1
|
Abken H. CAR T cell therapies in gastrointestinal cancers: current clinical trials and strategies to overcome challenges. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01062-y. [PMID: 40229574 DOI: 10.1038/s41575-025-01062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/16/2025]
Abstract
Despite multimodal treatment options, most gastrointestinal cancers are still associated with high mortality rates and poor responsiveness to immunotherapy. The unprecedented efficacy of chimeric antigen receptor (CAR)-engineered T cells in the treatment of haematological malignancies raised interest in translating CAR T cell therapies to the treatment of gastrointestinal cancers. Treatment of solid cancers with canonical CAR T cells faces substantial challenges, including the dense architecture of the tumour tissue, the tolerogenic environment with low tumour-intrinsic immunogenicity, the rareness of targetable tumour-selective antigens, the antigenic heterogeneity of cancer cells, and the profound metabolic and immune cell disbalances. This Review provides an overview of CAR T cell trials in the treatment of gastrointestinal cancers, discussing considerations relating to safety, efficacy, potential reasons for failure and options for improving CAR T cells for the future. In addition, lessons regarding how to improve efficacy are drawn from CAR T cells armed with adjuvants that sustain their activation within the hostile environment and activate resident immune cells. As the field is rapidly evolving, current treatment modalities and editing CAR T cell functionalities are being refined towards a potentially more successful CAR T cell therapy for gastrointestinal cancers.
Collapse
Affiliation(s)
- Hinrich Abken
- Leibniz Institute for Immunotherapy, Genetic Immunotherapy Division, Regensburg, Germany.
- Genetic Immunotherapy, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Recktenwald M, Bhattacharya R, Benmassaoud MM, MacAulay J, Chauhan VM, Davis L, Hutt E, Galie PA, Staehle MM, Daringer NM, Pantazes RJ, Vega SL. Extracellular Peptide-Ligand Dimerization Actuator Receptor Design for Reversible and Spatially Dosed 3D Cell-Material Communication. ACS Synth Biol 2024. [PMID: 39705005 DOI: 10.1021/acssynbio.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Transmembrane receptors that endow mammalian cells with the ability to sense and respond to biomaterial-bound ligands will prove instrumental in bridging the fields of synthetic biology and biomaterials. Materials formed with thiol-norbornene chemistry are amenable to thiol-peptide patterning, and this study reports the rational design of synthetic receptors that reversibly activate cellular responses based on peptide-ligand recognition. This transmembrane receptor platform, termed Extracellular Peptide-ligand Dimerization Actuator (EPDA), consists of stimulatory or inhibitory receptor pairs that come together upon extracellular peptide dimer binding with corresponding monobody receptors. Intracellularly, Stimulatory EPDAs phosphorylate a substrate that merges two protein halves, whereas Inhibitory EPDAs revert split proteins back to their unmerged, inactive state via substrate dephosphorylation. To identify ligand-receptor pairs, over 2000 candidate monobodies were built in silico using PETEI, a novel computational algorithm we developed. The top 30 monobodies based on predicted peptide binding affinity were tested experimentally, and monobodies that induced the highest change in protein merging (green fluorescent protein, GFP) were incorporated in the final EPDA receptor design. In soluble form, stimulatory peptides induce intracellular GFP merging in a time- and concentration-dependent manner, and varying levels of green fluorescence were observed based on stimulatory and inhibitory peptide-ligand dosing. EPDA-programmed cells encapsulated in thiol-norbornene hydrogels patterned with stimulatory and inhibitory domains exhibited 3D activation or deactivation based on their location within peptide-patterned hydrogels. EPDA receptors can recognize a myriad of peptide-ligands bound to 3D materials, can reversibly induce cellular responses beyond fluorescence, and are widely applicable in biological research and regenerative medicine.
Collapse
Affiliation(s)
- Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Ritankar Bhattacharya
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Mohammed Mehdi Benmassaoud
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - James MacAulay
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Varun M Chauhan
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Leah Davis
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Mary M Staehle
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
| | - Robert J Pantazes
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, New Jersey 08028, United States
- Department of Orthopaedic Surgery, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
3
|
Damiani D, Tiribelli M. Advancing Chimeric Antigen Receptor T-Cell Therapy for Acute Myeloid Leukemia: Current Limitations and Emerging Strategies. Pharmaceuticals (Basel) 2024; 17:1629. [PMID: 39770471 PMCID: PMC11728840 DOI: 10.3390/ph17121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 01/16/2025] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents one of the most impressive advances in anticancer therapy of the last decade. While CAR T-cells are gaining ground in various B cell malignancies, their use in acute myeloid leukemia (AML) remains limited, and no CAR-T product has yet received approval for AML. The main limitation of CAR-T therapy in AML is the lack of specific antigens that are expressed in leukemic cells but not in their healthy counterparts, such as hematopoietic stem cells (HSCs), as their targeting would result in an on-target/off-tumor toxicity. Moreover, the heterogeneity of AML and the tendency of blasts to modify surface antigens' expression in the course of the disease make identification of suitable targets even more challenging. Lastly, AML's immunosuppressive microenvironment dampens CAR-T therapeutic activities. In this review, we focus on the actual pitfalls of CAR T-cell therapy in AML, and we discuss promising approaches to overcome them.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
5
|
Kalland ME, Pose-Boirazian T, Palomo GM, Naumann-Winter F, Costa E, Matusevicius D, Duarte DM, Malikova E, Vitezic D, Larsson K, Magrelli A, Stoyanova-Beninska V, Mariz S. Advancing rare disease treatment: EMA's decade-long insights into engineered adoptive cell therapy for rare cancers and orphan designation. Gene Ther 2024; 31:366-377. [PMID: 38480914 PMCID: PMC11257961 DOI: 10.1038/s41434-024-00446-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
Adoptive cell therapy (ACT), particularly chimeric antigen receptor (CAR)-T cell therapy, has emerged as a promising approach for targeting and treating rare oncological conditions. The orphan medicinal product designation by the European Union (EU) plays a crucial role in promoting development of medicines for rare conditions according to the EU Orphan Regulation.This regulatory landscape analysis examines the evolution, regulatory challenges, and clinical outcomes of genetically engineered ACT, with a focus on CAR-T cell therapies, based on the European Medicines Agency's Committee for Orphan Medicinal Products review of applications evaluated for orphan designation and maintenance of the status over a 10-year period. In total, 30 of 36 applications were granted an orphan status, and 14 subsequently applied for maintenance of the status at time of marketing authorisation or extension of indication. Most of the products were autologous cell therapies using a lentiviral vector and were developed for the treatment of rare haematological B-cell malignancies. The findings revealed that 80% (29/36) of the submissions for orphan designation were supported by preliminary clinical data showing a potential efficacy of the candidate products and an added clinical benefit over currently authorised medicines for the proposed orphan condition. Notably, in 89% (32/36) of the cases significant benefit of the new products was accepted based on a clinically relevant advantage over existing therapies. Twelve of fourteen submissions reviewed for maintenance of the status at time of marketing authorisation or extension of indication demonstrated significant benefit of the products over existing satisfactory methods of treatment within the approved therapeutic indications, but one of the applications was withdrawn during the regulatory evaluation.This article summarises the key findings related to the use of engineered ACT, primarily CAR-T cell therapies, in targeting and treating rare cancers in the EU. It emphasises the importance of use of clinical data in supporting medical plausibility and significant benefit at the stage of orphan designation and highlights the high success rate for these products in obtaining initial orphan designations and subsequent maintaining the status at the time of marketing authorisation or extension of indication.
Collapse
Affiliation(s)
- Maria Elisabeth Kalland
- Norwegian Medical Products Agency, Grensesvingen 26, 0663, Oslo, Norway.
- Committee for Orphan Medicinal Products, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands.
| | - Tomas Pose-Boirazian
- Orphan Medicines Office, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
| | - Gloria Maria Palomo
- Committee for Orphan Medicinal Products, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
- Agencia Española de Medicamentos y Productos Sanitarios, Calle Campezo n° 1, Edificio 8, 28022, Madrid, Spain
| | - Frauke Naumann-Winter
- Committee for Orphan Medicinal Products, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
- Bundesinstitut für Arzneimittel und Medizinprodukte, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Enrico Costa
- Committee for Orphan Medicinal Products, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
- Agenzia Italiana del Farmaco, Via del Tritone, 181, 00187, Rome, Italy
| | - Darius Matusevicius
- Committee for Orphan Medicinal Products, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
- Swedish Medical Products Agency, Dag Hammarskjölds väg 42, 752 37, Uppsala, Sweden
| | - Dinah M Duarte
- INFARMED - National Authority of Medicines and Health Products, I.P., Avenida do Brasil 53, 1749-004, Lisbon, Portugal
- Universidade de Lisboa, Faculdade de Farmácia, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Eva Malikova
- Committee for Orphan Medicinal Products, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
- State Institute for Drug Control, Kvetná 11, 825 08, Bratislava, Slovakia
- Department of Pharmacology and Toxicology, Comenius University, Odbojárov 10, 832 32, Bratislava, Slovakia
| | - Dinko Vitezic
- Committee for Orphan Medicinal Products, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
- University of Rijeka, Faculty of Medicine, and University Hospital Centre Rijeka, Braće Branchetta 20/1, 51000, Rijeka, Croatia
| | - Kristina Larsson
- Orphan Medicines Office, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
| | - Armando Magrelli
- Committee for Orphan Medicinal Products, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Violeta Stoyanova-Beninska
- Committee for Orphan Medicinal Products, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
- College ter Beoordeling van Geneesmiddelen, Graadt van Roggenweg 500, 3531 AH, Utrecht, The Netherlands
| | - Segundo Mariz
- Orphan Medicines Office, European Medicines Agency, Domenico Scarlattilaan 6, 1083 HS, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Harrer DC, Li SS, Kaljanac M, Bezler V, Barden M, Pan H, Herr W, Abken H. Magnetic CAR T cell purification using an anti-G4S linker antibody. J Immunol Methods 2024; 528:113667. [PMID: 38574803 DOI: 10.1016/j.jim.2024.113667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Chimeric antigen receptor (CAR) redirected T cells are successfully employed in the combat against several hematological malignancies, however, are often compromised by low transduction rates making refinement of the CAR T cell products necessary. Here, we report a broadly applicable enrichment protocol relying on marking CAR T cells with an anti-glycine4-serine (G4S) linker antibody followed by magnetic activated cell sorting (MACS). The protocol is broadly applicable since the G4S peptide is an integral part of the vast majority of CARs as it links the VH and VL recognition domains. We demonstrate the feasibility by using the canonical second generation CARs specific for CEA and Her2, respectively, obtaining highly purified CAR T cell products in a one-step procedure without impairing cell viability. The protocol is also applicable to a dual specific CAR (tandem CAR). Except for CD39, T cell activation/exhaustion markers were not upregulated after separation. Purified CAR T cells retained their functionality with respect to antigen-specific cytokine secretion, cytotoxicity, and the capacity to proliferate and eliminate cognate tumor cells upon repetitive stimulation. Collectively, the one-step protocol for purifying CAR T cells extends the toolbox for preclinical research and specifically for clinical CAR T cell manufacturing.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department of Internal Medicine III - Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany; Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany.
| | - Sin-Syue Li
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany; Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Marcell Kaljanac
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany
| | - Valerie Bezler
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany
| | - Markus Barden
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany
| | - Hong Pan
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III - Hematology and Medical Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, and Chair Genetic Immunotherapy, University Regensburg, Germany
| |
Collapse
|
7
|
Colina AS, Shah V, Shah RK, Kozlik T, Dash RK, Terhune S, Zamora AE. Current advances in experimental and computational approaches to enhance CAR T cell manufacturing protocols and improve clinical efficacy. FRONTIERS IN MOLECULAR MEDICINE 2024; 4:1310002. [PMID: 39086435 PMCID: PMC11285593 DOI: 10.3389/fmmed.2024.1310002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 08/02/2024]
Abstract
Since the FDA's approval of chimeric antigen receptor (CAR) T cells in 2017, significant improvements have been made in the design of chimeric antigen receptor constructs and in the manufacturing of CAR T cell therapies resulting in increased in vivo CAR T cell persistence and improved clinical outcome in certain hematological malignancies. Despite the remarkable clinical response seen in some patients, challenges remain in achieving durable long-term tumor-free survival, reducing therapy associated malignancies and toxicities, and expanding on the types of cancers that can be treated with this therapeutic modality. Careful analysis of the biological factors demarcating efficacious from suboptimal CAR T cell responses will be of paramount importance to address these shortcomings. With the ever-expanding toolbox of experimental approaches, single-cell technologies, and computational resources, there is renowned interest in discovering new ways to streamline the development and validation of new CAR T cell products. Better and more accurate prognostic and predictive models can be developed to help guide and inform clinical decision making by incorporating these approaches into translational and clinical workflows. In this review, we provide a brief overview of recent advancements in CAR T cell manufacturing and describe the strategies used to selectively expand specific phenotypic subsets. Additionally, we review experimental approaches to assess CAR T cell functionality and summarize current in silico methods which have the potential to improve CAR T cell manufacturing and predict clinical outcomes.
Collapse
Affiliation(s)
- Alfredo S. Colina
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Viren Shah
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Ravi K. Shah
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tanya Kozlik
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Scott Terhune
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Anthony E. Zamora
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
8
|
Peters DT, Savoldo B, Grover NS. Building safety into CAR-T therapy. Hum Vaccin Immunother 2023; 19:2275457. [PMID: 37968136 PMCID: PMC10760383 DOI: 10.1080/21645515.2023.2275457] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/22/2023] [Indexed: 11/17/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy is an innovative immunotherapeutic approach that utilizes genetically modified T-cells to eliminate cancer cells using the specificity of a monoclonal antibody (mAb) coupled to the potent cytotoxicity of the T-lymphocyte. CAR-T therapy has yielded significant improvements in relapsed/refractory B-cell malignancies. Given these successes, CAR-T has quickly spread to other hematologic malignancies and is being increasingly explored in solid tumors. From early clinical applications to present day, CAR-T cell therapy has been accompanied by significant toxicities, namely cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and on-target off-tumor (OTOT) effects. While medical management has improved for CRS and ICANS, the ongoing threat of refractory symptoms and unanticipated idiosyncratic toxicities highlights the need for more powerful safety measures. This is particularly poignant as CAR T-cell therapy continues to expand into the solid tumor space, where the risk of unpredictable toxicities remains high. We will review CAR-T as an immunotherapeutic approach including emergence of unique toxicities throughout development. We will discuss known and novel strategies to mitigate these toxicities; additional safety challenges in the treatment of solid tumors, and how the inducible Caspase 9 "safety switch" provides an ideal platform for continued exploration.
Collapse
Affiliation(s)
- Daniel T. Peters
- Department of Hematology Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, Department of Pediatrics, Hematology Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Natalie S. Grover
- Lineberger Comprehensive Cancer Center, Department of Medicine, Hematology Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Pérez-Amill L, Bataller À, Delgado J, Esteve J, Juan M, Klein-González N. Advancing CART therapy for acute myeloid leukemia: recent breakthroughs and strategies for future development. Front Immunol 2023; 14:1260470. [PMID: 38098489 PMCID: PMC10720337 DOI: 10.3389/fimmu.2023.1260470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
Chimeric antigen receptor (CAR) T therapies are being developed for acute myeloid leukemia (AML) on the basis of the results obtained for other haematological malignancies and the need of new treatments for relapsed and refractory AML. The biggest challenge of CART therapy for AML is to identify a specific target antigen, since antigens expressed in AML cells are usually shared with healthy haematopoietic stem cells (HSC). The concomitant expression of the target antigen on both tumour and HSC may lead to on-target/off-tumour toxicity. In this review, we guide researchers to design, develop, and translate to the clinic CART therapies for the treatment of AML. Specifically, we describe what issues have to be considered to design these therapies; what in vitro and in vivo assays can be used to prove their efficacy and safety; and what expertise and facilities are needed to treat and manage patients at the hospital.
Collapse
Affiliation(s)
- Lorena Pérez-Amill
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Àlex Bataller
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Julio Delgado
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Jordi Esteve
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Haematology, Institut Clínic de Malalties Hematològiques i Oncològiques (ICHMO), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Manel Juan
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
- Hospital Sant Joan de Déu, Universidad de Barcelona, Barcelona, Spain
| | - Nela Klein-González
- Fundació de Recerca Clínic Barcelona-Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Gyala Therapeutics S.L, Barcelona, Spain
- Department of Immunology, Centre de Diagnòstic Biomèdic (CDB), Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Dibas A, Rhiel M, Patel VB, Andrieux G, Boerries M, Cornu TI, Alzubi J, Cathomen T. Cell-Based Models of 'Cytokine Release Syndrome' Endorse CD40L and Granulocyte-Macrophage Colony-Stimulating Factor Knockout in Chimeric Antigen Receptor T Cells as Mitigation Strategy. Cells 2023; 12:2581. [PMID: 37947658 PMCID: PMC10649043 DOI: 10.3390/cells12212581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
While chimeric antigen receptor (CAR) T cell therapy has shown promising outcomes among patients with hematologic malignancies, it has also been associated with undesirable side-effects such as cytokine release syndrome (CRS). CRS is triggered by CAR T-cell-based activation of monocytes, which are stimulated via the CD40L-CD40R axis or via uptake of GM-CSF to secrete proinflammatory cytokines. Mouse models have been used to model CRS, but working with them is labor-intensive and they are not amenable to screening approaches. To overcome this challenge, we established two simple cell-based CRS in vitro models that entail the co-culturing of leukemic B cells with CD19-targeting CAR T cells and primary monocytes from the same donor. Upon antigen encounter, CAR T cells upregulated CD40L and released GM-CSF which in turn stimulated the monocytes to secrete IL-6. To endorse these models, we demonstrated that neutralizing antibodies or genetic disruption of the CD40L and/or CSF2 loci in CAR T cells using CRISPR-Cas technology significantly reduced IL-6 secretion by bystander monocytes without affecting the cytolytic activity of the engineered lymphocytes in vitro. Overall, our cell-based models were able to recapitulate CRS in vitro, allowing us to validate mitigation strategies based on antibodies or genome editing.
Collapse
Affiliation(s)
- Ala Dibas
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (A.D.); (M.R.); (V.B.P.); (T.I.C.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Ph.D. Program, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Manuel Rhiel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (A.D.); (M.R.); (V.B.P.); (T.I.C.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Vidisha Bhavesh Patel
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (A.D.); (M.R.); (V.B.P.); (T.I.C.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (G.A.); (M.B.)
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (G.A.); (M.B.)
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, a Partnership between DKFZ and Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Tatjana I. Cornu
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (A.D.); (M.R.); (V.B.P.); (T.I.C.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jamal Alzubi
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (A.D.); (M.R.); (V.B.P.); (T.I.C.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (A.D.); (M.R.); (V.B.P.); (T.I.C.)
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
11
|
Kaljanac M, Abken H. Do Treg Speed Up with CARs? Chimeric Antigen Receptor Treg Engineered to Induce Transplant Tolerance. Transplantation 2023; 107:74-85. [PMID: 36226849 PMCID: PMC9746345 DOI: 10.1097/tp.0000000000004316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Adoptive transfer of regulatory T cells (Treg) can induce transplant tolerance in preclinical models by suppressing alloantigen-directed inflammatory responses; clinical translation was so far hampered by the low abundance of Treg with allo-specificity in the peripheral blood. In this situation, ex vivo engineering of Treg with a T-cell receptor (TCR) or chimeric antigen receptor (CAR) provides a cell population with predefined specificity that can be amplified and administered to the patient. In contrast to TCR-engineered Treg, CAR Treg can be redirected toward a broad panel of targets in an HLA-unrestricted fashion' making these cells attractive to provide antigen-specific tolerance toward the transplanted organ. In preclinical models, CAR Treg accumulate and amplify at the targeted transplant, maintain their differentiated phenotype, and execute immune repression more vigorously than polyclonal Treg. With that, CAR Treg are providing hope in establishing allospecific, localized immune tolerance in the long term' and the first clinical trials administering CAR Treg for the treatment of transplant rejection are initiated. Here, we review the current platforms for developing and manufacturing alloantigen-specific CAR Treg and discuss the therapeutic potential and current hurdles in translating CAR Treg into clinical exploration.
Collapse
Affiliation(s)
- Marcell Kaljanac
- Division Genetic Immunotherapy, and Chair Genetic Immunotherapy, Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| | - Hinrich Abken
- Division Genetic Immunotherapy, and Chair Genetic Immunotherapy, Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| |
Collapse
|
12
|
Assi R, Salman H. Harnessing the Potential of Chimeric Antigen Receptor T-Cell Therapy for the Treatment of T-Cell Malignancies: A Dare or Double Dare? Cells 2022; 11:cells11243971. [PMID: 36552738 PMCID: PMC9776964 DOI: 10.3390/cells11243971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Historical standard of care treatments of T-cell malignancies generally entailed the use of cytotoxic and depleting approaches. These strategies are, however, poorly validated and record dismal long-term outcomes. More recently, the introduction and approval of chimeric antigen receptor (CAR)-T cell therapy has revolutionized the therapy of B-cell malignancies. Translating this success to the T-cell compartment has so far proven hazardous, entangled by risks of fratricide, T-cell aplasia, and product contamination by malignant cells. Several strategies have been utilized to overcome these challenges. These include the targeting of a selective cognate antigen exclusive to T-cells or a subset of T-cells, disruption of target antigen expression on CAR-T constructs, use of safety switches, non-viral transduction, and the introduction of allogeneic compounds and gene editing technologies. We herein overview these historical challenges and revisit the opportunities provided as potential solutions. An in-depth understanding of the tumor microenvironment is required to optimally harness the potential of the immune system to treat T-cell malignancies.
Collapse
Affiliation(s)
- Rita Assi
- Division of Hematology-Oncology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Huda Salman
- Division of Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: Huda Salman, MD, PhD, MA Director, Brown Center for Immunotherapy, Don Brown Professor of Immunotherapy, Professor of Medicine, Program Leader–Leukemia, Indiana University School of Medicine;
| |
Collapse
|
13
|
Engineering T-cells with chimeric antigen receptors to combat hematological cancers: an update on clinical trials. Cancer Immunol Immunother 2022; 71:2301-2311. [PMID: 35199207 PMCID: PMC9463290 DOI: 10.1007/s00262-022-03163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
Chimeric antigen receptor (CAR) redirected T-cells has shown efficacy in the treatment of B-cell leukemia/lymphoma, however, high numbers of relapses occur due to loss of targeted antigen or intrinsic failure of the CAR T-cells. In this situation modifications of the basic strategy are envisaged to reduce the risk of relapse, some of them are in early clinical exploration. These include simultaneous targeting of multiple antigens or combination of CAR T-cell therapy with other treatment modalities such as checkpoint inhibitors. The review evaluates and discusses these modified advanced therapies and pre-clinical approaches with respect to their potential to control leukemia and lymphoma in the long-term.
Collapse
|
14
|
Harrer DC, Heidenreich M, Fante MA, Müller V, Haehnel V, Offner R, Burkhardt R, Herr W, Edinger M, Wolff D, Thomas S, Brosig A. Apheresis for chimeric antigen receptor T‐cell production in adult lymphoma patients. Transfusion 2022; 62:1602-1611. [DOI: 10.1111/trf.17030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Dennis Christoph Harrer
- Department of Internal Medicine III, Hematology and Oncology University Hospital Regensburg Regensburg Germany
| | - Martin Heidenreich
- Department of Internal Medicine III, Hematology and Oncology University Hospital Regensburg Regensburg Germany
| | - Matthias Alexander Fante
- Department of Internal Medicine III, Hematology and Oncology University Hospital Regensburg Regensburg Germany
| | - Viktoria Müller
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine University Hospital Regensburg Regensburg Germany
| | - Viola Haehnel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine University Hospital Regensburg Regensburg Germany
| | - Robert Offner
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine University Hospital Regensburg Regensburg Germany
| | - Ralph Burkhardt
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine University Hospital Regensburg Regensburg Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology University Hospital Regensburg Regensburg Germany
| | - Matthias Edinger
- Department of Internal Medicine III, Hematology and Oncology University Hospital Regensburg Regensburg Germany
| | - Daniel Wolff
- Department of Internal Medicine III, Hematology and Oncology University Hospital Regensburg Regensburg Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology University Hospital Regensburg Regensburg Germany
- Leibniz Institute for Immunotherapy Division of Genetic‐Immunotherapy Regensburg Germany
| | - Andreas Brosig
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine University Hospital Regensburg Regensburg Germany
| |
Collapse
|
15
|
Lindner D, Arndt C, Loureiro LR, Feldmann A, Kegler A, Koristka S, Berndt N, Mitwasi N, Bergmann R, Frenz M, Bachmann MP. Combining Radiation- with Immunotherapy in Prostate Cancer: Influence of Radiation on T Cells. Int J Mol Sci 2022; 23:ijms23147922. [PMID: 35887271 PMCID: PMC9324763 DOI: 10.3390/ijms23147922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Radiation of tumor cells can lead to the selection and outgrowth of tumor escape variants. As radioresistant tumor cells are still sensitive to retargeting of T cells, it appears promising to combine radio- with immunotherapy keeping in mind that the radiation of tumors favors the local conditions for immunotherapy. However, radiation of solid tumors will not only hit the tumor cells but also the infiltrated immune cells. Therefore, we wanted to learn how radiation influences the functionality of T cells with respect to retargeting to tumor cells via a conventional bispecific T cell engager (BiTE) and our previously described modular BiTE format UNImAb. T cells were irradiated between 2 and 50 Gy. Low dose radiation of T cells up to about 20 Gy caused an increased release of the cytokines IL-2, TNF and interferon-γ and an improved capability to kill target cells. Although radiation with 50 Gy strongly reduced the function of the T cells, it did not completely abrogate the functionality of the T cells.
Collapse
Affiliation(s)
- Diana Lindner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
- Tumor Immunology, University Hospital Carl Gustav Carus, University Cancer Center (UCC), Technical University Dresden, 01307 Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Liliana Rodrigues Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Stefanie Koristka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Nicole Berndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Nicola Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Marcus Frenz
- Faculty Informatik and Wirtschaftsinformatik, Provadis School of International Management and Technology AG, 65926 Frankfurt, Germany;
| | - Michael P. Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany; (D.L.); (C.A.); (L.R.L.); (A.F.); (A.K.); (S.K.); (N.B.); (N.M.); (R.B.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-351-260-3170
| |
Collapse
|
16
|
Development of Cancer Immunotherapies. Cancer Treat Res 2022; 183:1-48. [PMID: 35551655 DOI: 10.1007/978-3-030-96376-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cancer immunotherapy, or the utilization of components of the immune system to target and eliminate cancer, has become a highly active area of research in the past several decades and a common treatment strategy for several cancer types. The concept of harnessing the immune system for this purpose originated over 100 years ago when a physician by the name of William Coley successfully treated several of his cancer patients with a combination of live and attenuated bacteria, later known as "Coley's Toxins", after observing a subset of prior patients enter remission following their diagnosis with the common bacterial infection, erysipelas. However, it was not until late in the twentieth century that cancer immunotherapies were developed for widespread use, thereby transforming the treatment landscape of numerous cancer types. Pivotal studies elucidating molecular and cellular functions of immune cells, such as the discovery of IL-2 and production of monoclonal antibodies, fostered the development of novel techniques for studying the immune system and ultimately the development and approval of several cancer immunotherapies by the United States Food and Drug Association in the 1980s and 1990s, including the tuberculosis vaccine-Bacillus Calmette-Guérin, IL-2, and the CD20-targeting monoclonal antibody. Approval of the first therapeutic cancer vaccine, Sipuleucel-T, for the treatment of metastatic castration-resistant prostate cancer and the groundbreaking success and approval of immune checkpoint inhibitors and chimeric antigen receptor T cell therapy in the last decade, have driven an explosion of interest in and pursuit of novel cancer immunotherapy strategies. A broad range of modalities ranging from antibodies to adoptive T cell therapies is under investigation for the generalized treatment of a broad spectrum of cancers as well as personalized medicine. This chapter will focus on the recent advances, current strategies, and future outlook of immunotherapy development for the treatment of cancer.
Collapse
|
17
|
de Campos NSP, de Oliveira Beserra A, Pereira PHB, Chaves AS, Fonseca FLA, da Silva Medina T, dos Santos TG, Wang Y, Marasco WA, Suarez ER. Immune Checkpoint Blockade via PD-L1 Potentiates More CD28-Based than 4-1BB-Based Anti-Carbonic Anhydrase IX Chimeric Antigen Receptor T Cells. Int J Mol Sci 2022; 23:ijms23105448. [PMID: 35628256 PMCID: PMC9141239 DOI: 10.3390/ijms23105448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
The complete regression of clear cell renal cell carcinoma (ccRCC) obtained pre-clinically with anti-carbonic anhydrase IX (CAIX) G36 chimeric antigen receptor (CAR) T cells in doses equivalent to ≅108 CAR T cells/kg renewed the potential of this target to treat ccRCC and other tumors in hypoxia. The immune checkpoint blockade (ICB) brought durable clinical responses in advanced ccRCC and other tumors. Here, we tested CD8α/4-1BB compared to CD28-based anti-CAIX CAR peripheral blood mononuclear cells (PBMCs) releasing anti-programmed cell death ligand-1 (PD-L1) IgG4 for human ccRCC treatment in vitro and in an orthotopic NSG mice model in vivo. Using a ≅107 CAR PBMCs cells/kg dose, anti-CAIX CD28 CAR T cells releasing anti-PD-L1 IgG highly decrease both tumor volume and weight in vivo, avoiding the occurrence of metastasis. This antitumoral superiority of CD28-based CAR PBMCs cells compared to 4-1BB occurred under ICB via PD-L1. Furthermore, the T cell exhaustion status in peripheral CD4 T cells, additionally to CD8, was critical for CAR T cells efficiency. The lack of hepatotoxicity and nephrotoxicity upon the administration of a 107 CAR PMBCs cells/kg dose is the basis for carrying out clinical trials using anti-CAIX CD28 CAR PBMCs cells releasing anti-PD-L1 antibodies or anti-CAIX 4-1BB CAR T cells, offering exciting new prospects for the treatment of refractory ccRCC and hypoxic tumors.
Collapse
Affiliation(s)
| | - Adriano de Oliveira Beserra
- A.C. Camargo Cancer Center, Centro Internacional de Pesquisa, Sao Paulo 01508-010, SP, Brazil; (A.d.O.B.); (P.H.B.P.); (A.S.C.); (T.d.S.M.); (T.G.d.S.)
| | - Pedro Henrique Barbosa Pereira
- A.C. Camargo Cancer Center, Centro Internacional de Pesquisa, Sao Paulo 01508-010, SP, Brazil; (A.d.O.B.); (P.H.B.P.); (A.S.C.); (T.d.S.M.); (T.G.d.S.)
| | - Alexandre Silva Chaves
- A.C. Camargo Cancer Center, Centro Internacional de Pesquisa, Sao Paulo 01508-010, SP, Brazil; (A.d.O.B.); (P.H.B.P.); (A.S.C.); (T.d.S.M.); (T.G.d.S.)
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas, Centro Universitário Faculdade de Medicina do ABC, Santo Andre 09060-870, SP, Brazil;
- Departamento de Ciências Farmacêuticas, Universidade Federal de Aso Paulo, Diadema 09920-000, SP, Brazil
| | - Tiago da Silva Medina
- A.C. Camargo Cancer Center, Centro Internacional de Pesquisa, Sao Paulo 01508-010, SP, Brazil; (A.d.O.B.); (P.H.B.P.); (A.S.C.); (T.d.S.M.); (T.G.d.S.)
| | - Tiago Goss dos Santos
- A.C. Camargo Cancer Center, Centro Internacional de Pesquisa, Sao Paulo 01508-010, SP, Brazil; (A.d.O.B.); (P.H.B.P.); (A.S.C.); (T.d.S.M.); (T.G.d.S.)
| | - Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Wayne Anthony Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: (W.A.M.); (E.R.S.)
| | - Eloah Rabello Suarez
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre 09210-580, SP, Brazil;
- Correspondence: (W.A.M.); (E.R.S.)
| |
Collapse
|