1
|
Krishnamoorthy M, Jayasankaran C, Lakshmi S, Sarvani C, Margret JJ, Mahalingam S, Amritkumar P, Subramanyam PV, S SR, Srisailapathy CRS. Clinical Exome Sequencing Identifies, Two Homozygous LOXHD1 Variants in Two Inbred Families With Pre-Lingual Hearing Loss From South India. Ann Hum Genet 2025; 89:114-125. [PMID: 40070250 DOI: 10.1111/ahg.12593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 04/11/2025]
Abstract
In recent years, numerous genetic variants have been linked with prelingual hearing loss (HL). Variants in the LOXHD1 gene (lipoxygenase homology domain-1) associated with DFNB77 are highly heterogeneous, with different auditory characteristics varying from stable to progressive and mild to profound. To date, 168 DFNB77 cases have been recorded worldwide. Forty-one hearing-impaired (HI) probands, who were previously excluded for a set of four common deafness-causing genes (viz., GJB2, GJB6, SLC26A4, and CDH23) from 33 HI families, were subjected to clinical exome sequencing (CES) involving 285 genes associated with HL. This was followed by a segregation analysis of the available members in the family. We identified two pathogenic LOXHD1 variants in two unrelated inbred families. One is a novel homozygous pathogenic nonsense variant (c.3999C > A; p.C1333X), whereas the other is a likely pathogenic missense variant (c.6046G > T; p.E2046K). In silico tools such as SIFT, PolyPhen-2, Mutation Taster, CADD, and REVEL scores were used to predict variant pathogenicity. Furthermore, American College of Medical Genetics and Genomics guidelines specific to HL were applied to finally classify a variant as pathogenic or otherwise. The frequency of LOXHD1 variants identified in our study is 4.88% (2/41). This is the first LOXHD1 report associated with non-syndromic HL in South Indian families.
Collapse
Affiliation(s)
- Mathuravalli Krishnamoorthy
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras (Taramani Campus), Chennai, Tamil Nadu, India
| | - Chandru Jayasankaran
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras (Taramani Campus), Chennai, Tamil Nadu, India
| | - Sorna Lakshmi
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras (Taramani Campus), Chennai, Tamil Nadu, India
| | - Chodisetty Sarvani
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras (Taramani Campus), Chennai, Tamil Nadu, India
- The Gordon Institute of TAFE Geelong, Geelong, Victoria, Australia
| | - Jeffrey Justin Margret
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras (Taramani Campus), Chennai, Tamil Nadu, India
| | - Subathra Mahalingam
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras (Taramani Campus), Chennai, Tamil Nadu, India
| | - Pavithra Amritkumar
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras (Taramani Campus), Chennai, Tamil Nadu, India
- Meenakshi Academy of Higher Education and Research (MAHER), Chennai, Tamil Nadu, India
| | - Paridhy Vanniya Subramanyam
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras (Taramani Campus), Chennai, Tamil Nadu, India
| | - Sarrath Rathnaraajan S
- Consultant ENT Surgeon, Madras ENT Research Foundation (MERF) Pvt Ltd, Chennai, Tamil Nadu, India
| | - C R Srikumari Srisailapathy
- Department of Genetics, Post Graduate Institute of Basic Medical Sciences, University of Madras (Taramani Campus), Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Raghuvanshi R, Panda KC, Ray CS, Ramchander PV. Targeted Next-Generation Sequencing Analysis Reveals a Novel Genetic Variant in MYO6 Gene in an Indian Family with Postlingual Nonsyndromic Hearing Loss. Genet Test Mol Biomarkers 2024. [PMID: 39019031 DOI: 10.1089/gtmb.2023.0747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
Background: Hereditary nonsyndromic hearing loss (NSHL) is an extremely heterogeneous disorder, both genetically and clinically. Myosin VI (MYO6) pathogenic variations have been reported to cause both prelingual and postlingual forms of NSHL. Postlingual autosomal dominant cases are often overlooked for genetic etiology in clinical setups. In this study, we used next-generation sequencing (NGS)-based targeted deafness gene panel assay to identify the cause of postlingual hearing loss in an Indian family. Methods: The proband and his father from a multigenerational Indian family affected by postlingual hearing loss were examined via targeted capture of 129 deafness genes, after excluding gap junction protein beta 2 (GJB2) pathogenic variants by Sanger sequencing. NGS data analysis and co-segregation of the candidate variants in the family were carried out. The variant effect was predicted by in silico tools and interpreted following American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. Results: A novel heterozygous transversion c.3225T>G, p.(Tyr1075*) in MYO6 gene was identified as the disease-causing variant in this family. This stop-gained variant is predicted to form a truncated myosin VI protein, which is devoid of crucial cargo-binding domain. PCR-RFLP screening in 200 NSHL cases and 200 normal-hearing controls showed the absence of this variant indicating its de novo nature in the population. Furthermore, we reviewed MYO6 variants reported from various populations to date. Conclusions: To the best of our knowledge, this is the first family with MYO6-associated hearing loss from an Indian population. The study also highlights the importance of deafness gene panels in molecular diagnosis of GJB2-negative pedigrees, contributing to genetic counseling in the affected families.
Collapse
Affiliation(s)
- Ruchika Raghuvanshi
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Khirod Chandra Panda
- Ear, Nose, and Throat (ENT) Unit, Capital Hospital, Unit VI, Bhubaneswar, India
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanja (SCB) Medical College and Hospital, Cuttack, India
| | - Chinmay Sundar Ray
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanja (SCB) Medical College and Hospital, Cuttack, India
| | | |
Collapse
|
3
|
Bai JS, Gowda P R P, Naik SM, Somashekhar A. Hearing Screening in High-Risk Neonates Using Distortion Product Oto-Acoustic Emission. Indian J Otolaryngol Head Neck Surg 2024; 76:620-625. [PMID: 38440481 PMCID: PMC10908932 DOI: 10.1007/s12070-023-04227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/07/2023] [Indexed: 03/06/2024] Open
Abstract
The prevalence of hearing loss is 0.09-2.3% in low risk neonates, and 0.3-14.1% in the high-risk population. The treatment requires early identification by neonatal hearing screening and early rehabilitation. OAE (oto-acoustic emission) and ABR (Auditory Brain Response) are the two objective tests used to evaluate hearing loss in neonates. OAE tests the biological response of the cochlea to auditory stimuli. ABR tests the auditory pathway. The aim is to estimate hearing loss in high-risk neonates using the Distortion Product Oto- acoustic emission (DP OAE) and to correlate the associated high-risk factors. This was a cross-sectional study conducted between March 2021 to September 2022. Newborns satisfying the inclusion criteria were included in the study. DP- OAE is performed to screen for hearing loss within 48 h of birth. Infants failing the first screening test are then examined for treatable causes and then repeated at 2 weeks. Newborns who fail the second DP-OAE are subjected to ABR for confirmation of hearing loss. A total of 100 high risk neonates underwent hearing screen using DP-OAE. Most common risk factors seen in our study are prematurity (22%), Low birth weight (< 2.5 kg) (20%), Neonatal Hyperbilirubinemia (17%), Maternal risk factors (GDM) (14%). Most neonates with prematurity failed the hearing test with significant p-value of 0.05. DP- OAE test can be successfully implemented as newborn hearing screening method, for early detection of hearing impairment to achieve the high quality standard of screening programs.
Collapse
Affiliation(s)
- J Sarah Bai
- Department of Otorhinolaryngology, The Oxford Medical College & Research Centre, Bangalore, Karnataka India
| | - Prajwal Gowda P R
- Department of Otorhinolaryngology, The Oxford Medical College & Research Centre, Bangalore, Karnataka India
| | - Sudhir M Naik
- Department of Otorhinolaryngology, The Oxford Medical College & Research Centre, Bangalore, Karnataka India
| | - Abhilasha Somashekhar
- Department of Otorhinolaryngology, The Oxford Medical College & Research Centre, Bangalore, Karnataka India
| |
Collapse
|
4
|
Thingujam S, Sakthignanavel A, Vengadakrishnan J, Poduval J. Effect of Health Education on Knowledge and Behaviour Towards Consanguineous Marriage and Infantile Hearing Loss. Indian J Otolaryngol Head Neck Surg 2022; 74:343-349. [PMID: 36213470 PMCID: PMC9535056 DOI: 10.1007/s12070-021-02652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/17/2021] [Indexed: 10/21/2022] Open
Abstract
Awareness regarding consanguineous marriage and other risk factors of infantile hearing loss is essential for prevention, early detection and timely intervention which can save deaf children from lifelong consequences of hearing disability. A pre-post study was done among the general population of Puducherry, India to evaluate the effect of health education on knowledge and behaviour towards consanguineous marriage and infantile hearing loss. Individual direct interviews were done using a questionnaire to assess their awareness about consanguineous marriage and other risk factors of infantile hearing loss, its early detection and intervention. The assessment was repeated after a health education given for the same by direct interaction and pamphlets. The study showed that 65% participants were unaware of consanguinity being a risk factor for congenital hearing loss. More than half of them were unaware of other risk factors, neonatal hearing screening and treatment. Only 35.3% were aware that early identification and intervention enables a deaf child to learn optimum speech and language. Prior to health education, 33.7% were in support of consanguineous marriage whereas, after the health education, only 6.7% supported it showing significant improvement in their attitude towards consanguineous marriage. Post health education, there was overwhelming 100% improvement in their knowledge regarding infantile hearing loss. The study shows the poor awareness among the population of Puducherry regarding consanguineous marriage and infantile hearing loss, thus requiring a widespread sensitization about infantile hearing loss which can prevent lifelong consequences of the hearing disability.
Collapse
Affiliation(s)
- Sonee Thingujam
- Aarupadai Veedu Medical College and Hospital, Puducherry, India
| | | | | | - Jayita Poduval
- Department of ENT, Aarupadai Veedu Medical College and Hospital, Puducherry, India
| |
Collapse
|
5
|
Abstract
Hearing loss (HL) is an etiologically heterogeneous disorder that affects around 5% of the world's population. There has been an exponential increase in the identification of genes and variants responsible for hereditary HL over recent years. Iran, a country located in the Middle East, has a high prevalence of consanguineous marriages, so heterogeneous diseases such as HL are more common. Comprehensive studies using different strategies from linkage analysis to next-generation sequencing, especially exome-sequencing, have achieved significant success in identifying possible pathogens in deaf Iranian families. About 12% of non-syndromic autosomal recessive HL genes investigated to date, were first identified in families from Iran. Variations of 56 genes have been observed in families with NSHL in Iran. Variants in GJB2, SLC26A4, MYO15A, MYO7A, CDH23, and TMC1 account for 16.5%, 16.25%, 13.5%, 9.35%, 6.9% and 4.92%, cases of NSHL, respectively. In summary, there are also different diagnostic rates between studies conducted in Iran. In the comprehensive investigations conducted by the Genetic Research Center of the University of Social Welfare and Rehabilitation Sciences over the past 20 years, the overall diagnosis rate is about 80% while there are other studies with lower diagnostic rates which could reflect differences in project designs, sampling, and accuracy and validity of the methods used. Furthermore, there are several syndromic HHLs in Iran including, Waardenburg syndrome, BOR syndrome, Brown-Vialetto-Van Laere syndrome, Wolfram syndrome, among which Pendred and Usher syndromes are well-studied. These results are of importance for further investigation and elucidation of the molecular basis of HHL in Iran.
Collapse
|
6
|
Kausar N, Haque A, Masoud MS, Nahid N, Ashfaq UA, Waryah AM, Bhatti R, Qasim M. Disease-associated variants of Gap Junction Beta 2 protein (GJB2) in the deaf population of Southern Punjab of Pakistan. PLoS One 2021; 16:e0259083. [PMID: 34695157 PMCID: PMC8544867 DOI: 10.1371/journal.pone.0259083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/12/2021] [Indexed: 02/03/2023] Open
Abstract
Hearing impairment (HI) is a highly heterogeneous genetic disorder and is classified into nonsyndromic (without any other clinical manifestations) and syndromic (if combined with other clinical presentations) forms. Variations in GJB2 gene are the leading cause of autosomal recessive nonsyndromic hearing loss (ARNSHL) in several populations worldwide. This study was carried out to investigate the prevalence of GJB2 variations in severe-to-profound hearing impaired families of Southern Punjab of Pakistan. Ten families segregating ARNSHL were recruited from different areas of the region. Sanger sequencing of GJB2 coding region was carried out. In two out of ten families, NM_004004:c.*71G>A (p.(Trp24*)) and NM_004004:c.358_360del (p.(Glu120del)) homozygous variants were identified as the cause of hearing loss. Our study showed that GJB2-related hearing loss accounts for at least 20% of all cases with severe-to-profound hearing loss in the Southern Punjab population of Pakistan.
Collapse
Affiliation(s)
- Nabila Kausar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
- Department of Molecular Biology and Biochemistry, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Asma Haque
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
- * E-mail: (NN); (MQ)
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Ali Muhammad Waryah
- Molecular Biology and Genetics Department, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Rashid Bhatti
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
- * E-mail: (NN); (MQ)
| |
Collapse
|
7
|
Vanniya S P, Chandru J, Jeffrey JM, Rabinowitz T, Brownstein Z, Krishnamoorthy M, Avraham KB, Cheng L, Shomron N, Srisailapathy CRS. PNPT1, MYO15A, PTPRQ, and SLC12A2-associated genetic and phenotypic heterogeneity among hearing impaired assortative mating families in Southern India. Ann Hum Genet 2021; 86:1-13. [PMID: 34374074 DOI: 10.1111/ahg.12442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
The study was conducted between 2018 and 2020. From a cohort of 113 hearing impaired (HI), five non-DFNB12 probands identified with heterozygous CDH23 variants were subjected to exome analysis. This resolved the etiology of hearing loss (HL) in four South Indian assortative mating families. Six variants, including three novel ones, were identified in four genes: PNPT1 p.(Ala46Gly) and p.(Asn540Ser), MYO15A p.(Leu1485Pro) and p.(Tyr1891Ter), PTPRQ p.(Gln1336Ter), and SLC12A2 p.(Pro988Ser). Compound heterozygous PNPT1 variants were associated with DFNB70 causing prelingual profound sensorineural hearing loss (SNHL), vestibular dysfunction, and unilateral progressive vision loss in one family. In the second family, MYO15A variants in the myosin motor domain, including a novel variant, causing DFNB3, were found to be associated with prelingual profound SNHL. A novel PTPRQ variant was associated with postlingual progressive sensorineural/mixed HL and vestibular dysfunction in the third family with DFNB84A. In the fourth family, the SLC12A2 novel variant was found to segregate with severe-to-profound HL causing DFNA78, across three generations. Our results suggest a high level of allelic, genotypic, and phenotypic heterogeneity of HL in these families. This study is the first to report the association of PNPT1, PTPRQ, and SLC12A2 variants with HL in the Indian population.
Collapse
Affiliation(s)
- Paridhy Vanniya S
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Jayasankaran Chandru
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India.,LifeBytes India Pvt. Ltd., Bengaluru, India
| | - Justin Margret Jeffrey
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Tom Rabinowitz
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zippora Brownstein
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mathuravalli Krishnamoorthy
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Le Cheng
- BGI Genomics, Shenzhen, P. R. China
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - C R Srikumari Srisailapathy
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|
8
|
Fareed M, Sharma V, Singh I, Rehman SU, Singh G, Afzal M. Whole-Exome Sequencing Reveals a Rare Variant of OTOF Gene Causing Congenital Non-syndromic Hearing Loss Among Large Muslim Families Favoring Consanguinity. Front Genet 2021; 12:641925. [PMID: 34113375 PMCID: PMC8185570 DOI: 10.3389/fgene.2021.641925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Non-syndromic hearing loss (NSHL) is one of the most frequent auditory deficits in humans characterized by high clinical and genetic heterogeneity. Very few studies have reported the relationship between OTOF (Locus: DFNB9) and hereditary hearing loss in India. We aimed to decipher the genetic cause of prelingual NSHL in a large affected Muslim consanguineous families using whole-exome sequencing (WES). The study was performed following the guidelines and regulations of the Indian Council of Medical Research (ICMR), New Delhi. The population was identified from Jammu and Kashmir, the Northernmost part of India. Near about 100 individuals were born deaf-mute in the village of 3,000 inhabitants. A total of 103 individuals (with 52 cases and 51 controls) agreed to participate in this study. Our study revealed a rare non-sense homozygous mutation NC_000002.11:g.2:26702224G>A; NM_001287489.2:c.2122C>T; NP_001274418.1:p.(Arg708∗) in the 18th exon of the OTOF gene. Our study provides the first insight into this homozygous condition, which has not been previously reported in ExAC, 1,000 Genome and genomAD databases. Furthermore, the variant was confirmed in the population cohort (n = 103) using Sanger sequencing. In addition to the pathogenic OTOF variant, the WES data also revealed novel and recurrent mutations in CDH23, GJB2, MYO15A, OTOG, and SLC26A4 genes. The rare pathogenic and the novel variants observed in this study have been submitted to the ClinVar database and are publicly available online with the accessions SCV001448680.1, SCV001448682.1 and SCV001448681.1. We conclude that OTOF-related NSHL hearing loss is prevalent in the region due to successive inbreeding in its generations. We recommend premarital genetic testing and genetic counseling strategies to minimize and control the disease risk in future generations.
Collapse
Affiliation(s)
- Mohd Fareed
- PK-PD Formulation and Toxicology Division, CSIR Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Varun Sharma
- Ancient DNA Laboratory, Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh, India
| | | | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Gurdarshan Singh
- PK-PD Formulation and Toxicology Division, CSIR Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mohammad Afzal
- Human Genetics and Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
9
|
de Joya EM, Colbert BM, Tang PC, Lam BL, Yang J, Blanton SH, Dykxhoorn DM, Liu X. Usher Syndrome in the Inner Ear: Etiologies and Advances in Gene Therapy. Int J Mol Sci 2021; 22:3910. [PMID: 33920085 PMCID: PMC8068832 DOI: 10.3390/ijms22083910] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is the most common sensory disorder with ~466 million people worldwide affected, representing about 5% of the population. A substantial portion of hearing loss is genetic. Hearing loss can either be non-syndromic, if hearing loss is the only clinical manifestation, or syndromic, if the hearing loss is accompanied by a collage of other clinical manifestations. Usher syndrome is a syndromic form of genetic hearing loss that is accompanied by impaired vision associated with retinitis pigmentosa and, in many cases, vestibular dysfunction. It is the most common cause of deaf-blindness. Currently cochlear implantation or hearing aids are the only treatments for Usher-related hearing loss. However, gene therapy has shown promise in treating Usher-related retinitis pigmentosa. Here we review how the etiologies of Usher-related hearing loss make it a good candidate for gene therapy and discuss how various forms of gene therapy could be applied to Usher-related hearing loss.
Collapse
Affiliation(s)
- Evan M. de Joya
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Brett M. Colbert
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Pei-Ciao Tang
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
| | - Byron L. Lam
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Jun Yang
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA;
| | - Susan H. Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Derek M. Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (E.M.J.); (B.M.C.); (P.-C.T.); (S.H.B.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
10
|
Qi M, Lai H, Xu L, Zeng F, Zhang J, Xie K. Pregestational screening of hereditary deafness genes carriers in 10,684 normal pregnant women in Zhuzhou, China. Birth Defects Res 2021; 113:605-612. [PMID: 33470562 DOI: 10.1002/bdr2.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Mutations in genes associated with deafness differ between ethnic groups and regions in China. In this study, we investigated the genes associated with deafness in pregnant women to analyze the distribution of mutations leading to deafness in Zhuzhou, China. METHODS A total of 10,684 pregnant women were enrolled in this study. DNA samples were collected to detect the 14 common mutations in deafness genes (at 108 sites). RESULTS Prevalence of mutations in deafness genes in pregnant women with normal hearing in Zhuzhou was 4.92% (526/10,684). Among these 526 pregnant women with deafness gene mutations, the frequencies of mutated GJB2, GJB3, SLC26A4, and mtDNA 12S rRNA were 40.11, 7.22, 40.68, and 11.98%, respectively. The hotspots for mutations in the deafness genes were: c.235delC in GJB2 (31.18%), c.919-2A > G in SLC26A4 (18.44%), c.299_300delAT in GJB2 (5.70%), m.7444G > A in mtDNA 12S rRNA (5.70%), c.1229C > T in SLC26A4 (5.51%), m.1555A > G in mtDNA 12S rRNA (5.32%), accounting for 71.85%. Moreover, husbands of the 526 pregnant women who carried the deafness gene mutations were also included in the analysis to detect deafness gene mutations. Among the 526 husbands, 23 husbands carried mutations in deafness genes, accounting for 4.37%. The deafness gene mutations of the husbands and pregnant wives were not the same. In addition, the results of the neonatal follow-up hearing tests were all normal. CONCLUSION Our study identified the prevalence of mutations in GJB2, SLC26A4, mtDNA 12S rRNA, and GJB3 genes in pregnant women from Zhuzhou, China.
Collapse
Affiliation(s)
- Mingming Qi
- Department of Obstetrics, Zhuzhou Central Hospital and The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Huimin Lai
- Department of Obstetrics, Zhuzhou Central Hospital and The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Lili Xu
- Department of Obstetrics, Zhuzhou Central Hospital and The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Fanhua Zeng
- Department of Obstetrics, Zhuzhou Central Hospital and The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Jing Zhang
- Department of Obstetrics, Zhuzhou Central Hospital and The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Kaili Xie
- Department of Obstetrics, Zhuzhou Central Hospital and The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| |
Collapse
|
11
|
Genetic Spectrum of Syndromic and Non-Syndromic Hearing Loss in Pakistani Families. Genes (Basel) 2020; 11:genes11111329. [PMID: 33187236 PMCID: PMC7709052 DOI: 10.3390/genes11111329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
The current molecular genetic diagnostic rates for hereditary hearing loss (HL) vary considerably according to the population background. Pakistan and other countries with high rates of consanguineous marriages have served as a unique resource for studying rare and novel forms of recessive HL. A combined exome sequencing, bioinformatics analysis, and gene mapping approach for 21 consanguineous Pakistani families revealed 13 pathogenic or likely pathogenic variants in the genes GJB2, MYO7A, FGF3, CDC14A, SLITRK6, CDH23, and MYO15A, with an overall resolve rate of 61.9%. GJB2 and MYO7A were the most frequently involved genes in this cohort. All the identified variants were either homozygous or compound heterozygous, with two of them not previously described in the literature (15.4%). Overall, seven missense variants (53.8%), three nonsense variants (23.1%), two frameshift variants (15.4%), and one splice-site variant (7.7%) were observed. Syndromic HL was identified in five (23.8%) of the 21 families studied. This study reflects the extreme genetic heterogeneity observed in HL and expands the spectrum of variants in deafness-associated genes.
Collapse
|
12
|
Combined hearing screening and genetic screening of deafness among Hakka newborns in China. Int J Pediatr Otorhinolaryngol 2020; 136:110120. [PMID: 32574949 DOI: 10.1016/j.ijporl.2020.110120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Hearing loss (HL) can severely impact the quality of human life. To explore strategies for clinical interventions, we investigated hearing screening coupled with genetic testing of deafness among Hakka newborns. METHODS The testing was performed on 4205 newborns who born in Heyuan of Guangdong province between December 2018 and November 2019. Hearing screening used otoacoustic emission(OAE) coupled with automatic auditory brainstem response(AABR). A total of 13 hot spot mutations in GJB2, SLC26A4, mtDNA, and GJB3 genes were screened using PCR accompanied by flow-through hybridization technology. RESULTS Among the 4205 newborns, the number of 47 individuals who failed the hearing testing accounted for 1.12%(47/4205). The genetic screening displayed that 176 individuals(4.19%,176/4205) discovered to carry more than one mutant site. The gene carrier frequency of GJB2, SLC26A4, GJB3, and mtDNA was 2.24%, 1.76%, 0.19%, and 0.07% respectively. The most carried mutations were GJB2 c.235del (2.05%), followed by SLC26A4 c.IVS7-2A > G(1.38%). A total of 216 (5.14%, 216/4205) high-risk children detected by combined hearing screening and genetic screening of deafness. Pairwise comparison (1.12% vs 4.19% vs 5.14%) showed significant differences for the positive rate of detection(χ 2 = 11.045, P < 0.001). The difference was no statistical significance between neonatal demographics information and genetic mutations using logistic regression analysis(all P > 0.05). CONCLUSIONS Among Hakka newborns in Heyuan, the carrier rate of GJB2 c.235delC was the highest. Combining with two screening methods will effectually increase the detection rate of neonatal deafness and play an essential role in clinical intervention.
Collapse
|
13
|
Arunachalam RK, Koshy T, Venkatesan V, Dawson GP, Franklin Durairaj Paul S, George P. Mutation Analysis Using Multiplex Ligation-Dependent Probe Amplification in Consanguineous Families in South India with a Child with Profound Hearing Impairment. Lab Med 2020; 51:56-65. [PMID: 31150550 DOI: 10.1093/labmed/lmz027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Consanguineous marriage, a common practice in South India, increase the incidence of autosomal recessive diseases such as nonsyndromic hearing loss (NSHL) in offspring. This trend was noted in the children with hearing impairment (HI) who received cochlear implants (CI) at our University hospital in Porur, Chennai, India. To ascertain the genetic etiology of HI in these patients, we performed multiplex ligation-dependent probe amplification (MLPA) analysis. METHODS A total of 25 families who had a child with NSHL were included in the study. MLPA screening of GJB2, GJB6, and GJB3 was performed for all the recruited individuals. RESULTS The pathogenic p.W24X* mutation of GJB2 was detected in 2 patients; both of their parents were heterozygous carriers. Both families had a second-degree consanguineous marriage. CONCLUSION This study has important implications for molecular-diagnosis strategy and genetic counseling for families with HI in South India.
Collapse
Affiliation(s)
- Ravi Kumar Arunachalam
- Department of ENT, Head and Neck Surgery, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Teena Koshy
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Vettriselvi Venkatesan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - Gladys Prathiba Dawson
- Department of Speech Language and Hearing Sciences, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | | | - Pratibha George
- Department of ENT, Head and Neck Surgery, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
14
|
Richard EM, Santos-Cortez RLP, Faridi R, Rehman AU, Lee K, Shahzad M, Acharya A, Khan AA, Imtiaz A, Chakchouk I, Takla C, Abbe I, Rafeeq M, Liaqat K, Chaudhry T, Bamshad MJ, Schrauwen I, Khan SN, Morell RJ, Zafar S, Ansar M, Ahmed ZM, Ahmad W, Riazuddin S, Friedman TB, Leal SM, Riazuddin S. Global genetic insight contributed by consanguineous Pakistani families segregating hearing loss. Hum Mutat 2019; 40:53-72. [PMID: 30303587 PMCID: PMC6296877 DOI: 10.1002/humu.23666] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/14/2022]
Abstract
Consanguineous Pakistani pedigrees segregating deafness have contributed decisively to the discovery of 31 of the 68 genes associated with nonsyndromic autosomal recessive hearing loss (HL) worldwide. In this study, we utilized genome-wide genotyping, Sanger and exome sequencing to identify 163 DNA variants in 41 previously reported HL genes segregating in 321 Pakistani families. Of these, 70 (42.9%) variants identified in 29 genes are novel. As expected from genetic studies of disorders segregating in consanguineous families, the majority of affected individuals (94.4%) are homozygous for HL-associated variants, with the other variants being compound heterozygotes. The five most common HL genes in the Pakistani population are SLC26A4, MYO7A, GJB2, CIB2 and HGF, respectively. Our study provides a profile of the genetic etiology of HL in Pakistani families, which will allow for the development of more efficient genetic diagnostic tools, aid in accurate genetic counseling, and guide application of future gene-based therapies. These findings are also valuable in interpreting pathogenicity of variants that are potentially associated with HL in individuals of all ancestries. The Pakistani population, and its infrastructure for studying human genetics, will continue to be valuable to gene discovery for HL and other inherited disorders.
Collapse
Affiliation(s)
- Elodie M. Richard
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Regie LP. Santos-Cortez
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Atteeq U. Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kwanghyuk Lee
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mohsin Shahzad
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, 44000, Pakistan
| | - Anushree Acharya
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Asma A. Khan
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Ayesha Imtiaz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Imen Chakchouk
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christina Takla
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Izoduwa Abbe
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Rafeeq
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Khurram Liaqat
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Taimur Chaudhry
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael J. Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Isabelle Schrauwen
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shaheen N. Khan
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Robert J. Morell
- The Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892
| | - Saba Zafar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 59300, Pakistan
| | - Muhammad Ansar
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Wasim Ahmad
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sheik Riazuddin
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, 44000, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, 54500, Pakistan
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suzanne M. Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, 44000, Pakistan
| |
Collapse
|
15
|
The Analysis of A Frequent TMPRSS3 Allele Containing P.V116M and P.V291L in A Cis Configuration among Deaf Koreans. Int J Mol Sci 2017; 18:ijms18112246. [PMID: 29072634 PMCID: PMC5713216 DOI: 10.3390/ijms18112246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/19/2017] [Accepted: 10/21/2017] [Indexed: 11/27/2022] Open
Abstract
We performed targeted re-sequencing to identify the genetic etiology of early-onset postlingual deafness and encountered a frequent TMPRSS3 allele harboring two variants in a cis configuration. We aimed to evaluate the pathogenicity of the allele. Among 88 cochlear implantees with autosomal recessive non-syndromic hearing loss, subjects with GJB2 and SLC26A4 mutations were excluded. Thirty-one probands manifesting early-onset postlingual deafness were sorted. Through targeted re-sequencing, we detected two families with a TMPRSS3 mutant allele containing p.V116M and p.V291L in a cis configuration, p.[p.V116M; p.V291L]. A minor allele frequency was calculated and proteolytic activity was measured. A p.[p.V116M; p.V291L] allele demonstrated a significantly higher frequency compared to normal controls and merited attention due to its high frequency (4.84%, 3/62). The first family showed a novel deleterious splice site variant—c.783-1G>A—in a trans allele, while the other showed homozygosity. The progression to deafness was noted within the first decade, suggesting DFNB10. The proteolytic activity was significantly reduced, confirming the severe pathogenicity. This frequent mutant allele significantly contributes to early-onset postlingual deafness in Koreans. For clinical implication and proper auditory rehabilitation, it is important to pay attention to this allele with a severe pathogenic potential.
Collapse
|
16
|
Mittal R, Nguyen D, Patel AP, Debs LH, Mittal J, Yan D, Eshraghi AA, Van De Water TR, Liu XZ. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration. Front Mol Neurosci 2017; 10:236. [PMID: 28824370 PMCID: PMC5534485 DOI: 10.3389/fnmol.2017.00236] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022] Open
Abstract
Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Amit P. Patel
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Luca H. Debs
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Adrien A. Eshraghi
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Thomas R. Van De Water
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Xue Z. Liu
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
- Department of Otolaryngology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
17
|
Mittal R, Grati M, Sedlacek M, Yuan F, Chang Q, Yan D, Lin X, Kachar B, Farooq A, Chapagain P, Zhang Y, Liu XZ. Characterization of ATPase Activity of P2RX2 Cation Channel. Front Physiol 2016; 7:186. [PMID: 27252659 PMCID: PMC4878533 DOI: 10.3389/fphys.2016.00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022] Open
Abstract
P2X purinergic receptors are plasma membrane ATP-dependent cation channels that are broadly distributed in the mammalian tissues. P2RX2 is a modulator of auditory sensory hair cell mechanotransduction and plays an important role in hair cell tolerance to noise. In this study, we demonstrate for the first time in vitro and in cochlear neuroepithelium, that P2RX2 possesses the ATPase activity. We observed that the P2RX2 V60L human deafness mutation alters its ability to bind ATP, while the G353R has no effect on ATP binding or hydrolysis. A non-hydrolysable ATP assay using HEK293 cells suggests that ATP hydrolysis plays a significant role in the opening and gating of the P2RX2 ion channel. Moreover, the results of structural modeling of the molecule was in agreement with our experimental observations. These novel findings suggest the intrinsic ATPase activity of P2RX2 and provide molecular insights into the channel opening.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine Miami, FL, USA
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Miloslav Sedlacek
- Laboratory of Cell Structure and Dynamics, Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda, MD, USA
| | - Fenghua Yuan
- Department of Biochemistry, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Qing Chang
- Department of Otolaryngology, Emory University Atlanta, GA, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Xi Lin
- Department of Otolaryngology, Emory University Atlanta, GA, USA
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda, MD, USA
| | - Amjad Farooq
- Department of Biochemistry, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Prem Chapagain
- Department of Physics, Florida International University Miami, FL, USA
| | - Yanbin Zhang
- Department of Biochemistry, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Xue Z Liu
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, USA; Department of Biochemistry, University of Miami Leonard M. Miller School of MedicineMiami, FL, USA; Department of Otolaryngology, Central South University, Xiangya HospitalChangsha, China
| |
Collapse
|
18
|
Tekin D, Yan D, Bademci G, Feng Y, Guo S, Foster J, Blanton S, Tekin M, Liu X. A next-generation sequencing gene panel (MiamiOtoGenes) for comprehensive analysis of deafness genes. Hear Res 2016; 333:179-184. [PMID: 26850479 DOI: 10.1016/j.heares.2016.01.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/06/2015] [Accepted: 01/31/2016] [Indexed: 12/30/2022]
Abstract
Extreme genetic heterogeneity along with remarkable variation in the distribution of causative variants across in different ethnicities makes single gene testing inefficient for hearing loss. We developed a custom capture/next-generation sequencing gene panel of 146 known deafness genes with a total target size of approximately 1 MB. The genes were identified by searching databases including Hereditary Hearing Loss Homepage, the Human Genome Mutation Database (HGMD), Online Mendelian Inheritance in Man (OMIM) and most recent peer-reviewed publications related to the genetics of deafness. The design covered all coding exons, UTRs and 25 bases of intronic flanking sequences for each exon. To validate our panel, we used 6 positive controls with variants in known deafness genes and 8 unsolved samples from individuals with hearing loss. Mean coverage of the targeted exons was 697X. On average, each sample had 99.8%, 96.2% and 92.7% of the targeted region coverage of 1X, 50X and 100X reads, respectively. Analysis detected all known variants in nuclear genes. These results prove the accuracy and reliability of the custom capture experiment.
Collapse
Affiliation(s)
- Demet Tekin
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Yong Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shengru Guo
- Dr. John T. Macdonald Foundation Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Joseph Foster
- Dr. John T. Macdonald Foundation Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Susan Blanton
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Foundation Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Mustafa Tekin
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Foundation Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.,Dr. John T. Macdonald Foundation Department of Human Genetics, and John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA.,Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|