1
|
Hasegawa JS, Silveira AC, Azevedo RA, Schamne JC, Rondon MUPB, Papoti M, Lima-Silva AE, Koehle MS, Bertuzzi R. No sex differences in performance and perceived fatigability during a self-paced endurance exercise performed under moderate hypoxia. Am J Physiol Regul Integr Comp Physiol 2025; 328:R352-R363. [PMID: 39925117 DOI: 10.1152/ajpregu.00145.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/07/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
This study examined potential sex differences in performance and perceived fatigability during a whole body endurance exercise performed under normoxia or moderate hypoxia. Nine males and eight females cyclists performed a 4-km cycling time trial under normoxia or hypoxia conditions. Performance fatigability and its central and peripheral determinants were measured via pre- to post-exercise changes in maximal voluntary isometric contraction (IMVC), voluntary activation (VA), and potentiated twitch force (TwPt) of knee extensors, respectively. Perceived fatigability was characterized via a rating of perceived exertion (RPE). Time to complete the trial was longer in hypoxia than normoxia in females (482 ± 24 vs. 465 ± 21 s) and males (433 ± 30 vs. 408 ± 31 s) (P = 0.039). There was no effect of sex or condition (P ≥ 0.370) for the magnitude of decrease in IMVC (female: normoxia = -14.3 ± 4.4%, hypoxia = -11.8 ± 5.2% vs. male: normoxia = -13.1 ± 9.4%, hypoxia = -12.9 ± 9.8%), TwPt (female: normoxia = -34.4 ± 11.4%, hypoxia = -31.8 ± 18.9% vs. male: normoxia = -30.5 ± 17.9%, hypoxia = -31.9 ± 20.9%), and VA (female: normoxia = -0.5 ± 2.3%, hypoxia = -1.6 ± 1.6% vs. male: normoxia = 0.8 ± 2.2%, hypoxia = -0.5 ± 1.3%). RPE was higher in hypoxia than in normoxia for both groups (P = 0.002). In conclusion, moderate hypoxia similarly impairs performance and perceived fatigability development in females and males during a 4-km cycling time trial.NEW & NOTEWORTHY In this study, we showed that females and males develop a similar hypoxia-induced impairment in endurance performance, perceived and performance fatigability during a 4-km cycling time trial. These novel findings indicate that females and males regulate their power output similarly during a 4-km cycling time trial under moderate hypoxia, likely to avoid prematurely exacerbating metabolic disturbances and thereby reaching comparable levels of performance fatigability by the end of the task.
Collapse
Affiliation(s)
- Julio S Hasegawa
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Andre C Silveira
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Rafael A Azevedo
- Applied Physiology and Nutrition Research Group-Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Julio Cezar Schamne
- Human Performance Research Group, Federal University of Technology Parana, Curitiba, Brazil
| | | | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Michael S Koehle
- School of Kinesiology, The University of British Columbia, Vancouver, British Columbia, Canada
- Division of Sport and Exercise Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Baur DA, Lassalle CM, Kurti SP. Thoracic load carriage impairs the acute physiological response to hypoxia in healthy males. Physiol Rep 2025; 13:e70197. [PMID: 39779211 PMCID: PMC11710892 DOI: 10.14814/phy2.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025] Open
Abstract
To assess the impact of thoracic load carriage on the physiological response to exercise in hypoxia. Healthy males (n = 12) completed 3 trials consisting of 45 min walking in the following conditions: (1) unloaded normoxia (UN; FIO2:20.93%); (2) unloaded hypoxia (UH; FIO2:~13.0%); and (3) loaded hypoxia (LH; 29.5 kg; FIO2:~13.0%). Intensity was matched for absolute VO2 (2.0 ± 0.2 L·min-1) across conditions and relative VO2 (64.0 ± 2.6 %VO2max) across hypoxic conditions. With LH versus UH, there were increases in breathing frequency (5-11 breaths·min-1; p < 0.05) and decreases in tidal volume (10%-18%; p < 0.05) throughout exercise due to reductions in end inspiratory lung volumes (p < 0.05). Consequently, deadspace (11%-23%; p < 0.05) and minute ventilation (7%-11%; p < 0.05) were increased starting at 20 and 30 min, respectively. In addition, LH increased perceived exertion/dyspnea and induced inspiratory (~12%; p < 0.05 vs. UN) and expiratory (~10%; p < 0.05 vs. pre-exercise) respiratory muscle fatigue. Expiratory flow limitation was present in 50% of subjects during LH. Cardiac output and muscle oxygenation were maintained during LH despite reduced stroke volume (6%-8%; p < 0.05). Finally, cerebral oxygenated/total hemoglobin were elevated in the LH condition versus UH starting at 15 min (p < 0.05). Thoracic load carriage increases physiological strain and interferes with the compensatory response to hypoxic exposure.
Collapse
Affiliation(s)
- Daniel A. Baur
- Department of Human Performance and WellnessVirginia Military InstituteLexingtonVirginiaUSA
| | - Caroline M. Lassalle
- Department of Human Performance and WellnessVirginia Military InstituteLexingtonVirginiaUSA
| | - Stephanie P. Kurti
- Department of KinesiologyJames Madison UniversityHarrisonburgVirginiaUSA
| |
Collapse
|
3
|
Debold EP, Westerblad H. New insights into the cellular and molecular mechanisms of skeletal muscle fatigue: the Marion J. Siegman Award Lectureships. Am J Physiol Cell Physiol 2024; 327:C946-C958. [PMID: 39069825 DOI: 10.1152/ajpcell.00213.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Skeletal muscle fibers need to have mechanisms to decrease energy consumption during intense physical exercise to avoid devastatingly low ATP levels, with the formation of rigor cross bridges and defective ion pumping. These protective mechanisms inevitably lead to declining contractile function in response to intense exercise, characterizing fatigue. Through our work, we have gained insights into cellular and molecular mechanisms underlying the decline in contractile function during acute fatigue. Key mechanistic insights have been gained from studies performed on intact and skinned single muscle fibers and more recently from studies performed and single myosin molecules. Studies on intact single fibers revealed several mechanisms of impaired sarcoplasmic reticulum Ca2+ release and experiments on single myosin molecules provide direct evidence of how putative agents of fatigue impact myosin's ability to generate force and motion. We conclude that changes in metabolites due to an increased dependency on anaerobic metabolism (e.g., accumulation of inorganic phosphate ions and H+) act to directly and indirectly (via decreased Ca2+ activation) inhibit myosin's force and motion-generating capacity. These insights into the acute mechanisms of fatigue may help improve endurance training strategies and reveal potential targets for therapies to attenuate fatigue in chronic diseases.
Collapse
Affiliation(s)
- Edward P Debold
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Fujii N, Ishii Y, Moriyama S, Matsutake R, Sengoku Y, Nishiyasu T. Fast Competitive Swimmers Demonstrate a Diminished Diving Reflex. Scand J Med Sci Sports 2024; 34:e14745. [PMID: 39434518 DOI: 10.1111/sms.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Competitive swimmers complete 50-m front crawl swimming without breathing or with a limited number of breaths. Breath holding during exercise can trigger diving reflex including bradycardia and diminished active muscle blood flow, whereas oxygen supply to vital organ such as brain is maintained. We hypothesized that swimmers achieving faster time in 50-m front crawl with limited number of breaths demonstrate a blunted diving reflex of cardiac and active muscle blood flow responses with elevated cerebral perfusion to counteract peripheral and central fatigues. Twenty-eight competitive swimmers (12 females) underwent a 50-m front crawl swimming time trial with minimum respiratory interruptions, following which they were categorized into two groups: Fast (n = 13) and Slow (n = 15). Additionally, they performed knee extension exercises with maximal voluntary breath- holding, wherein leg blood flow (Doppler ultrasound), cardiac output (Modelflow), heart rate (electrocardiogram), and middle cerebral artery mean blood velocity (transcranial Doppler ultrasound) were evaluated. The pattern of leg blood flow response differed between the two groups (p = 0.031) with the Fast group experiencing a delayed onset of reductions in leg blood flow (p = 0.035). The onset of bradycardia was also delayed in the Fast group (p = 0.014), with this group demonstrating a higher value of the lowest heart rate (between-trial difference in average: 15.9 [3.73, 28.2] beats/min) and cardiac output (between-trial difference in median: 2.84 L/min) (both, p ≤ 0.013). Middle cerebral artery mean blood velocity was similar between the groups (all p ≥ 0.112). We show that swimmers with superior performance in 50-m front crawl swim with limited breaths display a diminished diving reflex.
Collapse
Affiliation(s)
- Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuji Ishii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shodai Moriyama
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryoko Matsutake
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuo Sengoku
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Lei TH, Qin Q, Girard O, Mündel T, Wang R, Guo L, Cao Y. Caffeine intake enhances peak oxygen uptake and performance during high-intensity cycling exercise in moderate hypoxia. Eur J Appl Physiol 2024; 124:537-549. [PMID: 37608124 DOI: 10.1007/s00421-023-05295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE We investigated whether caffeine consumption can enhance peak oxygen uptake ([Formula: see text]) by increasing peak ventilation during an incremental cycling test, and subsequently enhance time to exhaustion (TTE) during high-intensity cycling exercise in moderate normobaric hypoxia. METHODS We conducted a double-blind, placebo cross-over design study. Sixteen recreational male endurance athletes (age: 20 ± 2 years, [Formula: see text]: 55.6 ± 3.6 ml/kg/min, peak power output: 318 ± 40 W) underwent an incremental cycling test and a TTE test at 80% [Formula: see text] (derived from the placebo trial) in moderate normobaric hypoxia (fraction of inspired O2: 15.3 ± 0.2% corresponding to a simulated altitude of ~ 2500 m) after consuming either a moderate dose of caffeine (6 mg/kg) or a placebo. RESULTS Caffeine consumption resulted in a higher peak ventilation [159 ± 21 vs. 150 ± 26 L/min; P < 0.05; effect size (ES) = 0.31]. [Formula: see text] (3.58 ± 0.44 vs. 3.47 ± 0.47 L/min; P < 0.01; ES = 0.44) and peak power output (308 ± 44 vs. 302 ± 44 W; P = 0.02, ES = 0.14) were higher following caffeine consumption than during the placebo trial. During the TTE test, caffeine consumption enhanced minute ventilation (P = 0.02; ES = 0.28) and extended the TTE (426 ± 74 vs. 358 ± 75 s; P < 0.01, ES = 0.91) compared to the placebo trial. There was a positive correlation between the percent increase of [Formula: see text] following caffeine consumption and the percent increase in TTE (r = 0.49, P < 0.05). CONCLUSION Moderate caffeine consumption stimulates breathing and aerobic metabolism, resulting in improved performance during incremental and high-intensity endurance exercises in moderate normobaric hypoxia.
Collapse
Affiliation(s)
- Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Qiyang Qin
- School of Athletic Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, Australia
| | - Toby Mündel
- Department of Kinesiology, Brock University, St. Catharines, Canada
| | - Ran Wang
- School of Athletic Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Li Guo
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yinhang Cao
- School of Athletic Performance, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
6
|
Gao C, Yang B, Li Y, Pei W. Monocarboxylate transporter-dependent mechanism is involved in the adaptability of the body to exercise-induced fatigue under high-altitude hypoxia environment. Brain Res Bull 2023; 195:78-85. [PMID: 36804772 DOI: 10.1016/j.brainresbull.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Under high-altitude hypoxia environment, the body is more prone to fatigue, which occurs in both peripheral muscles and the central nervous system (CNS). The key factor determining the latter is the imbalance of brain energy metabolism, which makes it difficult to maintain the central nervous system to send peripheral nerve impulse continuously. During strenuous exercise, lactate released from astrocytes is taken up by neurons stored for energy to maintain synaptic transmission, a process mediated by monocarboxylate transporters (MCTs) in CNS. The present study investigated the correlation among the adaptability to exercise-induced fatigue, brain lactate metabolism and neuronal hypoxia injury under high-altitude hypoxia environment. Rats were subjected to exhaustive incremental load treadmill exercise under either normal pressure and normoxic conditions or simulated high-altitude low pressure and hypoxic conditions, with subsequent evaluation of the average exhaustive time as well as the expression of monocarboxylate transporters 2 (MCT2), MCT4, the average neuronal density in the cerebral motor cortex, and the lactate content in rat brain. At the early stage of simulated high-altitude environment, the average exhaustive time and neuronal density of rats decreased rapidly, then gradually recovered to some extent with the extension of altitude acclimatization time. The expression of MCT2, MCT4 and the lactate content in rat brain also increased gradually with the extension of altitude acclimatization time. After the application of lactate transport inhibitor, the recovery of exercise capacity of rats after altitude acclimatization was quickly blocked, and the neuronal injury in the cerebral motor cortex of rats was also significantly aggravated. These findings demonstrate that MCT-dependent mechanism is involved in the adaptability of the body to central fatigue, and provide a potential basis for medical intervention for exercise-induced fatigue under high-altitude hypoxia environment.
Collapse
Affiliation(s)
- Chen Gao
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China.
| | - Binni Yang
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Yurong Li
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Wenjuan Pei
- Department of General Practice, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| |
Collapse
|
7
|
Gao C, Yang B, Li Y, Pei W. A monocarboxylate transporter-dependent mechanism confers resistance to exercise-induced fatigue in a high-altitude hypoxic environment. Sci Rep 2023; 13:2949. [PMID: 36807596 PMCID: PMC9941081 DOI: 10.1038/s41598-023-30093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The body is more prone to fatigue in a high-altitude hypoxic environment, in which fatigue occurs in both peripheral muscles and the central nervous system (CNS). The key factor determining the latter is the imbalance in brain energy metabolism. During strenuous exercise, lactate released from astrocytes is taken up by neurons via monocarboxylate transporters (MCTs) as a substrate for energy metabolism. The present study investigated the correlations among the adaptability to exercise-induced fatigue, brain lactate metabolism and neuronal hypoxia injury in a high-altitude hypoxic environment. Rats were subjected to exhaustive incremental load treadmill exercise under either normal pressure and normoxic conditions or simulated high-altitude, low-pressure and hypoxic conditions, with subsequent evaluation of the average exhaustive time as well as the expression of MCT2 and MCT4 in the cerebral motor cortex, the average neuronal density in the hippocampus, and the brain lactate content. The results illustrate that the average exhaustive time, neuronal density, MCT expression and brain lactate content were positively correlated with the altitude acclimatization time. These findings demonstrate that an MCT-dependent mechanism is involved in the adaptability of the body to central fatigue and provide a potential basis for medical intervention for exercise-induced fatigue in a high-altitude hypoxic environment.
Collapse
Affiliation(s)
- Chen Gao
- Department of General Practice, The 940Th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, BinHe South Road, No.333, Lanzhou, 730050, Gansu, China.
| | - Binni Yang
- Department of General Practice, The 940Th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, BinHe South Road, No.333, Lanzhou, 730050 Gansu China
| | - Yurong Li
- Department of General Practice, The 940Th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, BinHe South Road, No.333, Lanzhou, 730050 Gansu China
| | - Wenjuan Pei
- Department of General Practice, The 940Th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, BinHe South Road, No.333, Lanzhou, 730050 Gansu China
| |
Collapse
|
8
|
Fleischer M, Szepanowski F, Tovar M, Herchert K, Dinse H, Schweda A, Mausberg AK, Holle-Lee D, Köhrmann M, Stögbauer J, Jokisch D, Jokisch M, Deuschl C, Skoda EM, Teufel M, Stettner M, Kleinschnitz C. Post-COVID-19 Syndrome is Rarely Associated with Damage of the Nervous System: Findings from a Prospective Observational Cohort Study in 171 Patients. Neurol Ther 2022; 11:1637-1657. [PMID: 36028604 PMCID: PMC9417089 DOI: 10.1007/s40120-022-00395-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect multiple organs. Reports of persistent or newly emergent symptoms, including those related to the nervous system, have increased over the course of the pandemic, leading to the introduction of post-COVID-19 syndrome. However, this novel syndrome is still ill-defined and structured objectification of complaints is scarce. Therefore, we performed a prospective observational cohort study to better define and validate subjective neurological disturbances in patients with post-COVID-19 syndrome. METHODS A total of 171 patients fulfilling the post-COVID-19 WHO Delphi consensus criteria underwent a comprehensive neurological diagnostic work-up including neurovascular, electrophysiological, and blood analysis. In addition, magnetic resonance imaging (MRI) and lumbar puncture were conducted in subgroups of patients. Furthermore, patients underwent neuropsychological, psychosomatic, and fatigue assessment. RESULTS Patients were predominantly female, middle-aged, and had incurred mostly mild-to-moderate acute COVID-19. The most frequent post-COVID-19 complaints included fatigue, difficulties in concentration, and memory deficits. In most patients (85.8%), in-depth neurological assessment yielded no pathological findings. In 97.7% of the cases, either no diagnosis other than post COVID-19 syndrome, or no diagnosis likely related to preceding acute COVID-19 could be established. Sensory or motor complaints were more often associated with a neurological diagnosis other than post-COVID-19 syndrome. Previous psychiatric conditions were identified as a risk factor for developing post-COVID-19 syndrome. We found high somatization scores in our patient group that correlated with cognitive deficits and the extent of fatigue. CONCLUSIONS Albeit frequently reported by patients, objectifiable affection of the nervous system is rare in post-COVID-19 syndrome. Instead, elevated levels of somatization point towards a pathogenesis potentially involving psychosomatic factors. However, thorough neurological assessment is important in this patient group in order to not miss neurological diseases other than post-COVID-19.
Collapse
Affiliation(s)
- Michael Fleischer
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Fabian Szepanowski
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Muriel Tovar
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Klaas Herchert
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Hannah Dinse
- Clinic for Psychosomatic Medicine, and Psychotherapy, LVR University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Adam Schweda
- Clinic for Psychosomatic Medicine, and Psychotherapy, LVR University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Anne K Mausberg
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Dagny Holle-Lee
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Martin Köhrmann
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Julia Stögbauer
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Daniel Jokisch
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Martha Jokisch
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Cornelius Deuschl
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Eva-Maria Skoda
- Clinic for Psychosomatic Medicine, and Psychotherapy, LVR University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Martin Teufel
- Clinic for Psychosomatic Medicine, and Psychotherapy, LVR University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Mark Stettner
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Medicine Essen, University Duisburg-Essen, Essen, Germany.
- Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
9
|
Zhu H, Liu C, Qian H. Pharmaceutical Potential of High-Altitude Plants for Fatigue-Related Disorders: A Review. PLANTS 2022; 11:plants11152004. [PMID: 35956482 PMCID: PMC9370126 DOI: 10.3390/plants11152004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Natural plants from plateaus have been the richest source of secondary metabolites extensively used in traditional and modern health care systems. They were submitted to years of natural selection, co-evolved within that habitat, and show significant anti-fatigue-related pharmacological effects. However, currently, no review on high-altitude plants with anti-fatigue related properties has been published yet. This study summarized several Chinese traditional high-altitude plants, including Rhodiola rosea L., Crocus sativus L., Lepidium meyenii W., Hippophaerhamnoides L., which are widely used in the Qinghai–Tibet Plateau and surrounding mountains, as well as herbal markets in the plains. Based on phytopharmacology studies, deeper questions can be further revealed regarding how these plants regulate fatigue and related mental or physical disease conditions. Many active derivatives in high-altitude medical plants show therapeutic potential for the management of fatigue and related disorders. Therefore, high-altitude plants significantly relieve central or peripheral fatigue by acting as neuroprotective agents, energy supplements, metabolism regulators, antioxidant, and inflammatory response inhibitors. Their applications on the highland or flatland and prospects in natural medicine are further forecast, which may open treatments to reduce or prevent fatigue-related disorders in populations with sub-optimal health.
Collapse
Affiliation(s)
- Hongkang Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (C.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (C.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (C.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
10
|
Cao Y, Fujii N, Fujimoto T, Lai YF, Ogawa T, Hiroyama T, Enomoto Y, Nishiyasu T. CO 2-Enriched Air Inhalation Modulates the Ventilatory and Metabolic Responses of Endurance Runners During Incremental Running in Hypobaric Hypoxia. High Alt Med Biol 2022; 23:125-134. [PMID: 35613387 DOI: 10.1089/ham.2021.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cao, Yinhang, Naoto Fujii, Tomomi Fujimoto, Yin-Feng Lai, Takeshi Ogawa, Tsutomu Hiroyama, Yasushi Enomoto, and Takeshi Nishiyasu. CO2-enriched air inhalation modulates the ventilatory and metabolic responses of endurance runners during incremental running in hypobaric hypoxia. High Alt Med Biol. 23:125-134, 2022. Aim: We measured the effects of breathing CO2-enriched air on ventilatory and metabolic responses during incremental running exercise under moderately hypobairc hypoxic (HH) conditions. Materials and Methods: Ten young male endurance runners [61.4 ± 6.0 ml/(min·kg)] performed incremental running tests under three conditions: (1) normobaric normoxia (NN), (2) HH (2,500 m), and (3) HH with 5% CO2 inhalation (HH+CO2). The test under NN was always performed first, and then, the two remaining tests were completed in random and counterbalanced order. Results: End-tidal CO2 partial pressure (55 ± 3 vs. 35 ± 1 mmHg), peak ventilation (163 ± 14 vs. 152 ± 12 l/min), and peak oxygen uptake [52.3 ± 5.5 vs. 50.5 ± 4.9 ml/(min·kg)] were all higher in the HH+CO2 than HH trial (all p < 0.01), respectively. However, the duration of the incremental test did not differ between HH+CO2 and HH trials. Conclusion: These data suggest that chemoreflex activation by breathing CO2-enriched air stimulates breathing and aerobic metabolism during maximal intensity exercise without affecting exercise performance in male endurance runners under a moderately hypobaric hypoxic environment.
Collapse
Affiliation(s)
- Yinhang Cao
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Tomomi Fujimoto
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Yin-Feng Lai
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Takeshi Ogawa
- Division of Art, Music, and Physical Education, Osaka Kyoiku University, Osaka, Japan
| | - Tsutomu Hiroyama
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Yasushi Enomoto
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| |
Collapse
|
11
|
Ruggiero L, Harrison SWD, Rice CL, McNeil CJ. Neuromuscular fatigability at high altitude: Lowlanders with acute and chronic exposure, and native highlanders. Acta Physiol (Oxf) 2022; 234:e13788. [PMID: 35007386 PMCID: PMC9286620 DOI: 10.1111/apha.13788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
Ascent to high altitude is accompanied by a reduction in partial pressure of inspired oxygen, which leads to interconnected adjustments within the neuromuscular system. This review describes the unique challenge that such an environment poses to neuromuscular fatigability (peripheral, central and supraspinal) for individuals who normally reside near to sea level (SL) (<1000 m; ie, lowlanders) and for native highlanders, who represent the manifestation of high altitude-related heritable adaptations across millennia. Firstly, the effect of acute exposure to high altitude-related hypoxia on neuromuscular fatigability will be examined. Under these conditions, both supraspinal and peripheral fatigability are increased compared with SL. The specific mechanisms contributing to impaired performance are dependent on the exercise paradigm and amount of muscle mass involved. Next, the effect of chronic exposure to high altitude (ie, acclimatization of ~7-28 days) will be considered. With acclimatization, supraspinal fatigability is restored to SL values, regardless of the amount of muscle mass involved, whereas peripheral fatigability remains greater than SL except when exercise involves a small amount of muscle mass (eg, knee extensors). Indeed, when whole-body exercise is involved, peripheral fatigability is not different to acute high-altitude exposure, due to competing positive (haematological and muscle metabolic) and negative (respiratory-mediated) effects of acclimatization on neuromuscular performance. In the final section, we consider evolutionary adaptations of native highlanders (primarily Himalayans of Tibet and Nepal) that may account for their superior performance at altitude and lesser degree of neuromuscular fatigability compared with acclimatized lowlanders, for both single-joint and whole-body exercise.
Collapse
Affiliation(s)
- Luca Ruggiero
- Laboratory of Physiomechanics of LocomotionDepartment of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Scott W. D. Harrison
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
| | - Charles L. Rice
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
| | - Chris J. McNeil
- Centre for Heart, Lung & Vascular HealthSchool of Health and Exercise SciencesUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|
12
|
Hu K, Chen Y, Guo F, Wang X. Effects of Transcranial Direct Current Stimulation on Upper Limb Muscle Strength and Endurance in Healthy Individuals: A Systematic Review and Meta-Analysis. Front Physiol 2022; 13:834397. [PMID: 35356085 PMCID: PMC8959826 DOI: 10.3389/fphys.2022.834397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 01/28/2023] Open
Abstract
Objective Whether transcranial direct current stimulation (tDCS) can improve upper limb muscle strength and endurance in healthy subjects is still controversial. This article reviews the relevant literature on the use of tDCS to improve upper limb muscle strength and endurance in healthy individuals. Methods We systematically searched the Cochrane Library, PubMed, EMBASE, and the Web of Science until September 4, 2021. Randomized parallel or crossover experimental studies on the effects of tDCS on upper limb muscle strength and endurance in healthy individuals were included. Review Manager 5.3 software was used to evaluate methodological quality and analyze the combined effect of the included literature. Results Twelve studies (189 participants) were included in the qualitative synthesis, and nine studies (146 participants) were included in the meta-analysis. Compared with the control group, the tDCS intervention had no significant effect on improving upper limb muscle strength [I2 = 0%, 95% CI (−0.79, 0.23), p = 0.98, MD = 0.01]. In this analysis, tDCS had a significant heterogeneity (I2 = 87%) in improving upper limb muscle endurance compared with the control group. After the subgroup analysis and the sensitivity analysis, the source of heterogeneity was excluded. The final results showed that tDCS had a significant effect on improving upper limb muscle endurance [I2 = 0%, 95% CI (1.91, 4.83), p < 0.00001, MD = 3.37]. Conclusions tDCS has no significant effect on improvement of upper limb muscle strength, but has a significant effect on improving upper limb endurance performance (especially on the non-dominant side).
Collapse
|
13
|
O'Keeffe K, Dean J, Hodder S, Lloyd A. Self-Selected Motivational Music Enhances Physical Performance in Normoxia and Hypoxia in Young Healthy Males. Front Psychol 2021; 12:787496. [PMID: 34956012 PMCID: PMC8702523 DOI: 10.3389/fpsyg.2021.787496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Humans exposed to hypoxia are susceptible to physiological and psychological impairment. Music has ergogenic effects through enhancing psychological factors such as mood, emotion, and cognition. This study aimed to investigate music as a tool for mitigating the performance decrements observed in hypoxia. Thirteen males (mean ± SD; 24 ± 4 years) completed one familiarization session and four experimental trials; (1) normoxia (sea level, 0.209 FiO2) and no music; (2) normoxia (0.209 FiO2) with music; (3) normobaric hypoxia (∼3800 m, 0.13 FiO2) and no music; and (4) normobaric hypoxia (0.13 FiO2) with music. Experimental trials were completed at 21°C with 50% relative humidity. Music was self-selected prior to the familiarization session. Each experimental trial included a 15-min time trial on an arm bike, followed by a 60-s isometric maximal voluntary contraction (MVC) of the biceps brachii. Supramaximal nerve stimulation quantified central and peripheral fatigue with voluntary activation (VA%) calculated using the doublet interpolation method. Average power output (W) was reduced with a main effect of hypoxia (p = 0.02) and significantly increased with a main effect of music (p = 0.001). When combined the interaction was additive (p = 0.87). Average MVC force (N) was reduced in hypoxia (p = 0.03) but VA% of the biceps brachii was increased with music (p = 0.02). Music reduced subjective scores of mental effort, breathing discomfort, and arm discomfort in hypoxia (p < 0.001). Music increased maximal physical exertion through enhancing neural drive and diminishing detrimental mental processes, enhancing performance in normoxia (6.3%) and hypoxia (6.4%).
Collapse
Affiliation(s)
- Kate O'Keeffe
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Jacob Dean
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Simon Hodder
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| | - Alex Lloyd
- Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
14
|
Wooten LC, Neville BT, Keyser RE. Measures of excess
V
˙
CO 2 and recovery
V
˙
CO 2 as indices of performance fatigability during exercise: a pilot study. Pilot Feasibility Stud 2021; 7:131. [PMID: 34162443 PMCID: PMC8220798 DOI: 10.1186/s40814-021-00840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/16/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The severity of performance fatigability and the capacity to recover from activity are profoundly influenced by skeletal muscle energetics, specifically the ability to buffer fatigue-inducing ions produced from anaerobic metabolism. Mechanisms responsible for buffering these ions result in the production of excess carbon dioxide (CO2) that can be measured as expired CO2 (V ˙ CO2) during cardiopulmonary exercise testing (CPET). The primary objective of this study was to assess the feasibility of select assessment procedures for use in planning and carrying out interventional studies, which are larger interventional studies investigating the relationships between CO2 expiration, measured during and after both CPET and submaximal exercise testing, and performance fatigability. METHODS Cross-sectional, pilot study design. Seven healthy subjects (30.7±5.1 years; 5 females) completed a peak CPET and constant work-rate test (CWRT) on separate days, each followed by a 10-min recovery then 10-min walk test. Oxygen consumption (V ˙ O2) andV ˙ CO2 on- and off-kinetics (transition constant and oxidative response index), excess-V ˙ CO2, and performance fatigability severity scores (PFSS) were measured. Data were analyzed using regression analyses. RESULTS All subjects that met the inclusion/exclusion criteria and consented to participate in the study completed all exercise testing sessions with no adverse events. All testing procedures were carried out successfully and outcome measures were obtained, as intended, without adverse events. Excess-V ˙ CO2 accounted for 61% of the variability in performance fatigability as measured byV ˙ O2 on-kinetic ORI (ml/s) (R2=0.614; y = 8.474x - 4.379, 95% CI [0.748, 16.200]) and 62% of the variability as measured by PFSS (R2=0.619; y = - 0.096x + 1.267, 95% CI [-0.183, -0.009]). During CPET,V ˙ CO2 -off ORI accounted for 70% (R2=0.695; y = 1.390x - 11.984, 95% CI [0.331, 2.449]) andV ˙ CO2 -off Kt for 73% of the variability in performance fatigability measured byV ˙ O2 on-kinetic ORI (ml/s) (R2=0.730; y = 1.818x - 13.639, 95% CI [0.548, 3.087]). CONCLUSION The findings of this study suggest that utilizingV ˙ CO2 measures may be a viable and useful addition or alternative toV ˙ O2 measures, warranting further study. While the current protocol appeared to be satisfactory, for obtaining select cardiopulmonary and performance fatigability measures as intended, modifications to the current protocol to consider in subsequent, larger studies may include use of an alternate mode or measure to enable control of work rate constancy during performance fatigability testing following initial CPET.
Collapse
Affiliation(s)
- Liana C. Wooten
- Department of Health, Human Function, and Rehabilitation Science, George Washington University, Washington, DC USA
- Department of Rehabilitation Science, College of Health and Human Services, George Mason University, Fairfax, VA USA
| | - Brian T. Neville
- Department of Rehabilitation Science, College of Health and Human Services, George Mason University, Fairfax, VA USA
| | - Randall E. Keyser
- Department of Rehabilitation Science, College of Health and Human Services, George Mason University, Fairfax, VA USA
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD USA
| |
Collapse
|
15
|
Chen S, Xu K, Yao X, Zhu S, Zhang B, Zhou H, Guo X, Zhao B. Psychophysiological data-driven multi-feature information fusion and recognition of miner fatigue in high-altitude and cold areas. Comput Biol Med 2021; 133:104413. [PMID: 33915363 DOI: 10.1016/j.compbiomed.2021.104413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Fatigue-induced human error is a leading cause of accidents. The purpose of this exploratory study in China was to perform field tests to measure fatigue psychophysiological parameters, such as electrocardiography (ECG), electromyography (EMG), pulse, blood pressure, reaction time and vital capacity (VC), in miners in high-altitude and cold areas and to perform multi-feature information fusion and fatigue identification. Forty-five miners were randomly selected as subjects for a field test, and feature signals were extracted from 90 psychophysiological features as basic signals for fatigue analysis. Fatigue sensitivity indices were obtained by Pearson correlation analysis, t-test and receiver operating characteristic (ROC) curve performance evaluation. The ECG time-domain, ECG frequency-domain, EMG, VC, systolic blood pressure (SBP), and pulse were significantly different after miner fatigue. The support vector machine (SVM) and random forest (RF) techniques were used to classify and identify fatigue by information fusion and factor combination. The optimal fatigue classification factors were ECG-FD (CV Accuracy = 85.0%) and EMG (CV Accuracy = 90.0%). The optimal combination of factors was ECG-TD + ECG-FD + EMG (CV accuracy = 80.0%). Furthermore, SVM machine learning had a good recognition effect. This study shows that SVM and RF can effectively identify miner fatigue based on fatigue-related factor combinations. ECG-FD and EMG are the best indicators of fatigue, and the best performance and robustness are obtained with three-factor combination classification. This study on miner fatigue identification provides a reference for research on clinical medicine and the identification of human fatigue under high-altitude, cold and low-oxygen conditions.
Collapse
Affiliation(s)
- Shoukun Chen
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Kaili Xu
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Xiwen Yao
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Siyi Zhu
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Bohan Zhang
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Haodong Zhou
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Xin Guo
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China.
| | - Bingfeng Zhao
- Yunnan Diqing Non-ferrous Metals Co., Ltd, Yunnan, 674400, China.
| |
Collapse
|
16
|
Fan JL, Wu TY, Lovering AT, Nan L, Bang WL, Kayser B. Differential Brain and Muscle Tissue Oxygenation Responses to Exercise in Tibetans Compared to Han Chinese. Front Physiol 2021; 12:617954. [PMID: 33716766 PMCID: PMC7943468 DOI: 10.3389/fphys.2021.617954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The Tibetans’ better aerobic exercise capacity at altitude remains ill-understood. We tested the hypothesis that Tibetans display better muscle and brain tissue oxygenation during exercise in hypoxia. Using near-infrared spectrometry (NIRS) to provide indices of tissue oxygenation, we measured oxy- and deoxy-hemoglobin ([O2Hb] and [HHb], respectively) responses of the vastus lateralis muscle and the right prefrontal cortex in ten Han Chinese and ten Tibetans during incremental cycling to exhaustion in a pressure-regulated chamber at simulated sea-level (air at 1 atm: normobaric normoxia) and 5,000 m (air at 0.5 atm: hypobaric hypoxia). Hypoxia reduced aerobic capacity by ∼22% in both groups (d = 0.8, p < 0.001 vs. normoxia), while Tibetans consistently outperformed their Han Chinese counterpart by ∼32% in normoxia and hypoxia (d = 1.0, p = 0.008). We found cerebral [O2Hb] was higher in Tibetans at normoxic maximal effort compared Han (p = 0.001), while muscle [O2Hb] was not different (p = 0.240). Hypoxic exercise lowered muscle [O2Hb] in Tibetans by a greater extent than in Han (interaction effect: p < 0.001 vs. normoxic exercise). Muscle [O2Hb] was lower in Tibetans when compared to Han during hypoxic exercise (d = 0.9, p = 0.003), but not during normoxic exercise (d = 0.4, p = 0.240). Muscle [HHb] was not different between the two groups during normoxic and hypoxic exercise (p = 0.778). Compared to Han, our findings revealed a higher brain tissue oxygenation in Tibetans during maximal exercise in normoxia, but lower muscle tissue oxygenation during exercise in hypoxia. This would suggest that the Tibetans privileged oxygenation of the brain at the expense of that of the muscle.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tian Yi Wu
- Research Center for High Altitude Medicine, Tibet University Medical College, Lhasa, China.,National Key Laboratory of High Altitude Medicine, Xining, China
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Liya Nan
- National Key Laboratory of High Altitude Medicine, Xining, China
| | - Wang Liang Bang
- National Key Laboratory of High Altitude Medicine, Xining, China
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Li K, Otsuka Y, Nakano Y, Omura D, Hasegawa K, Obika M, Ueda K, Kataoka H, Otsuka F. Angina Simultaneously Diagnosed with the Recurrence of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Diagnostics (Basel) 2021; 11:diagnostics11030460. [PMID: 33800953 PMCID: PMC8001656 DOI: 10.3390/diagnostics11030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) mainly affects young adults and can have a potential impact on social functioning. As this syndrome is associated with endothelial dysfunction, the heart can be damaged via ischemia due to endothelial damage. This might potentially lead to heart failure, which accounts for approximately 20% of deaths among patients with ME/CFS. While cardiac ischemia is thought be a pathophysiologically important manifestation of this syndrome, this is not yet reported. Herein, we present a case of a young female with newly diagnosed vasospastic or microvascular angina and concurrent exacerbation of ME/CFS severity. Her anginal symptoms, including exertional chest pain and transient chest discomfort, mimicked those of ME/CFS but were relieved after the administration of a calcium channel blocker. We emphasize the possibility of concurrent angina and exacerbation of ME/CFS and the importance of detecting cardiac ischemia to avoid unfavorable outcomes.
Collapse
Affiliation(s)
- Koki Li
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.L.); (Y.N.); (D.O.); (K.H.); (M.O.); (K.U.); (H.K.); (F.O.)
- Center for Graduate Medical Education, Okayama University Hospital, Okayama 700-8558, Japan
| | - Yuki Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.L.); (Y.N.); (D.O.); (K.H.); (M.O.); (K.U.); (H.K.); (F.O.)
- Correspondence: ; Tel.: +81-86-235-7342
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.L.); (Y.N.); (D.O.); (K.H.); (M.O.); (K.U.); (H.K.); (F.O.)
| | - Daisuke Omura
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.L.); (Y.N.); (D.O.); (K.H.); (M.O.); (K.U.); (H.K.); (F.O.)
| | - Kou Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.L.); (Y.N.); (D.O.); (K.H.); (M.O.); (K.U.); (H.K.); (F.O.)
| | - Mikako Obika
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.L.); (Y.N.); (D.O.); (K.H.); (M.O.); (K.U.); (H.K.); (F.O.)
| | - Keigo Ueda
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.L.); (Y.N.); (D.O.); (K.H.); (M.O.); (K.U.); (H.K.); (F.O.)
| | - Hitomi Kataoka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.L.); (Y.N.); (D.O.); (K.H.); (M.O.); (K.U.); (H.K.); (F.O.)
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (K.L.); (Y.N.); (D.O.); (K.H.); (M.O.); (K.U.); (H.K.); (F.O.)
| |
Collapse
|
18
|
Chen S, Xu K, Zheng X, Li J, Fan B, Yao X, Li Z. Linear and nonlinear analyses of normal and fatigue heart rate variability signals for miners in high-altitude and cold areas. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105667. [PMID: 32712570 DOI: 10.1016/j.cmpb.2020.105667] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Fatigue is an important cause of operational errors, and human errors are the main cause of accidents. This study is an exploratory study in China. Field tests were conducted on heart rate variability (HRV) parameters and physiological indicators of fatigue among miners in high-altitude, cold and low-oxygen areas. This paper studies heart activity patterns during work fatigue in miners. METHODS Fatigue affects both the sympathetic and parasympathetic nervous systems, and it is expressed as an abnormal pattern of HRV parameters. Thirty miners were selected as subjects for a field test, and HRV was extracted from 60 groups of electrocardiography (ECG) datasets as basic signals for fatigue analysis. Then, we analyzed the HRV signals of the miners using linear (time domain and frequency domain) and nonlinear dynamics (Poincaré plot and sample entropy (SampEn)), and a Pearson's correlation coefficient analysis and t-tests were performed on the measured indices. RESULTS The results showed that the time-domain indices (SDNN, RMSSD, SDSD, pNN50, RRn, heart rate (HR), R-wave humps (RH)) and the coefficient of variation (CV)) and the frequency-domain indices (low frequency/high frequency (LF/HF), LFnorm and HFnorm) clearly changed after fatigue. These features were selected using a Poincaré plot, sample entropy, Pearson's correlation coefficient and a t-test for further analysis. The fatigue characteristics and sensitivity parameters of miners in a high-altitude, cold and hypoxic environment were obtained. CONCLUSIONS This study provides deep insight into the use of linear and nonlinear fatigue characteristics to effectively and reliably identify miner fatigue. Furthermore, the study provides a reference for clinical studies of acute mountain sickness in high-altitude, cold and hypoxic environments.
Collapse
Affiliation(s)
- Shoukun Chen
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Kaili Xu
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Xin Zheng
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Jishuo Li
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Bingjie Fan
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Xiwen Yao
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Zhengrong Li
- Yunnan Diqing Non-ferrous Metals Co., Ltd, Yunnan, 674400, China.
| |
Collapse
|
19
|
The physiology of rowing with perspective on training and health. Eur J Appl Physiol 2020; 120:1943-1963. [PMID: 32627051 DOI: 10.1007/s00421-020-04429-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023]
Abstract
PURPOSE This review presents a perspective on the expansive literature on rowing. METHODS The PubMed database was searched for the most relevant literature, while some information was obtained from books. RESULTS Following the life span of former rowers paved the way to advocate exercise for health promotion. Rowing involves almost all muscles during the stroke and competition requires a large oxygen uptake, which is challenged by the pulmonary diffusion capacity and restriction in blood flow to the muscles. Unique training adaptations allow for simultaneous engagement of the legs in the relatively slow movement of the rowing stroke that, therefore, involves primarily slow-twitch muscle fibres. Like other sport activities, rowing is associated with adaptation not only of the heart, including both increased internal diameters and myocardial size, but also skeletal muscles with hypertrophy of especially slow-twitch muscle fibres. The high metabolic requirement of intense rowing reduces blood pH and, thereby, arterial oxygen saturation decreases as arterial oxygen tension becomes affected. CONCLUSION Competitive rowing challenges most systems in the body including pulmonary function and circulatory control with implication for cerebral blood flow and neuromuscular activation. Thus, the physiology of rowing is complex, but it obviously favours large individuals with arms and legs that allow the development of a long stroke. Present inquiries include the development of an appropriately large cardiac output despite the Valsalva-like manoeuvre associated with the stroke, and the remarkable ability of the brain to maintain motor control and metabolism despite marked reductions in cerebral blood flow and oxygenation.
Collapse
|
20
|
Jacunski M, Rafferty GF. The effects of hypoxia and fatigue on skeletal muscle electromechanical delay. Exp Physiol 2020; 105:842-851. [PMID: 32134528 DOI: 10.1113/ep088180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
NEW FINDINGS What is the central question of this study? What are the mechanisms underlying impaired muscular endurance and accelerated fatigue during acute hypoxia? What is the main finding and its importance? Hypoxia had no effect on the electrochemical latency associated with muscle contraction elicited by supramaximal electrical motor nerve stimulation in vivo. This provides greater insight into the effects of hypoxia and fatigue on the mechanisms of muscle contraction in vivo. ABSTRACT Acute hypoxia impairs muscle endurance and accelerates fatigue, but the underlying mechanisms, including any effects on muscle electrical activation, are incompletely understood. Electromyographic, mechanomyographic and force signals, elicited by common fibular nerve stimulation, were used to determine electromechanical delay (EMDTOT ) of the tibialis anterior muscle in normoxia and hypoxia ( F I O 2 0.125) at rest and following fatiguing ankle dorsiflexor exercise (60% maximum voluntary contraction, 5 s on, 3 s off) in 12 healthy participants (mean (SD) age 27.4 (9.0) years). EMDTOT was determined from electromyographic to force signal onset, electrical activation latency from electromyographic to mechanomyographic (EMDE-M ) and mechanical latency from mechanomyographic to force (EMDM-F ). Twitch force fell significantly following fatiguing exercise in normoxia (46.8 (14.7) vs. 20.6 (14.3) N, P = 0.0002) and hypoxia (52.9 (15.4) vs. 28.8 (15.2) N, P = 0.0006). No effect of hypoxia on twitch force at rest was observed. Fatiguing exercise resulted in significant increases in mean (SD) EMDTOT in normoxia (Δ 4.7 (4.57) ms P = 0.0152) and hypoxia (Δ 3.7 (4.06) ms P = 0.0384) resulting from increased mean (SD) EMDM-F only (normoxia Δ 4.1 (4.1) ms P = 0.0391, hypoxia Δ 3.4 (3.6) ms P = 0.0303). Mean (SD) EMDE-M remained unchanged during normoxic (Δ 0.6 (1.08) ms) and hypoxic (Δ 0.25 (0.75) ms) fatiguing exercise. No differences in percentage change from baseline for twitch force, EMDTOT , EMDE-M and EMDM-F between normoxic and hypoxic fatigue conditions were observed. Hypoxia in isolation or in combination with fatigue had no effect on the electrochemical latency associated with electrically evoked muscle contraction.
Collapse
Affiliation(s)
- Mark Jacunski
- Guy's, King's & St Thomas' School of Medical Education, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Gerrard F Rafferty
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
21
|
Jeker D, Falbriard M, Vernillo G, Meyer F, Savoldelli A, Degache F, Schena F, Aminian K, Millet GP. Changes in spatio-temporal gait parameters and vertical speed during an extreme mountain ultra-marathon. Eur J Sport Sci 2020; 20:1339-1345. [PMID: 31914356 DOI: 10.1080/17461391.2020.1712480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of the present study was to investigate the effects of altitude and distance on uphill vertical speed (VS) and the main spatio-temporal gait parameters during an extreme mountain ultra-marathon. The VS, stride height (SH) and stride frequency (SF) of 27 runners were measured with an inertial sensor at the shank for two different altitude ranges (low 1300-2000 m vs high 2400-3200 m) of 10 mountains passes distributed over a 220 km course. There was a significant interaction (F(4,52) = 4.04, p < 0.01) for the effect of altitude and distance on VS. During the first passes, the mean VS was faster at lower altitudes, but this difference disappeared at a quarter of the race length, suggesting that neuromuscular fatigue influenced the uphill velocity to a larger extent than the oxygen delivery. The average VS, SH and SF were 547 ± 135 m/h, 0.23 ± 0.05 m and 0.66 ± 0.09 Hz. The individual VS change for each uphill portions was more strongly correlated with the changes in SH (r = 0.80, P < 0.001, n = 321) than SF (r = 0.43, P < 0.001, n = 321). This suggests a large effect of the knee extensors strength loss on the diminution of VS.
Collapse
Affiliation(s)
- David Jeker
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Mathieu Falbriard
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gianluca Vernillo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.,CeRiSM, Research Centre 'Sport, Mountain and Health', University of Verona, Rovereto, Italy
| | - Frederic Meyer
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Aldo Savoldelli
- CeRiSM, Research Centre 'Sport, Mountain and Health', University of Verona, Rovereto, Italy
| | - Francis Degache
- School of Health Sciences, University of Applied Science and Arts Western Switzerland, Lausanne, Switzerland
| | - Federico Schena
- CeRiSM, Research Centre 'Sport, Mountain and Health', University of Verona, Rovereto, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Raberin A, Meric H, Mucci P, Lopez Ayerbe J, Durand F. Muscle and cerebral oxygenation during exercise in athletes with exercise-induced hypoxemia: A comparison between sea level and acute moderate hypoxia. Eur J Sport Sci 2019; 20:803-812. [PMID: 31526237 DOI: 10.1080/17461391.2019.1669717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objective of the present study was to evaluate the influence of exercise-induced hypoxemia (EIH) on muscle and cerebral oxygenation responses during maximal exercise in normoxia and in acute moderate hypoxia (fraction of inspired oxygen: 15.3%, 2400 m). EIH was defined as a drop in hemoglobin saturation of at least 4% for at least three consecutive minutes during maximal exercise at sea level. Twenty-five athletes performed incremental treadmill tests to assess maximal oxygen consumption (VO2max) in normoxia and in hypoxia. Oxygenation of the vastus lateralis muscle and the left prefrontal cortex of the brain was monitored using near-infrared spectroscopy. During the normoxic test, 15 athletes exhibited EIH; they displayed a larger change in muscle levels of oxyhemoglobin (ΔO2Hb) (p = 0.04) and a greater change in cerebral levels of deoxyhemoglobin (ΔHHb) (p = 0.02) than athletes without EIH (NEIH group). During the hypoxic test, muscle ΔO2Hb was lower in the EIH group than in the NEIH group (p = 0.03). At VO2max, hypoxia was associated with a smaller cerebral ΔO2Hb in both groups, and a greater cerebral ΔHHb compared to normoxia in the NEIH group only (p = 0.02). No intergroup differences in changes in muscle oxygenation were observed. The severity of O2 arterial desaturation was negatively correlated with changes in total muscle hemoglobin in normoxia (r = -0.48, p = 0.01), and positively correlated with the cerebral ΔHHb in normoxia (r = 0.45, p = 0.02). The occurrence of EIH at sea level was associated with specific muscle and cerebral oxygenation responses to exercise under both normoxia and moderate hypoxia.
Collapse
Affiliation(s)
- Antoine Raberin
- LEPSA, EA 4604, Université de Perpignan Via Domitia, Font Romeu, France
| | - Henri Meric
- LEPSA, EA 4604, Université de Perpignan Via Domitia, Font Romeu, France
| | - Patrick Mucci
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | | | - Fabienne Durand
- LEPSA, EA 4604, Université de Perpignan Via Domitia, Font Romeu, France
| |
Collapse
|
23
|
Intermittent Hypoxic Training at Lactate Threshold Intensity Improves Aiming Performance in Well-Trained Biathletes with Little Change of Cardiovascular Variables. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1287506. [PMID: 31662969 PMCID: PMC6778904 DOI: 10.1155/2019/1287506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
The main objective of this research was to evaluate the efficacy of intermittent hypoxic training (IHT) on aiming performance and aerobic capacity in biathletes. Fourteen male biathletes were randomly divided into a hypoxia group (H) (n = 7), which trained three times per week in a normobaric hypoxic environment (FiO2 = 16.5%, 2000 m a.s.l.) with lactate threshold intensity (LT) determined in hypoxia, and a control group (C) (n = 7), which exercised under normoxic conditions with LT intensity determined in normoxia. The training program included three weekly microcycles, followed by three days of recovery. The main part of the interval workout consisted of four 7 min (1st week), 8 min (2nd week), or 9 min (3rd week) running bouts at treadmill separated by 2 minutes of active recovery. After the warm-up and during the rest between the bouts, the athletes performed aiming to the target in the standing position with a sporting rifle (20 s). The results showed that the IHT caused a significant (p < 0.05) increase in retention time in the target at rest (RT9rest) by 14.4% in hypoxia, whereas RT postincremental test (RT9post) increased by 27.4% in normoxia and 26.7% in hypoxia. No significant changes in this variable were found in group C. Additionally, the capillary oxygen saturation at the end of the maximal effort (SO2capillary max) in hypoxia increased significantly (p < 0.001) by ∼4% after IHT. The maximal workload during the incremental test (WRmax) in normoxia also increased significantly (p < 0.001) by 6.3% after IHT. Furthermore, in absolute and relative values of VO2max in normoxia, there was a propensity (p < 0.07) for increasing this value by 5% in group H. In conclusion, the main findings of this study showed a significant improvement in resting and postexercise aiming performance in normoxia and hypoxia. Furthermore, the results demonstrated beneficial effects of the IHT protocol on aerobic capacity of biathletes.
Collapse
|
24
|
Grocott MPW, Levett DZH, Ward SA. Exercise physiology: exercise performance at altitude. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Cheng AJ, Hwee DT, Kim LH, Durham N, Yang HT, Hinken AC, Kennedy AR, Terjung RL, Jasper JR, Malik FI, Westerblad H. Fast skeletal muscle troponin activator CK-2066260 increases fatigue resistance by reducing the energetic cost of muscle contraction. J Physiol 2019; 597:4615-4625. [PMID: 31246276 PMCID: PMC6851859 DOI: 10.1113/jp278235] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/26/2019] [Indexed: 01/26/2023] Open
Abstract
Key points Skeletal muscle fatigue limits performance in various physical activities, with exercise intolerance being a key symptom in a broad spectrum of diseases. We investigated whether a small molecule fast skeletal troponin activator (FSTA), CK‐2066260, can mitigate muscle fatigue by reducing the cytosolic free [Ca2+] required to produce a given submaximal force and hence decreasing the energy requirement. Isolated intact single mouse muscle fibres and rat muscles in‐situ treated with CK‐2066260 showed improved muscle endurance., which was accompanied by decreased ATP demand and reduced glycogen usage. CK‐2066260 treatment improved in‐vivo exercise capacity in healthy rats and in a rat model of peripheral artery insufficiency. In conclusion, we show that the FSTA CK‐2066260 effectively counteracts muscle fatigue in rodent skeletal muscle in vitro, in situ, and in vivo. This may translate to humans and provide a promising pharmacological treatment to patients suffering from severe muscle weakness and exercise intolerance.
Abstract Skeletal muscle fatigue limits performance during physical exercise and exacerbated muscle fatigue is a prominent symptom among a broad spectrum of diseases. The present study investigated whether skeletal muscle fatigue is affected by the fast skeletal muscle troponin activator (FSTA) CK‐2066260, which increases myofibrillar Ca2+ sensitivity and amplifies the submaximal force response. Because more force is produced for a given Ca2+, we hypothesized that CK‐2066260 could mitigate muscle fatigue by reducing the energetic cost of muscle activation. Isolated single mouse muscle fibres were fatigued by 100 repeated 350 ms contractions while measuring force and the cytosolic free [Ca2+] or [Mg2+] ([Mg2+]i). When starting fatiguing stimulation at matching forces (i.e. lower stimulation frequency with CK‐2066260): force was decreased by ∼50% with and by ∼75% without CK‐2066260; [Mg2+]i was increased by ∼10% with and ∼32% without CK‐2066260, reflecting a larger decrease in [ATP] in the latter. The glycogen content in in situ stimulated rat muscles fatigued by repeated contractions at matching forces was about two times higher with than without CK‐2066260. Voluntary exercise capacity, assessed by rats performing rotarod exercise and treadmill running, was improved in the presence of CK‐2066260. CK‐2066260 treatment also increased skeletal muscle fatigue resistance and exercise performance in a rat model of peripheral artery insufficiency. In conclusion, we demonstrate that the FSTA CK‐2066260 mitigates skeletal muscle fatigue by reducing the metabolic cost of force generation. Skeletal muscle fatigue limits performance in various physical activities, with exercise intolerance being a key symptom in a broad spectrum of diseases. We investigated whether a small molecule fast skeletal troponin activator (FSTA), CK‐2066260, can mitigate muscle fatigue by reducing the cytosolic free [Ca2+] required to produce a given submaximal force and hence decreasing the energy requirement. Isolated intact single mouse muscle fibres and rat muscles in‐situ treated with CK‐2066260 showed improved muscle endurance., which was accompanied by decreased ATP demand and reduced glycogen usage. CK‐2066260 treatment improved in‐vivo exercise capacity in healthy rats and in a rat model of peripheral artery insufficiency. In conclusion, we show that the FSTA CK‐2066260 effectively counteracts muscle fatigue in rodent skeletal muscle in vitro, in situ, and in vivo. This may translate to humans and provide a promising pharmacological treatment to patients suffering from severe muscle weakness and exercise intolerance.
Collapse
Affiliation(s)
- Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Darren T Hwee
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA, 94080, USA
| | - Leo H Kim
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA, 94080, USA
| | - Nickie Durham
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA, 94080, USA
| | - Hsiao T Yang
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Aaron C Hinken
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA, 94080, USA
| | - Adam R Kennedy
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA, 94080, USA
| | - Ronald L Terjung
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jeffrey R Jasper
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA, 94080, USA
| | - Fady I Malik
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA, 94080, USA
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
26
|
Kayser B. Successful climbing to extreme altitude is a hairy venture. J Physiol 2019; 597:2611. [PMID: 30937911 DOI: 10.1113/jp277955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Bengt Kayser
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Yang F, Zhou L, Song J, WangJinMei A, Yang Y, Tang ZW, Huang QY. Liver CEBPβ Modulates the Kynurenine Metabolism and Mediates the Motility for Hypoxia-Induced Central Fatigue in Mice. Front Physiol 2019; 10:243. [PMID: 30930794 PMCID: PMC6428026 DOI: 10.3389/fphys.2019.00243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/25/2019] [Indexed: 12/29/2022] Open
Abstract
Central fatigue is defined as a failure of the central nervous system to adequately drive the muscle, manifesting limited development, and maintenance of locomotor activity. A plateau in hypoxia leads to central fatigue and followed by maximal motility recession. However, the underlying mechanism is still unclear. The present study describes a mechanism by which liver CEBPβ (CCAAT/enhancer-binding protein beta) induced by hypoxic environment alters the kynurenine (KYN) metabolism and causes the suppression of motility function recession. The activation of CEBPβ under hypoxia increases the liver expression of tryptophan dioxygenase, thereby enhancing the conversion of tryptophan into KYN; the KYN metabolite can traverse the blood-brain barrier and result in the suppression of motility function. However, the knockdown of CEBPβ by injecting pAAV-shRNA-CEBPβ via the hepatic portal vein reduces the KYN production and improves the motility function. KYN is a neurochemical that which restricts the exercise capacity after injection in the basal ganglia in mice. Reducing the plasma KYN protects the brain from hypoxia-induced changes associated with fatigue, and the knockdown liver of CEBPβ in mice renders resistance to fatigue post-acute hypoxia or tryptophan treatment. This study reveals resistance to central fatigue as a strategy for acclimatization to hypoxia mediated by transcription factor CEBPβ in the liver.
Collapse
Affiliation(s)
- Fan Yang
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China.,Department of Cold Environment Medicine, College of High Altitude Military Medicine, Third Military Medical University and Key Laboratory of High Altitude Medicine, Ministry of Education, Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Li Zhou
- Department of Pharmacy, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - Jun Song
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - A WangJinMei
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - Yuan Yang
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - Zhong-Wei Tang
- Department of Cold Environment Medicine, College of High Altitude Military Medicine, Third Military Medical University and Key Laboratory of High Altitude Medicine, Ministry of Education, Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Qing-Yuan Huang
- Department of Cold Environment Medicine, College of High Altitude Military Medicine, Third Military Medical University and Key Laboratory of High Altitude Medicine, Ministry of Education, Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| |
Collapse
|
28
|
Cramer NP, Korotcov A, Bosomtwi A, Xu X, Holman DR, Whiting K, Jones S, Hoy A, Dardzinski BJ, Galdzicki Z. Neuronal and vascular deficits following chronic adaptation to high altitude. Exp Neurol 2018; 311:293-304. [PMID: 30321497 DOI: 10.1016/j.expneurol.2018.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/20/2018] [Accepted: 10/10/2018] [Indexed: 02/03/2023]
Abstract
We sought to understand the mechanisms underlying cognitive deficits that are reported to affect non-native subjects following their prolonged stay and/or work at high altitude (HA). We found that mice exposed to a simulated environment of 5000 m exhibit deficits in hippocampal learning and memory accompanied by abnormalities in brain MR imaging. Exposure (1-8 months) to HA led to an increase in brain ventricular volume, a reduction in relative cerebral blood flow and changes in diffusion tensor imaging (DTI) derived parameters within the hippocampus and corpus callosum. Furthermore, neuropathological examination revealed significant expansion of the neurovascular network, microglia activation and demyelination within the corpus callosum. Electrophysiological recordings from the corpus callosum indicated that axonal excitabilities are increased while refractory periods are longer despite a lack of change in action potential conduction velocities of both myelinated and unmyelinated fibers. Next generation RNA-sequencing identified alterations in hippocampal and amygdala transcriptome signaling pathways linked to angiogenesis, neuroinflammation and myelination. Our findings reveal that exposure to hypobaric-hypoxia triggers maladaptive responses inducing cognitive deficits and suggest potential mechanisms underlying the adverse impacts of staying or traveling at high altitude.
Collapse
Affiliation(s)
- Nathan P Cramer
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Alexandru Korotcov
- Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Radiology and Radiological Sciences, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Asamoah Bosomtwi
- Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Radiology and Radiological Sciences, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Xiufen Xu
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Derek R Holman
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Molecular & Cell Biology Graduate Program, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, MD, United States
| | - Kathleen Whiting
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Neuroscience Graduate Program, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Scott Jones
- Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Radiology and Radiological Sciences, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andrew Hoy
- Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Radiology and Radiological Sciences, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bernard J Dardzinski
- Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Radiology and Radiological Sciences, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Zygmunt Galdzicki
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Molecular & Cell Biology Graduate Program, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, MD, United States; Neuroscience Graduate Program, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
29
|
Fan JL, Bourdillon N, Meyer P, Kayser B. Oral Nitrate Supplementation Differentially Modulates Cerebral Artery Blood Velocity and Prefrontal Tissue Oxygenation During 15 km Time-Trial Cycling in Normoxia but Not in Hypoxia. Front Physiol 2018; 9:869. [PMID: 30061839 PMCID: PMC6054990 DOI: 10.3389/fphys.2018.00869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Nitrate is a precursor of nitric oxide (NO), an important regulator of cerebral perfusion in normoxic and hypoxic conditions. Nitrate supplementation could be used to improve cerebral perfusion and oxygenation during exercise in hypoxia. The effects of dietary nitrate supplementation on cerebral haemodynamics during exercise in severe hypoxia (arterial O2 saturation < 70%) have not been explored. Methods: In twelve trained male cyclists, we measured blood pressure (BP), middle cerebral artery blood velocity (MCAv), cerebrovascular resistance (CVR) and prefrontal oxyhaemoglobin and deoxyhaemoglobin concentration (O2Hb and HHb, respectively) during 15 km cycling time trials (TT) in normoxia and severe hypoxia (11% inspired O2, peripheral O2 saturation ∼66%) following 3-day oral supplementation with placebo or sodium nitrate (0.1 mmol/kg/day) in a randomised, double-blinded manner. We tested the hypothesis that dietary nitrate supplementation increases MCAv and cerebral O2Hb during TT in severe hypoxia. Results: During TT in normoxia, nitrate supplementation lowered MCAv by ∼2.3 cm/s and increased cerebral O2Hb by ∼6.8 μM and HHb by ∼2.1 μM compared to normoxia placebo (p ≤ 0.01 for all), while BP tended to be lowered (p = 0.06). During TT in severe hypoxia, nitrate supplementation elevated MCAv (by ∼2.5 cm/s) and BP (by ∼5 mmHg) compared to hypoxia placebo (p < 0.01 for both), while it had no effect on cerebral O2Hb (p = 0.98), HHb (p = 0.07) or PETCO2 (p = 0.12). Dietary nitrate had no effect of CVR during TT in normoxia or hypoxia (p = 0.19). Conclusion: Our findings indicate that during normoxic TT, the modulatory effect of dietary nitrate on regional and global cerebral perfusion is heterogeneous. Meanwhile, the lack of major changes in cerebral perfusion with dietary nitrate during hypoxic TT alludes to an exhausted cerebrovascular reserve.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Wellington Medical Technology Group, Department of Surgery and Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, University of Otago, Wellington, New Zealand
| | - Nicolas Bourdillon
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| | - Philippe Meyer
- Cardiology Service, Geneva University Hospital, Geneva, Switzerland
| | - Bengt Kayser
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Twomey R, Wrightson J, Fletcher H, Avraam S, Ross E, Dekerle J. Exercise-induced Fatigue in Severe Hypoxia after an Intermittent Hypoxic Protocol. Med Sci Sports Exerc 2018; 49:2422-2432. [PMID: 28708702 DOI: 10.1249/mss.0000000000001371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Exercise-induced central fatigue is alleviated after acclimatization to high altitude. The adaptations underpinning this effect may also be induced with brief, repeated exposures to severe hypoxia. The purpose of this study was to determine whether (i) exercise tolerance in severe hypoxia would be improved after an intermittent hypoxic (IH) protocol and (ii) exercise-induced central fatigue would be alleviated after an IH protocol. METHODS Nineteen recreationally active men were randomized into two groups who completed ten 2-h exposures in severe hypoxia (IH: partial pressure of inspired O2 82 mm Hg; n = 11) or normoxia (control; n = 8). Seven sessions involved cycling for 30 min at 25% peak power (W˙peak) in IH and at a matched heart rate in normoxia. Participants performed baseline constant-power cycling to task failure in severe hypoxia (TTF-Pre). After the intervention, the cycling trial was repeated (TTF-Post). Before and after exercise, responses to transcranial magnetic stimulation and supramaximal femoral nerve stimulation were obtained to assess central and peripheral contributions to neuromuscular fatigue. RESULTS From pre- to postexercise in TTF-Pre, maximal voluntary contraction (MVC), cortical voluntary activation (VATMS), and potentiated twitch force (Qtw,pot) decreased in both groups (all P < 0.05). After IH, TTF-Post was improved (535 ± 213 s vs 713 ± 271 s, P < 0.05) and an additional isotime trial was performed. After the IH intervention only, the reduction in MVC and VATMS was attenuated at isotime (P < 0.05). No differences were observed in the control group. CONCLUSIONS Whole-body exercise tolerance in severe hypoxia was prolonged after a protocol of IH. This may be related to an alleviation of the central contribution to neuromuscular fatigue.
Collapse
Affiliation(s)
- Rosie Twomey
- 1Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CANADA; 2Centre for Sport and Exercise Science and Medicine, University of Brighton, Eastbourne, UNITED KINGDOM; and 3English Institute of Sport, Bisham Abbey National Sports Centre, Marlow, UNITED KINGDOM
| | | | | | | | | | | |
Collapse
|
31
|
Cheng AJ, Place N, Westerblad H. Molecular Basis for Exercise-Induced Fatigue: The Importance of Strictly Controlled Cellular Ca 2+ Handling. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029710. [PMID: 28432118 DOI: 10.1101/cshperspect.a029710] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The contractile function of skeletal muscle declines during intense or prolonged physical exercise, that is, fatigue develops. Skeletal muscle fibers fatigue acutely during highly intense exercise when they have to rely on anaerobic metabolism. Early stages of fatigue involve impaired myofibrillar function, whereas decreased Ca2+ release from the sarcoplasmic reticulum (SR) becomes more important in later stages. SR Ca2+ release can also become reduced with more prolonged, lower intensity exercise, and it is then related to glycogen depletion. Increased reactive oxygen/nitrogen species can cause long-lasting impairments in SR Ca2+ release resulting in a prolonged force depression after exercise. In this article, we discuss molecular and cellular mechanisms of the above fatigue-induced changes, with special focus on multiple mechanisms to decrease SR Ca2+ release to avoid energy depletion and preserve muscle fiber integrity. We also discuss fatigue-related effects of exercise-induced Ca2+ fluxes over the sarcolemma and between the cytoplasm and mitochondria.
Collapse
Affiliation(s)
- Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nicolas Place
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
32
|
Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions. Eur J Appl Physiol 2018; 118:607-615. [PMID: 29344729 PMCID: PMC5805802 DOI: 10.1007/s00421-018-3801-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
Acute moderate hypoxic exposure can substantially impair exercise performance, which occurs with a concurrent exacerbated rise in hydrogen cation (H+) production. The purpose of this study was therefore, to alleviate this acidic stress through sodium bicarbonate (NaHCO3) supplementation and determine the corresponding effects on severe-intensity intermittent exercise performance. Eleven recreationally active individuals participated in this randomised, double-blind, crossover study performed under acute normobaric hypoxic conditions (FiO2% = 14.5%). Pre-experimental trials involved the determination of time to attain peak bicarbonate anion concentrations ([HCO3−]) following NaHCO3 ingestion. The intermittent exercise tests involved repeated 60-s work in their severe-intensity domain and 30-s recovery at 20 W to exhaustion. Participants ingested either 0.3 g kg bm−1 of NaHCO3 or a matched placebo of 0.21 g kg bm−1 of sodium chloride prior to exercise. Exercise tolerance (+ 110.9 ± 100.6 s; 95% CI 43.3–178 s; g = 1.0) and work performed in the severe-intensity domain (+ 5.8 ± 6.6 kJ; 95% CI 1.3–9.9 kJ; g = 0.8) were enhanced with NaHCO3 supplementation. Furthermore, a larger post-exercise blood lactate concentration was reported in the experimental group (+ 4 ± 2.4 mmol l−1; 95% CI 2.2–5.9; g = 1.8), while blood [HCO3−] and pH remained elevated in the NaHCO3 condition throughout experimentation. In conclusion, this study reported a positive effect of NaHCO3 under acute moderate hypoxic conditions during intermittent exercise and therefore, may offer an ergogenic strategy to mitigate hypoxic induced declines in exercise performance.
Collapse
|
33
|
Curtelin D, Morales-Alamo D, Torres-Peralta R, Rasmussen P, Martin-Rincon M, Perez-Valera M, Siebenmann C, Pérez-Suárez I, Cherouveim E, Sheel AW, Lundby C, Calbet JA. Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans. J Cereb Blood Flow Metab 2018; 38:136-150. [PMID: 28186430 PMCID: PMC5757439 DOI: 10.1177/0271678x17691986] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cerebral blood flow (CBF) is regulated to secure brain O2 delivery while simultaneously avoiding hyperperfusion; however, both requisites may conflict during sprint exercise. To determine whether brain O2 delivery or CBF is prioritized, young men performed sprint exercise in normoxia and hypoxia (PIO2 = 73 mmHg). During the sprints, cardiac output increased to ∼22 L min-1, mean arterial pressure to ∼131 mmHg and peak systolic blood pressure ranged between 200 and 304 mmHg. Middle-cerebral artery velocity (MCAv) increased to peak values (∼16%) after 7.5 s and decreased to pre-exercise values towards the end of the sprint. When the sprints in normoxia were preceded by a reduced PETCO2, CBF and frontal lobe oxygenation decreased in parallel ( r = 0.93, P < 0.01). In hypoxia, MCAv was increased by 25%, due to a 26% greater vascular conductance, despite 4-6 mmHg lower PaCO2 in hypoxia than normoxia. This vasodilation fully accounted for the 22 % lower CaO2 in hypoxia, leading to a similar brain O2 delivery during the sprints regardless of PIO2. In conclusion, when a conflict exists between preserving brain O2 delivery or restraining CBF to avoid potential damage by an elevated perfusion pressure, the priority is given to brain O2 delivery.
Collapse
Affiliation(s)
- David Curtelin
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,2 Emergency Medicine Department, Insular Universitary Hospital of Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - David Morales-Alamo
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Rafael Torres-Peralta
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Peter Rasmussen
- 4 Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Marcos Martin-Rincon
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Mario Perez-Valera
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Christoph Siebenmann
- 4 Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Ismael Pérez-Suárez
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Evgenia Cherouveim
- 5 Department of Physical Education and Sport Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - A William Sheel
- 6 School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Carsten Lundby
- 4 Center for Integrative Human Physiology, Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - José Al Calbet
- 1 Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.,3 Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
34
|
Neyroud D, Kayser B, Place N. Are There Critical Fatigue Thresholds? Aggregated vs. Individual Data. Front Physiol 2016; 7:376. [PMID: 27630575 PMCID: PMC5005398 DOI: 10.3389/fphys.2016.00376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
The mechanisms underlying task failure from fatiguing physical efforts have been the focus of many studies without reaching consensus. An attractive but debated model explains effort termination with a critical peripheral fatigue threshold. Upon reaching this threshold, feedback from sensory afferents would trigger task disengagement from open-ended tasks or a reduction of exercise intensity of closed-ended tasks. Alternatively, the extant literature also appears compatible with a more global critical threshold of loss of maximal voluntary contraction force. Indeed, maximal voluntary contraction force loss from fatiguing exercise realized at a given intensity appears rather consistent between different studies. However, when looking at individual data, the similar maximal force losses observed between different tasks performed at similar intensities might just be an “artifact” of data aggregation. It would then seem possible that such a difference observed between individual and aggregated data also applies to other models previously proposed to explain task failure from fatiguing physical efforts. We therefore suggest that one should be cautious when trying to infer models that try to explain individual behavior from aggregated data.
Collapse
Affiliation(s)
- Daria Neyroud
- Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland
| |
Collapse
|