1
|
Williams J, Menendez Montes JM, Cunningham S, Wolfram U, Ozel A. Deposition simulations of realistic dosages in patient-specific airways with two- and four-way coupling. Int J Pharm 2025; 669:125019. [PMID: 39653286 DOI: 10.1016/j.ijpharm.2024.125019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
Inhalers spray over 100 million drug particles into the mouth, where a significant portion of the drug may deposit. Understanding how the complex interplay between particle and solid phases influence deposition is crucial for optimising treatments. Existing modelling studies neglect any effect of particle momentum on the fluid (one-way coupling), which may cause poor prediction of forces acting on particles. In this study, we simulate a realistic number of particles (up to 160 million) in a patient-specific geometry. We study the effect of momentum transfer from particles to the fluid (two-way coupling) and particle-particle interactions (four-way coupling) on deposition. We also explore the effect of tracking groups of particles ('parcels') to lower computational cost. Upper airway deposition fraction increased from 0.33 (one-way coupled) to 0.87 with two-way coupling and 10µm particle diameter. Four-way coupling lowers upper airway deposition by approximately 10% at 100µg dosages. We use parcel modelling to study deposition of 4-20µm particles, observing significant influence of two-way coupling in each simulation. These results show that future studies should model realistic dosages for accurate prediction of deposition which may inform clinical decision-making.
Collapse
Affiliation(s)
- Josh Williams
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK; STFC Hartree Centre, Daresbury Laboratory, Warrington, UK.
| | | | - Steve Cunningham
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Uwe Wolfram
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK; Institute for Material Science and Engineering, TU Clausthal, Clausthal-Zellerfeld, Germany
| | - Ali Ozel
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
2
|
Woodward IR, Yu Y, Fromen CA. Experimental Full-volume Airway Approximation for Assessing Breath-dependent Regional Aerosol Deposition. DEVICE 2024; 2:100514. [PMID: 39734794 PMCID: PMC11671099 DOI: 10.1016/j.device.2024.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Modeling aerosol dynamics in the airways is challenging, and most modern personalized in vitro tools consider only a single inhalation maneuver through less than 10% of the total lung volume. Here, we present an in vitro modeling pipeline to produce a device that preserves patient-specific upper airways while approximating deeper airways, capable of achieving total lung volumes over 7 liters. The modular system, called TIDAL, includes tunable inhalation and exhalation breathing capabilities with resting flow rates up to 30 liters per minute. We show that the TIDAL system is easily coupled with industrially and clinically relevant devices for aerosol therapeutics. Using a vibrating mesh nebulizer, we report central-to-peripheral (C:P) aerosol deposition measurements aligned with both in vivo and in silico benchmarks. These findings underscore the effectiveness of the TIDAL model in predicting airway deposition dynamics for inhalable therapeutics.
Collapse
Affiliation(s)
- Ian R. Woodward
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Yinkui Yu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | | |
Collapse
|
3
|
Gu Q, Wu H, Sui X, Zhang X, Liu Y, Feng W, Zhou R, Du S. Leveraging Numerical Simulation Technology to Advance Drug Preparation: A Comprehensive Review of Application Scenarios and Cases. Pharmaceutics 2024; 16:1304. [PMID: 39458634 PMCID: PMC11511050 DOI: 10.3390/pharmaceutics16101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Numerical simulation plays an important role in pharmaceutical preparation recently. Mechanistic models, as a type of numerical model, are widely used in the study of pharmaceutical preparations. Mechanistic models are based on a priori knowledge, i.e., laws of physics, chemistry, and biology. However, due to interdisciplinary reasons, pharmacy researchers have greater difficulties in using computer models. METHODS In this paper, we highlight the application scenarios and examples of mechanistic modelling in pharmacy research and provide a reference for drug researchers to get started. RESULTS By establishing a suitable model and inputting preparation parameters, researchers can analyze the drug preparation process. Therefore, mechanistic models are effective tools to optimize the preparation parameters and predict potential quality problems of the product. With product quality parameters as the ultimate goal, the experiment design is optimized by mechanistic models. This process emphasizes the concept of quality by design. CONCLUSIONS The use of numerical simulation saves experimental cost and time, and speeds up the experimental process. In pharmacy experiments, part of the physical information and the change processes are difficult to obtain, such as the mechanical phenomena during tablet compression and the airflow details in the nasal cavity. Therefore, it is necessary to predict the information and guide the formulation with the help of mechanistic models.
Collapse
Affiliation(s)
- Qifei Gu
- College of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Q.G.); (X.S.); (X.Z.); (Y.L.)
| | - Huichao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China;
- Institute of Ethnic Medicine and Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xue Sui
- College of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Q.G.); (X.S.); (X.Z.); (Y.L.)
| | - Xiaodan Zhang
- College of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Q.G.); (X.S.); (X.Z.); (Y.L.)
| | - Yongchao Liu
- College of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Q.G.); (X.S.); (X.Z.); (Y.L.)
| | - Wei Feng
- Wangjing Hospital, China Academy of Traditional Chinese Medicine, Beijing 100102, China;
| | - Rui Zhou
- College of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Q.G.); (X.S.); (X.Z.); (Y.L.)
| | - Shouying Du
- College of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; (Q.G.); (X.S.); (X.Z.); (Y.L.)
| |
Collapse
|
4
|
Gerde P, Sjöberg CO, Bäckroos H, Englund J, Wangheim M, Litorp H. Regional lung targeting with a fluticasone/salmeterol aerosol using a bolus breath hold method of the PreciseInhale® system: A first evaluation in humans. Eur J Pharm Sci 2024; 196:106742. [PMID: 38460609 DOI: 10.1016/j.ejps.2024.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND In development of inhaled drugs- and formulations the measured concentration in the systemic circulation is often used as a surrogate for local dosimetry in the lungs. To further elucidate regional differences in the fate of drugs in the lungs, different aerodynamic sizes of aerosols have been used to target major airway regions. An alternative approach to achieve regional targeting of aerosols, is to use a defined aerosol bolus together with a bolus breath hold strategy. A small volume of test aerosol is intercalated and stopped at different penetration depths, to achieve increased drug deposition at chosen lung locations. Drug permeation from the lung regions is then investigated by repeatedly sampling venous blood from the systemic circulation. The PreciseInhale® (PI) exposure platform was developed to allow generation of aerosols from different sources, including clinical inhalers, into a holding chamber, for subsequent use with alternative exposure modules in vitro and in vivo. In the current first-in-human study was investigated the feasibility of a new clinical exposure module added to the PI system. By extracting aerosol puffs from a medical inhaler for subsequent delivery to volunteers, it was possible to administer whole lung exposures, as well as regional targeting exposures. METHODS Aerosols containing 250 µg/25 µg fluticasone propionate (FP)/salmeterol xinafoate (SMX) were automatically actuated and extracted from the pressurized Metered Dose Inhaler (pMDI) Evohaler Seretide forte into the PI system's holding chamber, then administered to the healthy volunteers using controlled flowrate and volume exposure cycles. Two main comparisons were made by measuring the systemic PK response: I. One label dose directly from the inhaler to the subject was compared to the same dose extracted from the pMDI into the PI system and then administered to the subject. II A small aerosol bolus at a penetration level in the central airways was compared to a small aerosol bolus at a penetration level in the peripheral lung. RESULTS AND CONCLUSIONS When one inhaler dose was administered via the PI system, the absorbed dose, expressed as AUC24, was approximately twice as high and the CV was less than half, compared to direct inhalation from the same pMDI. Bolus breath hold targeting of drugs from the same aerosol mixture to the peripheral lung and the central airways showed a difference in their appearance in the systemic circulation. Normalized to the same deposited dose, SMX had a 57 % higher Cmax in the peripheral lung compared to the central airways. However, from 6 to 24 h after dosing the systemic concentrations of SMX from both regions were quite similar. FP had parallel concentrations curves with a 23 % higher AUC24 in the peripheral lung with no noticeable elevation around Cmax. The permeability of these two substances from similar sized aerosols was indeed higher in the thinner air/blood barriers of the peripheral lung compared to the central airways, but differences as measured on the venous side of the circulation were not dramatic. In conclusion, the PI system provided better control of actuation, aspiration, and dispensation of aerosols from the clinical inhaler and thereby delivered higher quality read outs of pharmacokinetic parameters such as tmax, Cmax, and AUC. Improved performance, using PI system, can likely also be employed for studying regional selectivity of other responses in the lungs, for use in drug development.
Collapse
Affiliation(s)
- Per Gerde
- Inhalation Sciences AB, Novum, Hälsovägen 7, Huddinge SE-141 57, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| | - Carl-Olof Sjöberg
- Inhalation Sciences AB, Novum, Hälsovägen 7, Huddinge SE-141 57, Sweden; Flexura AB, Vitmåravägen 50, Upplands Väsby SE-194 60, Sweden
| | - Helen Bäckroos
- Inhalation Sciences AB, Novum, Hälsovägen 7, Huddinge SE-141 57, Sweden
| | - Joakim Englund
- Clinical Trial Consultants AB, Dag Hammarskjölds väg 10B, Uppsala SE-752 37, Sweden
| | - Marit Wangheim
- Clinical Trial Consultants AB, Dag Hammarskjölds väg 10B, Uppsala SE-752 37, Sweden
| | - Helena Litorp
- Clinical Trial Consultants AB, Dag Hammarskjölds väg 10B, Uppsala SE-752 37, Sweden; Department of Global Public Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Women's and Children's Health, Uppsala University, Stockholm, Sweden
| |
Collapse
|
5
|
Sadeghi T, Fatehi P, Pakzad L. Effect of Nasal Inhalation on Drug Particle Deposition and Size Distribution in the Upper Airway: With Soft Mist Inhalers. Ann Biomed Eng 2024; 52:1195-1212. [PMID: 38509413 DOI: 10.1007/s10439-023-03423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/10/2023] [Indexed: 03/22/2024]
Abstract
Delivery of drugs to the lungs is commonly achieved using nasal and/or oral breathing-assisted techniques. The route of inhalation can substantially change the fate of inhaled droplets. The Respimat® Soft Mist™ Inhaler (SMI) is a commercially available efficient inhaler with 40-60% effectiveness. In the present study, we used computational fluid dynamics (CFD) with a custom setup to investigate the effect of a combined oral/nasal inhalation route on the SMI's regional droplet deposition, size distribution, and flow field. Our setup used a modified induction port (MIP) to mimic nasal inhalation inside the human respiratory tract. Six different oral/nasal flow rate ratios inside the MIP were applied (total flow rate of 30 l/min). An overall good agreement was achieved between simulation outcomes and in vitro results. Our results confirmed that the combined inhalation route affects the flow field, altering the MIP's droplet deposition and size distribution. The lowest depositional loss, mainly in the mouth area, was observed at oral/nasal flow rate ratios of O/N = 1 and O/N = 2 with 3% and 7.7% values, respectively. Droplets with a 2-5 µm diameter range showed the highest droplet mass inside the MIP at all combined flow rates. We observed less intense vortexes followed by a lower level of turbulent kinetic energy at the oral/nasal ratio of 1. Increasing the relative humidity (RH) at oral/nasal flow rate ratios of 0.07, 1, and 14 led to an increase in droplet deposition at the outlet of the MIP.
Collapse
Affiliation(s)
- Taha Sadeghi
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Leila Pakzad
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
6
|
Babamiri A, Ahookhosh K, Abdollahi H, Taheri MH, Cui X, Nabaei M, Farnoud A. Effect of laryngeal jet on dry powder inhaler aerosol deposition: a numerical simulation. Comput Methods Biomech Biomed Engin 2023; 26:1859-1874. [PMID: 36511428 DOI: 10.1080/10255842.2022.2152280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/19/2022] [Indexed: 12/15/2022]
Abstract
Although pulmonary drug delivery has been deeply investigated, the effect of the laryngeal jet on particle deposition during drug delivery with dry powder inhalers (DPI) has not been evaluated profoundly. In this study, the flow structure and particle deposition pattern of a DPI in two airway models, one with mouth-throat region including the larynx and the other one without it, are numerically investigated. The results revealed that the laryngeal jet has a considerable effect on particle deposition. The presence of laryngeal jet leads to 4-fold and 2-fold higher deposition efficiencies for inlet flow rates of 30 and 90 L/min, respectively.
Collapse
Affiliation(s)
- Arash Babamiri
- Department of Engineering, University of Kurdistan, Sanandaj, Iran
| | - Kaveh Ahookhosh
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Haniye Abdollahi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Hasan Taheri
- Department of Mechanical Engineering, Technical and Vocational University (TVU), Mazandaran, Iran
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Malikeh Nabaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ali Farnoud
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
7
|
Gobetti C, Dissanayake S, Shur J, Ganley W, Silva L, Salem I, Najib O, Harb U. Bioequivalence of Two Tiotropium Dry Powder Inhalers and the Utility of Realistic Impactor Testing. J Aerosol Med Pulm Drug Deliv 2023; 36:257-267. [PMID: 37358626 DOI: 10.1089/jamp.2022.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Introduction: Inhaled antimuscarinics are a cornerstone of the management of chronic obstructive pulmonary disease. This article details a series of five pharmacokinetic (PK) studies comparing a generic tiotropium dry powder inhaler (DPI) to Spiriva HandiHaler, the realistic in vitro methods used to support those studies, and the related in vitro-in vivo correlations (IVIVCs). Methods: All five PK studies were of open-label, single-dose, crossover design with test and reference treatments administered to healthy subjects. Following unexpected results in the first three PK studies, a realistic impactor method was developed comprising an Oropharyngeal Consortium (OPC) mouth-throat and simulated inspiratory profiles in conjunction with a Next Generation Impactor (NGI). Mass fractions and the in vitro whole lung dose were estimated for the test product and Spiriva® HandiHaler® using this method, and IVIVCs derived. Results: Bioequivalence could not be demonstrated for Cmax in the first three PK studies (test/reference ratios ranging from 83.1% to 131.8%), although was observed for AUCt. Reanalysis of the corresponding biobatches with the realistic NGI method revealed in vitro ratios aligned with these PK data (in contrast to the compendial NGI data) and thus inadvertent selection of "mismatched" biobatches. Two further PK studies were undertaken, supported by the realistic NGI method. With the comparison of test and reference products similarly positioned within their respective product performance distributions, bioequivalence was confirmed in both studies. IVIVCs based on mass fractions as per the realistic NGI method were robust and highly predictive of PK outcomes. Conclusions: The test tiotropium DPI and Spiriva HandiHaler were bioequivalent when equitable biobatch comparisons, based on realistic NGI testing, were performed. The observations from this program support the utility of realistic test methods for inhaled product development.
Collapse
Affiliation(s)
| | | | - Jag Shur
- Nanopharm Ltd., An Aptar Pharma Company, Newport, United Kingdom
| | - William Ganley
- Nanopharm Ltd., An Aptar Pharma Company, Newport, United Kingdom
| | - Lucas Silva
- Nanopharm Ltd., An Aptar Pharma Company, Newport, United Kingdom
| | - Isam Salem
- International Pharmaceutical Research Center, Amman, Jordan
| | - Omaima Najib
- International Pharmaceutical Research Center, Amman, Jordan
| | - Usama Harb
- International Pharmaceutical Research Center, Amman, Jordan
| |
Collapse
|
8
|
Lopez-Campos JL, Reinoso-Arija R, Ferrer Galván M, Romero Falcón A, Alvarez-Gutiérrez FJ, Ortega-Ruiz F, Quintana-Gallego E. Evaluation of Different Doses in Inhaled Therapy: A Comprehensive Analysis. Pharmaceutics 2023; 15:2206. [PMID: 37765175 PMCID: PMC10535234 DOI: 10.3390/pharmaceutics15092206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Currently, there is a considerable degree of confusion over the dosage of inhaled medications. Here, we carried out a review of all the doses used for the devices used in inhalation therapy. METHODS We first performed a systematic search of the different inhalation devices included on the July 2023 Spanish Ministry of Health Billing List. We then consulted the Spanish Agency for Medicines and Health Products to find the updated official label and to obtain the information on the exact composition. RESULTS We identified 90 unique products, of which 22 were long-acting bronchodilators (and combinations thereof) and 68 were products containing inhaled corticosteroids (ICS). Overall, 10 products with bronchodilators and 40 with ICS were marketed with the metered dose, while 11 with bronchodilators and 28 with ICS were marketed with the delivered dose. In addition, in some bronchodilators, the drug was referred to as a type of salt, whereas in others the information referred to the drug itself. CONCLUSIONS Our data show that for each inhaled drug there may be up to four different doses and that the marketed name may refer to any of these. Clinicians must be aware of these different dosages when prescribing inhaled medications.
Collapse
Affiliation(s)
- José Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; (R.R.-A.); (M.F.G.); (A.R.F.); (F.J.A.-G.); (F.O.-R.); (E.Q.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rocio Reinoso-Arija
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; (R.R.-A.); (M.F.G.); (A.R.F.); (F.J.A.-G.); (F.O.-R.); (E.Q.-G.)
| | - Marta Ferrer Galván
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; (R.R.-A.); (M.F.G.); (A.R.F.); (F.J.A.-G.); (F.O.-R.); (E.Q.-G.)
| | - Auxiliadora Romero Falcón
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; (R.R.-A.); (M.F.G.); (A.R.F.); (F.J.A.-G.); (F.O.-R.); (E.Q.-G.)
| | - Francisco J. Alvarez-Gutiérrez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; (R.R.-A.); (M.F.G.); (A.R.F.); (F.J.A.-G.); (F.O.-R.); (E.Q.-G.)
| | - Francisco Ortega-Ruiz
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; (R.R.-A.); (M.F.G.); (A.R.F.); (F.J.A.-G.); (F.O.-R.); (E.Q.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther Quintana-Gallego
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain; (R.R.-A.); (M.F.G.); (A.R.F.); (F.J.A.-G.); (F.O.-R.); (E.Q.-G.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Komalla V, Wong CYJ, Sibum I, Muellinger B, Nijdam W, Chaugule V, Soria J, Ong HX, Buchmann NA, Traini D. Advances in soft mist inhalers. Expert Opin Drug Deliv 2023; 20:1055-1070. [PMID: 37385962 DOI: 10.1080/17425247.2023.2231850] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Soft mist inhalers (SMIs) are propellant-free inhalers that utilize mechanical power to deliver single or multiple doses of inhalable drug aerosols in the form of a slow mist to patients. Compared to traditional inhalers, SMIs allow for a longer and slower release of aerosol with a smaller ballistic effect, leading to a limited loss in the oropharyngeal area, whilst requiring little coordination of actuation and inhalation by patients. Currently, the Respimat® is the only commercially available SMI, with several others in different stages of preclinical and clinical development. AREAS COVERED The primary purpose of this review is to critically assess recent advances in SMIs for the delivery of inhaled therapeutics. EXPERT OPINION Advanced particle formulations, such as nanoparticles which target specific areas of the lung, Biologics, such as vaccines, proteins, and antibodies (which are sensitive to aerosolization), are expected to be generally delivered by SMIs. Furthermore, repurposed drugs are expected to constitute a large share of future formulations to be delivered by SMIs. SMIs can also be employed for the delivery of formulations that target systemic diseases. Finally, digitalizing SMIs would improve patient adherence and provide clinicians with fundamental insights into patients' treatment progress.
Collapse
Affiliation(s)
- Varsha Komalla
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
| | - Chun Yuen Jerry Wong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Department of Biological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | | | | | | | - Vishal Chaugule
- Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Julio Soria
- Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Department of Biological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | | | - D Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, Australia
- Macquarie Medical School, Department of Biological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
10
|
Erdelyi T, Lazar Z, Farkas Á, Furi P, Nagy A, Müller V. Modeling of pulmonary deposition of agents of open and fixed dose triple combination therapies through two different low-resistance inhalers in COPD: a pilot study. Front Med (Lausanne) 2023; 10:1065072. [PMID: 37215734 PMCID: PMC10196142 DOI: 10.3389/fmed.2023.1065072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Inhalation therapy is a cornerstone of treating patients with chronic obstructive pulmonary disease (COPD). Inhaler devices might influence the effectiveness of inhalation therapy. We aimed to model and compare the deposition of acting agents of an open and a fixed dose combination (FDC) triple therapy and examine their repeatability. Methods We recruited control subjects (Controls, n = 17) and patients with stable COPD (S-COPD, n = 13) and those during an acute exacerbation (AE-COPD, n = 12). Standard spirometry was followed by through-device inhalation maneuvers using a pressurized metered dose inhaler (pMDI) and a soft mist inhaler (SMI) to calculate deposition of fixed dose and open triple combination therapies by numerical modeling. Through-device inspiratory vital capacity (IVCd) and peak inspiratory flow (PIFd), as well as inhalation time (tin) and breath hold time (tbh) were used to calculate pulmonary (PD) and extrathoracic deposition (ETD) values. Deposition was calculated from two different inhalation maneuvers. Results There was no difference in forced expiratory volume in 1 s (FEV1) between patients (S-COPD: 42 ± 5% vs. AE-COPD: 35 ± 5% predicted). Spiriva® Respimat® showed significantly higher PD and lower ETD values in all COPD patients and Controls compared with the two pMDIs. For Foster® pMDI and Trimbow® pMDI similar PD were observed in Controls, while ETD between Controls and AE-COPD patients did significantly differ. There was no difference between COPD groups regarding the repeatability of calculated deposition values. Ranking the different inhalers by differences between the two deposition values calculated from separate maneuvers, Respimat® produced the smallest inter-measurement differences for PD. Discussion Our study is the first to model and compare PD using pMDIs and an SMI as triple combination in COPD. In conclusion, switching from FDC to open triple therapy in cases when adherence to devices is maintanined may contribute to better therapeutic effectiveness in individual cases using low resistance inhalers.
Collapse
Affiliation(s)
- Tamas Erdelyi
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zsofia Lazar
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Árpád Farkas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Peter Furi
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Attila Nagy
- Department of Applied and Nonlinear Optics, Wigner Research Centre for Physics, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Ma Z, Kourmatzis A, Milton-McGurk L, Chan HK, Farina D, Cheng S. Simulating the effect of individual upper airway anatomical features on drug deposition. Int J Pharm 2022; 628:122219. [PMID: 36179925 DOI: 10.1016/j.ijpharm.2022.122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 10/31/2022]
Abstract
This study aims to systematically isolate different anatomical features of the human pharynx with the goal to investigate their independent influence on airflow dynamics and particle deposition characteristics in a geometrically realistic human airway. Specifically, the effects of the uvula, epiglottis and soft palate on drug particle deposition are studied systematically, by carefully removing each of these anatomical features from reconstructed models based on MRI data and comparing them to a benchmark realistic airway model. Computational Fluid Dynamics using established turbulence models is employed to simulate the transport of mono-dispersed particles (3 µm) in the airway at two flow-rates. The simulations suggest three findings: 1) widening the space between the oral cavity and oropharynx and where the soft palate is situated leads to the most dramatic reduction in drug deposition in the upper airway; 2) exclusion of the uvula and epiglottis: a) affects flow dynamics in the airway; b) alters regional deposition behaviour; c) does not significantly affect the total number of particles deposited in the pharynx; and 3) the space adjacent to the soft palate is a key determinant for aerosol deposition in the extrathoracic region and is related to mechanisms of flow acceleration, diversion and recirculation.
Collapse
Affiliation(s)
- Zhaoqi Ma
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006
| | - Agisilaos Kourmatzis
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006
| | - Liam Milton-McGurk
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006
| | - Hak-Kim Chan
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006
| | - Dino Farina
- Proveris Scientific Corporation, Hudson, Massachusetts, United States
| | - Shaokoon Cheng
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109.
| |
Collapse
|
12
|
Shepherd T, Kennett M, Cooper A, Parkinson A. In Vitro Performance of the Wixela Inhub Inhaler Using Severe Chronic Obstructive Pulmonary Disease Patient Inhalation Profiles. J Aerosol Med Pulm Drug Deliv 2022; 35:154-165. [PMID: 34726509 PMCID: PMC9242708 DOI: 10.1089/jamp.2021.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: Wixela Inhub (trademarks of Viatris, Inc.) is a dry powder inhaler (DPI) that delivers a fixed-dose combination of fluticasone propionate and salmeterol and is approved as a generic equivalent to Advair Diskus (trademarks of GlaxoSmithKline plc) for the treatment of asthma and chronic obstructive pulmonary disease (COPD). The dosing performance of DPIs is dependent on the patient's inspiratory capability, which may be impacted in disease populations such as those with severe COPD. The objective of this study was to evaluate the in vitro dose delivery of fluticasone propionate and salmeterol from the Inhub inhaler with in vivo inhalation profiles of severe COPD patients, using two types of breathing simulator with different modes of operation. Materials and Methods: Two breathing simulators (Si-Plan and Copley BRS3100) were used with United States Pharmacopoeia (USP) <601> apparatus 5 (Next Generation Impactor and accessories) to measure the total emitted dose and fine particle mass of fluticasone propionate and salmeterol for Wixela Inhub (250/50 mcg) using 13 severe COPD patient inhalation profiles. Results: Wixela Inhub demonstrated low flow dependency across the range of COPD patient profiles tested (peak inspiratory flow rate 60.8-84.9 L minute-1), when assessed by total emitted dose and fine particle mass. The results were similar to literature results reported for fluticasone propionate from the Diskus inhaler, tested using a proprietary breathing simulator and Andersen Cascade Impactor. Comparison between the breathing simulators showed no significant difference in fluticasone propionate results, but a small difference was observed between the breathing simulators for salmeterol total emitted dose and fine particle mass. Conclusions: This study demonstrates that severe COPD patients are likely to achieve a consistent inhaled dose from Wixela Inhub, with low flow dependency observed within this patient population. In addition, both breathing simulators, which differ significantly in design, produced similar results for fluticasone propionate, but yielded slightly (but statistically significant) different results for salmeterol.
Collapse
Affiliation(s)
- Thomas Shepherd
- The Medway Centre for Pharmaceutical Sciences, University of Greenwich, Chatham Maritime, United Kingdom.,Address correspondence to: Thomas Shepherd, MSc, The Medway Centre for Pharmaceutical Sciences, University of Greenwich, Central Avenue, Gillingham, Chatham Maritime ME4 4TB, United Kingdom
| | | | | | | |
Collapse
|
13
|
Calculating the Charcoal Blockade Efficiency for Bioequivalence Study of Inhaled Ipratropium Bromide Using a Model Method. J Pharm Sci 2022; 111:2107-2115. [DOI: 10.1016/j.xphs.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022]
|
14
|
Experimental Evaluation of Dry Powder Inhalers during Inhalation and Exhalation Using a Model of the Human Respiratory System (xPULM™). Pharmaceutics 2022; 14:pharmaceutics14030500. [PMID: 35335876 PMCID: PMC8955467 DOI: 10.3390/pharmaceutics14030500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 02/19/2022] [Indexed: 11/21/2022] Open
Abstract
Dry powder inhalers are used by a large number of patients worldwide to treat respiratory diseases. The objective of this work is to experimentally investigate changes in aerosol particle diameter and particle number concentration of pharmaceutical aerosols generated by four dry powder inhalers under realistic inhalation and exhalation conditions. To simulate patients undergoing inhalation therapy, the active respiratory system model (xPULM™) was used. A mechanical upper airway model was developed, manufactured, and introduced as a part of the xPULM™ to represent the human upper respiratory tract with high fidelity. Integration of optical aerosol spectrometry technique into the setup allowed for evaluation of pharmaceutical aerosols. The results show that there is a significant difference (p < 0.05) in mean particle diameter between inhaled and exhaled particles with the majority of the particles depositing in the lung, while particles with the size of (>0.5 μm) are least influenced by deposition mechanisms. The fraction of exhaled particles ranges from 2.13% (HandiHaler®) over 2.94% (BreezHaler®), and 6.22% (Turbohaler®) to 10.24% (Ellipta®). These values are comparable to previously published studies. Furthermore, the mechanical upper airway model increases the resistance of the overall system and acts as a filter for larger particles (>3 μm). In conclusion, the xPULM™ active respiratory system model is a viable option for studying interactions of pharmaceutical aerosols and the respiratory tract regarding applicable deposition mechanisms. The model strives to support the reduction of animal experimentation in aerosol research and provides an alternative to experiments with human subjects.
Collapse
|
15
|
Gurumurthy A, Kleinstreuer C. Analysis of improved oral drug delivery with different helical stream inhalation modes. Comput Biol Med 2022; 141:105132. [PMID: 34998086 DOI: 10.1016/j.compbiomed.2021.105132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022]
Abstract
A challenging aspect of pulmonary drug delivery devices, e.g., metered dose inhalers (MDIs), is to deliver therapeutic drugs to prescribed target locations at the required dosage level. In this study, validated computer simulations of micron-drug inhalation with angled or radially positioned helical fluid-particle streams are simulated and analyzed. For a suitable swirl number significant improvements in drug delivery, especially to deeper lung regions, have been achieved. Specifically, considering realistic polydisperse particle distributions at the mouth inlet for a subject-specific upper lung airway geometry, a 10-degree angled helical stream increased the local efficacy by up to 26% in comparison to a conventional helical stream, causing an overall dosage of about 60% to the deep lung. Considering lobe-specific drug targeting scenarios, while using an off-center, i.e., radially well positioned, helical-flow mouthpiece, the local particle-deposition efficacy increased from 9% to 24% in the left lobe and from 25% to 38% in the right lobe in comparison to conventional drug-aerosol stream released from the central position. The efficacy of helical streams for pulmonary drug delivery applications has been established.
Collapse
Affiliation(s)
- Adithya Gurumurthy
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, NC, 27695, USA
| | - Clement Kleinstreuer
- Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC, NC, 27695, USA; Joint UNC-NCSU Department of Biomedical Engineering, Raleigh, NC, 27695, USA.
| |
Collapse
|
16
|
Assessment of the predictive capability of modelling and simulation to determine bioequivalence of inhaled drugs: A systematic review. Daru 2022; 30:229-243. [PMID: 35094370 PMCID: PMC9114201 DOI: 10.1007/s40199-021-00423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES There are a multitude of different modelling techniques that have been used for inhaled drugs. The main objective of this review was to conduct an exhaustive survey of published mathematical models in the area of asthma and chronic obstructive pulmonary disease (COPD) for inhalation drugs. Additionally, this review will attempt to assess the applicability of these models to assess bioequivalence (BE) of orally inhaled products (OIPs). EVIDENCE ACQUISITION PubMed, Science Direct, Web of Science, and Scopus databases were searched from 1996 to 2020, to find studies that described mathematical models used for inhaled drugs in asthma/COPD. RESULTS 50 articles were finally included in this systematic review. This research identified 22 articles on in silico aerosol deposition models, 20 articles related to population pharmacokinetics and 8 articles on physiologically based pharmacokinetic modelling (PBPK) modelling for inhaled drugs in asthma/COPD. Among all the aerosol deposition models, computational fluid dynamics (CFD) simulations are more likely to predict regional aerosol deposition pattern in human respiratory tracts. Across the population PK articles, body weight, gender, age and smoking status were the most common covariates that were found to be significant. Further, limited published PBPK models reported approximately 29 parameters relevant for absorption and distribution of inhaled drugs. The strengths and weaknesses of each modelling technique has also been reviewed. CONCLUSION Overall, while there are different modelling techniques that have been used for inhaled drugs in asthma and COPD, there is very limited application of these models for assessment of bioequivalence of OIPs. This review also provides a ready reference of various parameters that have been considered in various models which will aid in evaluation if one model or hybrid in silico models need to be considered when assessing bioequivalence of OIPs.
Collapse
|
17
|
Bachhav SS, Sheth P, Sandell D, Svensson M, Bhagwat S, Conti DS, Oguntimein O, Dhapare S, Saluja B, Winner L, Bulitta JB, Hochhaus G. Systematic Evaluation of the Effect of Formulation Variables on In Vitro Performance of Mometasone Furoate Suspension-Metered Dose Inhalers. AAPS J 2021; 24:9. [PMID: 34874508 PMCID: PMC10662261 DOI: 10.1208/s12248-021-00638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
The therapeutic benefits of metered dose inhalers (MDIs) in pulmonary disorders are mainly driven by aerosol performance, which depends on formulation variables (drug and excipients), device design, and patient interactions. The present study provides a comprehensive investigation to better understand the effect of formulation variables on mometasone furoate (MF) suspension-based MDI product performance. The effects of MF particle size (volume median diameter; X50) and excipient concentration (ethanol and oleic acid, cosolvent, and surfactant, respectively) on selected critical quality attributes (delivered dose (DD), fine particle dose of particles lesser than 5 µm (FPD < 5), ex-throat dose and median dissolution time (MDT)) were studied. Eight MF-MDI formulations (one per batch) were manufactured based on a reduced factorial design of experiment (DOE) approach, which included relevant formulation levels with varying X50 (1.1 and 2 μm), concentration of ethanol (0.45, 0.9, 1.8, and 3.6%w/w), and oleic acid (0.001 and 0.025%w/w). The in vitro evaluation of these MF-MDI formulations indicated the importance of drug particle's X50, oleic acid, and ethanol canister concentration as critical formulation variables governing the performance of MF suspension-based MDI products. The effect of these formulation variables on DD, FPD < 5, ex-throat dose, and MDT was subsequently utilized to develop empirical relationships linking formulation factors with effects on in vitro performance measures. The developed strategy could be useful for predicting MF-MDI product performance during MDI product development and manufacturing. The systematic DOE approach utilized in this study may provide insights into the understanding of the formulation variables governing the MF-MDI product performance.
Collapse
Affiliation(s)
- Sagar S Bachhav
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1600 SW Archer Road, Gainesville, Florida, 32610, USA
| | - Poonam Sheth
- Recipharm, Morrisville, North Carolina, USA
- AstraZeneca, Durham, North Carolina, USA
| | | | | | - Sharvari Bhagwat
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1600 SW Archer Road, Gainesville, Florida, 32610, USA
| | - Denise S Conti
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Oluwamurewa Oguntimein
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sneha Dhapare
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bhawana Saluja
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lawrence Winner
- Department of Statistics, University of Florida, Gainesville, Florida, USA
| | - Jürgen B Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Guenther Hochhaus
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1600 SW Archer Road, Gainesville, Florida, 32610, USA.
| |
Collapse
|
18
|
Spray drying: Inhalable powders for pulmonary gene therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112601. [DOI: 10.1016/j.msec.2021.112601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/04/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022]
|
19
|
Targeting of Inhaled Therapeutics to the Small Airways: Nanoleucine Carrier Formulations. Pharmaceutics 2021; 13:pharmaceutics13111855. [PMID: 34834270 PMCID: PMC8624185 DOI: 10.3390/pharmaceutics13111855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Current dry powder formulations for inhalation deposit a large fraction of their emitted dose in the upper respiratory tract where they contribute to off-target adverse effects and variability in lung delivery. The purpose of the current study is to design a new formulation concept that more effectively targets inhaled dry powders to the large and small airways. The formulations are based on adhesive mixtures of drug nanoparticles and nanoleucine carrier particles prepared by spray drying of a co-suspension of leucine and drug particles from a nonsolvent. The physicochemical and aerosol properties of the resulting formulations are presented. The formulations achieve 93% lung delivery in the Alberta Idealized Throat model that is independent of inspiratory flow rate and relative humidity. Largely eliminating URT deposition with a particle size larger than solution pMDIs is expected to improve delivery to the large and small airways, while minimizing alveolar deposition and particle exhalation.
Collapse
|
20
|
Chow MYT, Tai W, Chang RYK, Chan HK, Kwok PCL. In vitro-in vivo correlation of cascade impactor data for orally inhaled pharmaceutical aerosols. Adv Drug Deliv Rev 2021; 177:113952. [PMID: 34461200 DOI: 10.1016/j.addr.2021.113952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022]
Abstract
In vitro-in vivo correlation is the establishment of a predictive relationship between in vitro and in vivo data. In the context of cascade impactor results of orally inhaled pharmaceutical aerosols, this involves the linking of parameters such as the emitted dose, fine particle dose, fine particle fraction, and mass median aerodynamic diameter to in vivo lung deposition from scintigraphy data. If the dissolution and absorption processes after deposition are adequately understood, the correlation may be extended to the pharmacokinetics and pharmacodynamics of the delivered drugs. Correlation of impactor data to lung deposition is a relatively new research area that has been gaining recent interest. Although few in number, experiments and meta-analyses have been conducted to examine such correlations. An artificial neural network approach has also been employed to analyse the complex relationships between multiple factors and responses. However, much research is needed to generate more data to obtain robust correlations. These predictive models will be useful in improving the efficiency in product development by reducing the need of expensive and lengthy clinical trials.
Collapse
|
21
|
Sandell D. Bioequivalence assessment of pharmaceutical aerosol products through IVIVC. Adv Drug Deliv Rev 2021; 176:113895. [PMID: 34329687 DOI: 10.1016/j.addr.2021.113895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
Many pharmaceutical developers of generic orally inhaled products (OIPs) are facing significant issues in passing the regulatory requirement to show pharmacokinetic (PK) bioequivalence (BE) to the originator product. The core of the issue is that no reliable in vitro-in vivo correlation (IVIVC) is available to guide their development. In this paper, several issues are identified and means to improve the data used for developing an IVIVC are discussed. The article also presents an "IVIVC-free" approach for developing a formulation matching the originator's PK performance.
Collapse
|
22
|
Gallegos-Catalán J, Warnken Z, Bahamondez-Canas TF, Moraga-Espinoza D. Innovating on Inhaled Bioequivalence: A Critical Analysis of the Current Limitations, Potential Solutions and Stakeholders of the Process. Pharmaceutics 2021; 13:1051. [PMID: 34371741 PMCID: PMC8309038 DOI: 10.3390/pharmaceutics13071051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022] Open
Abstract
Orally inhaled drug products (OIDPs) are an important group of medicines traditionally used to treat pulmonary diseases. Over the past decade, this trend has broadened, increasing their use in other conditions such as diabetes, expanding the interest in this administration route. Thus, the bioequivalence of OIDPs is more important than ever, aiming to increase access to affordable, safe and effective medicines, which translates into better public health policies. However, regulatory agencies leading the bioequivalence process are still deciding the best approach for ensuring a proposed inhalable product is bioequivalent. This lack of agreement translates into less cost-effective strategies to determine bioequivalence, discouraging innovation in this field. The Next-Generation Impactor (NGI) is an example of the slow pace at which the inhalation field evolves. The NGI was officially implemented in 2003, being the last equipment innovation for OIDP characterization. Even though it was a breakthrough in the field, it did not solve other deficiencies of the BE process such as dissolution rate analysis on physiologically relevant conditions, being the last attempt of transferring technology into the field. This review aims to reveal the steps required for innovation in the regulations defining the bioequivalence of OIDPs, elucidating the pitfalls of implementing new technologies in the current standards. To do so, we collected the opinion of experts from the literature to explain these trends, showing, for the first time, the stakeholders of the OIDP market. This review analyzes the stakeholders involved in the development, improvement and implementation of methodologies that can help assess bioequivalence between OIDPs. Additionally, it presents a list of methods potentially useful to overcome some of the current limitations of the bioequivalence standard methodologies. Finally, we review one of the most revolutionary approaches, the inhaled Biopharmaceutical Classification System (IBCs), which can help establish priorities and order in both the innovation process and in regulations for OIDPs.
Collapse
Affiliation(s)
- Jonattan Gallegos-Catalán
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2340000, Chile; (J.G.-C.); (T.F.B.-C.)
| | | | - Tania F. Bahamondez-Canas
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2340000, Chile; (J.G.-C.); (T.F.B.-C.)
- Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Daniel Moraga-Espinoza
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2340000, Chile; (J.G.-C.); (T.F.B.-C.)
- Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
23
|
Hochhaus G, Chen MJ, Kurumaddali A, Schilling U, Jiao Y, Drescher SK, Amini E, Berger SM, Kandala B, Tabulov C, Shao J, Seay B, Abu-Hasan MN, Baumstein SM, Winner L, Shur J, Price R, Hindle M, Wei X, Carrasco C, Sandell D, Oguntimein O, Kinjo M, Delvadia R, Saluja B, Lee SL, Conti DS, Bulitta JB. Can Pharmacokinetic Studies Assess the Pulmonary Fate of Dry Powder Inhaler Formulations of Fluticasone Propionate? AAPS J 2021; 23:48. [PMID: 33768368 PMCID: PMC10662255 DOI: 10.1208/s12248-021-00569-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/06/2021] [Indexed: 11/30/2022] Open
Abstract
In the context of streamlining generic approval, this study assessed whether pharmacokinetics (PK) could elucidate the pulmonary fate of orally inhaled drug products (OIDPs). Three fluticasone propionate (FP) dry powder inhaler (DPI) formulations (A-4.5, B-3.8, and C-3.7), differing only in type and composition of lactose fines, exhibited median mass aerodynamic diameter (MMAD) of 4.5 μm (A-4.5), 3.8 μm (B-3.8), and 3.7 μm (C-3.7) and varied in dissolution rates (A-4.5 slower than B-3.8 and C-3.7). In vitro total lung dose (TLDin vitro) was determined as the average dose passing through three anatomical mouth-throat (MT) models and yielded dose normalization factors (DNF) for each DPI formulation X (DNFx = TLDin vitro,x/TLDin vitro,A-4.5). The DNF was 1.00 for A-4.5, 1.32 for B-3.8, and 1.21 for C-3.7. Systemic PK after inhalation of 500 μg FP was assessed in a randomized, double-blind, four-way crossover study in 24 healthy volunteers. Peak concentrations (Cmax) of A-4.5 relative to those of B-3.8 or C-3.7 lacked bioequivalence without or with dose normalization. The area under the curve (AUC0-Inf) was bio-IN-equivalent before dose normalization and bioequivalent after dose normalization. Thus, PK could detect differences in pulmonary available dose (AUC0-Inf) and residence time (dose-normalized Cmax). The differences in dose-normalized Cmax could not be explained by differences in in vitro dissolution. This might suggest that Cmax differences may indicate differences in regional lung deposition. Overall this study supports the use of PK studies to provide relevant information on the pulmonary performance characteristics (i.e., available dose, residence time, and regional lung deposition).
Collapse
Affiliation(s)
- Günther Hochhaus
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, Florida, 32610, USA.
| | - Mong-Jen Chen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, Florida, 32610, USA
- AbbVie Inc., North Chicago, Illinois, USA
| | - Abhinav Kurumaddali
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, Florida, 32610, USA
| | - Uta Schilling
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, Florida, 32610, USA
| | - Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, 6550 Sanger Road, Gainesville, Florida, 32827-7445, USA
| | - Stefanie K Drescher
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, Florida, 32610, USA
| | - Elham Amini
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, Florida, 32610, USA
| | - Simon M Berger
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, Florida, 32610, USA
| | - Bhargava Kandala
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, Florida, 32610, USA
| | - Christine Tabulov
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, Florida, 32610, USA
| | - Jie Shao
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1345 Center Drive, Gainesville, Florida, 32610, USA
| | - Brandon Seay
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mutasim N Abu-Hasan
- Division of Pediatric Pulmonary and Sleep Medicine, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sandra M Baumstein
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, 6550 Sanger Road, Gainesville, Florida, 32827-7445, USA
| | - Lawrence Winner
- Department of Statistics, College of Liberal Arts & Sciences, University of Florida, Gainesville, Florida, USA
| | - Jagdeep Shur
- Department of Pharmacy & Pharmacology, Centre for Therapeutic Innovation, University of Bath, Bath, UK
| | - Robert Price
- Department of Pharmacy & Pharmacology, Centre for Therapeutic Innovation, University of Bath, Bath, UK
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Xiangyin Wei
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | - Oluwamurewa Oguntimein
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Minori Kinjo
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Renishkumar Delvadia
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
- Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bhawana Saluja
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sau L Lee
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Denise S Conti
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jürgen B Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, 6550 Sanger Road, Gainesville, Florida, 32827-7445, USA.
| |
Collapse
|
24
|
Bass K, Farkas D, Hassan A, Bonasera S, Hindle M, Longest PW. High-Efficiency Dry Powder Aerosol Delivery to Children: Review and Application of New Technologies. JOURNAL OF AEROSOL SCIENCE 2021; 153:105692. [PMID: 33716317 PMCID: PMC7945982 DOI: 10.1016/j.jaerosci.2020.105692] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While dry powder aerosol formulations offer a number of advantages, their use in children is often limited due to poor lung delivery efficiency and difficulties with consistent dry powder inhaler (DPI) usage. Both of these challenges can be attributed to the typical use of adult devices in pediatric subjects and a lack of pediatric-specific DPI development. In contrast, a number of technologies have recently been developed or progressed that can substantially improve the efficiency and reproducibility of DPI use in children including: (i) nose-to-lung administration with small particles, (ii) active positive-pressure devices, (iii) structures to reduce turbulence and jet momentum, and (iv) highly dispersible excipient enhanced growth particle formulations. In this study, these technologies and their recent development are first reviewed in depth. A case study is then considered in which these technologies are simultaneously applied in order to enable the nose-to-lung administration of dry powder aerosol to children with cystic fibrosis (CF). Using a combination of computational fluid dynamics (CFD) analysis and realistic in vitro experiments, device performance, aerosol size increases and lung delivery efficiency are considered for pediatric-CF subjects in the age ranges of 2-3, 5-6 and 9-10 years old. Results indicate that a new 3D rod array structure significantly improves performance of a nasal cannula reducing interface loss by a factor of 1.5-fold and produces a device emitted mass median aerodynamic diameter (MMAD) of 1.67 μm. For all ages considered, approximately 70% of the loaded dose reaches the lower lung beyond the lobar bronchi. Moreover, significant and rapid size increase of the aerosol is observed beyond the larynx and illustrates the potential for targeting lower airway deposition. In conclusion, concurrent CFD and realistic in vitro analysis indicates that a combination of multiple new technologies can be implemented to overcome obstacles that currently limit the use of DPIs in children as young as two years of age.
Collapse
Affiliation(s)
- Karl Bass
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA
| | - Amr Hassan
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA
| | - Serena Bonasera
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA
| | - P. Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
25
|
April Si X, Talaat M, Xi J. SARS COV-2 virus-laden droplets coughed from deep lungs: Numerical quantification in a single-path whole respiratory tract geometry. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:023306. [PMID: 33746489 PMCID: PMC7976054 DOI: 10.1063/5.0040914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 05/07/2023]
Abstract
When an infected person coughs, many virus-laden droplets will be exhaled out of the mouth. Droplets from deep lungs are especially infectious because the alveoli are the major sites of coronavirus replication. However, their exhalation fraction, size distribution, and exiting speeds are unclear. This study investigated the behavior and fate of respiratory droplets (0.1-4 μm) during coughs in a single-path respiratory tract model extending from terminal alveoli to mouth opening. An experimentally measured cough waveform was used to control the alveolar wall motions and the flow boundary conditions at lung branches from G2 to G18. The mouth opening was modeled after the image of a coughing subject captured using a high-speed camera. A well-tested k-ω turbulence model and Lagrangian particle tracking algorithm were applied to simulate cough flow evolutions and droplet dynamics under four cough depths, i.e., tidal volume ratio (TVR) = 0.13, 0.20. 0.32, and 0.42. The results show that 2-μm droplets have the highest exhalation fraction, regardless of cough depths. A nonlinear relationship exists between the droplet exhalation fraction and cough depth due to a complex deposition mechanism confounded by multiscale airway passages, multiregime flows, and drastic transient flow effects. The highest exhalation fraction is 1.6% at the normal cough depth (TVR = 0.32), with a mean exiting speed of 20 m/s. The finding that most exhaled droplets from deep lungs are 2 μm highlights the need for more effective facemasks in blocking 2-μm droplets and smaller both in infectious source control and self-protection from airborne virus-laden droplets.
Collapse
Affiliation(s)
- Xiuhua April Si
- Department of Aerospace, Industrial, and Mechanical Engineering, California Baptist University, 8432 Magnolia Ave., Riverside, California 92504, USA
| | - Mohamed Talaat
- Department of Biomedical Engineering, The University of Massachusetts at Lowell, 1 University Ave., Lowell, Massachusetts 01854, USA
| | - Jinxiang Xi
- Department of Biomedical Engineering, The University of Massachusetts at Lowell, 1 University Ave., Lowell, Massachusetts 01854, USA
| |
Collapse
|
26
|
Effect of Tiotropium Soft Mist Inhalers on Dynamic Changes in Lung Mechanics of Patients with Chronic Obstructive Pulmonary Disease Receiving Mechanical Ventilation: A Prospective Pilot Study. Pharmaceutics 2020; 13:pharmaceutics13010051. [PMID: 33396552 PMCID: PMC7824634 DOI: 10.3390/pharmaceutics13010051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
The effects of tiotropium bromide soft mist inhalers (SMIs) in patients with chronic obstructive pulmonary disease (COPD) receiving mechanical ventilation remain unexplored. This study investigated the dynamic effects of a tiotropium SMI on lung mechanics and gas exchange in these patients. We analyzed 11 mechanically ventilated and hemodynamically stable patients with COPD who experienced acute exacerbation and were ready to be weaned from the ventilator. Two puffs of tiotropium (2.5 μg/puff) were administered with a T-adaptor connected to the ventilator circuit. Lung mechanics—peak inspiratory pressure, plateau pressure, mean airway pressure, maximum respiratory resistance (Rrs), and gas exchange function—were analyzed. The two-puff tiotropium SMI treatment led to the greatest reduction in Rrs at 6 h, with the Rrs returning to baseline gradually, and significantly improved the PaO2/FiO2 ratio at 24 h. Compared with baseline values, tiotropium SMI had the strongest effect on Rrs between hours 3 and 6 but did not significantly affect hemodynamic parameters. Tiotropium SMI administration in mechanically ventilated patients with COPD achieved the greatest reduction in Rrs at 6 h and significantly improved the PaO2/FiO2 ratio at 24 h. Future studies should investigate whether the bronchodilation effect can be improved with increased dosage or frequency.
Collapse
|
27
|
In silico optimization of targeted aerosol delivery in upper airways via Inhaled Volume Tracking. Clin Biomech (Bristol, Avon) 2020; 80:105138. [PMID: 32798812 PMCID: PMC7611794 DOI: 10.1016/j.clinbiomech.2020.105138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Despite the widespread use of aerosol inhalation as a drug delivery method, targeted delivery to the upper airways remains an ongoing challenge in the quest for improved clinical response in respiratory disease. METHODS Here, we examine in silico flow and particle dynamics when using an oral Inhaled Volume Tracking manoeuvre. A short pulsed aerosol bolus is injected during slow inhalation flow rates followed by clean air, and a breath-hold is initiated once it reaches the desired depth. We explore the fate of a broad particle size range (1-40 μm) for both upright and supine positions. FINDINGS Our findings illustrate that despite attempts to mitigate dispersion using slower flow rates, the laryngeal jet disperses the aerosol bolus and thus remains a hurdle for efficient targeted delivery. Nevertheless, we show a decrease in extra-thoracic deposition; large aerosols in the range of 10-30 μm potentially outperform existing inhalation methods, showing deposition fractions of up to 80% in an upright orientation. INTERPRETATION The improved deposition during Inhaled Volume Tracking shows promise for clinical applications and could be leveraged to deliver larger payloads to the upper airways.
Collapse
|
28
|
Newman SP, Chan HK. In vitro-in vivo correlations (IVIVCs) of deposition for drugs given by oral inhalation. Adv Drug Deliv Rev 2020; 167:135-147. [PMID: 32593641 DOI: 10.1016/j.addr.2020.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 06/01/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
Conventional in vitro tests to assess the aerodynamic particle size distribution (APSD) from inhaler devices use simple right-angle inlets ("mouth-throats", MTs) to cascade impactors, and air is drawn through the system at a fixed flow for a fixed time. Since this arrangement differs substantially from both human oropharyngeal airway anatomy and the patterns of air flow when patients use inhalers, the ability of in vitro tests to predict in vivo deposition of pharmaceutical aerosols has been limited. MTs that mimic the human anatomy, coupled with simulated breathing patterns, have yielded estimates of lung dose from in vitro data that closely match those from in vivo gamma scintigraphic or pharmacokinetic studies. However, different models of MTs do not always yield identical data, and selection of an anatomical MT and representative inhalation profiles remains challenging. Improved in vitro - in vivo correlations (IVIVCs) for inhaled drug products could permit increased reliance on in vitro data when developing new inhaled drug products, and could ultimately result in accelerated drug product development, together with reduced research and development spending.
Collapse
|
29
|
Yoshida H, Abe Y, Usui A, Izutsu KI. Evaluation of Valved Holding Chambers Simulating Repurposing Use of Ciclesonide Metered-dose Inhaler by Patients with Pneumonia. YAKUGAKU ZASSHI 2020; 140:1495-1500. [DOI: 10.1248/yakushi.20-00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Yasuhiro Abe
- Division of Drugs, National Institute of Health Sciences
| | - Akiko Usui
- Division of Drugs, National Institute of Health Sciences
| | | |
Collapse
|
30
|
Muddle J, Kanabar V, Brown M, Page C, Forbes B. An in vitro bioassay for evaluating the effect of inhaled bronchodilators on airway smooth muscle. Pulm Pharmacol Ther 2020; 63:101943. [PMID: 32889156 DOI: 10.1016/j.pupt.2020.101943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The development of inhaled drug products is expensive and involves time-consuming pharmacokinetic (PK) and pharmacodynamic (PD) studies. There are few in vitro cell-based assays to evaluate the disposition and action of orally inhaled drugs to guide early product development and minimise risk. The aim of the present study was to develop a co-culture bioassay, combining an airway epithelial cell line (Calu-3) with cultured human primary airway smooth muscle cells (ASM), integrated with apparatus to deliver pharmaceutical aerosols. METHODS An assay for measuring cyclic adenosine monophosphate (cAMP) in ASM derived from healthy donors was adapted to provide a biochemical surrogate for ASM relaxation. Concentration-response curves for cAMP were established for three drugs that elicit ASM relaxation: isoprenaline (ISO), forskolin (FOR) and salbutamol sulphate. The ASM bioassay was incorporated into a co-culture model in which air-interfaced Calu-3 cell layers, representing the permeability barrier of the airway epithelium, were grown on transwell inserts above ASM cells cultured in the well of the base-plate. The sensitivity of this bioassay to salbutamol delivered using different formulations and aerosol products was evaluated. RESULTS ASM responded with concentration dependent increases in cAMP when exposed to 10-9 to 10-5 M ISO, FOR or salbutamol sulphate solutions for 15 or 30 min. Salbutamol formulated with different counter ions elicited differential cAMP responses in ASM (xinafoate > base = sulphate) suggesting that this bioassay could discriminate between formulations with different potency. A similar rank order of potency was observed for the different salbutamol salts when applied as aerosols to the co-culture model. DISCUSSION We have developed a novel bioassay using human ASM in co-culture with human respiratory epithelial cells to better mimic various elements that contribute to the rate and extent of local drug availability in the lungs following topical administration. The bioassay offers an opportunity to investigate the factors determining the activity of inhaled bronchodilator drugs in a more biologically relevant system than that has previously been described and with further development and validation, this novel bioassay could provide a method to guide the more efficient development of inhaled bronchodilators, reducing the current reliance on in vivo studies.
Collapse
Affiliation(s)
- Joanna Muddle
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK; The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Varsha Kanabar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK; The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Marc Brown
- MedPharm Ltd, R&D Centre, Units 1 and 3 / Chancellor Court, 50 Occam Road, Surrey Research Park, Guildford, GU2 7AB, UK
| | - Clive Page
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK; The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
31
|
Bass K, Longest W. Development of Dry Powder Inhaler Patient Interfaces for Improved Aerosol Delivery to Children. AAPS PharmSciTech 2020; 21:157. [PMID: 32451773 DOI: 10.1208/s12249-020-01667-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023] Open
Abstract
The objective of this study was to explore different internal flow passages in the patient interface region of a new air-jet-based dry powder inhaler (DPI) in order to minimize device and extrathoracic aerosol depositional losses using computational fluid dynamics (CFD) simulations. The best-performing flow passages were used for oral and nose-to-lung (N2L) aerosol delivery in pediatric extrathoracic airway geometries consistent with a 5-year-old child. Aerosol delivery conditions were based on a previously developed and tested air-jet DPI device and included a base flow rate of 13.3 LPM (delivered from a small ventilation bag) and an inhaled air volume of 750 mL. Initial CFD models of the system clearly established that deposition on either the back of the throat or nasal cannula bifurcation was strongly correlated with the maximum velocity exiting the flow passage. Of all designs tested, the combination of a 3D rod array and rapid expansion of the flow passage side walls was found to dramatically reduce interface and device deposition and improve lung delivery of the aerosol. For oral aerosol administration, the optimal flow passage compared with a base case reduced device, mouthpiece, and mouth-throat deposition efficiencies by factors of 8-, 3-, and 2-fold, respectively. For N2L aerosol administration, the optimal flow pathway compared with a base case reduced device, nasal cannula, and nose-throat deposition by 16-, 6-, and 1.3-fold, respectively. In conclusion, a new patient interface design including a 3D rod array and rapid expansion dramatically improved transmission efficiency of a dry powder aerosol.
Collapse
|
32
|
A particle technology approach toward designing dry-powder inhaler formulations for personalized medicine in respiratory diseases. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Kugler S, Nagy A, Kerekes A, Veres M, Rigó I, Czitrovszky A. Determination of emitted particle characteristics and upper airway deposition of Symbicort® Turbuhaler® dry powder inhaler. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Ruzycki CA, Martin AR, Finlay WH. An Exploration of Factors Affecting In Vitro Deposition of Pharmaceutical Aerosols in the Alberta Idealized Throat. J Aerosol Med Pulm Drug Deliv 2019; 32:405-417. [DOI: 10.1089/jamp.2019.1531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Conor A. Ruzycki
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Andrew R. Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| | - Warren H. Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
35
|
Farkas D, Hindle M, Bonasera S, Bass K, Longest W. Development of an Inline Dry Powder Inhaler for Oral or Trans-Nasal Aerosol Administration to Children. J Aerosol Med Pulm Drug Deliv 2019; 33:83-98. [PMID: 31464559 DOI: 10.1089/jamp.2019.1540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Dry powder inhalers (DPIs) offer a number of advantages, such as rapid delivery of high-dose inhaled medications; however, DPI use in children is often avoided due to low lung delivery efficiency and difficulty in operating the device. The objective of this study was to develop a high-efficiency inline DPI for administering aerosol therapy to children with the option of using either an oral or trans-nasal approach. Methods: An inline DPI was developed that consisted of hollow inlet and outlet capillaries, a powder chamber, and a nasal or oral interface. A ventilation bag or compressed air was used to actuate the device and simultaneously provide a full deep inspiration consistent with a 5-year-old child. The powder chamber was partially filled with a model spray-dried excipient enhanced growth powder formulation with a mass of 10 mg. Device aerosolization was characterized with cascade impaction, and aerosol transmissions through oral and nasal in vitro models were assessed. Results: Best device performance was achieved when all actuation air passed through the powder chamber (no bypass flow) resulting in an aerosol mean mass median aerodynamic diameter (MMAD) <1.75 μm and a fine particle fraction (<5 μm) ≥90% based on emitted dose. Actuation with the ventilation bag enabled lung delivery efficiency through the nasal and oral interfaces to a tracheal filter of 60% or greater, based on loaded dose. In both oral and nose-to-lung (N2L) administrations, extrathoracic depositional losses were <10%. Conclusion: In conclusion, this study has proposed and initially developed an efficient inline DPI for delivering spray-dried formulations to children using positive pressure operation. Actuation of the device with positive pressure enabled effective N2L aerosol administration with a DPI, which may be beneficial for subjects who are too young to use a mouthpiece or to simultaneously treat the nasal and lung airways of older children.
Collapse
Affiliation(s)
- Dale Farkas
- Department of Mechanical and Nuclear Engineering and Virginia Commonwealth University, Richmond, Virginia
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Serena Bonasera
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Karl Bass
- Department of Mechanical and Nuclear Engineering and Virginia Commonwealth University, Richmond, Virginia
| | - Worth Longest
- Department of Mechanical and Nuclear Engineering and Virginia Commonwealth University, Richmond, Virginia.,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
36
|
Longest W, Spence B, Hindle M. Devices for Improved Delivery of Nebulized Pharmaceutical Aerosols to the Lungs. J Aerosol Med Pulm Drug Deliv 2019; 32:317-339. [PMID: 31287369 DOI: 10.1089/jamp.2018.1508] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nebulizers have a number of advantages for the delivery of inhaled pharmaceutical aerosols, including the use of aqueous formulations and the ability to deliver process-sensitive proteins, peptides, and biological medications. A frequent disadvantage of nebulized aerosols is poor lung delivery efficiency, which wastes valuable medications, increases delivery times, and may increase side effects of the medication. A focus of previous development efforts and previous nebulizer reviews, has been an improvement of the underlying nebulization technology controlling the breakup of a liquid into droplets. However, for a given nebulization technology, a wide range of secondary devices and strategies can be implemented to significantly improve lung delivery efficiency of the aerosol. This review focuses on secondary devices and technologies that can be implemented to improve the lung delivery efficiency of nebulized aerosols and potentially target the region of drug delivery within the lungs. These secondary devices may (1) modify the aerosol size distribution, (2) synchronize aerosol delivery with inhalation, (3) reduce system depositional losses at connection points, (4) improve the patient interface, or (5) guide patient inhalation. The development of these devices and technologies is also discussed, which often includes the use of computational fluid dynamic simulations, three-dimensional printing and rapid prototype device and airway model construction, realistic in vitro experiments, and in vivo analysis. Of the devices reviewed, the implementation of streamlined components may be the most direct and lowest cost approach to enhance aerosol delivery efficiency within nonambulatory nebulizer systems. For applications involving high-dose medications or precise dose administration, the inclusion of active devices to control aerosol size, guide inhalation, and synchronize delivery with inhalation hold considerable promise.
Collapse
Affiliation(s)
- Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia.,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Benjamin Spence
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
37
|
Khoubnasabjafari M, Rahimpour E, Samini M, Jouyban-Gharamaleki V, Chen L, Chen D, Chan HK, Jouyban A. A new hypothesis to investigate bioequivalence of pharmaceutical inhalation products. Daru 2019; 27:517-524. [PMID: 30847847 PMCID: PMC6593033 DOI: 10.1007/s40199-019-00250-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/13/2019] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND This short communication reports a new hypothesis regarding bioequivalence of inhalation products which can potentially provide a reliable means to compare pharmaceutical aerosol formulations and inhalers. METHODS Available methods regarding the bioequivalence studies, inhaled drugs and advantages of exhaled breath condensate (EBC) samples were reviewed to develop this hypothesis. RESULTS It is postulated that two inhalation products providing the same drug concentrations in airway lining fluid (ALF) could be considered bioequivalent. The use of EBC tests which reflect ALF composition can be recommended as an alternative to current testing methods for consideration of bioequivalence. CONCLUSION The methods based on EBC analysis can potentially be applied to bioequivalence study of inhalation products and could reflect drug concentration in ALF. However, experimental studies would be necessary to support or refute this hypothesis on the novel application of EBC to bioequivalence in the future. Graphical abstract In vitro (cascade impactor) and In vivo (EBC concentration) corrolation for inhaled drugs.
Collapse
Affiliation(s)
- Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Samini
- Research and Development Department, Jaber Ebne Hayyan Pharmaceutical Co., Tehran, Iran
| | - Vahid Jouyban-Gharamaleki
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Lan Chen
- Hangzhou Chance Pharmaceuticals, Hangzhou, China
- University of Shanghai for Science and Technology, Shanghai, China
| | - Donghao Chen
- Hangzhou Chance Pharmaceuticals, Hangzhou, China
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Longest W, Farkas D. Development of a New Inhaler for High-Efficiency Dispersion of Spray-Dried Powders Using Computational Fluid Dynamics (CFD) Modeling. AAPS JOURNAL 2019; 21:25. [PMID: 30734133 DOI: 10.1208/s12248-018-0281-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/01/2018] [Indexed: 01/05/2023]
Abstract
Computational fluid dynamics (CFD) modeling offers a powerful tool for the development of drug delivery devices using a first principles approach but has been underutilized in the development of pharmaceutical inhalers. The objective of this study was to develop quantitative correlations for predicting the aerosolization behavior of a newly proposed dry powder inhaler (DPI). The dose aerosolization and containment (DAC) unit DPI utilizes inlet and outlet air orifices designed to maximize the dispersion of spray-dried powders, typically with low air volumes (~ 10 mL) and relatively low airflow rates (~ 3 L/min). Five DAC unit geometries with varying orifice outlet sizes, configurations, and protrusion distances were considered. Aerosolization experiments were performed using cascade impaction to determine mean device emitted dose (ED) and mass median aerodynamic diameter (MMAD). Concurrent CFD simulations were conducted to predict both flow field-based and particle-based dispersion parameters that captured different measures of turbulence. Strong quantitative correlations were established between multiple measures of turbulence and the experimentally observed aerosolization metrics of ED and MMAD. As expected, increasing turbulence produced increased ED with best case values reaching 85% of loaded dose. Surprisingly, decreasing turbulence produced an advantageous decrease in MMAD with values as low as approximately 1.6 μm, which is in contrast with previous studies. In conclusion, CFD provided valuable insights into the performance of the DAC unit DPI as a new device including a two-stage aerosolization process offering multiple avenues for future enhancements.
Collapse
Affiliation(s)
- Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P. O. Box 843015, Richmond, Virginia, 23284, USA. .,Department of Pharmaceutics, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980533, Richmond, Virginia, 23284, USA.
| | - Dale Farkas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, P. O. Box 843015, Richmond, Virginia, 23284, USA
| |
Collapse
|
39
|
Longest PW, Bass K, Dutta R, Rani V, Thomas ML, El-Achwah A, Hindle M. Use of computational fluid dynamics deposition modeling in respiratory drug delivery. Expert Opin Drug Deliv 2019; 16:7-26. [PMID: 30463458 PMCID: PMC6529297 DOI: 10.1080/17425247.2019.1551875] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Respiratory drug delivery is a surprisingly complex process with a number of physical and biological challenges. Computational fluid dynamics (CFD) is a scientific simulation technique that is capable of providing spatially and temporally resolved predictions of many aspects related to respiratory drug delivery from initial aerosol formation through respiratory cellular drug absorption. AREAS COVERED This review article focuses on CFD-based deposition modeling applied to pharmaceutical aerosols. Areas covered include the development of new complete-airway CFD deposition models and the application of these models to develop a next-generation of respiratory drug delivery strategies. EXPERT OPINION Complete-airway deposition modeling is a valuable research tool that can improve our understanding of pharmaceutical aerosol delivery and is already supporting medical hypotheses, such as the expected under-treatment of the small airways in asthma. These complete-airway models are also being used to advance next-generation aerosol delivery strategies, like controlled condensational growth. We envision future applications of CFD deposition modeling to reduce the need for human subject testing in developing new devices and formulations, to help establish bioequivalence for the accelerated approval of generic inhalers, and to provide valuable new insights related to drug dissolution and clearance leading to microdosimetry maps of drug absorption.
Collapse
Affiliation(s)
- P. Worth Longest
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| | - Karl Bass
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rabijit Dutta
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Vijaya Rani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Morgan L. Thomas
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Ahmad El-Achwah
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael Hindle
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
40
|
Martin AR, Moore CP, Finlay WH. Models of deposition, pharmacokinetics, and intersubject variability in respiratory drug delivery. Expert Opin Drug Deliv 2018; 15:1175-1188. [PMID: 30388902 DOI: 10.1080/17425247.2018.1544616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Aerosol drug delivery to the lungs via inhalation is widely used in the treatment of respiratory diseases. The deposition pattern of inhaled particles within the airways of the respiratory tract is key in determining the initial delivered dose. Thereafter, dose-dependent processes including drug release or dissolution, clearance, and absorption influence local and systemic exposure to inhaled drugs over time. AREAS COVERED Empirical correlations, numerical simulation, and in vitro airway geometries that permit improved prediction of extrathoracic and lung deposition fractions in a variety of age groups and breathing conditions are described. Efforts to link deposition models with pharmacokinetic models predicting lung and systemic exposure to inhaled drugs over time are then reviewed. Finally, new methods to predict intersubject variability in extrathoracic deposition, capturing variability in both size and shape of the upper airways, are highlighted. EXPERT OPINION Recent work has been done to expand in vitro deposition experiments to a wide range of age groups and breathing conditions, to link regional lung deposition models with pharmacokinetic models, and to improve prediction of intersubject variability. These efforts are improving predictive understanding of respiratory drug delivery, and will aid the development of new inhaled drugs and delivery devices.
Collapse
Affiliation(s)
- Andrew R Martin
- a Department of Mechanical Engineering , University of Alberta , Edmonton , AB , Canada
| | - Charles P Moore
- a Department of Mechanical Engineering , University of Alberta , Edmonton , AB , Canada
| | - Warren H Finlay
- a Department of Mechanical Engineering , University of Alberta , Edmonton , AB , Canada
| |
Collapse
|