1
|
Teryutin FM, Pshennikova VG, Solovyev AV, Romanov GP, Fedorova SA, Barashkov NA. Genotype-phenotype analysis of hearing function in patients with DFNB1A caused by the c.-23+1G>A splice site variant of the GJB2 gene (Cx26). PLoS One 2024; 19:e0309439. [PMID: 39436953 PMCID: PMC11495561 DOI: 10.1371/journal.pone.0309439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
The audiological features of hearing loss (HL) in patients with autosomal recessive deafness type 1A (DFNB1A) caused by splice site variants of the GJB2 gene are less studied than those of patients with other variants of this gene. In this study, we present the audiological features of DFNB1A in a large cohort of 134 patients with the homozygous splice site variant c.-23+1G>A and 34 patients with other biallelic GJB2 genotypes (n = 168 patients with DFNB1A). We found that the preservation of hearing thresholds in the speech frequency range (PTA0.5,1.0,2.0,4.0 kHz) in patients with the c.[-23+1G>A];[-23+1G>A] genotype is significantly better than in patients with the "severe" c.[35delG];[35delG] genotype (p = 0.005) and significantly worse than in patients with the "mild" c.[109G>A];[109G>A] genotype (p = 0.041). This finding indicates a "medium" pathological effect of this splice site variant on hearing function. A detailed clinical and audiological analysis showed that in patients with the c.[-23+1G>A];[-23+1G>A] genotype, HL is characterized as congenital or early onset (57.5% onset before 12 months), sensorineural (97.8%), bilateral, symmetrical (82.8%), variable in severity (from mild to profound HL, median hearing threshold in PTA0.5,1.0,2.0,4.0 kHz is 86.73±21.98 dB), with an extremely "flat" audioprofile, and with a tendency toward slow progression (a positive correlation of hearing thresholds with age, r = 0.144, p = 0.041). In addition, we found that the hearing thresholds in PTA0.5,1.0,2.0,4.0 kHz were significantly better preserved in females (82.34 dB) than in males (90.62 dB) (p = 0.001). We can conclude that in patients with DFNB1A caused by the c.-23+1G>A variant, male sex is associated with deteriorating auditory function; in contrast, female sex is a protective factor.
Collapse
Affiliation(s)
- Fedor M. Teryutin
- Laboratory of Molecular Genetics, Yakut Scientific Centre of Complex Medical Problems, Yakutsk, Russia
| | - Vera G. Pshennikova
- Laboratory of Molecular Genetics, Yakut Scientific Centre of Complex Medical Problems, Yakutsk, Russia
| | - Aisen V. Solovyev
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russia
| | - Georgii P. Romanov
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russia
| | - Sardana A. Fedorova
- Laboratory of Molecular Genetics, Yakut Scientific Centre of Complex Medical Problems, Yakutsk, Russia
- Laboratory of Molecular Biology, Institute of Natural Sciences, M.K. Ammosov North-Eastern Federal University, Yakutsk, Russia
| | - Nikolay A. Barashkov
- Laboratory of Molecular Genetics, Yakut Scientific Centre of Complex Medical Problems, Yakutsk, Russia
| |
Collapse
|
2
|
Mao L, Wang Y, An L, Zeng B, Wang Y, Frishman D, Liu M, Chen Y, Tang W, Xu H. Molecular Mechanisms and Clinical Phenotypes of GJB2 Missense Variants. BIOLOGY 2023; 12:biology12040505. [PMID: 37106706 PMCID: PMC10135792 DOI: 10.3390/biology12040505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 03/29/2023]
Abstract
The GJB2 gene is the most common gene responsible for hearing loss (HL) worldwide, and missense variants are the most abundant type. GJB2 pathogenic missense variants cause nonsyndromic HL (autosomal recessive and dominant) and syndromic HL combined with skin diseases. However, the mechanism by which these different missense variants cause the different phenotypes is unknown. Over 2/3 of the GJB2 missense variants have yet to be functionally studied and are currently classified as variants of uncertain significance (VUS). Based on these functionally determined missense variants, we reviewed the clinical phenotypes and investigated the molecular mechanisms that affected hemichannel and gap junction functions, including connexin biosynthesis, trafficking, oligomerization into connexons, permeability, and interactions between other coexpressed connexins. We predict that all possible GJB2 missense variants will be described in the future by deep mutational scanning technology and optimizing computational models. Therefore, the mechanisms by which different missense variants cause different phenotypes will be fully elucidated.
Collapse
Affiliation(s)
- Lu Mao
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yueqiang Wang
- Basecare Medical Device Co., Ltd., Suzhou 215000, China
| | - Lei An
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Beiping Zeng
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Wang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Dmitrij Frishman
- Wissenschaftszentrum Weihenstephan, Technische Universitaet Muenchen, Am Staudengarten 2, 85354 Freising, Germany
| | - Mengli Liu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yanyu Chen
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
- Correspondence:
| |
Collapse
|
3
|
Genetic etiology of non-syndromic hearing loss in Europe. Hum Genet 2022; 141:683-696. [PMID: 35044523 DOI: 10.1007/s00439-021-02425-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
Hearing impairment not etiologically associated with clinical signs in other organs (non-syndromic) is genetically heterogeneous, so that over 120 genes are currently known to be involved. The frequency of mutations in each gene and the most frequent mutations vary throughout populations. Here we review the genetic etiology of non-syndromic hearing impairment (NSHI) in Europe. Over the years, epidemiological data were scarce because of the large number of involved genes, whose screening was not cost-effective until implementation of massively parallel DNA sequencing. In Europe, the most common form of autosomal recessive NSHI is DFNB1, which accounts for 11-57% of the cases. Mutations in STRC account for 16% of the recessive cases, and only a few more (MYO15A, MYO7A, LOXHD1, USH2A, TMPRSS3, CDH23, TMC1, OTOF, OTOA, SLC26A4, ADGRV1 and TECTA) have contributions higher than 2%. As regards autosomal-dominant NSHI, DFNA22 (MYO6) and DFNA8/12 (TECTA) represent the most common forms, accounting for 21% and 18% of elucidated cases, respectively. The contribution of ACTG1 and WFS1 drops to 9% in both cases, followed by POU4F3 (6.5%), MYO7A (5%), MYH14 and COL11A2 (4% each). Four additional genes contribute 2.5% each one (MITF, KCNQ4, EYA4, SOX10) and the remaining are residually represented. X-linked hearing loss and maternally-inherited NSHI have minor contributions in most countries. Further knowledge on the genetic epidemiology of NSHI in Europe needs a standardization of the experimental approaches and a stratification of the results according to clinical features, familial history and patterns of inheritance, to facilitate comparison between studies.
Collapse
|
4
|
Arias S, Paradisi I, Hernández A, Kanzler D. Undescribed GJB2 c.35dupG homozygous prelingual distinguished from c.35delG homozygous/compound heterozygous deafs, dwelling a German ancestry Venezuelan isolate. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Among ten hearing-impaired (HI) families mostly of German descent dwelling the Venezuelan isolate Colonia Tovar, which were initially studied several decades ago to assess the etiology of their profound/prelingual nonsyndromic deafness phenotype, an undescribed genotype/phenotype was found. Forty-eight subjects, including 8 of the still living 143 originally searched with audiograms 4 decades ago, were retested and their DNA collected. A genomic search of 27 loci involved in HI was performed on a randomly chosen prelingual deaf patient. Subsequently, GJB2 sequencing was performed in all subjects from each pedigree. Haplotypes were constructed with five intragenic GJB2 SNPs (rs117685390, rs7994748, rs2274084, rs2274083, and rs3751385). Audiograms performed along 5 decades were compared to evaluate age-related hearing loss in the different genotypes found in the population.
Results
Three prelingual deaf siblings, having the highest recorded symmetrical hearing loss of all the known affected in the isolate, carried the very rare mutation c.35dupG (p.V13Cfs*35) at GJB2 in a homozygous condition. Two additional GJB2 mutations were identified (p.W77R and c.35delG) in the isolate. Allelic disequilibrium in both c.35dupG and p.W77R carriers (with in-phase haplotype T;T;G;A;C) were found, although not so in the 2 other found c.35delG independent haplotypes. A compound heterozygote in trans (c.35delG/c.35dupG) was audiometrically distinguishable from both the c.35dupG and c.35delG homozygotes.
Conclusions
A relatively higher frequency of mutation of c.35dupG found than elsewhere was retrospectively inferred for the ancient population of the Kaiserstuhl region in Germany, having an opposite epidemiological situation to the one found with the contiguous and very frequent c.35delG. Haplotype analysis suggests founder phenomena and independent occurrence, hundreds of generations back in Caucasoid populations for both mutations.
Collapse
|
5
|
Mosrati MA, Fadhlaoui-Zid K, Benammar-Elgaaied A, Gibriel AA, Ben Said M, Masmoudi S. Deep analysis of the LRTOMTc.242G>A variant in non-syndromic hearing loss North African patients and the Berber population: Implications for genetic diagnosis and genealogical studies. Mol Genet Genomic Med 2021; 9:e1810. [PMID: 34514748 PMCID: PMC8580077 DOI: 10.1002/mgg3.1810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/15/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Autosomal recessive non‐syndromic hearing loss (ARNSHL) is the most common inherited sensory impairment. It is particularly frequent in North African populations who have a high rate of consanguineous marriage. The c.242G>A homozygous variant in LRTOMT gene was previously established as pathogenic and is associated with NSHL in both humans and mice. The aim of this study is to determine the carrier frequency for the LRTOMT c.242G>A variant and also to estimate its age in addition to evaluating its diagnostic potential as a deafness biomarker among various populations and ethnicities in Northern African countries. A total of 179 Tunisian and 34 Libyan unrelated deafness patients were screened for this variant. The homozygous c.242G>A variant was found in 5.02% and 2.94% in Tunisian and Libyan families, respectively. Subsequent screening for this variant in 263 healthy controls of various ethnicities (136 Tunisian Berbers, 32 Andalusian and 95 Tunisian from undefined ethnic origin) revealed higher frequency for the heterozygous state among Tunisians of Berber origin only (19.11%). Genotyping 7 microsatellite markers nearby the variant location in ARNSHL patients who had the homozygous variant revealed the same haplotype suggesting a common founder origin for this variant. The age of this variant was estimated to be between 2025 and 3425 years (this corresponds to 3400 years when the variant rate was set at 10−3 or 2600 years when the variant rate is set at 10−2), spreading along with the Berber population who migrated to North Africa. In conclusion, the LRTOMT c.242G>A homozygous variant could be used as a useful deafness biomarker for North African ARNSHL patients meanwhile the heterozygous variant could be utilized in genealogical studies for tracing those of the Berber ethnic group.
Collapse
Affiliation(s)
- Mohamed Ali Mosrati
- Laboratoire de Procédés de Criblages Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| | - Karima Fadhlaoui-Zid
- Laboratory of Genetics, Immunology, and Human Pathologies, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia.,Department of Biology, College of Science, Taibah University, Al Madinah Al Munawarah, Saudi Arabia.,Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Amel Benammar-Elgaaied
- Laboratory of Genetics, Immunology, and Human Pathologies, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Abdullah Ahmed Gibriel
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Mariem Ben Said
- Laboratoire de Procédés de Criblages Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| | - Saber Masmoudi
- Laboratoire de Procédés de Criblages Moléculaire et Cellulaire, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisie
| |
Collapse
|
6
|
Abstract
BACKGROUND Hearing loss (HL) is a heterogeneous condition that causes partial or complete hearing impairment. Hundreds of variants in more than 60 genes have been reported to be associated with Hereditary HL (HHL). The HHL prevalence is thought to be high in the Arab population; however, the genetic epidemiology of HHL among Arab populations is understudied. This study aimed to systematically analyze the genetic epidemiology of HHL in Arab countries. METHODS We searched four literature databases (PubMed, Scopus, Science Direct, and Web of Science) from the time of inception until January 2019 using broad search terms to capture all the reported epidemiological and genetic data related to Arab patients with HHL. FINDINGS A total of 2,600 citations were obtained; 96 studies met our inclusion criteria. Our search strategy yielded 121,276 individuals who were tested for HL over 52 years (1966-2018), of whom 8,099 were clinically diagnosed with HL and belonged to 16 Arab countries. A total of 5,394 patients and 61 families with HHL were genotyped, of whom 336 patients and 6 families carried 104 variants in 44 genes and were from 17/22 Arab countries. Of these variants, 72 (in 41 genes) were distinctive to Arab patients. Arab patients manifested distinctive clinical phenotypes. The incidence of HHL in the captured studies ranged from 1.20 to 18 per 1,000 births per year, and the prevalence was the highest in Iraq (76.3%) and the lowest in Jordan (1.5%). INTERPRETATION This is the first systematic review to capture the prevalence and spectrum of variants associated with HHL in an Arab population. There appears to be a distinctive clinical picture for Arab patients with HHL, and the range and distribution of variants among Arab patients differ from those noted in other affected ethnic groups.
Collapse
|
7
|
Buonfiglio P, Bruque CD, Luce L, Giliberto F, Lotersztein V, Menazzi S, Paoli B, Elgoyhen AB, Dalamón V. GJB2 and GJB6 Genetic Variant Curation in an Argentinean Non-Syndromic Hearing-Impaired Cohort. Genes (Basel) 2020; 11:E1233. [PMID: 33096615 PMCID: PMC7589744 DOI: 10.3390/genes11101233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Genetic variants in GJB2 and GJB6 genes are the most frequent causes of hereditary hearing loss among several deaf populations worldwide. Molecular diagnosis enables proper genetic counseling and medical prognosis to patients. In this study, we present an update of testing results in a cohort of Argentinean non-syndromic hearing-impaired individuals. A total of 48 different sequence variants were detected in genomic DNA from patients referred to our laboratory. They were manually curated and classified based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology ACMG/AMP standards and hearing-loss-gene-specific criteria of the ClinGen Hearing Loss Expert Panel. More than 50% of sequence variants were reclassified from their previous categorization in ClinVar. These results provide an accurately interpreted set of variants to be taken into account by clinicians and the scientific community, and hence, aid the precise genetic counseling to patients.
Collapse
Affiliation(s)
- Paula Buonfiglio
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas—INGEBI/CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina; (P.B.); (A.B.E.)
| | - Carlos D. Bruque
- Centro Nacional de Genética Médica, ANLIS-Malbrán, C1425 Ciudad Autónoma de Buenos Aires, Argentina;
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas—IBYME/CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina
| | - Leonela Luce
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD Ciudad Autónoma de Buenos Aires, Argentina; (L.L.); (F.G.)
- Instituto de Inmunología, Genética y Metabolismo—INIGEM/CONICET, Universidad de Buenos Aires, C1113AAD Ciudad Autónoma de Buenos Aires, Argentina
| | - Florencia Giliberto
- Laboratorio de Distrofinopatías, Cátedra de Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD Ciudad Autónoma de Buenos Aires, Argentina; (L.L.); (F.G.)
- Instituto de Inmunología, Genética y Metabolismo—INIGEM/CONICET, Universidad de Buenos Aires, C1113AAD Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanesa Lotersztein
- Servicio de Genética, Hospital Militar Central “Dr. Cosme Argerich”, C1426 Ciudad Autónoma de Buenos Aires, Argentina;
| | - Sebastián Menazzi
- Servicio de Genética, Hospital de Clínicas “José de San Martín”, C1120AAR Ciudad Autónoma de Buenos Aires, Argentina;
| | - Bibiana Paoli
- Servicio de Otorrinolaringología Infantil, Hospital de Clínicas “José de San Martín”, C1120AAR Ciudad Autónoma de Buenos Aires, Argentina;
| | - Ana Belén Elgoyhen
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas—INGEBI/CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina; (P.B.); (A.B.E.)
- Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - Viviana Dalamón
- Laboratorio de Fisiología y Genética de la Audición, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas—INGEBI/CONICET, C1428ADN Ciudad Autónoma de Buenos Aires, Argentina; (P.B.); (A.B.E.)
| |
Collapse
|
8
|
Abstract
The incidence of hearing impairment (HI) is higher in low- and middle-income countries when compared to high-income countries. There is therefore a necessity to estimate the burden of this condition in developing world. The aim of our study was to use a systematic approach to provide summarized data on the prevalence, etiologies, clinical patterns and genetics of HI in Cameroon. We searched PubMed, Scopus, African Journals Online, AFROLIB and African Index Medicus to identify relevant studies on HI in Cameroon, published from inception to 31 October, 2019, with no language restrictions. Reference lists of included studies were also scrutinized, and data were summarized narratively. This study is registered with PROSPERO, number CRD42019142788. We screened 333 records, of which 17 studies were finally included in the review. The prevalence of HI in Cameroon ranges from 0.9% to 3.6% in population-based studies and increases with age. Environmental factors contribute to 52.6% to 62.2% of HI cases, with meningitis, impacted wax and age-related disorder being the most common ones. Hereditary HI comprises 0.8% to 14.8% of all cases. In 32.6% to 37% of HI cases, the origin remains unknown. Non-syndromic hearing impairment (NSHI) is the most frequent clinical entity and accounts for 86.1% to 92.5% of cases of HI of genetic origin. Waardenburg and Usher syndromes account for 50% to 57.14% and 8.9% to 42.9% of genetic syndromic cases, respectively. No pathogenic mutation was described in GJB6 gene, and the prevalence of pathogenic mutations in GJB2 gene ranged from 0% to 0.5%. The prevalence of pathogenic mutations in other known NSHI genes was <10% in Cameroonian probands. Environmental factors are the leading etiology of HI in Cameroon, and mutations in most important HI genes are infrequent in Cameroon. Whole genome sequencing therefore appears as the most effective way to identify variants associated with HI in Cameroon and sub-Saharan Africa in general.
Collapse
|
9
|
Wonkam Tingang E, Noubiap JJ, F. Fokouo JV, Oluwole OG, Nguefack S, Chimusa ER, Wonkam A. Hearing Impairment Overview in Africa: the Case of Cameroon. Genes (Basel) 2020; 11:genes11020233. [PMID: 32098311 PMCID: PMC7073999 DOI: 10.3390/genes11020233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 01/27/2023] Open
Abstract
The incidence of hearing impairment (HI) is higher in low- and middle-income countries when compared to high-income countries. There is therefore a necessity to estimate the burden of this condition in developing world. The aim of our study was to use a systematic approach to provide summarized data on the prevalence, etiologies, clinical patterns and genetics of HI in Cameroon. We searched PubMed, Scopus, African Journals Online, AFROLIB and African Index Medicus to identify relevant studies on HI in Cameroon, published from inception to 31 October, 2019, with no language restrictions. Reference lists of included studies were also scrutinized, and data were summarized narratively. This study is registered with PROSPERO, number CRD42019142788. We screened 333 records, of which 17 studies were finally included in the review. The prevalence of HI in Cameroon ranges from 0.9% to 3.6% in population-based studies and increases with age. Environmental factors contribute to 52.6% to 62.2% of HI cases, with meningitis, impacted wax and age-related disorder being the most common ones. Hereditary HI comprises 0.8% to 14.8% of all cases. In 32.6% to 37% of HI cases, the origin remains unknown. Non-syndromic hearing impairment (NSHI) is the most frequent clinical entity and accounts for 86.1% to 92.5% of cases of HI of genetic origin. Waardenburg and Usher syndromes account for 50% to 57.14% and 8.9% to 42.9% of genetic syndromic cases, respectively. No pathogenic mutation was described in GJB6 gene, and the prevalence of pathogenic mutations in GJB2 gene ranged from 0% to 0.5%. The prevalence of pathogenic mutations in other known NSHI genes was <10% in Cameroonian probands. Environmental factors are the leading etiology of HI in Cameroon, and mutations in most important HI genes are infrequent in Cameroon. Whole genome sequencing therefore appears as the most effective way to identify variants associated with HI in Cameroon and sub-Saharan Africa in general.
Collapse
Affiliation(s)
- Edmond Wonkam Tingang
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa; (E.W.T.); (O.G.O.); (E.R.C.)
| | - Jean Jacques Noubiap
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide 5000, Australia;
| | | | - Oluwafemi Gabriel Oluwole
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa; (E.W.T.); (O.G.O.); (E.R.C.)
| | - Séraphin Nguefack
- Department of Paediatrics, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé 1364, Cameroon;
- Paediatrics unit, Gynaeco-Obstetric and Paediatric Hospital, Yaoundé 4362, Cameroon
| | - Emile R. Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa; (E.W.T.); (O.G.O.); (E.R.C.)
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa; (E.W.T.); (O.G.O.); (E.R.C.)
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
- Correspondence: ; Tel.: +27-21-4066-307
| |
Collapse
|
10
|
GJB2 and GJB6 Mutations in Hereditary Recessive Non-Syndromic Hearing Impairment in Cameroon. Genes (Basel) 2019; 10:genes10110844. [PMID: 31731535 PMCID: PMC6895965 DOI: 10.3390/genes10110844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/07/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate GJB2 (connexin 26) and GJB6 (connexin 30) mutations associated with familial non-syndromic childhood hearing impairment (HI) in Cameroon. We selected only families segregating HI, with at least two affected individuals and with strong evidence of non-environmental causes. DNA was extracted from peripheral blood, and the entire coding region of GJB2 was interrogated using Sanger sequencing. Multiplex PCR and Sanger sequencing were used to analyze the prevalence of the GJB6-D3S1830 deletion. A total of 93 patients, belonging to 41 families, were included in the analysis. Hearing impairment was sensorineural in 51 out of 54 (94.4%) patients. Pedigree analysis suggested autosomal recessive inheritance in 85.4% (35/41) of families. Hearing impairment was inherited in an autosomal dominant and mitochondrial mode in 12.2% (5/41) and 2.4% (1/41) of families, respectively. Most HI participants were non-syndromic (92.5%; 86/93). Four patients from two families presented with type 2 Waardenburg syndrome, and three cases of type 2 Usher syndrome were identified in one family. No GJB2 mutations were found in any of the 29 families with non-syndromic HI. Additionally, the GJB6-D3S1830 deletion was not identified in any of the HI patients. This study confirms that mutations in the GJB2 gene and the del(GJB6-D13S1830) mutation do not contribute to familial HI in Cameroon.
Collapse
|
11
|
Morgan A, Lenarduzzi S, Cappellani S, Pecile V, Morgutti M, Orzan E, Ghiselli S, Ambrosetti U, Brumat M, Gajendrarao P, La Bianca M, Faletra F, Grosso E, Sirchia F, Sensi A, Graziano C, Seri M, Gasparini P, Girotto G. Genomic Studies in a Large Cohort of Hearing Impaired Italian Patients Revealed Several New Alleles, a Rare Case of Uniparental Disomy (UPD) and the Importance to Search for Copy Number Variations. Front Genet 2018; 9:681. [PMID: 30622556 PMCID: PMC6309105 DOI: 10.3389/fgene.2018.00681] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/07/2018] [Indexed: 11/13/2022] Open
Abstract
Hereditary hearing loss (HHL) is a common disorder characterized by a huge genetic heterogeneity. The definition of a correct molecular diagnosis is essential for proper genetic counseling, recurrence risk estimation, and therapeutic options. From 20 to 40% of patients carry mutations in GJB2 gene, thus, in more than half of cases it is necessary to look for causative variants in the other genes so far identified (~100). In this light, the use of next-generation sequencing technologies has proved to be the best solution for mutational screening, even though it is not always conclusive. Here we describe a combined approach, based on targeted re-sequencing (TRS) of 96 HHL genes followed by high-density SNP arrays, aimed at the identification of the molecular causes of non-syndromic HHL (NSHL). This strategy has been applied to study 103 Italian unrelated cases, negative for mutations in GJB2, and led to the characterization of 31% of them (i.e., 37% of familial and 26.3% of sporadic cases). In particular, TRS revealed TECTA and ACTG1 genes as major players in the Italian population. Furthermore, two de novo missense variants in ACTG1 have been identified and investigated through protein modeling and molecular dynamics simulations, confirming their likely pathogenic effect. Among the selected patients analyzed by SNP arrays (negative to TRS, or with a single variant in a recessive gene) a molecular diagnosis was reached in ~36% of cases, highlighting the importance to look for large insertions/deletions. Moreover, copy number variants analysis led to the identification of the first case of uniparental disomy involving LOXHD1 gene. Overall, taking into account the contribution of GJB2, plus the results from TRS and SNP arrays, it was possible to reach a molecular diagnosis in ~51% of NSHL cases. These data proved the usefulness of a combined approach for the analysis of NSHL and for the definition of the epidemiological picture of HHL in the Italian population.
Collapse
Affiliation(s)
- Anna Morgan
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | | | - Vanna Pecile
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | | | - Eva Orzan
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Sara Ghiselli
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Umberto Ambrosetti
- Audiologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marco Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | | | | | | | - Enrico Grosso
- Medical Genetics Unit, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Fabio Sirchia
- IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Alberto Sensi
- Medical Genetics Unit, Department of Clinical Pathology, Azienda Unità Sanitaria Locale (AUSL) della Romagna, Cesena, Italy
| | - Claudio Graziano
- Unit of Medical Genetics, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Marco Seri
- Unit of Medical Genetics, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Giorgia Girotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.,IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| |
Collapse
|
12
|
del Castillo FJ, del Castillo I. DFNB1 Non-syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes. Front Mol Neurosci 2017; 10:428. [PMID: 29311818 PMCID: PMC5743749 DOI: 10.3389/fnmol.2017.00428] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/07/2017] [Indexed: 02/02/2023] Open
Abstract
The inner ear is a very complex sensory organ whose development and function depend on finely balanced interactions among diverse cell types. The many different kinds of inner ear supporting cells play the essential roles of providing physical and physiological support to sensory hair cells and of maintaining cochlear homeostasis. Appropriately enough, the gene most commonly mutated among subjects with hereditary hearing impairment (HI), GJB2, encodes the connexin-26 (Cx26) gap-junction channel protein that underlies both intercellular communication among supporting cells and homeostasis of the cochlear fluids, endolymph and perilymph. GJB2 lies at the DFNB1 locus on 13q12. The specific kind of HI associated with this locus is caused by recessively-inherited mutations that inactivate the two alleles of the GJB2 gene, either in homozygous or compound heterozygous states. We describe the many diverse classes of genetic alterations that result in DFNB1 HI, such as large deletions that either destroy the GJB2 gene or remove a regulatory element essential for GJB2 expression, point mutations that interfere with promoter function or splicing, and small insertions or deletions and nucleotide substitutions that target the GJB2 coding sequence. We focus on how these alterations disrupt GJB2 and Cx26 functions and on their different effects on cochlear development and physiology. We finally discuss the diversity of clinical features of DFNB1 HI as regards severity, age of onset, inner ear malformations and vestibular dysfunction, highlighting the areas where future research should be concentrated.
Collapse
Affiliation(s)
- Francisco J. del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ignacio del Castillo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
13
|
Lazăr C, Popp R, Al-Khzouz C, Mihuț G, Grigorescu-Sido P. GJB2 and GJB6 genes mutations in children with non-syndromic hearing loss. REV ROMANA MED LAB 2017. [DOI: 10.1515/rrlm-2017-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Introduction. At the moment there is not enough data in Romania about the incidence of the main genetic mutations which can cause hearing loss.
Objective. The current research aims to determine on a representative sample the prevalence of two mutations of genes GJB2 -c.35delG and p.W24X- and two mutations of genes GJB6 -del(GJB6-D13S1830), del(GJB6-D13S1854) respectively - in patients with congenital nonsyndromic sensorineural hearing loss (CNSHL).
Methods: The sample group included 179 children with CNSHL. The evaluation consist in: a.Clinical, laboratory and imagistic examination; b.ENT exam and audiological evaluation. c.Two methods (semi-nested PCR technique followed by RFLP, validated with ARMS-PCR analysis) for detection of c.35delG and pW24X mutations; d.PCR-multiplex technique for detecting del(GJB6-D13S1830) and del (GJB6-D13S1854).
Results: The audiological diagnosis was: profound hearing loss in 116 patients (64.8%), severe hearing loss in 29 children (16.2%) and moderate hearing loss in 34 patients (representing 19% of the trial patients). The prevalence for the three mutations was: 27.3 % for c.35delG, 3.6 % for p.W24X and 0.28% for del(GJB6-D13S1830). The detection of the three mutations (two on GJB2 gene and one on GJB 6 gene) has allowed to establish the genetic cause for deafness in 45 patients, representing 25.14% of the sample group. Our study is reporting the first case in Romania with a mutation of gene GJB6. Mutation del(GJB6-D13S1854) lacked in all 179 patients.
Conclusion: The prevalence data obtained in the current research are comparable to data communicated by studies from other European countries.
Collapse
Affiliation(s)
- Călin Lazăr
- Department of Paediatrics I, University of Medicine and Pharmacy „Iuliu Hațieganu” Cluj-Napoca, Romania
| | - Radu Popp
- Department of Medical Genetics, „Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Camelia Al-Khzouz
- Department of Paediatrics I, University of Medicine and Pharmacy „Iuliu Hațieganu” Cluj-Napoca, Romania
| | - Gheorghe Mihuț
- Service of Otolaryngology, Clinical Emergency Paediatric Hospital, Cluj-Napoca, Romania
| | - Paula Grigorescu-Sido
- Department of Paediatrics I, University of Medicine and Pharmacy „Iuliu Hațieganu” Cluj-Napoca, Romania
| |
Collapse
|
14
|
First report of prevalence c.IVS1+1G>A and del (GJB6-13S1854) mutations in Syrian families with non-syndromic sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 2017; 92:82-87. [PMID: 28012540 DOI: 10.1016/j.ijporl.2016.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/13/2016] [Accepted: 11/14/2016] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Mutations in GJB2 and GJB6 genes are a frequent cause of congenital non-syndromic hearing loss (NSHL). Mutational screening has usually focused on coding region of GJB2 gene. A few studies have been conducted on the non-coding region and exon 1. c.IVS1+1G>A (a splice site mutation in GJB2 gene have been detected as disruptive mutation. Del (GJB6 D13S1830) is found in many populations, but del (GJB6 D13S1854) is reported from a few restricted countries. This study was carried out to investigate the prevalence of splice site mutation c.IVS1+1G>A and two common deletions in GJB6 gene as the genetic etiology of hearing impairment in 70 Syrian families. METHODS The frequency of the c.IVS1+1G>A mutation and two deletions were determined by PCR-RFLP and A multiplex PCR assay. RESULT Our results showed a high prevalence of IVS1+1G>A mutation (20%) and del(GJB6-D13S1854) (15.7%) in deaf families. The homozygous genotype (c.IVS1+1G>A/c.IVS1+1G>A) was observed in one family and the compound heterozygous genotypes (c.35delG/c.IVS1+1G>A) and (c.IVS1+1G>A/V153I) were observed in 7 families and one family respectively. Also, the heterozygous state (c.IVS1+1G>A/unknown) was detected in 5 families. The study of del((GJB6-D13S1854) was showed a compound heterozygous genotype del((GJB6-D13S1854)/c.IVS1+1G>A) in the same families (5 families) having heterozygous genotype of c.IVS1+1G>A mutation. Also, del(GJB6-D13S1854) is combined with c.35delG mutation in 2 families and it was observed in the heterozygous state del(GJB6-D13S1854)/unknown) in 4 families. In contrast, the del(GJB6-D13S1830) described in many population was absent in our patients. CONCLUSION Our findings indicate to significant contribution of the splice site mutation and del(GJB6-D13S1854) in our deaf families and these mutations were important causes of hearing impairment.
Collapse
|
15
|
Amorini M, Romeo P, Bruno R, Galletti F, Di Bella C, Longo P, Briuglia S, Salpietro C, Rigoli L. Prevalence of Deafness-Associated Connexin-26 (GJB2) and Connexin-30 (GJB6) Pathogenic Alleles in a Large Patient Cohort from Eastern Sicily. Ann Hum Genet 2015; 79:341-349. [PMID: 26096904 DOI: 10.1111/ahg.12120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/24/2015] [Indexed: 11/28/2022]
Abstract
Mutations in the gene encoding the gap junction protein connexin 26 (GJB2) and connexin 30 (GJB6) have been shown to be a major contributor to prelingual, sensorineural, nonsyndromic deafness. The aim of this study was to characterize and establish the prevalence of GJB2 and GJB6 gene alterations in 196 patients affected by sensorineural, nonsyndromic hearing loss, from Eastern Sicily. We performed sequence analysis of GJB2 and identified sequence variants in 68 out of 196 patients (34.7%); (28 homozygous for c.35delG, 22 compound heterozygous and 11 with only one variant allele). We found 12 different allelic variants, the most prevalent being c.35delG, which was found on 89 chromosomes (65.5%), followed by other alleles with different frequencies (p.E47X, c.-23+1G>A, p.L90P, p.R184W, p.M34T, c.167delT, p.R127H, p.M163V, p.V153I, p.W24X, and p.T8M). Importantly, for the first time we present the frequency and spectrum of GJB2 mutations in NSHL patients from Eastern Sicily. No alterations were found in the GJB6 gene, confirming that alterations in this gene are uncommon in our geographic area. Note that 65.3% and 23.5% of our patients, respectively were found to be negative or carriers by GJB2 molecular screening. This emphasizes the need to broaden the genetic analysis to other genes involved in hearing loss.
Collapse
Affiliation(s)
- Maria Amorini
- Department of Paediatrics, University of Messina, Italy
| | | | - Rocco Bruno
- Department of Experimental Medical-Surgery, Specialist and Odontostomatological Science, Otorhinolaringology and Auditory Microsurgery Unit, University of Messina, Italy
| | - Francesco Galletti
- Department of Experimental Medical-Surgery, Specialist and Odontostomatological Science, Otorhinolaringology and Auditory Microsurgery Unit, University of Messina, Italy
| | | | - Patrizia Longo
- Department of Experimental Medical-Surgery, Specialist and Odontostomatological Science, Otorhinolaringology and Auditory Microsurgery Unit, University of Messina, Italy
| | | | | | | |
Collapse
|
16
|
Frequency of GJB2 and del(GJB6-D13S1830) mutations among an Ecuadorian mestizo population. Int J Pediatr Otorhinolaryngol 2014; 78:1648-54. [PMID: 25085072 DOI: 10.1016/j.ijporl.2014.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/08/2014] [Accepted: 07/12/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The frequency of GJB2 mutations and of the del(GJB6-D13S1830) mutation has not been established among the Ecuadorian mestizo population diagnosed with autosomal recessive non-syndromic hearing loss. A genetic analysis was therefore designed in order to do so. METHODS The sample population included 111 subjects of which 26 were autosomal recessive non-syndromic hearing loss probands. Posterior to PCR amplification, sequencing analysis of exon 2 was used for mutational detection of the GJB2 gene; a multiplex PCR method was used for detection of the del(GJB6-D13S1830) mutation. The ratio of subjects with a certain state of the mutation (heterozygous/homozygous) is expressed as a percentage and significant differences between probands and controls were calculated using Fisher's exact test; P<0.05 was considered significant. RESULTS A total of 104 mutations belonging to 8 allelic variations were identified. The most common being the V27I (58.9%); however, as this variation is a non-pathogenic polymorphism, Q7X, with a total of 19 mutated alleles, was the most frequent mutation (18.3%). The V27I polymorphism was the only variation distributed homogenously among probands and controls (P=0.351). Based on physical analyses of multiple patients we confirm that Q7X causes a non-syndromic form of hearing loss and propose that it is a possible predominant mutation in the Ecuadorian population. CONCLUSIONS This is the first study of its kind among the Ecuadorian population and a preliminary step in establishing GJB2 and del(GJB6-D13S1830) mutational frequencies in this population; it is also the first to report of such a high frequency of the Q7X mutation. The data presented here brings Ecuador a step closer to providing more efficient treatment for a broader number of patients; additionally, it contributes to a better understanding of the relationship between autosomal recessive non-syndromic hearing loss and mutations on the GJB2 gene.
Collapse
|
17
|
The expanding spectrum of PRPS1-associated phenotypes: three novel mutations segregating with X-linked hearing loss and mild peripheral neuropathy. Eur J Hum Genet 2014; 23:766-73. [PMID: 25182139 DOI: 10.1038/ejhg.2014.168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 11/09/2022] Open
Abstract
Next-generation sequencing is currently the technology of choice for gene/mutation discovery in genetically-heterogeneous disorders, such as inherited sensorineural hearing loss (HL). Whole-exome sequencing of a single Italian proband affected by non-syndromic HL identified a novel missense variant within the PRPS1 gene (NM_002764.3:c.337G>T (p.A113S)) segregating with post-lingual, bilateral, progressive deafness in the proband's family. Defects in this gene, encoding the phosphoribosyl pyrophosphate synthetase 1 (PRS-I) enzyme, determine either X-linked syndromic conditions associated with hearing impairment (eg, Arts syndrome and Charcot-Marie-Tooth neuropathy type X-5) or non-syndromic HL (DFNX1). A subsequent screening of the entire PRPS1 gene in 16 unrelated probands from X-linked deaf families led to the discovery of two additional missense variants (c.343A>G (p.M115V) and c.925G>T (p.V309F)) segregating with hearing impairment, and associated with mildly-symptomatic peripheral neuropathy. All three variants result in a marked reduction (>60%) of the PRS-I activity in the patients' erythrocytes, with c.343A>G (p.M115V) and c.925G>T (p.V309F) affecting more severely the enzyme function. Our data significantly expand the current spectrum of pathogenic variants in PRPS1, confirming that they are associated with a continuum disease spectrum, thus stressing the importance of functional studies and detailed clinical investigations for genotype-phenotype correlation.
Collapse
|
18
|
Salvago P, Martines E, La Mattina E, Mucia M, Sammarco P, Sireci F, Martines F. Distribution and phenotype of GJB2 mutations in 102 Sicilian patients with congenital non syndromic sensorineural hearing loss. Int J Audiol 2014; 53:558-63. [PMID: 24793888 DOI: 10.3109/14992027.2014.905717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To evaluate the frequency of GJB2 mutations and their correlation with phenotype in Sicilian non-syndromic sensorineural hearing loss (NSHL) patients. DESIGN Sequencing of the coding region, basal promoter, exon 1, and donor splice site of the GJB2 gene; screening for the presence of the two common GJB6 deletions. STUDY SAMPLE A cohort of 102 Sicilian NSHL patients. RESULTS Fifteen different mutations in GJB2 and seventeen different genotypes were detected. No GJB6 mutations were found. The hearing impairment was profound in the 64.72% of probands (mean PTA0.25-4 kHz of 88.82 ± 26.52 dB HL). A total of 81.37% of patients harboured at least one c.35delG allele; c.167delT and c.-23 + 1G> A were identified in 10.78% and the 9.8% of patients respectively; c.35delG homozygotes presented more severe hearing impairment (75.59% of profound hearing loss) and a higher mean PTA0.25-4 kHz (96.79 ± 21.11 dB HL) with respect to c.35delG/non-c.35delG and c.35delG/Wt patients (P < 0.05). CONCLUSIONS This work underlines the role of c.35delG, c.167delT and c.-23 + 1G> A as the most frequent causes of NSHL in Sicily. The c.35delG frequency found is similar to those reported in other populations of the Mediterranean area. The analysis of genetic and audiologic data confirmed a variability in the phenotype associated to a single genotype.
Collapse
Affiliation(s)
- Pietro Salvago
- * Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, (BioNeC), Sezione di Otorinolaringoiatria, Università degli Studi di Palermo , Palermo , Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
A novel homozygous mutation in the EC1/EC2 interaction domain of the gap junction complex connexon 26 leads to profound hearing impairment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:307976. [PMID: 24551843 PMCID: PMC3914288 DOI: 10.1155/2014/307976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/27/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022]
Abstract
To date, about 165 genetic loci or genes have been identified which are associated with nonsyndromal hearing impairment. In about half the cases, genetic defects in the GJB2 gene (connexin 26) are the most common cause of inner-ear deafness. The genes GJB2 and GJB6 are localized on chromosome 13q11-12 in tandem orientation. Connexins belong to the group of "gap junction" proteins, which form connexons, each consisting of six connexin molecules. These are responsible for the exchange of ions and smaller molecules between neighboring cells. Mutational analysis in genes GJB2 and GJB6 was brought by direct sequencing of the coding exons including the intron transitions. Here we show in the participating extended family a homozygous mutation c.506G>A, (TGC>TAC) p.Cys169Tyr, in the GJB2 gene, which could be proven for the first time and led to nonsyndromal severe hearing impairment in the afflicted patients. The mutation is located in the EC1/EC2 interaction complex of the gap junction connexon 26 complex and interrupts the K(+) circulation and therefore the ion homeostasis in the inner ear. The homozygous mutation p.Cys169Tyr identified here provides a novel insight into the structure-function relationship of the gap junction complex connexin/connexon 26.
Collapse
|
20
|
Chan DK, Chang KW. GJB2-associated hearing loss: Systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope 2013; 124:E34-53. [DOI: 10.1002/lary.24332] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Dylan K. Chan
- Department of Otolaryngology-Head and Neck Surgery; University of California; San Francisco U.S.A
| | - Kay W. Chang
- Department of Otolaryngology-Head and Neck Surgery; Stanford University School of Medicine; Stanford California U.S.A
| |
Collapse
|
21
|
Riahi Z, Hammami H, Ouragini H, Messai H, Zainine R, Bouyacoub Y, Romdhane L, Essaid D, Kefi R, Rhimi M, Bedoui M, Dhaouadi A, Feldmann D, Jonard L, Besbes G, Abdelhak S. Update of the spectrum of GJB2 gene mutations in Tunisian families with autosomal recessive nonsyndromic hearing loss. Gene 2013; 525:1-4. [DOI: 10.1016/j.gene.2013.04.078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/20/2013] [Accepted: 04/24/2013] [Indexed: 11/25/2022]
|
22
|
Manzoli GN, Abe-Sandes K, Bittles AH, da Silva DSD, Fernandes LDC, Paulon RMC, de Castro ICS, Padovani CMCA, Acosta AX. Non-syndromic hearing impairment in a multi-ethnic population of Northeastern Brazil. Int J Pediatr Otorhinolaryngol 2013; 77:1077-82. [PMID: 23684175 DOI: 10.1016/j.ijporl.2013.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 01/28/2023]
Abstract
OBJECTIVE There are many hearing impaired individuals in Monte Santo, a rural municipality in the state of Bahia, Brazil, including multiple familial cases strongly suggestive of a genetic aetiology. METHODS The present study investigated 81 subjects with hearing impairment (HI) recruited from 36 families. Mutations often associated with HI, i.e. the DFNB1 mutations c.35delG in GJB2, deletions del(GJB6-D13S1830) and del(GJB6-D13S1854), and A1555G in the mitochondrial gene MTRNR1 were initially analyzed, with additional mutations in GJB2 identified by sequencing the coding region of the gene. RESULTS Seven different mutations were present in GJB2 with mutations c.35delG and p.Arg75Gln, which are known to be pathogenic, identified in 37.0% of the subjects. Individuals homozygous for the c.35delG mutation were diagnosed in eight families, corresponding to 24.7% of unrelated individuals with nonsyndromic hearing impairment (NSHI), and an additional heterozygote for this mutation was present in a single family. Ten individuals (12.4%) in another family were heterozygous for the mutation p.Arg75Gln. CONCLUSIONS Significant heterogeneity was observed in the alleles and patterns of NSHI inheritance among the subjects studied, probably due to the extensive inter-ethnic admixture that characterizes the peoples of Brazil, together with a high prevalence of community endogamy and consanguineous marriage.
Collapse
Affiliation(s)
- Gabrielle N Manzoli
- Advanced Laboratory of Public Health/Gonçalo Moniz Research Center (CPqGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
EMQN Best Practice guidelines for diagnostic testing of mutations causing non-syndromic hearing impairment at the DFNB1 locus. Eur J Hum Genet 2013; 21:1325-9. [PMID: 23695287 PMCID: PMC3798855 DOI: 10.1038/ejhg.2013.83] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
24
|
Novel connexin 30 and connexin 26 mutational spectrum in patients with progressive sensorineural hearing loss. The Journal of Laryngology & Otology 2012; 126:763-9. [DOI: 10.1017/s0022215112001119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractObjective:Mutations in the gap junction protein beta-2 gene (‘GJB2’) are known to be responsible for mild to profound congenital and late-onset hearing loss. This study aimed to investigate the molecular basis of progressive hearing loss compared with non-progressive hearing loss.Methods:Following clinical otorhinolaryngological evaluation, a genetic analysis was performed in a cohort of 72 patients with progressive sensorineural hearing loss.Results:Pathological genotypes were established in 16 patients (22.2 per cent). Six different gap junction protein beta-2 gene mutations were detected in 15 patients, with the c.35delG mutation responsible for 56 per cent of the mutated alleles. A novel gap junction protein beta-6 gene (‘GJB6’) mutation (p.Met203Val) was observed in one patient with mild progressive hearing loss.Conclusion:Analyses of gap junction protein beta-2 and -6 genes revealed that similar pathological genotypes, occurring with similar frequencies, were responsible for progressive hearing loss, compared with reported genotypes for non-progressive hearing loss patients. Thus, genotype cannot be used to differentiate non-progressive from progressive hearing loss cases; in this study, patients both with and without an established pathological genotype had a similar clinical course.
Collapse
|
25
|
Trotta L, Iacona E, Primignani P, Castorina P, Radaelli C, Bo LD, Coviello D, Ambrosetti U. GJB2 and MTRNR1 contributions in children with hearing impairment from Northern Cameroon. Int J Audiol 2010; 50:133-8. [DOI: 10.3109/14992027.2010.537377] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|