1
|
Concilio SC, Russell SJ, Peng KW. A brief review of reporter gene imaging in oncolytic virotherapy and gene therapy. Mol Ther Oncolytics 2021; 21:98-109. [PMID: 33981826 PMCID: PMC8065251 DOI: 10.1016/j.omto.2021.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reporter gene imaging (RGI) can accelerate development timelines for gene and viral therapies by facilitating rapid and noninvasive in vivo studies to determine the biodistribution, magnitude, and durability of viral gene expression and/or virus infection. Functional molecular imaging systems used for this purpose can be divided broadly into deep-tissue and optical modalities. Deep-tissue modalities, which can be used in animals of any size as well as in human subjects, encompass single photon emission computed tomography (SPECT), positron emission tomography (PET), and functional/molecular magnetic resonance imaging (f/mMRI). Optical modalities encompass fluorescence, bioluminescence, Cerenkov luminescence, and photoacoustic imaging and are suitable only for small animal imaging. Here we discuss the mechanisms of action and relative merits of currently available reporter gene systems, highlighting the strengths and weaknesses of deep tissue versus optical imaging systems and the hardware/reagents that are used for data capture and processing. In light of recent technological advances, falling costs of imaging instruments, better availability of novel radioactive and optical tracers, and a growing realization that RGI can give invaluable insights across the entire in vivo translational spectrum, the approach is becoming increasingly essential to facilitate the competitive development of new virus- and gene-based drugs.
Collapse
Affiliation(s)
| | | | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
3
|
Murillo O, Moreno D, Gazquez C, Barberia M, Cenzano I, Navarro I, Uriarte I, Sebastian V, Arruebo M, Ferrer V, Bénichou B, Combal JP, Prieto J, Hernandez-Alcoceba R, Gonzalez Aseguinolaza G. Liver Expression of a MiniATP7B Gene Results in Long-Term Restoration of Copper Homeostasis in a Wilson Disease Model in Mice. Hepatology 2019; 70:108-126. [PMID: 30706949 DOI: 10.1002/hep.30535] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022]
Abstract
Gene therapy with an adeno-associated vector (AAV) serotype 8 encoding the human ATPase copper-transporting beta polypeptide (ATP7B) complementary DNA (cDNA; AAV8-ATP7B) is able to provide long-term copper metabolism correction in 6-week-old male Wilson disease (WD) mice. However, the size of the genome (5.2 kilobases [kb]) surpasses the optimal packaging capacity of the vector, which resulted in low-yield production; in addition, further analyses in WD female mice and in animals with a more advanced disease revealed reduced therapeutic efficacy, as compared to younger males. To improve efficacy of the treatment, an optimized shorter AAV vector was generated, in which four out of six metal-binding domains (MBDs) were deleted from the ATP7B coding sequence, giving rise to the miniATP7B protein (Δ57-486-ATP7B). In contrast to AAV8-ATP7B, AAV8-miniATP7B could be produced at high titers and was able to restore copper homeostasis in 6- and 12-week-old male and female WD mice. In addition, a recently developed synthetic AAV vector, AAVAnc80, carrying the miniATP7B gene was similarly effective at preventing liver damage, restoring copper homeostasis, and improving survival 1 year after treatment. Transduction of approximately 20% of hepatocytes was sufficient to normalize copper homeostasis, suggesting that corrected hepatocytes are acting as a sink to eliminate excess of copper. Importantly, administration of AAVAnc80-miniATP7B was safe in healthy mice and did not result in copper deficiency. Conclusion: In summary, gene therapy using an optimized therapeutic cassette in different AAV systems provides long-term correction of copper metabolism regardless of sex or stage of disease in a clinically relevant WD mouse model. These results pave the way for the implementation of gene therapy in WD patients.
Collapse
Affiliation(s)
- Oihana Murillo
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Daniel Moreno
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Cristina Gazquez
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Miren Barberia
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Itziar Cenzano
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Iñigo Navarro
- Department of Chemistry and Soil Sciences, University of Navarra, IdisNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, CIMA, FIMA, University of Navarra, IdisNA, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Clinica Universidad de Navarra, Pamplona, Spain
| | - Victor Sebastian
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, and Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-, Madrid, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragón Institute of Nanoscience (INA), University of Zaragoza, and Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-, Madrid, Spain
| | | | | | | | - Jesus Prieto
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain
| | - Gloria Gonzalez Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, CIMA, FIMA, University of Navarra, Navarra Institute for Health Research (IdisNA), Pamplona, Spain.,Vivet Therapeutics SAS, Paris, France
| |
Collapse
|
4
|
Ma YY, Jin KT, Wang SB, Wang HJ, Tong XM, Huang DS, Mou XZ. Molecular Imaging of Cancer with Nanoparticle-Based Theranostic Probes. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:1026270. [PMID: 29097909 PMCID: PMC5612740 DOI: 10.1155/2017/1026270] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/16/2017] [Indexed: 11/18/2022]
Abstract
Although advancements in medical technology supporting cancer diagnosis and treatment have improved survival, these technologies still have limitations. Recently, the application of noninvasive imaging for cancer diagnosis and therapy has become an indispensable component in clinical practice. However, current imaging contrasts and tracers, which are in widespread clinical use, have their intrinsic limitations and disadvantages. Nanotechnologies, which have improved in vivo detection and enhanced targeting efficiency for cancer, may overcome some of the limitations of cancer diagnosis and therapy. Theranostic nanoparticles have great potential as a therapeutic model, which possesses the ability of their nanoplatforms to load targeted molecule for both imaging and therapeutic functions. The resulting nanosystem will likely be critical with the growth of personalized medicine because of their diagnostic potential, effectiveness as a drug delivery vehicle, and ability to oversee patient response to therapy. In this review, we discuss the achievements of modern nanoparticles with the goal of accurate tumor imaging and effective treatment and discuss the future prospects.
Collapse
Affiliation(s)
- Ying-Yu Ma
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Ke-Tao Jin
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, China
| | - Shi-Bing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Hui-Ju Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Xiang-Min Tong
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Dong-Sheng Huang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang Province, Hangzhou 310014, China
- School of Basic Medical Sciences, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
5
|
Do we need marker gene studies in humans to improve clinical AAV gene therapy? Gene Ther 2017; 24:72-73. [PMID: 28054581 DOI: 10.1038/gt.2016.84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 11/09/2022]
|
6
|
Nistal-Villan E, Poutou J, Rodríguez-Garcia E, Buñuales M, Carte-Abad B, Prieto J, Gonzalez-Aseguinolaza G, Hernandez-Alcoceba R, Larrea E. A Versatile Vector for In Vivo Monitoring of Type I Interferon Induction and Signaling. PLoS One 2016; 11:e0152031. [PMID: 27007218 PMCID: PMC4805199 DOI: 10.1371/journal.pone.0152031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/08/2016] [Indexed: 12/02/2022] Open
Abstract
Development of reporter systems for in vivo examination of IFN-β induction or signaling of type I interferon (IFN-I) pathways is of great interest in order to characterize biological responses to different inducers such as viral infections. Several reporter mice have been developed to monitor the induction of both pathways in response to different agonists. However, alternative strategies that do not require transgenic mice breeding have to date not been reported. In addition, detection of these pathways in vivo in animal species other than mice has not yet been addressed. Herein we describe a simple method based on the use of an adeno-associated viral vector (AAV8-3xIRF-ISRE-Luc) containing an IFN-β induction and signaling-sensitive promoter sequence controlling the expression of the reporter gene luciferase. This vector is valid for monitoring IFN-I responses in vivo elicited by diverse stimuli in different organs. Intravenous administration of the vector in C57BL/6 mice and Syrian hamsters was able to detect activation of the IFN pathway in the liver upon systemic treatment with different pro-inflammatory agents and infection with Newcastle disease virus (NDV). In addition, intranasal instillation of AAV8-3xIRF-ISRE-Luc showed a rapid and transient IFN-I response in the respiratory tract of mice infected with the influenza A/PR8/34 virus lacking the NS1 protein. In comparison, this response was delayed and exacerbated in mice infected with influenza A/PR/8 wild type virus. In conclusion, the AAV8-3xIRF-ISRE-Luc vector offers the possibility of detecting IFN-I activation in response to different stimuli and in different animal models with no need for reporter transgenic animals.
Collapse
Affiliation(s)
- Estanislao Nistal-Villan
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, Pamplona, Spain
| | - Joanna Poutou
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, Pamplona, Spain
| | - Estefania Rodríguez-Garcia
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, Pamplona, Spain
| | - Maria Buñuales
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, Pamplona, Spain
| | - Beatriz Carte-Abad
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, Pamplona, Spain
| | - Jesus Prieto
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, Pamplona, Spain
| | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy and Regulation of Gene Expression Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, Pamplona, Spain
- * E-mail: (EL); (RHA)
| | - Esther Larrea
- Instituto de Salud Tropical, University of Navarra, Pamplona, Spain
- IdiSNA Navarra Institute for Health Research, Pamplona, Spain
- * E-mail: (EL); (RHA)
| |
Collapse
|
7
|
Forbes SJ, Gupta S, Dhawan A. Cell therapy for liver disease: From liver transplantation to cell factory. J Hepatol 2015; 62:S157-69. [PMID: 25920085 DOI: 10.1016/j.jhep.2015.02.040] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/20/2015] [Accepted: 02/27/2015] [Indexed: 02/08/2023]
Abstract
Work over several decades has laid solid foundations for the advancement of liver cell therapy. To date liver cell therapy in people has taken the form of hepatocyte transplantation for metabolic disorders with a hepatic basis, and for acute or chronic liver failure. Although clinical trials using various types of autologous cells have been implemented to promote liver regeneration or reduce liver fibrosis, clear evidence of therapeutic benefits have so far been lacking. Cell types that have shown efficacy in preclinical models include hepatocytes, liver sinusoidal endothelial cells, mesenchymal stem cells, endothelial progenitor cells, and macrophages. However, positive results in animal models have not always translated through to successful clinical therapies and more realistic preclinical models need to be developed. Studies defining the optimal repopulation by transplanted cells, including routes of cell transplantation, superior engraftment and proliferation of transplanted cells, as well as optimal immunosuppression regimens are required. Tissue engineering approaches to transplant cells in extrahepatic locations have also been proposed. The derivation of hepatocytes from pluripotent or reprogrammed cells raises hope that donor organ and cell shortages could be overcome in the future. Critical hurdles to be overcome include the production of hepatocytes from pluripotent cells with equal functional capacity to primary hepatocytes and long-term phenotypic stability in vivo.
Collapse
Affiliation(s)
- Stuart J Forbes
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh EH16 4UU, United Kingdom.
| | - Sanjeev Gupta
- Departments of Medicine and Pathology, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Ullmann Building, Room 625, Bronx, NY 10461, United States
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Center and NIHR/Wellcome Cell Therapy Unit, King's College Hospital at King's College, London SE59RS, United Kingdom
| |
Collapse
|
8
|
Della Peruta M, Badar A, Rosales C, Chokshi S, Kia A, Nathwani D, Galante E, Yan R, Arstad E, Davidoff AM, Williams R, Lythgoe MF, Nathwani AC. Preferential targeting of disseminated liver tumors using a recombinant adeno-associated viral vector. Hum Gene Ther 2015; 26:94-103. [PMID: 25569358 PMCID: PMC4326028 DOI: 10.1089/hum.2014.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022] Open
Abstract
A novel selectively targeting gene delivery approach has been developed for advanced hepatocellular carcinoma (HCC), a leading cause of cancer mortality whose prognosis remains poor. We combine the strong liver tropism of serotype-8 capsid-pseudotyped adeno-associated viral vectors (AAV8) with a liver-specific promoter (HLP) and microRNA-122a (miR-122a)-mediated posttranscriptional regulation. Systemic administration of our AAV8 construct resulted in preferential transduction of the liver and encouragingly of HCC at heterotopic sites, a finding that could be exploited to target disseminated disease. Tumor selectivity was enhanced by inclusion of miR-122a-binding sequences (ssAAV8-HLP-TK-122aT4) in the expression cassette, resulting in abrogation of transgene expression in normal murine liver but not in HCC. Systemic administration of our tumor-selective vector encoding herpes simplex virus-thymidine kinase (TK) suicide gene resulted in a sevenfold reduction in HCC growth in a syngeneic murine model without toxicity. In summary, we have developed a systemically deliverable gene transfer approach that enables high-level expression of therapeutic genes in HCC but not normal tissues, thus improving the prospects of safe and effective treatment for advanced HCC.
Collapse
Affiliation(s)
- Marco Della Peruta
- Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, United Kingdom
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Adam Badar
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, United Kingdom
| | - Cecilia Rosales
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
- NHS Blood and Transplant, London W1W 8NB, United Kingdom
| | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, United Kingdom
| | - Azadeh Kia
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Devhrut Nathwani
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Eva Galante
- Institute of Nuclear Medicine and Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Ran Yan
- Institute of Nuclear Medicine and Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Erik Arstad
- Institute of Nuclear Medicine and Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Andrew M. Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 33105-3678
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London WC1E 6HX, United Kingdom
| | - Mark F. Lythgoe
- Division of Medicine, UCL Centre for Advanced Biomedical Imaging, University College London, London WC1E 6DD, United Kingdom
| | - Amit C. Nathwani
- Department of Haematology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
- NHS Blood and Transplant, London W1W 8NB, United Kingdom
- Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free Hospital, London NW3 2QG, United Kingdom
| |
Collapse
|
9
|
PET imaging of oncolytic VSV expressing the mutant HSV-1 thymidine kinase transgene in a preclinical HCC rat model. Mol Ther 2015; 23:728-36. [PMID: 25609160 DOI: 10.1038/mt.2015.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/12/2015] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most predominant form of liver cancer and the third leading cause of cancer-related death worldwide. Due to the relative ineffectiveness of conventional HCC therapies, oncolytic viruses have emerged as novel alternative treatment agents. Our previous studies have demonstrated significant prolongation of survival in advanced HCC in rats after oncolytic vesicular stomatitis virus (VSV) treatment. In this study, we aimed to establish a reporter system to reliably and sensitively image VSV in a clinically relevant model of HCC for clinical translation. To this end, an orthotopic, unifocal HCC model in immune-competent Buffalo rats was employed to test a recombinant VSV vector encoding for an enhanced version of the herpes simplex virus 1 (HSV-1) thymidine kinase (sr39tk) reporter, which would allow the indirect detection of VSV via positron emission tomography (PET). The resulting data revealed specific tracer uptake in VSV-HSV1-sr39tk-treated tumors. Further characterization of the VSV-HSV1-sr39tk vector demonstrated its optimal detection time-point after application and its detection limit via PET. In conclusion, oncolytic VSV expressing the HSV1-sr39tk reporter gene allows for highly sensitive in vivo imaging via PET. Therefore, this imaging system may be directly translatable and beneficial in further clinical applications.
Collapse
|
10
|
Augmenting PBGD Expression in the Liver as a Novel Gene Therapy for Acute Intermittent Porphyria (AIPgene). HUM GENE THER CL DEV 2014; 25:61-3. [DOI: 10.1089/humc.2014.2506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
11
|
Pañeda A, Lopez-Franco E, Kaeppel C, Unzu C, Gil-Royo AG, D'Avola D, Beattie SG, Olagüe C, Ferrero R, Sampedro A, Mauleon I, Hermening S, Salmon F, Benito A, Gavira JJ, Cornet ME, del Mar Municio M, von Kalle C, Petry H, Prieto J, Schmidt M, Fontanellas A, González-Aseguinolaza G. Safety and Liver Transduction Efficacy of rAAV5-cohPBGD in Nonhuman Primates: A Potential Therapy for Acute Intermittent Porphyria. Hum Gene Ther 2013; 24:1007-17. [DOI: 10.1089/hum.2013.166] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Astrid Pañeda
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, 31008 Pamplona, Spain
- DIGNA Biotech, 28020 Madrid, Spain
| | - Esperanza Lopez-Franco
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, 31008 Pamplona, Spain
| | - Christine Kaeppel
- National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Carmen Unzu
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, 31008 Pamplona, Spain
| | - Ana Gloria Gil-Royo
- Department of Pharmacology and Toxicology, University of Navarra, (UNAV), 31008 Pamplona, Spain
| | - Delia D'Avola
- Department of Radiology, Department of Cardiology, University Clinic, UNAV, 31008 Pamplona, Spain
- Liver Unit and CIBERehd, 31008 Pamplona, Spain
| | | | - Cristina Olagüe
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, 31008 Pamplona, Spain
| | - Roberto Ferrero
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, 31008 Pamplona, Spain
| | - Ana Sampedro
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, 31008 Pamplona, Spain
| | - Itsaso Mauleon
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, 31008 Pamplona, Spain
| | | | | | - Alberto Benito
- Department of Radiology, Department of Cardiology, University Clinic, UNAV, 31008 Pamplona, Spain
| | - Juan Jose Gavira
- Department of Radiology, Department of Cardiology, University Clinic, UNAV, 31008 Pamplona, Spain
| | | | | | - Christof von Kalle
- National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | | | - Jesus Prieto
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, 31008 Pamplona, Spain
- Department of Radiology, Department of Cardiology, University Clinic, UNAV, 31008 Pamplona, Spain
- Liver Unit and CIBERehd, 31008 Pamplona, Spain
| | - Manfred Schmidt
- National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Antonio Fontanellas
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, 31008 Pamplona, Spain
| | | |
Collapse
|
12
|
In vivo imaging in NHP models of malaria: challenges, progress and outlooks. Parasitol Int 2013; 63:206-15. [PMID: 24042056 PMCID: PMC7108422 DOI: 10.1016/j.parint.2013.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
Abstract
Animal models of malaria, mainly mice, have made a large contribution to our knowledge of host-pathogen interactions and immune responses, and to drug and vaccine design. Non-human primate (NHP) models for malaria are admittedly under-used, although they are probably closer models than mice for human malaria; in particular, NHP models allow the use of human pathogens (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium knowlesi). NHPs, whether natural hosts or experimentally challenged with a simian Plasmodium, can also serve as robust pre-clinical models. Some simian parasites are closely related to a human counterpart, with which they may share a common ancestor, and display similar major features with the human infection and pathology. NHP models allow longitudinal studies, from the early events following sporozoite inoculation to the later events, including analysis of organs and tissues, particularly liver, spleen, brain and bone marrow. NHP models have one other significant advantage over mouse models: NHPs are our closest relatives and thus their biology is very similar to ours. Recently developed in vivo imaging tools have provided insight into malaria parasite infection and disease in mouse models. One advantage of these tools is that they limit the need for invasive procedures, such as tissue biopsies. Many such technologies are now available for NHP studies and provide new opportunities for elucidating host/parasite interactions. The aim of this review is to bring the malaria community up to date on what is currently possible and what soon will be, in terms of in vivo imaging in NHP models of malaria, to consider the pros and the cons of the various techniques, and to identify challenges.
Collapse
|
13
|
Price JC. Molecular brain imaging in the multimodality era. J Cereb Blood Flow Metab 2012; 32:1377-92. [PMID: 22434068 PMCID: PMC3390805 DOI: 10.1038/jcbfm.2012.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 11/08/2022]
Abstract
Multimodality molecular brain imaging encompasses in vivo visualization, evaluation, and measurement of cellular/molecular processes. Instrumentation and software developments over the past 30 years have fueled advancements in multimodality imaging platforms that enable acquisition of multiple complementary imaging outcomes by either combined sequential or simultaneous acquisition. This article provides a general overview of multimodality neuroimaging in the context of positron emission tomography as a molecular imaging tool and magnetic resonance imaging as a structural and functional imaging tool. Several image examples are provided and general challenges are discussed to exemplify complementary features of the modalities, as well as important strengths and weaknesses of combined assessments. Alzheimer's disease is highlighted, as this clinical area has been strongly impacted by multimodality neuroimaging findings that have improved understanding of the natural history of disease progression, early disease detection, and informed therapy evaluation.
Collapse
Affiliation(s)
- Julie C Price
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|