1
|
Danilchenko VY, Zytsar MV, Panina EA, Orishchenko KE, Posukh OL. Comparative analysis of haplotypes carrying pathogenic variants c.1545T>G, c.2027T>A and c.919-2A>G of the SLC26A4 gene in patients with hearing loss from the Tyva Republic (Southern Siberia). Vavilovskii Zhurnal Genet Selektsii 2025; 29:144-152. [PMID: 40144368 PMCID: PMC11933896 DOI: 10.18699/vjgb-25-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 03/28/2025] Open
Abstract
Pathogenic variants in the SLC26A4 gene (OMIM #605646), leading to non-syndromic recessive hearing loss type 4 (DFNB4) and Pendred syndrome, significantly contribute to the etiology of hearing loss in many populations of the world. The spectrum and prevalence of different pathogenic SLC26A4 variants are characterized by wide ethnogeographical variability. A high frequency of some of them in certain regions of the world may indicate either their independent origin or be a consequence of the founder effect. The proportion of SLC26A4-associated hearing loss in Tuvinian patients (the Tyva Republic, Southern Siberia) is one of the highest in the world (28.2 %) and the vast majority of mutant SLC26A4 alleles are represented by three pathogenic variants c.919-2A>G, c.2027T>A and c.1545T>G (69.3, 17.5 and 8.0 %, respectively). Their overall carrier frequency in the Tuvinian population reaches 7.1 %. The accumulation of these variants in Tuvinian patients suggests a role of the founder effect in their prevalence in Tuva, which can be confirmed by the common genetic background (haplotypes) for each of them. For reconstruction of haplotypes in the carriers of variants c.1545T>G and c.2027T>A, the genotyping data of a panel of polymorphic genetic markers were used: five STRs (four of them flank the SLC26A4 gene at different distances and one is intragenic) and nine intragenic SNPs. Comparative analysis of the reconstructed haplotypes for c.1545T>G and c.2027T>A with previously obtained data on haplotypes for the c.919-2A>G variant showed that each of the analyzed variants has a specific (similar for all carriers of a particular variant) genetic background, apparently inherited from different "founder ancestors". These data confirm the cumulative founder effect in the prevalence of pathogenic variants c.1545T>G, c.2027T>A, and c.919- 2A>G of the SLC26A4 gene in the indigenous population of the Tyva Republic. The obtained data are relevant both for predicting the prevalence of SLC26A4-caused hearing loss and for development of region-specific DNA diagnostics of inherited hearing loss in the Tyva Republic.
Collapse
Affiliation(s)
- V Yu Danilchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - M V Zytsar
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - E A Panina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - K E Orishchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - O L Posukh
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Ruan Y, Wen C, Cheng X, Zhang W, Zhao L, Xie J, Lu H, Ren Y, Meng F, Li Y, Deng L, Huang L, Han D. Genetic screening of newborns for deafness over 11 years in Beijing, China: More infants could benefit from an expanded program. Biosci Trends 2024; 18:303-314. [PMID: 39183030 DOI: 10.5582/bst.2024.01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Genetic screening of newborns for deafness plays an important role in elucidating the etiology of deafness, diagnosing it early, and intervening in it. Genetic screening of newborns has been conducted for 11 years in Beijing. It started with a chip to screen for 9 variants of 4 genes in 2012; the chip screened for 15 variants of those genes in 2018, and it now screens for 23 variants of those genes. In the current study, a comparative analysis of three screening protocols and follow-up for infants with pathogenic variants was performed. The rates of detection and hearing test results of infants with pathogenic variants were analyzed. Subjects were 493,821 infants born at 122 maternal and child care centers in Beijing from April 2012 to August 2023. Positivity increased from 4.599% for the chip to screen for 9 variants to 4.971% for the chip to screen for 15 variants, and further to 11.489% for the chip to screen for 23 variants. The carrier frequency of the GJB2 gene increased from 2.489% for the chip to screen for 9 variants and 2.422% for the chip to screen for 15 variants to 9.055% for the chip to screen for 23 variants. The carrier frequency of the SLC26A4 gene increased from 1.621% for the chip to screen for 9 variants to 2.015% for the chip to screen for 15 variants and then to 2.151% for the chip to screen for 23 variants. According to the chip to screen for 9 variants and the chip to screen for 15 variants, the most frequent mutant allele was c.235delC. According to the chip to screen for 23 variants, the most frequent mutant allele was c.109G>A. The chip to screen for 15 variants was used to screen 66.67% (14/21) of newborns with biallelic variants in the SLC26A4 gene for newly added mutations. The chip to screen for 23 variants was used to screen 92.98% (53/57) of newborns with biallelic variants in the GJB2 gene (52 cases were biallelic c.109G>A) and 25% (1/4) of newborns with biallelic variants in the SLC26A4 gene for newly added mutations. Among the infants with pathogenic variants (biallelic variants in GJB2 or SLC26A4), 20.66% (25/121) currently have normal hearing. In addition, 34.62% (9/26) of newborns who passed the hearing screening were diagnosed with hearing loss. Findings indicate that a growing number of newborns have benefited, and especially in the early identification of potential late-onset hearing loss, as the number of screening sites has increased. Conducting long-term audiological monitoring for biallelic variants in individuals with normal hearing is of paramount significance.
Collapse
Affiliation(s)
- Yu Ruan
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Cheng Wen
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Xiaohua Cheng
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Wei Zhang
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Liping Zhao
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Jinge Xie
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Hongli Lu
- CapitalBio Corporation & National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Yonghong Ren
- CapitalBio Corporation & National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Fanlin Meng
- CapitalBio Corporation & National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Yue Li
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Lin Deng
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Lihui Huang
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| | - Demin Han
- Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing, China
- Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing, China
| |
Collapse
|
3
|
Bałdyga N, Oziębło D, Gan N, Furmanek M, Leja ML, Skarżyński H, Ołdak M. The Genetic Background of Hearing Loss in Patients with EVA and Cochlear Malformation. Genes (Basel) 2023; 14:genes14020335. [PMID: 36833263 PMCID: PMC9957411 DOI: 10.3390/genes14020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The most frequently observed congenital inner ear malformation is enlarged vestibular aqueduct (EVA). It is often accompanied with incomplete partition type 2 (IP2) of the cochlea and a dilated vestibule, which together constitute Mondini malformation. Pathogenic SLC26A4 variants are considered the major cause of inner ear malformation but the genetics still needs clarification. The aim of this study was to identify the cause of EVA in patients with hearing loss (HL). Genomic DNA was isolated from HL patients with radiologically confirmed bilateral EVA (n = 23) and analyzed by next generation sequencing using a custom HL gene panel encompassing 237 HL-related genes or a clinical exome. The presence and segregation of selected variants and the CEVA haplotype (in the 5' region of SLC26A4) was verified by Sanger sequencing. Minigene assay was used to evaluate the impact of novel synonymous variant on splicing. Genetic testing identified the cause of EVA in 17/23 individuals (74%). Two pathogenic variants in the SLC26A4 gene were identified as the cause of EVA in 8 of them (35%), and a CEVA haplotype was regarded as the cause of EVA in 6 of 7 patients (86%) who carried only one SLC26A4 genetic variant. In two individuals with a phenotype matching branchio-oto-renal (BOR) spectrum disorder, cochlear hypoplasia resulted from EYA1 pathogenic variants. In one patient, a novel variant in CHD7 was detected. Our study shows that SLC26A4, together with the CEVA haplotype, accounts for more than half of EVA cases. Syndromic forms of HL should also be considered in patients with EVA. We conclude that to better understand inner ear development and the pathogenesis of its malformations, there is a need to look for pathogenic variants in noncoding regions of known HL genes or to link them with novel candidate HL genes.
Collapse
Affiliation(s)
- Natalia Bałdyga
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
- Doctoral School of Translational Medicine, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | - Dominika Oziębło
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Nina Gan
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
- Doctoral School of Translational Medicine, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| | - Mariusz Furmanek
- Bioimaging Research Center, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Marcin L. Leja
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
| | - Monika Ołdak
- Department of Genetics, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-356-03-66
| |
Collapse
|
4
|
Danilchenko VY, Zytsar MV, Maslova EA, Posukh OL. Selection of Diagnostically Significant Regions of the SLC26A4 Gene Involved in Hearing Loss. Int J Mol Sci 2022; 23:ijms232113453. [PMID: 36362242 PMCID: PMC9655724 DOI: 10.3390/ijms232113453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Screening pathogenic variants in the SLC26A4 gene is an important part of molecular genetic testing for hearing loss (HL) since they are one of the common causes of hereditary HL in many populations. However, a large size of the SLC26A4 gene (20 coding exons) predetermines the difficulties of its complete mutational analysis, especially in large samples of patients. In addition, the regional or ethno-specific prevalence of SLC26A4 pathogenic variants has not yet been fully elucidated, except variants c.919-2A>G and c.2168A>G (p.His723Arg), which have been proven to be most common in Asian populations. We explored the distribution of currently known pathogenic and likely pathogenic (PLP) variants across the SLC26A4 gene sequence presented in the Deafness Variation Database for the selection of potential diagnostically important parts of this gene. As a result of this bioinformatic analysis, we found that molecular testing ten SLC26A4 exons (4, 6, 10, 11, 13−17 and 19) with flanking intronic regions can provide a diagnostic rate of 61.9% for all PLP variants in the SLC26A4 gene. The primary sequencing of these SLC26A4 regions may be applied as an initial effective diagnostic testing in samples of patients of unknown ethnicity or as a subsequent step after the targeted testing of already-known ethno- or region-specific pathogenic SLC26A4 variants.
Collapse
Affiliation(s)
- Valeriia Yu. Danilchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina V. Zytsar
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ekaterina A. Maslova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga L. Posukh
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
5
|
Rapid Genetic Diagnosis for Okinawan Patients with Enlarged Vestibular Aqueduct Using Single-Stranded Tag Hybridization Chromatographic Printed-Array Strip. J Clin Med 2022; 11:jcm11041099. [PMID: 35207372 PMCID: PMC8880462 DOI: 10.3390/jcm11041099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Both Pendred syndrome (PS) and nonsyndromic hearing loss with an enlarged vestibular aqueduct (EVA) are autosomal recessive disorders caused by SLC26A4 pathogenic variants. The spectrum of SLC26A4 pathogenic variants varies with the ethnic background. Among the patients with EVA in Okinawa, 94% had some combination of NM_000441.2(SLC26A4):c.1707+5G>A and NM_000441.2(SLC26A4):c.2168A>G(p.His723Arg), the two SLC26A4 pathogenic variants that are the most common in this population. We identified these two pathogenic variants using a novel genotyping method that employed an allele-specific polymerase chain reaction (PCR) from a gDNA and single-stranded tag hybridization chromatographic printed-array strip (STH-PAS) in DNA samples obtained from 48 samples in Okinawa, including 34 patients with EVA and 14 carriers of c.1707+5G>A or c.2168A>G. In addition, whole blood and saliva samples were used for analysis in this genotyping method with direct PCR. The results of STH-PAS genotyping were consistent with those obtained using standard Sanger sequencing for all samples. The accuracy of the STH-PAS method is 100% under the optimized conditions. STH-PAS genotyping provided a diagnosis in 30 out of 34 patients (88%) in Okinawan patients with EVA in under 3 h. The turn-around time for STH-PAS genotyping used with direct PCR was 2 h as a result of the omission of the DNA extraction and purification steps. Using information about the ethnic distribution of pathogenic variants in the SLC26A4 gene, STH-PAS genotyping performs a rapid genetic diagnosis that is simple and has a considerably improved efficiency.
Collapse
|
6
|
Albader N, Zou M, BinEssa HA, Abdi S, Al-Enezi AF, Meyer BF, Alzahrani AS, Shi Y. Insights of Noncanonical Splice-site Variants on RNA Splicing in Patients With Congenital Hypothyroidism. J Clin Endocrinol Metab 2022; 107:e1263-e1276. [PMID: 34632506 DOI: 10.1210/clinem/dgab737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Congenital hypothyroidism (CH) is caused by mutations in the genes for thyroid hormone synthesis. In our previous investigation of CH patients, approximately 53% of patients had mutations in either coding exons or canonical splice sites of causative genes. Noncanonical splice-site variants in the intron were detected but their pathogenic significance was not known. OBJECTIVE This work aims to evaluate noncanonical splice-site variants on pre-messenger RNA (pre-mRNA) splicing of CH-causing genes. METHODS Next-generation sequencing data of 55 CH cases in 47 families were analyzed to identify rare intron variants. The effects of variants on pre-mRNA splicing were investigated by minigene RNA-splicing assay. RESULTS Four intron variants were found in 3 patients: solute carrier family 26 member 4 (SLC26A4) c.1544+9C>T and c.1707+94C>T in one patient, and solute carrier family 5 member 5 (SLC5A5) c.970-48G>C and c.1652-97A>C in 2 other patients. The c.1707+94C>T and c.970-48G>C caused exons 15 and 16 skipping, and exon 8 skipping, respectively. The remaining variants had no effect on RNA splicing. Furthermore, we analyzed 28 previously reported noncanonical splice-site variants (4 in TG and 24 in SLC26A4). Among them, 15 variants (~ 54%) resulted in aberrant splicing and 13 variants had no effect on RNA splicing. These data were compared with 3 variant-prediction programs (FATHMM-XF, FATHMM-MKL, and CADD). Among 32 variants, FATHMM-XF, FATHMM-MKL, and CADD correctly predicted 20 (63%), 17 (53%), and 26 (81%) variants, respectively. CONCLUSION Two novel deep intron mutations have been identified in SLC26A4 and SLC5A5, bringing the total number of solved families with disease-causing mutations to approximately 45% in our cohort. Approximately 46% (13/28) of reported noncanonical splice-site mutations do not disrupt pre-mRNA splicing. CADD provides highest prediction accuracy of noncanonical splice-site variants.
Collapse
Affiliation(s)
- Najla Albader
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Minjing Zou
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Huda A BinEssa
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Saba Abdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Anwar F Al-Enezi
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Brian F Meyer
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ali S Alzahrani
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Yufei Shi
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| |
Collapse
|
7
|
Honda K, Griffith AJ. Genetic architecture and phenotypic landscape of SLC26A4-related hearing loss. Hum Genet 2021; 141:455-464. [PMID: 34345941 DOI: 10.1007/s00439-021-02311-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Mutations of coding regions and splice sites of SLC26A4 cause Pendred syndrome and nonsyndromic recessive hearing loss DFNB4. SLC26A4 encodes pendrin, a transmembrane exchanger of anions and bases. The mutant SLC26A4 phenotype is characterized by inner ear malformations, including an enlarged vestibular aqueduct (EVA), incomplete cochlear partition type II and modiolar hypoplasia, progressive and fluctuating hearing loss, and vestibular dysfunction. A thyroid iodine organification defect can lead to multinodular goiter and distinguishes Pendred syndrome from DFNB4. Pendred syndrome and DFNB4 are each inherited as an autosomal recessive trait caused by biallelic mutations of SLC26A4 (M2). However, there are some EVA patients with only one detectable mutant allele (M1) of SLC26A4. In most European-Caucasian M1 patients, there is a haplotype that consists of 12 variants upstream of SLC26A4, called CEVA (Caucasian EVA), which acts as a pathogenic recessive allele in trans to mutations affecting the coding regions or splice sites of SLC26A4. This combination of an M1 genotype with the CEVA haplotype is associated with a less severe phenotype than the M2 genotype. The phenotype in EVA patients with no mutant alleles of SLC26A4 (M0) has a very low recurrence probability and is likely to be caused by other factors.
Collapse
Affiliation(s)
- Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Andrew J Griffith
- Department of Otolaryngology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
8
|
Forli F, Lazzerini F, Auletta G, Bruschini L, Berrettini S. Enlarged vestibular aqueduct and Mondini Malformation: audiological, clinical, radiologic and genetic features. Eur Arch Otorhinolaryngol 2020; 278:2305-2312. [PMID: 32910226 PMCID: PMC8165072 DOI: 10.1007/s00405-020-06333-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE When referring to enlarged vestibular aqueduct (EVA) we should differentiate between nonsyndromic enlarged vestibular aqueduct (NSEVA) and Pendred Syndrome (PDS), a disease continuum associated with pathogenic sequence variants of Pendrin's Gene (SLC26A4) in about half of the cases. The study was aimed to analyse the clinical and audiological features of a monocentric cohort of Caucasian patients with NSEVA/PDS, their genetic assessment and morphological inner ear features. METHODS We retrospectively reviewed the audiologic, genetic and anamnestic data of 66 patients with NSEVA/PDS followed by our audiology service. RESULTS SLC26A4 mutations was significantly correlated with the presence of PDS rather than NSEVA (p < 0.019), with the expression of inner ear malformations (p < 0.001) and with different severity of hearing loss (p = 0.001). Furthermore, patients with PDS showed significantly worse pure tone audiometry (PTA) than patients with NSEVA (p = 0.001). Anatomically normal ears presented significantly better PTA than ears associated with Mondini Malformation or isolated EVA (p < 0.001), but no statistically significative differences have been observed in PTA between patients with Mondini Malformation and isolated EVA. CONCLUSION NSEVA/PDS must be investigated in all the congenital hearing loss, but also in progressive, late onset, stepwise forms. Even mixed or fluctuating hearing loss may constitute a sign of a NSEVA/PDS pathology. Our findings can confirm the important role of SLC26A4 mutations in determining the phenotype of isolated EVA/PDS, both for the type/degree of the malformation, the hearing impairment and the association with thyroid dysfunction.
Collapse
Affiliation(s)
- F Forli
- Otolaryngology, Audiology and Phoniatrics Unit, University of Pisa, Pisa, Italy.
| | - F Lazzerini
- Otolaryngology, Audiology and Phoniatrics Unit, University of Pisa, Pisa, Italy
| | - G Auletta
- UOC Audiologia, DAI Testa Collo, AOU Federico II, Naples, Italy
| | - L Bruschini
- Otolaryngology, Audiology and Phoniatrics Unit, University of Pisa, Pisa, Italy
| | - S Berrettini
- Otolaryngology, Audiology and Phoniatrics Unit, University of Pisa, Pisa, Italy.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Nonose RW, Lezirovitz K, de Mello Auricchio MTB, Batissoco AC, Yamamoto GL, Mingroni-Netto RC. Mutation analysis of SLC26A4 (Pendrin) gene in a Brazilian sample of hearing-impaired subjects. BMC MEDICAL GENETICS 2018; 19:73. [PMID: 29739340 PMCID: PMC5941635 DOI: 10.1186/s12881-018-0585-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 04/19/2018] [Indexed: 12/18/2022]
Abstract
Background Mutations in the SLC26A4 gene are associated with Pendred syndrome and autosomal recessive non-syndromic deafness (DFNB4). Both disorders have similar audiologic characteristics: bilateral hearing loss, often severe or profound, which may be associated with abnormalities of the inner ear, such as dilatation of the vestibular aqueduct or Mondini dysplasia. But, in Pendred syndrome (OMIM #274600), with autosomal recessive inheritance, besides congenital sensorineural deafness, goiter or thyroid dysfunctions are frequently present. The aim of this study was to determine whether mutations in SLC26A4 are a frequent cause of hereditary deafness in Brazilian patients. Methods Microsatellite haplotypes linked to SLC26A4 were investigated in 68 families presenting autosomal recessive non-syndromic deafness. In the probands of the 16 families presenting segregation consistent with linkage to SLC26A4, Sanger sequencing of the 20 coding exons was performed. In an additional sample of 15 individuals with suspected Pendred syndrome, because of the presence of hypothyroidism or cochleovestibular malformations, the SLC26A4 gene coding region was also sequenced. Results In two of the 16 families with indication of linkage to SLC26A4, the probands were found to be compound heterozygotes for probably pathogenic different mutations: three novel (c.1003 T > G (p. F335 V), c.1553G > A (p.W518X), c.2235 + 2 T > C (IVS19 + 2 T > C), and one already described, c.84C > A (p.S28R). Two of the 15 individuals with suspected Pendred syndrome because of hypothyreoidism or cochleovestibular malformations were monoallelic for likely pathogenic mutations: a splice mutation (IVS7 + 2 T > C) and the previously described c.1246A > C (p.T416P). Pathogenic copy number variations were excluded in the monoallelic cases and in those with normal results after Sanger sequencing. Additional mutations in the SLC26A4 gene or other definite molecular cause for deafness were not identified in the monoallelic patients, after exome sequencing. Conclusions Biallelic pathogenic mutations in SLC26A4 explained ~ 3% of cases selected because of autosomal recessive deafness. Monoallelic mutations were present in ~ 13% of isolated cases of deafness with cochleovestibular malformations or suspected Pendred syndrome. These data reinforce the importance of mutation screening of SLC26A4 in Brazilian subjects and highlight the elevated frequency of monoallelic patients.
Collapse
Affiliation(s)
- Renata Watanabe Nonose
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Karina Lezirovitz
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.,Laboratório de Investigação Médica/LIM32 do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maria Teresa Balester de Mello Auricchio
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Carla Batissoco
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Guilherme Lopes Yamamoto
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Regina Célia Mingroni-Netto
- Centro de Pesquisas sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Roesch S, Bernardinelli E, Nofziger C, Tóth M, Patsch W, Rasp G, Paulmichl M, Dossena S. Functional Testing of SLC26A4 Variants-Clinical and Molecular Analysis of a Cohort with Enlarged Vestibular Aqueduct from Austria. Int J Mol Sci 2018; 19:ijms19010209. [PMID: 29320412 PMCID: PMC5796158 DOI: 10.3390/ijms19010209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 12/29/2022] Open
Abstract
The prevalence and spectrum of sequence alterations in the SLC26A4 gene, which codes for the anion exchanger pendrin, are population-specific and account for at least 50% of cases of non-syndromic hearing loss associated with an enlarged vestibular aqueduct. A cohort of nineteen patients from Austria with hearing loss and a radiological alteration of the vestibular aqueduct underwent Sanger sequencing of SLC26A4 and GJB2, coding for connexin 26. The pathogenicity of sequence alterations detected was assessed by determining ion transport and molecular features of the corresponding SLC26A4 protein variants. In this group, four uncharacterized sequence alterations within the SLC26A4 coding region were found. Three of these lead to protein variants with abnormal functional and molecular features, while one should be considered with no pathogenic potential. Pathogenic SLC26A4 sequence alterations were only found in 12% of patients. SLC26A4 sequence alterations commonly found in other Caucasian populations were not detected. This survey represents the first study on the prevalence and spectrum of SLC26A4 sequence alterations in an Austrian cohort and further suggests that genetic testing should always be integrated with functional characterization and determination of the molecular features of protein variants in order to unequivocally identify or exclude a causal link between genotype and phenotype.
Collapse
Affiliation(s)
- Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, Müllner Hauptstraße 48, A-5020 Salzburg, Austria.
| | - Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| | - Charity Nofziger
- PharmGenetix Gmbh, Sonystrasse 20, A-5081 Niederalm Anif, Austria.
| | - Miklós Tóth
- Department of Otorhinolaryngology, Head & Neck Surgery and Oncology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20251 Hamburg, Germany.
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| | - Gerd Rasp
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, Müllner Hauptstraße 48, A-5020 Salzburg, Austria.
| | - Markus Paulmichl
- Center for Health and Bioresources, Austrian Institute of Technology, Muthgasse 11, A-1190 Vienna, Austria.
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria.
| |
Collapse
|
11
|
Luo J, Bai X, Zhang F, Xiao Y, Gu L, Han Y, Fan Z, Li J, Xu L, Wang H. Prevalence of Mutations in Deafness-Causing Genes in Cochlear Implanted Patients with Profound Nonsyndromic Sensorineural Hearing Loss in Shandong Province, China. Ann Hum Genet 2017; 81:258-266. [PMID: 28786104 DOI: 10.1111/ahg.12207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 11/27/2022]
Abstract
The mutations of GJB2, SLC26A4, and mtDNA12SrRNA are the most common inherited causes of nonsyndromic sensorineural hearing loss (NSHL) in China, yet previous genetic screenings were mainly carried on patients with moderate-to-profound impairment. We aimed to detect the mutation frequencies in NSHL population within a more specified range of severity. Patients with profound NSHL who had undergone cochlear implantation in the Shandong Provincial Hospital (Shandong, China) were recruited. The majority (n = 472) were between 0.7 and 6 years old, and the remaining (n = 63) were between 6 and 70 years old. In total, 115 mutation alleles of the three genes were screened with SNP scan assay. Of the patients, 19.44% (104/535) were found to have GJB2 mutations, and the most common allele was c.235delC, followed by c.299_300delAT and c.109G>A. SLC26A4 mutations were detected in 13.46% patients (72/535), and the most common allele was c.919-2A>G (IVS7-2A>G), followed by c.1174A>T and c.2168A>G. Seven patients (1.31%) carried mutations in mtDNA12SrRNA, with the alleles of m.1555A>G and m.1494C>T. We found the allele frequency of c.109G>A (GJB2) was relatively lower in the profound NSHL population in comparison to the moderate-to-profound ones, and the c.1174A>T (SLC26A4) relatively higher. It suggests those mutations may be connected with the degree of deafness, which needs more observations and analyses to support.
Collapse
Affiliation(s)
- Jianfen Luo
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Shandong, China
| | - Xiaohui Bai
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Shandong, China
| | - Fengguo Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Shandong, China
| | - Yun Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Shandong, China
| | - Lintao Gu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China
| | - Yuechen Han
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Shandong, China
| | - Zhaomin Fan
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Shandong, China
| | - Jianfeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Shandong, China
| | - Lei Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Shandong, China
| | - Haibo Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China.,Shandong Provincial Key Laboratory of Otology, Shandong, China
| |
Collapse
|
12
|
Han KH, Kim AR, Kim MY, Ahn S, Oh SH, Song JH, Choi BY. Establishment of a Flexible Real-Time Polymerase Chain Reaction-Based Platform for Detecting Prevalent Deafness Mutations Associated with Variable Degree of Sensorineural Hearing Loss in Koreans. PLoS One 2016; 11:e0161756. [PMID: 27583405 PMCID: PMC5008798 DOI: 10.1371/journal.pone.0161756] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/11/2016] [Indexed: 11/19/2022] Open
Abstract
Many cutting-edge technologies based on next-generation sequencing (NGS) have been employed to identify candidate variants responsible for sensorineural hearing loss (SNHL). However, these methods have limitations preventing their wide clinical use for primary screening, in that they remain costly and it is not always suitable to analyze massive amounts of data. Several different DNA chips have been developed for screening prevalent mutations at a lower cost. However, most of these platforms do not offer the flexibility to add or remove target mutations, thereby limiting their wider use in a field that requires frequent updates. Therefore, we aimed to establish a simpler and more flexible molecular diagnostic platform based on ethnicity-specific mutation spectrums of SNHL, which would enable bypassing unnecessary filtering steps in a substantial portion of cases. In addition, we expanded the screening platform to cover varying degrees of SNHL. With this aim, we selected 11 variants of 5 genes (GJB2, SLC26A4, MTRNR1, TMPRSS3, and CDH23) showing high prevalence with varying degrees in Koreans and developed the U-TOP™ HL Genotyping Kit, a real-time PCR-based method using the MeltingArray technique and peptide nucleic acid probes. The results of 271 DNA samples with wild type sequences or mutations in homo- or heterozygote form were compared between the U-TOP™ HL Genotyping Kit and Sanger sequencing. The positive and negative predictive values were 100%, and this method showed perfect agreement with Sanger sequencing, with a Kappa value of 1.00. The U-TOP™ HL Genotyping Kit showed excellent performance in detecting varying degrees and phenotypes of SNHL mutations in both homozygote and heterozygote forms, which are highly prevalent in the Korean population. This platform will serve as a useful and cost-effective first-line screening tool for varying degrees of genetic SNHL and facilitate genome-based personalized hearing rehabilitation for the Korean population.
Collapse
Affiliation(s)
- Kyu-Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, National Medical Center, Seoul, Korea
| | - Ah Reum Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Min Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Soyeon Ahn
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seung-Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ju Hun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, National Medical Center, Seoul, Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Korea
- * E-mail:
| |
Collapse
|
13
|
Vestibular function is associated with residual low-frequency hearing loss in patients with bi-allelic mutations in the SLC26A4 gene. Hear Res 2016; 335:33-39. [DOI: 10.1016/j.heares.2016.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/20/2016] [Accepted: 02/15/2016] [Indexed: 11/22/2022]
|
14
|
Sakuma N, Moteki H, Takahashi M, Nishio SY, Arai Y, Yamashita Y, Oridate N, Usami SI. An effective screening strategy for deafness in combination with a next-generation sequencing platform: a consecutive analysis. J Hum Genet 2016; 61:253-61. [PMID: 26763877 PMCID: PMC4819760 DOI: 10.1038/jhg.2015.143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 09/29/2015] [Accepted: 10/18/2015] [Indexed: 11/24/2022]
Abstract
The diagnosis of the genetic etiology of deafness contributes to the clinical management of patients. We performed the following four genetic tests in three stages for 52 consecutive deafness subjects in one facility. We used the Invader assay for 46 mutations in 13 genes and Sanger sequencing for the GJB2 gene or SLC26A4 gene in the first-stage test, the TaqMan genotyping assay in the second-stage test and targeted exon sequencing using massively parallel DNA sequencing in the third-stage test. Overall, we identified the genetic cause in 40% (21/52) of patients. The diagnostic rates of autosomal dominant, autosomal recessive and sporadic cases were 50%, 60% and 34%, respectively. When the sporadic cases with congenital and severe hearing loss were selected, the diagnostic rate rose to 48%. The combination approach using these genetic tests appears to be useful as a diagnostic tool for deafness patients. We recommended that genetic testing for the screening of common mutations in deafness genes using the Invader assay or TaqMan genotyping assay be performed as the initial evaluation. For the remaining undiagnosed cases, targeted exon sequencing using massively parallel DNA sequencing is clinically and economically beneficial.
Collapse
Affiliation(s)
- Naoko Sakuma
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan.,Department of Otorhinolaryngology, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Hideaki Moteki
- Department of Otorhinolaryngology, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Masahiro Takahashi
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shin-ya Nishio
- Department of Otorhinolaryngology, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Yasuhiro Arai
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yukiko Yamashita
- Department of Otorhinolaryngology, Yokohama City University Medical Center, Yokohama, Japan
| | - Nobuhiko Oridate
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shin-ichi Usami
- Department of Otorhinolaryngology, School of Medicine, Shinshu University, Matsumoto, Japan
| |
Collapse
|
15
|
Jiang Y, Huang S, Deng T, Wu L, Chen J, Kang D, Xu X, Li R, Han D, Dai P. Mutation Spectrum of Common Deafness-Causing Genes in Patients with Non-Syndromic Deafness in the Xiamen Area, China. PLoS One 2015; 10:e0135088. [PMID: 26252218 PMCID: PMC4529078 DOI: 10.1371/journal.pone.0135088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/16/2015] [Indexed: 11/19/2022] Open
Abstract
In China, approximately 30,000 babies are born with hearing impairment each year. However, the molecular factors causing congenital hearing impairment in the Xiamen area of Fujian province have not been evaluated. To provide accurate genetic testing and counseling in the Xiamen area, we investigated the molecular etiology of non-syndromic deafness in a deaf population from Xiamen. Unrelated students with hearing impairment (n = 155) who attended Xiamen Special Education School in Fujian Province were recruited for this study. Three common deafness-related genes, GJB2, SLC26A4, and mtDNA12SrRNA, were analyzed using all-exon sequencing. GJB2 mutations were detected in 27.1% (42/155) of the entire cohort. The non-syndromic hearing loss (NSHL) hotspot mutations c.109G>A (p.V37I) and c.235delC were found in this population, whereas the Caucasian hotspot mutation c.35delG was not. The allelic frequency of the c.109G>A mutation was 9.03% (28/310), slightly higher than that of c.235delC (8.39%, 26/310), which is the most common GJB2 mutation in most areas of China. The allelic frequency of the c.109G>A mutation was significantly higher in this Xiamen's deaf population than that in previously reported cohorts (P = 0.00). The SLC26A4 mutations were found in 16.77% (26/155) of this cohort. The most common pathogenic allele was c.IVS7-2A>G (6.13%, 19/310), and the second most common was the c.1079C>T (p.A360V) mutation (1.94%, 6/310) which has rarely been reported as a hotspot mutation in other studies. The mutation rate of mtDNA12SrRNA in this group was 3.87% (6/155), all being the m.A1555G mutation. These findings show the specificity of the common deaf gene-mutation spectrum in this area. According to this study, there were specific hotspot mutations in Xiamen deaf patients. Comprehensive sequencing analysis of the three common deaf genes can help portray the mutation spectrum and develop optimal testing strategies for deaf patients in this area.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
- Fujian Medical University ShengLi clinical college, Fujian Provincial Hospital, Fuzhou, P. R. China
| | - Shasha Huang
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Tao Deng
- Beijing Capital Bio Independent Clinical Laboratory, Beijing, P. R. China
| | - Lihua Wu
- Fujian Medical University ShengLi clinical college, Fujian Provincial Hospital, Fuzhou, P. R. China
| | - Juan Chen
- Fujian Medical University ShengLi clinical college, Fujian Provincial Hospital, Fuzhou, P. R. China
| | - Dongyang Kang
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
| | - Xiufeng Xu
- Beijing Capital Bio Independent Clinical Laboratory, Beijing, P. R. China
| | - Ruiyu Li
- Fujian Medical University ShengLi clinical college, Fujian Provincial Hospital, Fuzhou, P. R. China
- * E-mail: (PD); (DYH); (RYL)
| | - Dongyi Han
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
- * E-mail: (PD); (DYH); (RYL)
| | - Pu Dai
- Department of Otolaryngology, Head and Neck Surgery, PLA General Hospital, Beijing, P. R. China
- * E-mail: (PD); (DYH); (RYL)
| |
Collapse
|
16
|
Rah YC, Kim AR, Koo JW, Lee JH, Oh SH, Choi BY. Audiologic presentation of enlargement of the vestibular aqueduct according to theSLC26A4genotypes. Laryngoscope 2014; 125:E216-22. [DOI: 10.1002/lary.25079] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Yoon C. Rah
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul National University College of Medicine; Seoul
| | - Ah R. Kim
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul National University College of Medicine; Seoul
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Bundang Hospital, Seoul National University College of Medicine; Seongnam Republic of Korea
| | - Jun H. Lee
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul National University College of Medicine; Seoul
| | - Seung-ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul National University College of Medicine; Seoul
| | - Byung Y. Choi
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Bundang Hospital, Seoul National University College of Medicine; Seongnam Republic of Korea
| |
Collapse
|
17
|
Jang JH, Jung J, Kim AR, Cho YM, Kim MY, Lee SY, Choi JY, Lee JH, Choi BY. Identification of Novel Functional Null Allele of SLC26A4 Associated with Enlarged Vestibular Aqueduct and Its Possible Implication. Audiol Neurootol 2014; 19:319-26. [DOI: 10.1159/000366190] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
|
18
|
A systematic review and meta-analysis of common mutations of SLC26A4 gene in Asian populations. Int J Pediatr Otorhinolaryngol 2013; 77:1670-6. [PMID: 23958391 DOI: 10.1016/j.ijporl.2013.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The IVS7-2A>G (c.919-2A>G) and p.H723R (c.2168A>G) mutations of SLC26A4 gene are recognized as a risk factor for the non-syndromic hearing loss. To elucidate the variable results, a meta-analysis and systematic review was performed from all case-control studies by pooling data on them. METHODS The case-control studies were assessed with a modification of the Newcastle-Ottawa Scale (NOS). The strength of association between c.919-2A>G, c.2168A>G and hearing loss risk was measured by odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS We included 14 case-control studies and 16 case series studies in present study. There was a higher prevalence of the c.919-2A>G mutation in the case group than that in the control group (12.4% vs 0.9%; OR = 13.05, 95% CI: 8.41-20.23, Z = 11.47, P<0.00001). CONCLUSIONS In conclusion, the results from this meta-analysis suggest that NSHL patients have an increased risk of the c.919-2A>G mutation of SLC26A4 gene in Asians, especially in Chinese.
Collapse
|
19
|
Choi BY, Kim BJ. Application of next generation sequencing upon the molecular genetic diagnosis of deafness. KOREAN JOURNAL OF AUDIOLOGY 2012; 16:1-5. [PMID: 24653861 PMCID: PMC3936532 DOI: 10.7874/kja.2012.16.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 12/30/2022]
Abstract
The main objective of this review is to describe the new sequencing technologies called next generation sequencing (NGS) and its utility as a molecular genetic diagnosis tool in a medical field. Sanger method has dominated the genome sequencing industry for the past 30 years since its invention in 1975. It produced first human genome and still remains the gold standard for genome sequencing. However, it cannot meet the needs for enormous genetic data gathering and process because of its relatively long sequencing time and high cost per sample. NGS which parallelise the sequencing process, thereby increasing processing speed at a reduced cost per sample emerged to compensate for the weakness of the previous method. Currently NGS is used in some medical areas and its use is being widened. NGS also plays an important role in a study of genetically heterogenous hearing diseases. NGS is expected to mark a significant milestone in genomic research filed in a near future.
Collapse
Affiliation(s)
- Byung Yoon Choi
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Bong Jik Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
20
|
Rozenfeld J, Efrati E, Adler L, Tal O, Carrithers SL, Alper SL, Zelikovic I. Transcriptional regulation of the pendrin gene. Cell Physiol Biochem 2011; 28:385-96. [PMID: 22116353 DOI: 10.1159/000335100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2011] [Indexed: 12/20/2022] Open
Abstract
Pendrin (SLC26A4), a Cl(-)/anion exchanger encoded by the gene PDS, is highly expressed in the kidney, thyroid and inner ear epithelia and is essential for bicarbonate secretion/chloride reabsorption, iodide accumulation and endolymph ion balance, respectively. The molecular mechanisms controlling pendrin activity in renal, thyroid and inner ear epithelia have been the subject of recent studies. The effects of ambient pH, the hormone aldosterone and the peptide uroguanylin (UGN; the "intestinal natriuretic hormone"), known modulators of electrolyte balance, on transcription of the pendrin gene, have been investigated. Luciferase reporter plasmids containing different length fragments of the human PDS (hPDS) promoter were transfected into renal HEK293, thyroid LA2, and inner ear VOT36 epithelial cells. Acidic pH decreased and alkaline pH increased hPDS promoter activity in transfected HEK293 and VOT36, but not in LA2 cells. Aldosterone reduced hPDS promoter activity in HEK293 but had no effect in LA2 and VOT36 cells. These pH and aldosterone-induced effects on the hPDS promoter occurred within 96-bp and 89-bp regions, respectively, which likely contain distinct response elements to these modulators. Injection of UGN into mice resulted in decreased pendrin mRNA and protein expression in the kidney. Exposure of transfected HEK293 to UGN decreased hPDS promoter activity. The findings provided evidence for the presence of a UGN response element within the 96-bp region overlapping with the pH response element on the hPDS promoter. Pendrin is also expressed in airway epithelium. The cytokins interleukin 4 (IL-4) and interleukin-13 (IL-13), known regulators of airway surface function, have been shown to increase hPDS promoter activity by a STAT6-dependent mechanism. In conclusion, systemic pH, the hormone aldosterone, and the peptide UGN influence renal tubular pendrin gene expression and, perhaps, pendrin-mediated Cl(-)/HCO(3)(-) exchange at the transcriptional level. Pendrin-driven anion transport in the endolymph and at the airway surface may be regulated transcriptionally by systemic pH and IL-3/IL-4, respectively. The distinct response elements and the corresponding transcription factors mediating the effect of these modulators on the PDS promoter remain to be identified and characterized.
Collapse
Affiliation(s)
- Julia Rozenfeld
- Laboratory of Developmental Nephrology, Department of Physiology and Biophysics, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
21
|
Huang S, Han D, Yuan Y, Wang G, Kang D, Zhang X, Yan X, Meng X, Dong M, Dai P. Extremely discrepant mutation spectrum of SLC26A4 between Chinese patients with isolated Mondini deformity and enlarged vestibular aqueduct. J Transl Med 2011; 9:167. [PMID: 21961810 PMCID: PMC3204245 DOI: 10.1186/1479-5876-9-167] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 09/30/2011] [Indexed: 11/16/2022] Open
Abstract
Background Mutations in SLC26A4 cause Pendred syndrome (hearing loss with goiter) or DFNB4 (non-syndromic hearing loss with inner ear malformation, such as enlarged vestibular aqueduct or Mondini deformity). The relationship between mutations in SLC26A4 and Mondini deformity without enlarged vestibular aqueduct has not been studied in any Chinese deaf population. The purpose of this study was to assess whether mutations in the SLC26A4 gene cause Mondini deformity without an enlarged vestibular aqueduct (isolated Mondini deformity) in a Chinese population. Methods In total, 144 patients with sensorineural hearing loss were included and subjected to high-resolution temporal bone CT. Among them, 28 patients with isolated Mondini dysplasia (MD group), 50 patients with enlarged vestibular aqueduct with Mondini dysplasia (EVA with MD group), 50 patients with enlarged vestibular aqueduct without Mondini dysplasia (EVA group), and 16 patients with other types of inner ear malformations (IEM group) were identified. The coding exons of SLC26A4 were analyzed in all subjects. Results DNA sequence analysis of SLC26A4 was performed in all 144 patients. In the different groups, the detection rate of the SLC26A4 mutation differed. In the isolated MD group, only one single allelic mutation in SLC26A4 was found in one patient (1/28, 3.6%). In the EVA with MD group, biallelic and monoallelic SLC26A4 mutations were identified in 46 patients (46/50, 92.0%) and three patients (3/50, 6.0%), respectively. Also, in the EVA group, biallelic and monoallelic SLC26A4 mutations were identified in 46 patients (46/50, 92.0%) and three patients (3/50, 6.0%), respectively. These percentages were identical to those in the EVA plus MD group. Only two patients carried monoallelic mutations of the SLC26A4 gene in the IEM group (2/16, 12.5%). There were significant differences in the frequency of SLC26A4 mutation among the groups (P < 0.001). The detection rate of SLC26A4 mutation in the isolated MD group was significantly lower than in the EVA group (with or without MD; P < 0.001), and there was no significant difference in the detection rate of SLC26A4 between the MD group and IEM group (P > 0.5). Conclusion Although mutations in the SLC26A4 gene were frequently found in Chinese EVA patients with and without MD, there was no evidence to show a relationship between isolated MD and the SLC26A4 gene in the Chinese population examined. Hearing impairment in patients with isolated MD may be caused by factors other than mutations in the SLC26A4 gene.
Collapse
Affiliation(s)
- Shasha Huang
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu CC, Liu TC, Wang SH, Hsu CJ, Wu CM. Genetic characteristics in children with cochlear implants and the corresponding auditory performance. Laryngoscope 2011; 121:1287-93. [DOI: 10.1002/lary.21751] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 01/10/2011] [Indexed: 11/10/2022]
|
23
|
Almomani EY, Chu CY, Cordat E. Mis-trafficking of bicarbonate transporters: implications to human diseasesThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2011; 89:157-77. [DOI: 10.1139/o10-153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bicarbonate is a waste product of mitochondrial respiration and one of the main buffers in the human body. Thus, bicarbonate transporters play an essential role in maintaining acid-base balance but also during fetal development as they ensure tight regulation of cytosolic and extracellular environments. Bicarbonate transporters belong to two gene families, SLC4A and SLC26A. Proteins from these two families are widely expressed, and thus mutations in their genes result in various diseases that affect bones, pancreas, reproduction, brain, kidneys, eyes, heart, thyroid, red blood cells, and lungs. In this minireview, we discuss the current state of knowledge regarding the effect of SLC4A and SLC26A mutants, with a special emphasis on mutants that have been studied in mammalian cell lines and how they correlate with phenotypes observed in mice models.
Collapse
Affiliation(s)
- Ensaf Y. Almomani
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Carmen Y.S. Chu
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emmanuelle Cordat
- Membrane Protein Research Group, Department of Physiology, School of Molecular and Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|