1
|
Rey-Rico A, Cucchiarini M. PEO-PPO-PEO Tri-Block Copolymers for Gene Delivery Applications in Human Regenerative Medicine-An Overview. Int J Mol Sci 2018. [PMID: 29518011 PMCID: PMC5877636 DOI: 10.3390/ijms19030775] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Lineal (poloxamers or Pluronic®) or X-shaped (poloxamines or Tetronic®) amphiphilic tri-block copolymers of poly(ethylene oxide) and poly(propylene oxide) (PEO-PPO-PEO) have been broadly explored for controlled drug delivery in different regenerative medicine approaches. The ability of these copolymers to self-assemble as micelles and to undergo sol-to-gel transitions upon heating has endowed the denomination of “smart” or “intelligent” systems. The use of PEO-PPO-PEO copolymers as gene delivery systems is a powerful emerging strategy to improve the performance of classical gene transfer vectors. This review summarizes the state of art of the application of PEO-PPO-PEO copolymers in both nonviral and viral gene transfer approaches and their potential as gene delivery systems in different regenerative medicine approaches.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany.
- Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg/Saar, Germany.
| |
Collapse
|
2
|
Rey-Rico A, Babicz H, Madry H, Concheiro A, Alvarez-Lorenzo C, Cucchiarini M. Supramolecular polypseudorotaxane gels for controlled delivery of rAAV vectors in human mesenchymal stem cells for regenerative medicine. Int J Pharm 2017; 531:492-503. [PMID: 28552768 DOI: 10.1016/j.ijpharm.2017.05.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022]
Abstract
The aim of this work was to investigate, for the first time, the possibility of using supramolecular polypseudorotaxane gels as scaffolds that can durably deliver rAAV vectors for applications in cartilage regeneration. Dispersions of Pluronic® F68 (PF68) or Tetronic® 908 (T908) containing either hyaluronic acid (HA) or chondroitin sulfate (CS) were prepared in PBS. Then, alpha-cyclodextrin (αCD) was added to some dispersions to form polypseudorotaxane gels. Polysaccharides and αCD reinforced the viscoelasticity of the gels, which could withstand autoclaving without changes. In vitro release of rAAV vectors and subsequent transduction of human mesenchymal stem cells (hMSCs) by rAAV vectors from the release medium and from gels in direct contact with the cells were investigated. Compared with free vectors, the gels provided higher levels of transgene expression. CS (or HA)/PF68/αCD gels rapidly released rAAV vectors while CS (or HA)/T908/αCD gels provided sustained release probably due to different interactions with the viral vectors. Incorporation of αCD into CS (or HA)/PF68 gels resulted on higher rAAV concentrations and sustained levels of transgene expression over time. HA increased the bioactivity and cytocompatibility of the gels, especially those based on T908. Overall, combining rAAV gene transfer with polypseudorotaxane gels may provide new, promising tools for human tissue engineering and regenerative medicine strategies.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany.
| | - Heiko Babicz
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany; Department of Orthopaedics and Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain.
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
3
|
Rey-Rico A, Frisch J, Venkatesan JK, Schmitt G, Rial-Hermida I, Taboada P, Concheiro A, Madry H, Alvarez-Lorenzo C, Cucchiarini M. PEO-PPO-PEO Carriers for rAAV-Mediated Transduction of Human Articular Chondrocytes in Vitro and in a Human Osteochondral Defect Model. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20600-20613. [PMID: 27404480 DOI: 10.1021/acsami.6b06509] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Gene therapy is an attractive strategy for the durable treatment of human osteoarthritis (OA), a gradual, irreversible joint disease. Gene carriers based on the small human adeno-associated virus (AAV) exhibit major efficacy in modifying damaged human articular cartilage in situ over extended periods of time. Yet, clinical application of recombinant AAV (rAAV) vectors remains complicated by the presence of neutralizing antibodies against viral capsid elements in a majority of patients. The goal of this study was to evaluate the feasibility of delivering rAAV vectors to human OA chondrocytes in vitro and in an experimental model of osteochondral defect via polymeric micelles to protect gene transfer from experimental neutralization. Interaction of rAAV with micelles of linear (poloxamer PF68) or X-shaped (poloxamine T908) poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) copolymers (PEO-PPO-PEO micelles) was characterized by means of isothermal titration calorimetry. Micelle encapsulation allowed an increase in both the stability and bioactivity of rAAV vectors and promoted higher levels of safe transgene (lacZ) expression both in vitro and in experimental osteochondral defects compared with that of free vector treatment without detrimental effects on the biological activity of the cells or their phenotype. Remarkably, protection against antibody neutralization was also afforded when delivering rAAV via PEO-PPO-PEO micelles in all systems evaluated, especially when using T908. Altogether, these findings show the potential of PEO-PPO-PEO micelles as effective tools to improve current gene-based treatments for human OA.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | - Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | | | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | - Isabel Rial-Hermida
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Pablo Taboada
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
- Department of Orthopaedics and Orthopaedic Surgery, Saarland University Medical Center , Homburg, Germany
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| |
Collapse
|
4
|
Rey-Rico A, Venkatesan JK, Frisch J, Rial-Hermida I, Schmitt G, Concheiro A, Madry H, Alvarez-Lorenzo C, Cucchiarini M. PEO-PPO-PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomater 2015; 27:42-52. [PMID: 26320543 DOI: 10.1016/j.actbio.2015.08.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 11/28/2022]
Abstract
Recombinant adeno-associated viral (rAAV) vectors are clinically adapted gene transfer vectors for direct human cartilage regenerative medicine. Their appropriate use in patients is still limited by a relatively low efficacy of vector penetration inside the cells, by the pre-existing humoral immune responses against the viral capsid proteins in a large part of the human population, and by possible inhibition of viral uptake by clinical compounds such as heparin. The delivery of rAAV vectors to their targets using optimized vehicles is therefore under active investigation. Here, we evaluated the possibility of providing rAAV to human bone marrow-derived mesenchymal stem cells (hMSCs), a potent source of cartilage regenerative cells, via self-assembled poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymers as linear poloxamers or X-shaped poloxamines. Encapsulation in poloxamer PF68 and poloxamine T908 polymeric micelles allowed for an effective, durable, and safe modification of hMSCs via rAAV to levels similar to or even higher than those noted upon direct vector application. The copolymers were capable of restoring the transduction of hMSCs with rAAV in conditions of gene transfer inhibition, i.e. in the presence of heparin or of a specific antibody directed against the rAAV capsid, enabling effective therapeutic delivery of a chondrogenic sox9 sequence leading to an enhanced chondrocyte differentiation of the cells. The present findings highlight the value of PEO-PPO copolymers as powerful tools for rAAV-based cartilage regenerative medicine. STATEMENT OF SIGNIFICANCE While recombinant adeno-associated viral (rAAV) vectors are adapted vectors to treat a variety of human disorders, their clinical use is still restricted by pre-existing antiviral immune responses, by a low efficacy of natural vector entry in the target cells, and by inhibition of viral uptake by clinically used compounds like heparin. The search for alternative routes of rAAV delivery is thus becoming a new field of investigation. In the present study, we describe the strong benefits of providing rAAV to human mesenchymal stem cells, a potent source of cells for regenerative medicine, encapsulated in polymeric micelles based on poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymers as novel, effective and safe delivery systems for human gene therapy.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany.
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Isabel Rial-Hermida
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15702 Santiago de Compostela, Spain
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15702 Santiago de Compostela, Spain
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany; Department of Orthopaedics and Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Carmen Alvarez-Lorenzo
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
5
|
Barbato JE, Kibbe MR, Tzeng E. The Emerging Role of Gene Therapy in the Treatment of Cardiovascular Diseases. Crit Rev Clin Lab Sci 2010. [DOI: 10.1080/10408360390250621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Abstract
BACKGROUND The development of viral vectors capable of providing efficient gene transfer in diseased tissues without causing any pathogenic effects is pivotal for overcoming the many challenges facing gene therapy. OBJECTIVE Immune responses against viral vectors, inadequate gene expression and inefficient targeting to specific cells in vivo are some of the major problems limiting the clinical utility of viral gene therapy. METHODS This review will focus on recent progress in strategic polymer-based modifications to improve the performance and biocompatibility of a variety of viral vectors. We will discuss the preclinical development of four approaches involving injectable polymers, polyelectrolytes, polymer microspheres and polymer-virus conjugates. RESULTS/CONCLUSION Much progress has been made in creating 'hybrid' gene delivery vectors that combine the strengths of polymers and viruses. With further optimization, these hybrid vectors, which may be safer and more effective, are likely to succeed in clinical applications.
Collapse
Affiliation(s)
- Chun Wang
- University of Minnesota, Department of Biomedical Engineering, 7-105 Hasselmo Hall, 312 Church Street S.E., Minneapolis, MN 55455, USA.
| | | |
Collapse
|
7
|
Carlisle RC, Benjamin R, Briggs SS, Sumner-Jones S, McIntosh J, Gill D, Hyde S, Nathwani A, Subr V, Ulbrich K, Seymour LW, Fisher KD. Coating of adeno-associated virus with reactive polymers can ablate virus tropism, enable retargeting and provide resistance to neutralising antisera. J Gene Med 2008; 10:400-11. [PMID: 18220318 DOI: 10.1002/jgm.1161] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Copolymers based on poly-[N-(2-hydroxypropyl) methacrylamide] (HPMA) have been used previously to enable targeted delivery of adenovirus. Here we demonstrate polymer-coating techniques can also be used to modify and retarget adeno-associated virus (AAV) types 5 and 8. METHODS Three strategies for modifying transductional targeting of AAV were employed. The first involved direct reaction of AAV5 or AAV8 with amino-reactive HPMA copolymer. The second approach used carbodiimide (EDC) chemistry to increase the number of surface amino groups on the AAV5 capsid, thereby improving coating efficiency. In the third approach, the AAV5 genome was isolated from capsid proteins and delivered in a synthetic polyplex consisting of polyethylenimine (PEI) and HPMA. RESULTS Efficient covalent attachment of HPMA copolymer to AAV5 could only be achieved following modification of the virus with EDC. Coating inhibited sialic acid dependent infection and provided a platform for retargeting via new ligands, including basic fibroblast growth factor. Retargeted infection was shown to be partially resistant to neutralising antisera. Delivery of AAV5 genomes using PEI and HPMA was efficient and provided absolute control of tropism and protection from antisera. In contrast AAV8 could be reacted directly with HPMA copolymer and allowed specific retargeting via the epidermal growth factor receptor, but gave no protection against neutralising antisera. CONCLUSIONS Reactive HPMA polymers can be used to ablate the natural tropism of both AAV8 and EDC-modified AAV5 and enable receptor-specific infection by incorporation of targeting ligands. These data show transductional targeting strategies can be used to improve the versatility of AAV vectors.
Collapse
Affiliation(s)
- Robert C Carlisle
- Department of Clinical Pharmacology, Old Road Campus Research Building, University of Oxford, Off Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Safety Assessment of Poloxamers 101, 105, 108, 122, 123, 124, 181, 182, 183, 184, 185, 188, 212, 215, 217, 231, 234, 235, 237, 238, 282, 284, 288, 331, 333, 334, 335, 338, 401, 402, 403, and 407, Poloxamer 105 Benzoate, and Poloxamer 182 Dibenzoate as Used in Cosmetics. Int J Toxicol 2008; 27 Suppl 2:93-128. [DOI: 10.1080/10915810802244595] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Poloxamers are polyoxyethlyene, polyoxypropylene block polymers. The impurities of commercial grade Poloxamer 188, as an example, include low-molecular-weight substances (aldehydes and both formic and acetic acids), as well as 1,4-dioxane and residual ethylene oxide and propylene oxide. Most Poloxamers function in cosmetics as surfactants, emulsifying agents, cleansing agents, and/or solubilizing agents, and are used in 141 cosmetic products at concentrations from 0.005% to 20%. Poloxamers injected intravenously in animals are rapidly excreted in the urine, with some accumulation in lung, liver, brain, and kidney tissue. In humans, the plasma concentration of Poloxamer 188 (given intravenously) reached a maximum at 1 h, then reached a steady state. Poloxamers generally were ineffective in wound healing, but were effective in reducing postsurgical adhesions in several test systems. Poloxamers can cause hypercholesterolemia and hypertriglyceridemia in animals, but overall, they are relatively nontoxic to animals, with LD50 values reported from 5 to 34.6 g/kg. Short-term intravenous doses up to 4 g/kg of Poloxamer 108 produced no change in body weights, but did result in diffuse hepatocellular vacuolization, renal tubular dilation in kidneys, and dose-dependent vacuolization of epithelial cells in the proximal convoluted tubules. A short-term inhalation toxicity study of Poloxamer 101 at 97 mg/m3 identified slight alveolitis after 2 weeks of exposure, which subsided in the 2-week postexposure observation period. A short-term dermal tox-icity study of Poloxamer 184 in rabbits at doses up to 1000 mg/kg produced slight erythema and slight intradermal inflammatory response on histological examination, but no dose-dependent body weight, hematology, blood chemistry, ororgan weight changes. A6-month feeding study in rats and dogs of Poloxamer 188 at exposures up to 5% in the diet produced no adverse effects. Likewise, Poloxamer 331 (tested up to 0.5 g/kg day-1), Poloxamer 235 (tested up to 1.0 g/kg day-1), and Poloxamer 338 (at 0.2 or 1.0 g/kg day-1) produced no adverse effects in dogs. Poloxamer 338 (at 5.0 g/kg day-1) produced slight transient diarrhea in dogs. Poloxamer 188 at levels up to 7.5% in diet given to rats in a 2-year feeding study produced diarrhea at 5% and 7.5% levels, a small decrease in growth at the 7.5% level, but no change in survival. Doses up to 0.5 mg/kg day-1 for 2 years using rats produced yellow discoloration of the serum, high serum alkaline phosphatase activity, and elevated serum glutamicpyruvic transaminase and glutamic-oxalacetic transaminase activities. Poloxamers are minimal ocular irritants, but are not dermal irritants or sensitizers in animals. Data on reproductive and developmental toxicity of Poloxamers were not found. An Ames test did not identify any mutagenic activity of Poloxamer 407, with or without metabolic activation. Several studies have suggested anti-carcinogenic effects of Poloxamers. Poloxamers appear to increase the sensitivity to anticancer drugs of multidrug-resistant cancer cells. In clinical testing, Poloxamer 188 increased the hydration of feces when used in combination with a bulk laxative treatment. Compared to controls, one study of angioplasty patients receiving Poloxamer 188 found a reduced myocardial infarct size and a reduced incidence of reinfarction, with no evidence of toxicity, but two other studies found no effect. Poloxamer 188 given to patients suffering from sickle cell disease had decreased pain and decreased hospitilization, compared to controls. Clinical tests of dermal irritation and sensitization were uniformly negative. The Cosmetic Ingredient Review (CIR) Expert Panel stressed that the cosmetic industry should continue to use the necessary purification procedures to keep the levels below established limits for ethylene oxide, propylene oxide, and 1,4-dioxane. The Panel did note the absence of reproductive and developmental toxicity data, but, based on molecular weight and solubility, there should be little skin penetration and any penetration of the skin should be slow. Also, the available data demonstrate that Poloxamers that are introduced into the body via routes other than dermal exposure have a rapid clearance from the body, suggesting that there would be no risk of reproductive and/or developmental toxicity. Overall, the available data do not suggest any concern about carcinogenesis. Although there are gaps in knowledge about product use, the overall information available on the types of products in which these ingredients are used, and at what concentration, indicates a pattern of use. Based on these safety test data and the information that the manufacturing process can be controlled to limit unwanted impurities, the Panel concluded that these Poloxamers are safe as used.
Collapse
|
9
|
Lavigne MD, Górecki DC. Emerging vectors and targeting methods for nonviral gene therapy. Expert Opin Emerg Drugs 2006; 11:541-57. [PMID: 16939390 DOI: 10.1517/14728214.11.3.541] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Until recently, nonviral vectors were outside the mainstream of gene transfer technology. Recent problems in clinical trials using viral vectors renewed interest in these methods. The clinical usefulness of nonviral methods is still hindered by their relatively low gene delivery/transgene expression efficiencies. Vectors must navigate a series of obstacles before the therapeutic gene can be expressed. This review considers these barriers and the properties of components of nonviral vectors that are essential for nucleic acid transfer. Although developments of new physical methods (hydrodynamic delivery, ultrasound, electroporation) have made a significant impact on gene transfer efficiency, various chemical carriers (lipids and polymers) have been shown to achieve high-level gene delivery and functional expression. Success of nonviral gene targeting will depend not only on the efficacy, but also safety of this methodology, and this aspect is also discussed. Understanding problems associated with nonviral targeting can also help in designing better viral vectors. In fact, interplay between viral and nonviral technologies should lead to a continued refinement of both methodologies.
Collapse
Affiliation(s)
- Matthieu D Lavigne
- University of Portsmouth, School of Pharmacy and Biomedical Sciences, St. Michael's Building, White Swan Road, Portsmouth, UK
| | | |
Collapse
|
10
|
Sriadibhatla S, Yang Z, Gebhart C, Alakhov VY, Kabanov A. Transcriptional Activation of Gene Expression by Pluronic Block Copolymers in Stably and Transiently Transfected Cells. Mol Ther 2006; 13:804-13. [PMID: 16199206 DOI: 10.1016/j.ymthe.2005.07.701] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 07/11/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022] Open
Abstract
Amphiphilic block copolymers of poly(ethylene oxide) and poly(propylene oxide) (Pluronics) enhance gene expression, but the mechanism remains unclear. We examined the effects of Pluronics on gene expression in murine cell models (NIH3T3 fibroblasts, C2C12 myoblasts, and Cl66 mammary adenocarcinoma cells) transfected with luciferase and green fluorescent protein. Addition of Pluronics to stably or transiently transfected cells enhanced transcription of the reporter genes. mRNA levels of the heat-shock protein hsp68 were also increased, whereas a housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase, was unaffected. Fibroblast and myoblast cells transfected with PathDetect cis-Reporting System constructs were used to examine the involvement of the nuclear factor-kappaB (NF-kappaB) and activating protein-1 (AP-1) in Pluronics enhancement. Pluronics enhanced reporter gene expression controlled by NF-kappaB in both cell models. They also increased expression of a gene under AP-1 in a fibroblast cell line, but not in a myoblast cell line. Activation of the inflammation signaling pathway in myoblast cells by Pluronics was shown by increased IkappaB phosphorylation. No cytotoxicity was observed at doses of Pluronics at which gene expression was increased. Overall, these results indicate that Pluronics can increase the transcription of genes, in part, through the activation of selected stress signaling pathways.
Collapse
Affiliation(s)
- Srikanth Sriadibhatla
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA
| | | | | | | | | |
Collapse
|
11
|
Yang Z, Zhu J, Sriadibhatla S, Gebhart C, Alakhov V, Kabanov A. Promoter- and strain-selective enhancement of gene expression in a mouse skeletal muscle by a polymer excipient Pluronic P85. J Control Release 2005; 108:496-512. [PMID: 16154658 DOI: 10.1016/j.jconrel.2005.08.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 11/17/2022]
Abstract
Amphiphilic triblock copolymers of ethylene oxide and propylene oxide (Pluronic) significantly enhanced expression of plasmid DNA in the skeletal muscle. In the presence of Pluronic P85 (P85) high levels of expression of a reporter gene (luciferase) were sustained for at least 40 days and the area under the gene expression curve increased by at least 10 times compared to the DNA alone. The effect of Pluronic depended on the strain of the mouse and the type of the promoter used. Thus, P85 enhanced luciferase expression by 17 to 19-fold in immunocompetent C57Bl/6 and Balb/c mice, while no enhancement was observed with athymic Balb/c nu/nu mice. Furthermore, P85 activated the expression of luciferase gene driven by CMV promoter, NFkappaB and p53 response elements. There was much less or no effect on the gene driven by SV40 promoter or AP1 and CRE response elements. Overall, the promoter selectivity suggested that Pluronic induced transcriptional activation of gene expression by activating the p53 and NFkappaB signaling pathways. In addition Pluronic increased the number of DNA copies and thus affected initial stages of gene transfer in a promoter selective manner.
Collapse
Affiliation(s)
- Zhihui Yang
- Center for Drug Delivery and Nanomedicine and Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE 68198-5830, USA
| | | | | | | | | | | |
Collapse
|
12
|
Kabanov A, Zhu J, Alakhov V. Pluronic Block Copolymers for Gene Delivery. NON-VIRAL VECTORS FOR GENE THERAPY, SECOND EDITION: PART 1 2005; 53PA:231-261. [PMID: 16243066 DOI: 10.1016/s0065-2660(05)53009-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amphiphilic block copolymers of poly(ethylene oxide) and poly(propylene oxide) called Pluronic or poloxamer are commercially available pharmaceutical excipients. They recently attracted considerable attention in gene delivery applications. First, they were shown to increase the transfection with adenovirus and lentivirus vectors. Second, they were shown to increase expression of genes delivered into cells using non-viral vectors. Third, the conjugates of Pluronic with polycations, were used as DNA-condensing agents to form polyplexes. Finally, it was demonstrated that they can increase regional expression of the naked DNA after its injection in the skeletal and cardiac muscles or tumor. Therefore, there is substantial evidence that Pluronic block copolymers can improve gene expression with different delivery routes and different types of vectors, including naked DNA. These results and possible mechanisms of Pluronic effects are discussed. At least in some cases, Pluronic can act as biological adjuvants by activating selected signaling pathways, such as NF-kappaB, and upregulating the transcription of the genes.
Collapse
Affiliation(s)
- Alexander Kabanov
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center Omaha, Nebraska 68198
| | | | | |
Collapse
|
13
|
Kabanov AV, Batrakova EV, Sriadibhatla S, Yang Z, Kelly DL, Alakov VY. Polymer genomics: shifting the gene and drug delivery paradigms. J Control Release 2005; 101:259-71. [PMID: 15588910 DOI: 10.1016/j.jconrel.2004.07.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Accepted: 07/07/2004] [Indexed: 11/17/2022]
Abstract
Pluronic, the A-B-A amphiphilic block copolymers of poly(ethylene oxide) and poly(propylene oxide), can up-regulate the expression of selected genes in cells and alter genetic responses to antineoplastic agents in cancer. Two key new findings are discussed in relation to current drug and gene delivery strategies. First, these block copolymers alone and in combination with a polycation, polyethyleneimine, can up-regulate the expression of reporter genes in stably transfected cells. This underscores the ability of selected synthetic polymers to enhance transgene expression through a mechanism that augments improved DNA delivery into a cell. Second, although, when used alone, Pluronic is "genetically benign," when combined with an antineoplastic agent, doxorubicin, it drastically alters pharmacogenomic responses to this agent and prevents the development of multidrug resistance in breast cancer cells. Collectively, these studies propose the need for a thorough assessment of pharmacogenomic effects of polymer therapeutics to maximize the clinical outcomes and understand the pharmacological and toxicological effects of polymer-based drugs and delivery systems.
Collapse
Affiliation(s)
- Alexander V Kabanov
- Pharmaceutical Sciences Department, College of Pharmacy and Eppley, University of Nebraska Institute for Research in Cancer and Allied Diseases, Nebraska Medical Center, Omaha, NE 68198-5830, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Mah C, Fraites TJ, Cresawn KO, Zolotukhin I, Lewis MA, Byrne BJ. A new method for recombinant adeno-associated virus vector delivery to murine diaphragm. Mol Ther 2004; 9:458-63. [PMID: 15006614 DOI: 10.1016/j.ymthe.2004.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 01/05/2004] [Indexed: 11/25/2022] Open
Abstract
Genetically modified mice are important models for evaluation of potential gene therapies for human diseases. However, their small size often precludes the use of clinically feasible methods for vector delivery, therefore, alternative methods must be used. We have developed a gel-based method for delivery of recombinant adeno-associated virus vectors to the mouse diaphragm, an important target organ for many myopathic diseases. We hypothesized that delivery of vectors in a viscous solution would increase transduction by providing a longer exposure time to target cells. We demonstrate that gel-mediated delivery of rAAV serotypes 1, 2, and 5 results in higher transduction efficiencies than free vectors alone when administered in vivo to mouse diaphragms. We further establish greater tropism of rAAV1 vectors for the diaphragm compared to serotypes 2 and 5. This report describes a novel method for efficient delivery of rAAV vectors to the mouse diaphragm and is the first demonstration of gene transfer to the diaphragm using recombinant adeno-associated virus vectors.
Collapse
Affiliation(s)
- Cathryn Mah
- Powell Gene Therapy Center, University of Florida, Gainesville, 32610, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
This review will provide an overview of delivery strategies that are being evaluated for vascular gene therapy. We will limit our discussion to those studies that have been demonstrated, utilizing in vivo model systems, to limit post-interventional restenosis. We also discuss the efficacy of the vectors and methods currently being used to transfer genetic material to the vessel wall. The efficiency of these techniques is a critical issue for the successful application of gene therapy.
Collapse
Affiliation(s)
- R C Smith
- Division of Cardiovascular Research, St Elizabeth's Medical Center, Boston, MA 02135, USA
| | | |
Collapse
|
16
|
Maillard L, Van Belle E, Tio FO, Rivard A, Kearney M, Branellec D, Steg PG, Isner JM, Walsh K. Effect of percutaneous adenovirus-mediated Gax gene delivery to the arterial wall in double-injured atheromatous stented rabbit iliac arteries. Gene Ther 2000; 7:1353-61. [PMID: 10981661 DOI: 10.1038/sj.gt.3301255] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Though the efficacy of intravascular gene transfer has been demonstrated in native vessels following acute injury, this methodology has not been validated in complex models of vascular injury that more closely mimic clinical angioplasty procedures. Previous studies have shown that Gax gene overexpression modulates the injury-induced remodeling of the vessel in rat carotid and normal rabbit iliac arteries. Here, we evaluated the effect of the Gax gene delivery in atheromatous stented vessels. Rabbits were fed 120 g daily of 1% cholesterol diet for 3 weeks. At 1 week they underwent initial injury on the external iliac artery, then balloon angioplasty was performed at 3 weeks at the same site with a 2.5 mm diameter channel balloon catheter (three times 1 min at 6 atm). Either saline (n = 4) or the control viral construct Ad-CMVluc (5 x 109 p.f.u.) (n = 5) or Ad-CMVGax (5 x 10(9) p.f.u.) (n = 4) was delivered with a poloxamer mixture via a channel balloon (6 atm, 30 min), and a 15 mm long Palmaz-Schatz stent (PS154) was then deployed at the site (1 min, 8 atm). Arteries were analyzed 1 month later. At 1 month, the Ad-CMVGax treated arteries exhibited a lower maximal intimal area (1. 15+/-0.1 mm2) than saline (1.87+/-0.15 mm2, P = 0.007) or Ad-CMVluc-treated vessels (1.98+/-0.31 mm2, P = 0.04). Likewise Ad-CMVGax-treated vessels displayed a lower maximal percentage cross-sectional area narrowing (35.1+/-3.5%) than saline (65.3+/-9.4%, P = 0.01) or Ad-CMVluc-treated vessels (62.7+/-6.7%, P = 0.02). Angiographic analysis revealed larger minimal lumen diameter in Ad-CMVGax treated arteries (2.0+/-0.1 mm) than saline (1.14+/-0.36 mm, P = 0.06) or Ad-CMVluc-treated vessels (1.23+/-0.25 mm, P = 0.02). Overexpression of the Gax gene inhibits neointimal hyperplasia and lumen loss in atheromatous stented rabbit iliac arteries.
Collapse
Affiliation(s)
- L Maillard
- Cardiologie A, D et USCI, Laboratoire de Biotechnologie et Génétique Expérimentale, Hôpital Trousseau, Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Romano G, Michell P, Pacilio C, Giordano A. Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. Stem Cells 2000; 18:19-39. [PMID: 10661569 DOI: 10.1634/stemcells.18-1-19] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last decade, more than 300 phase I and phase II gene-based clinical trials have been conducted worldwide for the treatment of cancer and monogenic disorders. Lately, these trials have been extended to the treatment of AIDS and, to a lesser extent, cardiovascular diseases. There are 27 currently active gene therapy protocols for the treatment of HIV-1 infection in the USA. Preclinical studies are currently in progress to evaluate the possibility of increasing the number of gene therapy clinical trials for cardiopathies, and of beginning new gene therapy programs for neurologic illnesses, autoimmuno diseases, allergies, regeneration of tissues, and to implement procedures of allogeneic tissues or cell transplantation. In addition, gene transfer technology has allowed for the development of innovative vaccine design, known as genetic immunization. This technique has already been applied in the AIDS vaccine programs in the USA. These programs aim to confer protective immunity against HIV-1 transmission to individuals who are at risk of infection. Research programs have also been considered to develop therapeutic vaccines for patients with AIDS and generate either preventive or therapeutic vaccines against malaria, tuberculosis, hepatitis A, B and C viruses, influenza virus, La Crosse virus, and Ebola virus. The potential therapeutic applications of gene transfer technology are enormous. However, the effectiveness of gene therapy programs is still questioned. Furthermore, there is growing concern over the matter of safety of gene delivery and controversy has arisen over the proposal to begin in utero gene therapy clinical trials for the treatment of inherited genetic disorders. From this standpoint, despite the latest significant achievements reported in vector design, it is not possible to predict to what extent gene therapeutic interventions will be effective in patients, and in what time frame.
Collapse
Affiliation(s)
- G Romano
- Kimmel Cancer Institute, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
18
|
Palasis M, Luo Z, Barry JJ, Walsh K. Analysis of adenoviral transport mechanisms in the vessel wall and optimization of gene transfer using local delivery catheters. Hum Gene Ther 2000; 11:237-46. [PMID: 10680838 DOI: 10.1089/10430340050015987] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Local delivery devices have been used for adenovirus-mediated gene transfer to the arterial wall for the potential treatment of vascular proliferative diseases. However, low levels of adenoviral gene expression in vascular smooth muscle cells may pose a serious limitation to the success of these procedures in the clinic. In this study, we examined the mechanisms controlling adenoviral transport to the vessel wall, using both hydrogel-coated and infusion-based local delivery catheters, with the goal of enhancing in vivo gene transfer under clinically relevant delivery conditions. The following delivery parameters were tested in vivo: applied transmural pressure, viral solution volume and concentration, and delivery time. We found that viral particles are transported into the vessel wall in a manner consistent with diffusion rather than pressure-driven convection. Consistent with diffusion, viral concentration was shown to be the key variable for viral transport in the vessel wall and thus gene expression in vascular smooth muscle cells. A transduction level of 17.8+/-3.2% was achieved by delivering a low volume of concentrated adenoviral beta-galactosidase solution through an infusion balloon catheter at low pressure without an adverse effect on medial cellularity. Under these conditions, effective gene transfer was accomplished within a clinically relevant time frame of 2 min, indicating that longer delivery times may not be necessary to achieve efficient gene transfer.
Collapse
Affiliation(s)
- M Palasis
- Boston Scientific Corporation, Natick, MA 01760, USA.
| | | | | | | |
Collapse
|
19
|
Rivard A, Luo Z, Perlman H, Fabre JE, Nguyen T, Maillard L, Walsh K. Early cell loss after angioplasty results in a disproportionate decrease in percutaneous gene transfer to the vessel wall. Hum Gene Ther 1999; 10:711-21. [PMID: 10210139 DOI: 10.1089/10430349950018472] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acute cell loss has been documented following angioplasty of normal rat and rabbit arteries. Here we analyzed the effects of balloon injury intensity on early cellular loss in single- and double-injury models and how it influences the efficiency of percutaneous gene delivery to the vessel wall. Rabbits underwent bilateral iliac angioplasties (n = 52) with 2.5-mm (balloon-to-artery [B/A] ratio, 1.08 to 1.13) and 3.0-mm (B/A ratio, 1.29 to 1.34) balloons. In the single-injury model, the 3.0-mm balloon induced a 61% reduction in medial cellularity at 3 days postinjury (p < 0.001) while the 2.5-mm balloon did not produce significant cell loss. In the double-injury model, the effects were more pronounced, with 35% (p < 0.01) and 91% (p < 0.001) reductions in medial cellularity at 3 days with the 2.5- and 3.0-mm balloons, respectively, but neointimal cellularity was decreased only with the 3.0-mm balloon (37% reduction, p = 0.025). Adenovirus-mediated beta-galactosidase gene delivery with a channel balloon (n = 24) revealed that larger balloon-to-artery ratios decreased both absolute levels and relative frequencies of transgene expression in the vessel wall. In the single-injury model, gene transfer efficiency was 4.2+/-1.1 and 1.3+/-0.25% (p < 0.05) for the small and large balloons, respectively. In the double-injury model, gene transfer efficiency was 6.6+/-1.6 and 2.3+/-0.8% (p < 0.05) in the neointima and 4.1+/-1.2 and 2.6+/-1.2% (p = NS) in the media for the small and large balloon, respectively. We conclude that early cell loss is dependent on the intensity of the injury in both single- and double-injury models of balloon angioplasty, with greater frequencies of cell loss occurring in the media than in the neointima. In both models, larger balloon-to-artery ratios result in disproportionate reductions in percutaneous adenovirus-mediated gene delivery.
Collapse
Affiliation(s)
- A Rivard
- Division of Cardiovascular Research, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA 02135-2997, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
March KL, Woody M, Mehdi K, Zipes DP, Brantly M, Trapnell BC. Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors. Clin Cardiol 1999; 22:I23-9. [PMID: 9929764 PMCID: PMC6655369 DOI: 10.1002/clc.4960221308] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Adenoviral vectors are promising agents for a number of in vivo gene therapy applications including diseases of the heart and coronary vessels. Efficient intravascular gene transfer to specific sites has been achieved in occluded vessels, but otherwise is hampered by the effect of blood flow on localized vector uptake in the vessel wall. An alternative delivery approach to coronary arteries is the expression of diffusible gene products into the pericardial space surrounding the heart and coronary arteries. However, in vivo pericardial access is comparatively difficult and has been limited to surgical approaches. We hypothesized that efficient adenovirus-mediated gene expression in pericardial lining mesothelium could be achieved by transmyocardial vector delivery to the pericardium. To evaluate this concept, a hollow, helical-tipped penetrating catheter was used to deliver vector-containing fluid directly into the intrapericardial space. The catheter was introduced percutaneously in anesthetized mongrel dogs, advanced into the right ventricle, and the tip passed through the apical right ventricular myocardium under direct radiographic visualization until the open end of the catheter tip resided in the intrapericardial space. Adenoviral vectors expressing either nuclear-localizing beta-galactosidase, cytoplasmic luciferase, or secreted human alpha 1AT reporters (Av1nBg, Av1Lu, or Av1Aa, respectively) were instilled through the catheter into the intrapericardial space. Three days later the animals were sacrificed and reporter gene expression was evaluated in pericardium, epicardium, and multiple other tissues. In animals receiving Av1nBg, beta-galactosidase activity was evident in most of the pericardial lining endothelium, up to 100% in many areas. In animals receiving Av1Lu, luciferase reporter activity was abundant in pericardial tissues, but near-background levels were observed in other organs. In animals receiving Av1Aa, human alpha 1AT was abundant (16-29 mg/ml) in pericardial fluid, but was undetectable in serum. All animals tolerated the procedure well with no electrocardiographic changes and no clinical sequelae. These observations demonstrate highly efficient adenovirus vector delivery and gene transfer and expression in the pericardium and support the feasibility of localized gene therapy via catheter-based pericardial approaches. We suggest that the pericardial sac may serve as a sustained-release protein delivery system for the generation of desired gene products or their metabolites for diffusion into the epicardial region.
Collapse
Affiliation(s)
- K L March
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | | | | | |
Collapse
|