise water quality. To provide a passive, low-cost means of oxidizing substituted phenols, aromatic amines, and other electron-rich organic compounds during infiltration of contaminated waters, we coated sand with manganese oxide using a new approach involving the room-temperature oxidation of Mn2+ with permanganate. Manganese oxide-coated sand effectively oxidized bisphenol A under typical infiltration conditions and sustained reactivity longer than previously described geomedia. Because geomedia reactivity decreased after extended operation, chlorine was evaluated for use as an in situ geomedia regenerant. Geomedia regenerated by HOCl demonstrated similar reactivity and longevity to that of virgin geomedia. Chemical analyses indicated that the average manganese oxidation state of the coatings decreased as the geomedia passivated. X-ray absorption spectroscopy and X-ray diffraction showed that the reactive virgin and regenerated geomedia coatings had nanocrystalline manganese oxide structures, whereas the failed geomedia coating exhibited greater crystallinity and resembled cryptomelane. These results suggest that it is possible to regenerate the oxidative capacity of manganese oxide-coated sands without excavating stormwater infiltration systems. These results also suggest that manganese oxide geomedia may be a cost-effective means of treating urban stormwater and other contaminated waters.
Collapse
Affiliation(s)
- Joseph A Charbonnet
- National Science Foundation Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt) and Department of Civil & Environmental Engineering , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Yanghua Duan
- National Science Foundation Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt) and Department of Civil & Environmental Engineering , University of California at Berkeley , Berkeley , California 94720 , United States
| | - Case M van Genuchten
- Department of Earth Sciences, Geochemistry, Faculty of Geosciences , Utrecht University , Utrecht 3508TA , The Netherlands
| | - David L Sedlak
- National Science Foundation Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt) and Department of Civil & Environmental Engineering , University of California at Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|
36
|
Nelson KL, Boehm AB, Davies-Colley RJ, Dodd MC, Kohn T, Linden KG, Liu Y, Maraccini PA, McNeill K, Mitch WA, Nguyen TH, Parker KM, Rodriguez RA, Sassoubre LM, Silverman AI, Wigginton KR, Zepp RG. Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1089-1122. [PMID: 30047962 PMCID: PMC7064263 DOI: 10.1039/c8em00047f] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Health-relevant microorganisms present in natural surface waters and engineered treatment systems that are exposed to sunlight can be inactivated by a complex set of interacting mechanisms. The net impact of sunlight depends on the solar spectral irradiance, the susceptibility of the specific microorganism to each mechanism, and the water quality; inactivation rates can vary by orders of magnitude depending on the organism and environmental conditions. Natural organic matter (NOM) has a large influence, as it can attenuate radiation and thus decrease inactivation by endogenous mechanisms. Simultaneously NOM sensitizes the formation of reactive intermediates that can damage microorganisms via exogenous mechanisms. To accurately predict inactivation and design engineered systems that enhance solar inactivation, it is necessary to model these processes, although some details are not yet sufficiently well understood. In this critical review, we summarize the photo-physics, -chemistry, and -biology that underpin sunlight-mediated inactivation, as well as the targets of damage and cellular responses to sunlight exposure. Viruses that are not susceptible to exogenous inactivation are only inactivated if UVB wavelengths (280-320 nm) are present, such as in very clear, open waters or in containers that are transparent to UVB. Bacteria are susceptible to slightly longer wavelengths. Some viruses and bacteria (especially Gram-positive) are susceptible to exogenous inactivation, which can be initiated by visible as well as UV wavelengths. We review approaches to model sunlight-mediated inactivation and illustrate how the environmental conditions can dramatically shift the inactivation rate of organisms. The implications of this mechanistic understanding of solar inactivation are discussed for a range of applications, including recreational water quality, natural treatment systems, solar disinfection of drinking water (SODIS), and enhanced inactivation via the use of sensitizers and photocatalysts. Finally, priorities for future research are identified that will further our understanding of the key role that sunlight disinfection plays in natural systems and the potential to enhance this process in engineered systems.
Collapse
Affiliation(s)
- Kara L Nelson
- Civil and Environmental Engineering, University of California, Berkeley, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Arden S, Ma X. Constructed wetlands for greywater recycle and reuse: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:587-599. [PMID: 29494968 PMCID: PMC7362998 DOI: 10.1016/j.scitotenv.2018.02.218] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/18/2018] [Indexed: 05/21/2023]
Abstract
Concern over dwindling water supplies for urban areas as well as environmental degradation from existing urban water systems has motivated research into more resilient and sustainable water supply strategies. Greywater reuse has been suggested as a way to diversify local water supply portfolios while at the same time lessening the burden on existing environments and infrastructure. Constructed wetlands have been proposed as an economically and energetically efficient unit process to treat greywater for reuse purposes, though their ability to consistently meet applicable water quality standards, microbiological in particular, is questionable. We therefore review the existing case study literature to summarize the treatment performance of greywater wetlands in the context of chemical, physical and microbiological water quality standards. Based on a cross-section of different types of wetlands, including surface flow, subsurface flow, vertical and recirculating vertical flow, across a range of operating conditions, we show that although microbiological standards cannot reliably be met, given either sufficient retention time or active recirculation, chemical and physical standards can. We then review existing case study literature for typical water supply disinfection unit processes including chlorination, ozonation and ultraviolet radiation treating either raw or treated greywater specifically. An evaluation of effluent water quality from published wetland case studies and the expected performance from disinfection processes shows that under appropriate conditions these two unit processes together can likely produce effluent of sufficient quality to meet all nonpotable reuse standards. Specifically, we suggest that recycling vertical flow wetlands combined with ultraviolet radiation disinfection and chlorine residual is the best combination to reliably meet the standards.
Collapse
Affiliation(s)
- S Arden
- University of Florida, 100 Phelps Lab, Gainesville, FL 32611, United States
| | - X Ma
- U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, United States.
| |
Collapse
|
38
|
Abstract
Removal of parasite free-living stages by predators has previously been suggested an important factor controlling parasite transmission in aquatic habitats. Experimental studies of zooplankton predation on macroparasite larvae are, however, scarce. We tested whether trematode cercariae, which are often numerous in shallow waters, are suitable prey for syntopic zooplankters. Feeding rates and survival of freshwater cyclopoids (Megacyclops viridis, Macrocyclops distinctus), calanoids (Arctodiaptomus paulseni), cladocerans (Sida crystallina) and rotifers Asplanchna spp., fed with cercariae of Diplostomum pseudospathaceum, a common fish trematode, were studied. In additional long-term experiments, we studied reproduction of cyclopoids fed with cercariae. All tested zooplankton species consumed cercariae. The highest feeding rates were observed for cyclopoids (33 ± 12 cercariae ind-1 h-1), which actively reproduced (up to one egg clutch day-1) when fed ad libitum with cercariae. Their reproductive characteristics did not change significantly with time, indicating that cercariae supported cyclopoids' dietary needs. Mortality of rotifers and cladocerans was high (25-28% individuals) when exposed to cercariae in contrast to cyclopoids and calanoids (<2%). Cercariae clogged the filtration apparatus of cladocerans and caused internal injuries in predatory rotifers, which ingested cercariae. Observed trophic links between common freshwater zooplankters and cercariae may significantly influence food webs and parasite transmission in lentic ecosystems.
Collapse
|
39
|
Wolfand JM, Bell CD, Boehm AB, Hogue TS, Luthy RG. Multiple Pathways to Bacterial Load Reduction by Stormwater Best Management Practices: Trade-Offs in Performance, Volume, and Treated Area. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6370-6379. [PMID: 29676892 DOI: 10.1021/acs.est.8b00408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stormwater best management practices (BMPs) are implemented to reduce microbial pollution in runoff, but their removal efficiencies differ. Enhanced BMPs, such as those with media amendments, can increase removal of fecal indicator bacteria (FIB) in runoff from 0.25-log10 to above 3-log10; however, their implications for watershed-scale management are poorly understood. In this work, a computational model was developed to simulate watershed-scale bacteria loading and BMP performance using the Ballona Creek Watershed (Los Angeles County, CA) as a case study. Over 1400 scenarios with varying BMP performance, percent watershed area treated, BMP treatment volume, and infiltrative capabilities were simulated. Incremental improvement of BMP performance by 0.25-log10, while keeping other scenario variables constant, reduces annual bacterial load at the outlet by a range of 0-29%. In addition, various simulated scenarios provide the same FIB load reduction; for example, 75% load reduction is achieved by diverting runoff from either 95% of the watershed area to 25 000 infiltrating BMPs with 0.5-log10 removal or 75% of the watershed area to 75 000 infiltrating BMPs with 1.5-log10 removal. Lastly, simulated infiltrating BMPs provide greater FIB reduction than noninfiltrating BMPs at the watershed scale. Results provide new insight on the trade-offs between BMP treatment volume, performance, and distribution.
Collapse
Affiliation(s)
- Jordyn M Wolfand
- NSF Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt)
| | - Colin D Bell
- NSF Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt)
- Department of Civil and Environmental Engineering , Colorado School of Mines , Golden , Colorado 80401 , United States
| | - Alexandria B Boehm
- NSF Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt)
| | - Terri S Hogue
- NSF Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt)
- Department of Civil and Environmental Engineering , Colorado School of Mines , Golden , Colorado 80401 , United States
| | - Richard G Luthy
- NSF Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt)
- Department of Civil and Environmental Engineering , Colorado School of Mines , Golden , Colorado 80401 , United States
| |
Collapse
|
40
|
Jones ZL, Mikkelson KM, Nygren S, Sedlak DL, Sharp JO. Establishment and convergence of photosynthetic microbial biomats in shallow unit process open-water wetlands. WATER RESEARCH 2018; 133:132-141. [PMID: 29407695 DOI: 10.1016/j.watres.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/23/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
The widespread adoption of engineered wetlands designed for water treatment is hindered by uncertainties in system reliability, resilience and management associated with coupled biological and physical processes. To better understand how shallow unit process open-water wetlands self-colonize and evolve, we analyzed the composition of the microbial community in benthic biomats from system establishment through approximately 3 years of operation. Our analysis was conducted across three parallel demonstration-scale (7500 m2) cells located within the Prado Constructed Wetlands in Southern California. They received water from the Santa Ana River (5.9 ± 0.2 mg/L NO3-N), a water body where the flow is dominated by municipal wastewater effluent from May to November. Phylogenetic inquiry and microscopy confirmed that diatoms and an associated aerobic bacterial community facilitated early colonization. After approximately nine months of operation, coinciding with late summer, an anaerobic community emerged with the capability for nitrate attenuation. Varying the hydraulic residence time (HRT) from 1 to 4 days the subsequent year resulted in modest ecological changes across the three parallel cells that were most evident in the outlet regions of the cells. The community that established at this time was comparatively stable for the remaining years of operation and converged with one that had previously formed approximately 550 km (350 miles) away in a pilot-scale (400 m2) wetland in Northern California. That system received denitrified (20.7 ± 0.7 mg/L NO3-N), secondary treated municipal wastewater for 5 years of operation. Establishment of a core microbiome between the two systems revealed a strong overlap of both aerobic and anaerobic taxa with approximately 50% of the analyzed bacterial sequences shared between the two sites. Additionally the same species of diatom, Stauirsa construens var. venter, was prolific in both systems as the putative dominant primary producer. Our results indicate that despite differences in scale, geographic location and source waters, the shallow open-water wetland design can select for a rapid convergence of microbial structure and functionality associated with the self-colonizing benthic biomat. This resulting biomat matures over the first growing season with operational parameters such as HRT further exerting a modest selective bias on community succession.
Collapse
Affiliation(s)
- Zackary L Jones
- ReNUWIt Engineering Research Center, United States; Department of Civil & Environmental Engineering, Hydrologic Science & Engineering Program, Colorado School of Mines, Golden, CO 80401, United States
| | - Kristin M Mikkelson
- ReNUWIt Engineering Research Center, United States; Department of Civil & Environmental Engineering, Hydrologic Science & Engineering Program, Colorado School of Mines, Golden, CO 80401, United States
| | - Scott Nygren
- ReNUWIt Engineering Research Center, United States; Orange County Water District, Fountain Valley, CA 92708, United States
| | - David L Sedlak
- ReNUWIt Engineering Research Center, United States; Department of Civil & Environmental Engineering, University of California at Berkeley, Berkeley, CA 94720, United States
| | - Jonathan O Sharp
- ReNUWIt Engineering Research Center, United States; Department of Civil & Environmental Engineering, Hydrologic Science & Engineering Program, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
41
|
Yuan C, Chin YP, Weavers LK. Photochemical acetochlor degradation induced by hydroxyl radical in Fe-amended wetland waters: Impact of pH and dissolved organic matter. WATER RESEARCH 2018; 132:52-60. [PMID: 29306699 DOI: 10.1016/j.watres.2017.11.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/18/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Iron (Fe) plays a critical role in the formation of hydroxyl radical (OH) which may participate in the indirect photodegradation of aquatic contaminants. While Fe photochemistry has been extensively studied, the efficacy of iron amendments for contaminant attenuation in sunlit natural waters has not been well researched. We studied the efficacy of this approach by monitoring OH induced acetochlor (AC) degradation and determining OH production rates with terephthalate (TPA) as a probe. Surface wetland waters as well as model fulvic acid (FA) solutions were amended with Fe(III) salt at different concentrations at pH values of 2.7, 5, and 7.6. We observed no significant enhancement in the AC degradation rate at circumneutral pH. At pH 5, AC degradation increased by more than 50% with an Fe addition up to an [Fe]T ≈ 6 μM and plateaued at high [Fe]T. At the highly acidic pH of acid mine drainage (AMD) waters, AC degradation was enhanced by two-orders-of magnitude with increasing [Fe]T and no plateau was observed under the conditions tested ([Fe]T ≤ 500 μM). While the Fe induced relative difference in OH production rates determined using TPA was useful in elucidating the reaction mechanism for different dissolved organic matter types at different pH values, the absolute value of OH production rates over-predicted the transformation of AC suggesting the existence of unknown side reactions and/or alternative reactive intermediates.
Collapse
Affiliation(s)
- Chenyi Yuan
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Yu-Ping Chin
- School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Linda K Weavers
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
42
|
Two-stage vertical flow multi-soil-layering (MSL) technology for efficient removal of coliforms and human pathogens from domestic wastewater in rural areas under arid climate. Int J Hyg Environ Health 2018; 221:64-80. [DOI: 10.1016/j.ijheh.2017.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/04/2017] [Accepted: 10/08/2017] [Indexed: 11/17/2022]
|
43
|
Sulfide-Induced Dissimilatory Nitrate Reduction to Ammonium Supports Anaerobic Ammonium Oxidation (Anammox) in an Open-Water Unit Process Wetland. Appl Environ Microbiol 2017; 83:AEM.00782-17. [PMID: 28526796 DOI: 10.1128/aem.00782-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/14/2017] [Indexed: 02/01/2023] Open
Abstract
Open-water unit process wetlands host a benthic diatomaceous and bacterial assemblage capable of nitrate removal from treated municipal wastewater with unexpected contributions from anammox processes. In exploring mechanistic drivers of anammox, 16S rRNA gene sequencing profiles of the biomat revealed significant microbial community shifts along the flow path and with depth. Notably, there was an increasing abundance of sulfate reducers (Desulfococcus and other Deltaproteobacteria) and anammox microorganisms (Brocadiaceae) with depth. Pore water profiles demonstrated that nitrate and sulfate concentrations exhibited a commensurate decrease with biomat depth accompanied by the accumulation of ammonium. Quantitative PCR targeting the anammox hydrazine synthase gene, hzsA, revealed a 3-fold increase in abundance with biomat depth as well as a 2-fold increase in the sulfate reductase gene, dsrA These microbial and geochemical trends were most pronounced in proximity to the influent region of the wetland where the biomat was thickest and influent nitrate concentrations were highest. While direct genetic queries for dissimilatory nitrate reduction to ammonium (DNRA) microorganisms proved unsuccessful, an increasing depth-dependent dominance of Gammaproteobacteria and diatoms that have previously been functionally linked to DNRA was observed. To further explore this potential, a series of microcosms containing field-derived biomat material confirmed the ability of the community to produce sulfide and reduce nitrate; however, significant ammonium production was observed only in the presence of hydrogen sulfide. Collectively, these results suggest that biogenic sulfide induces DNRA, which in turn can explain the requisite coproduction of ammonium and nitrite from nitrified effluent necessary to sustain the anammox community.IMPORTANCE This study aims to increase understanding of why and how anammox is occurring in an engineered wetland with limited exogenous contributions of ammonium and nitrite. In doing so, the study has implications for how geochemical parameters could potentially be leveraged to impact nutrient cycling and attenuation during the operation of treatment wetlands. The work also contributes to ongoing discussions about biogeochemical signatures surrounding anammox processes and enhances our understanding of the contributions of anammox processes in freshwater environments.
Collapse
|
44
|
Alufasi R, Gere J, Chakauya E, Lebea P, Parawira W, Chingwaru W. Mechanisms of pathogen removal by macrophytes in constructed wetlands. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/21622515.2017.1325940] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Richwell Alufasi
- Department of Biological Sciences, Faculty of Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Jephris Gere
- Department of Biological Sciences, Faculty of Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Ereck Chakauya
- Council for Scientific and Industrial Research (CSIR), Biosciences, Pretoria, South Africa
| | - Phiyani Lebea
- Council for Scientific and Industrial Research (CSIR), Biosciences, Pretoria, South Africa
| | - Wilson Parawira
- Department of Biological Sciences, Faculty of Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Walter Chingwaru
- Department of Biological Sciences, Faculty of Science, Bindura University of Science Education, Bindura, Zimbabwe
| |
Collapse
|
45
|
Silverman AI, Nelson KL. Modeling the Endogenous Sunlight Inactivation Rates of Laboratory Strain and Wastewater E. coli and Enterococci Using Biological Weighting Functions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12292-12301. [PMID: 27934240 DOI: 10.1021/acs.est.6b03721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Models that predict sunlight inactivation rates of bacteria are valuable tools for predicting the fate of pathogens in recreational waters and designing natural wastewater treatment systems to meet disinfection goals. We developed biological weighting function (BWF)-based numerical models to estimate the endogenous sunlight inactivation rates of E. coli and enterococci. BWF-based models allow the prediction of inactivation rates under a range of environmental conditions that shift the magnitude or spectral distribution of sunlight irradiance (e.g., different times, latitudes, water absorbances, depth). Separate models were developed for laboratory strain bacteria cultured in the laboratory and indigenous organisms concentrated directly from wastewater. Wastewater bacteria were found to be 5-7 times less susceptible to full-spectrum simulated sunlight than the laboratory bacteria, highlighting the importance of conducting experiments with bacteria sourced directly from wastewater. The inactivation rate models fit experimental data well and were successful in predicting the inactivation rates of wastewater E. coli and enterococci measured in clear marine water by researchers from a different laboratory. Additional research is recommended to develop strategies to account for the effects of elevated water pH on predicted inactivation rates.
Collapse
Affiliation(s)
- Andrea I Silverman
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt) , Berkeley, California 94720-1710, United States
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720-1710, United States
| | - Kara L Nelson
- Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt) , Berkeley, California 94720-1710, United States
- Department of Civil and Environmental Engineering, University of California , Berkeley, California 94720-1710, United States
| |
Collapse
|
46
|
Ismail NS, Tommerdahl JP, Boehm AB, Luthy RG. Escherichia coli Reduction by Bivalves in an Impaired River Impacted by Agricultural Land Use. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11025-11033. [PMID: 27616202 DOI: 10.1021/acs.est.6b03043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fecal indicator bacteria (FIB) are leading causes of impaired surface waters. Innovative and environmentally appropriate best management practices are needed to reduce FIB concentrations and associated risk. This study examines the ability of the native freshwater mussel Anodonta californiensis and an invasive freshwater clam Corbicula fluminea to reduce concentrations of the FIB Escherichia coli in natural waters. Laboratory batch experiments were used to show bivalve species-specific E. coli removal capabilities and to develop a relationship between bivalve size and clearance rates. A field survey within an impaired coastal river containing both species of bivalves in an agricultural- and grazing-dominated area of the central coast of California showed a significant inverse correlation between E. coli concentration and bivalve density. An in situ field spiking and sampling study showed filtration by freshwater bivalves resulting in 1-1.5 log10 reduction of E. coli over 24 h, and calculated clearance rates ranged from 1.2 to 7.4 L hr-1 bivalve-1. Results of this study show the importance of freshwater bivalves for improving water quality through the removal of E. coli. While both native and invasive bivalves can reduce E. coli levels, the use of native bivalves through integration into best management practices is recommended as a way to improve water quality and protect and encourage re-establishment of native bivalve species that are in decline.
Collapse
Affiliation(s)
- Niveen S Ismail
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
- ReNUWIt Engineering Research Center, Stanford University , 473 Via Ortega, Room 117, Yang & Yamazaki Environment & Energy Building, Standford, California 94305, United States
| | - Jake P Tommerdahl
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
- ReNUWIt Engineering Research Center, Stanford University , 473 Via Ortega, Room 117, Yang & Yamazaki Environment & Energy Building, Standford, California 94305, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
- ReNUWIt Engineering Research Center, Stanford University , 473 Via Ortega, Room 117, Yang & Yamazaki Environment & Energy Building, Standford, California 94305, United States
| | - Richard G Luthy
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
- ReNUWIt Engineering Research Center, Stanford University , 473 Via Ortega, Room 117, Yang & Yamazaki Environment & Energy Building, Standford, California 94305, United States
| |
Collapse
|
47
|
McKay G, Couch KD, Mezyk SP, Rosario-Ortiz FL. Investigation of the Coupled Effects of Molecular Weight and Charge-Transfer Interactions on the Optical and Photochemical Properties of Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8093-102. [PMID: 27377760 PMCID: PMC8903045 DOI: 10.1021/acs.est.6b02109] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We studied the formation of photochemically produced reactive intermediates (RI) from dissolved organic matter (DOM). Specifically, we focused on the effects of variable molecular weight and chemical reduction on the optical properties of DOM (absorbance and fluorescence) and the formation of singlet oxygen ((1)O2), DOM triplet excited states ((3)DOM*), and the hydroxyl radical ((•)OH). The data are largely evaluated in terms of a charge-transfer (CT) model, but deficiencies in the model to explain the data are pointed out when evident. A total of two sets of samples were studied that were subjected to different treatments; the first set included secondary-treated wastewaters and a wastewater-impacted stream, and the second was a DOM isolate. Treatments included size fractionation and chemical reduction using sodium borohydride. Taken as a whole, the results demonstrate that decreasing molecular weight and borohydride reduction work in opposition regarding quantum efficiencies for (1)O2 and (3)DOM* production but in concert for fluorescence and (•)OH production. The optical and photochemical data provide evidence for a limited role of CT interactions occurring in lower-molecular-weight DOM molecules. In addition, the data suggest that the observed optical and photochemical properties of DOM are a result of multiple populations of chromophores and that their relative contribution is changed by molecular-weight fractionation and borohydride reduction.
Collapse
Affiliation(s)
- Garrett McKay
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Corresponding Authors: G.M.: . F.L.R.-O.:
| | - Kylie D. Couch
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Stephen P. Mezyk
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Fernando L. Rosario-Ortiz
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Corresponding Authors: G.M.: . F.L.R.-O.:
| |
Collapse
|
48
|
Melvin SD, Leusch FDL. Removal of trace organic contaminants from domestic wastewater: A meta-analysis comparison of sewage treatment technologies. ENVIRONMENT INTERNATIONAL 2016; 92-93:183-8. [PMID: 27107223 DOI: 10.1016/j.envint.2016.03.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 05/26/2023]
Abstract
Trace organic contaminants (TrOCs), such as endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs), represent global threats to aquatic animals and ecosystems. A major source of TrOCs in the aquatic environment is via the discharge of treated sewage, so there is an urgent need to evaluate the comparative efficiencies of the most widely used sewage treatment technologies as regards elimination of these compounds from wastewater. To address this need, 976 published articles were compiled focusing on estimates of removal (%) for 20 common environmental TrOCs, from five major sewage treatment technologies: conventional activated sludge (CAS), oxidation ditch (OD), membrane bioreactor (MBR), ponds and constructed wetlands (PCW), and trickling biological filters (TBF). A quantitative meta-analysis was performed to compare standardized relative removal efficiencies (SREs) of the compounds amongst these technologies, and where possible potential sources of heterogeneity were considered (e.g., flow rates and chemical sorption potential). The results indicate that the most widely used CAS treatment and the less common TBF provide comparatively poor overall removal of common organic micropollutants. Membrane bioreactors appear to be capable of achieving the greatest overall removal efficiencies, but the sustainability and economic viability of this option has been questioned. Treatment with OD systems may be more economical while still achieving comparatively high removal efficiencies, and the analysis revealed OD to be the best option for targeting highly potent estrogenic EDCs. This study offers a unique global assessment of TrOC removal via leading sewage treatment technologies, and is an important step in the identification of effective options for treating municipal sewage.
Collapse
Affiliation(s)
- Steven D Melvin
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, QLD, 4222, Australia.
| | - Frederic D L Leusch
- Smart Water Research Centre, Australian Rivers Institute, Griffith School of Environment, Griffith University, Southport, QLD, 4222, Australia
| |
Collapse
|
49
|
Tran CD, Prosenc F, Franko M, Benzi G. Synthesis, structure and antimicrobial property of green composites from cellulose, wool, hair and chicken feather. Carbohydr Polym 2016; 151:1269-1276. [PMID: 27474680 DOI: 10.1016/j.carbpol.2016.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
Novel composites between cellulose (CEL) and keratin (KER) from three different sources (wool, hair and chicken feather) were successfully synthesized in a simple one-step process in which butylmethylimidazolium chloride (BMIm(+)Cl(-)), an ionic liquid, was used as the sole solvent. The method is green and recyclable because [BMIm(+)Cl(-)] used was recovered for reuse. Spectroscopy (FTIR, XRD) and imaging (SEM) results confirm that CEL and KER remain chemically intact and homogeneously distributed in the composites. KER retains some of its secondary structure in the composites. Interestingly, the minor differences in the structure of KER in wool, hair and feather produced pronounced differences in the conformation of their corresponding composites with wool has the highest α-helix content and feather has the lowest content. These results correlate well with mechanical and antimicrobial properties of the composites. Specifically, adding CEL into KER substantially improves mechanical strength of [CEL+KER] composites made from all three different sources, wool, hair and chicken feathers i.e., [CEL+wool], [CEL+hair] and [CEL+feather]. Since mechanical strength is due to CEL, and CEL has only random structure, [CEL+feather] has, expectedly, the strongest mechanical property because feather has the lowest content of α-helix. Conversely, [CEL+wool] composite has the weakest mechanical strength because wool has the highest α-helix content. All three composites exhibit antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA). The antibacterial property is due not to CEL but to the protein and strongly depends on the type of the keratin, namely, the bactericidal effect is strongest for feather and weakest for wool. These results together with our previous finding that [CEL+KER] composites can control release of drug such as ciprofloxacin clearly indicate that these composites can potentially be used as wound dressing.
Collapse
Affiliation(s)
- Chieu D Tran
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA.
| | - Franja Prosenc
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - Mladen Franko
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | - Gerald Benzi
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| |
Collapse
|
50
|
Impact of environmental factors on the emergence, transmission and distribution of Toxoplasma gondii. Parasit Vectors 2016; 9:137. [PMID: 26965989 PMCID: PMC4785633 DOI: 10.1186/s13071-016-1432-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/05/2016] [Indexed: 11/10/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular protozoan that poses a great threat to human health and economic well-being worldwide. The effects of environmental factors such as changing climate and human activities on the ecology of this protozoan are being discovered. Accumulated evidence shows that changes of these environmental factors can exert influence on the occurrence, transmission and distribution of T. gondii. This article reviews studies from different geographical regions with varying climates, social cultures and animal welfare standards. It aims to illustrate how these environmental factors work, highlighting their importance in influencing the ecology of T. gondii, as well as providing clues which may contribute to preventing transmission of this important zoonotic pathogen.
Collapse
|