1
|
Lou Z, Shi Y, Guo X, Jin Z, Huang J, Hu Y, Liu X, Zhu J, Kuang R, You J. Chronological Management of Adjuvant Effect for Optimized mRNA Vaccine Inspired by Natural Virus Infection. ACS NANO 2024. [PMID: 39011561 DOI: 10.1021/acsnano.4c04953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The efficacy and safety of mRNA vaccines both rely on a fine-tuning of specific humoral and cellular immune responses. Instead of adjustments in vaccine component, we proposed a concept of chronological management of adjuvant effect to modulate the adaptive immune potency and preference inspired by natural virus infection. By simulating type I interferon expression dynamics during viral infection, three vaccine strategies employing distinct exposure sequences of adjuvant and mRNA have been developed, namely Precede, Coincide, and Follow. Follow, the strategy of adjuvant administration following mRNA, effectively suppressed tumor progression, which was attributed to enhanced mRNA translation, augmented p-MHC I expression, and elevated CD8+ T cell response. Meanwhile, Follow exhibited improved biosafety, characterized by reduced incidences of cardiac and liver toxicity, owing to its alteration to the vaccination microenvironment between successive injections. Our strategy highlights the importance of fine-tuning adjuvant effect dynamics in optimizing mRNA vaccines for clinical application.
Collapse
Affiliation(s)
- Zeliang Lou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhaolei Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yilong Hu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Jiang Zhu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P. R. China
| | - Rong Kuang
- Zhejiang Institute for Food and Drug Control, 325 Pingle Street, Hangzhou, Zhejiang 310004, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310006, P. R. China
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310006, P. R. China
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China
| |
Collapse
|
2
|
Hornick EL, Wallis AM, Bishop GA. TRAF3 enhances type I interferon receptor signaling in T cells by modulating the phosphatase PTPN22. Sci Signal 2022; 15:eabn5507. [PMID: 36166512 PMCID: PMC9728096 DOI: 10.1126/scisignal.abn5507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type I interferons (IFNs) are among the most powerful tools that host cells deploy against intracellular pathogens. Their effectiveness is due both to the rapid, directly antiviral effects of IFN-stimulated gene products and to the effects of type I IFN on responding immune cells. Type I IFN signaling through its receptor, IFNAR, is tightly regulated at multiple steps in the signaling cascade, including at the level of IFNAR downstream effectors, which include the kinase JAK1 and the transcriptional regulator STAT1. Here, we found that tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) enhanced the activation of JAK1 and STAT1 specifically in CD4+ T cells by preventing recruitment of the negative regulatory phosphatase PTPN22 to the IFNAR complex. The balance between signals through IFNAR and other cytokine receptors influences CD4+ T cell differentiation and function during infections. Our work reveals TRAF3 and PTPN22 as key regulators of CD4+ T cell activation by type I IFNs.
Collapse
Affiliation(s)
- Emma L. Hornick
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Alicia M. Wallis
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Graduate Program in Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Gail A. Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Graduate Program in Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Iowa City VA Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
3
|
Stifter SA, Bhattacharyya N, Sawyer AJ, Cootes TA, Stambas J, Doyle SE, Feigenbaum L, Paul WE, Britton WJ, Sher A, Feng CG. Visualizing the Selectivity and Dynamics of Interferon Signaling In Vivo. Cell Rep 2020; 29:3539-3550.e4. [PMID: 31825834 DOI: 10.1016/j.celrep.2019.11.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 09/25/2019] [Accepted: 11/06/2019] [Indexed: 01/09/2023] Open
Abstract
Interferons (IFN) are pleiotropic cytokines essential for defense against infection, but the identity and tissue distribution of IFN-responsive cells in vivo are poorly defined. In this study, we generate a mouse strain capable of reporting IFN-signaling activated by all three types of IFNs and investigate the spatio-temporal dynamics and identity of IFN-responding cells following IFN injection and influenza virus infection. Despite ubiquitous expression of IFN receptors, cellular responses to IFNs are highly heterogenous in vivo and are determined by anatomical site, cell type, cellular preference to individual IFNs, and activation status. Unexpectedly, type I and II pneumocytes, the primary target of influenza infection, exhibit striking differences in the strength and temporal dynamics of IFN signaling associated with differential susceptibility to the viral infection. Our findings suggest that time- and cell-type-dependent integration of distinct IFN signals govern the specificity and magnitude of IFN responses in vivo.
Collapse
Affiliation(s)
- Sebastian A Stifter
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Centenary Institute, The University of Sydney, NSW 2050, Australia
| | - Nayan Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Centenary Institute, The University of Sydney, NSW 2050, Australia
| | - Andrew J Sawyer
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Centenary Institute, The University of Sydney, NSW 2050, Australia
| | - Taylor A Cootes
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Centenary Institute, The University of Sydney, NSW 2050, Australia
| | - John Stambas
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | | | - Lionel Feigenbaum
- Laboratory Animal Sciences Program, National Cancer Institute, Frederick, MD 21702, USA
| | - William E Paul
- Cytokine Biology Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, NSW 2050, Australia; Central Clinical School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892-3202, USA
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; Centenary Institute, The University of Sydney, NSW 2050, Australia.
| |
Collapse
|
4
|
Chyuan IT, Tzeng HT, Chen JY. Signaling Pathways of Type I and Type III Interferons and Targeted Therapies in Systemic Lupus Erythematosus. Cells 2019; 8:cells8090963. [PMID: 31450787 PMCID: PMC6769759 DOI: 10.3390/cells8090963] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
Type I and type III interferons (IFNs) share several properties in common, including the induction of signaling pathways, the activation of gene transcripts, and immune responses, against viral infection. Recent advances in the understanding of the molecular basis of innate and adaptive immunity have led to the re-examination of the role of these IFNs in autoimmune diseases. To date, a variety of IFN-regulated genes, termed IFN signature genes, have been identified. The expressions of these genes significantly increase in systemic lupus erythematosus (SLE), highlighting the role of type I and type III IFNs in the pathogenesis of SLE. In this review, we first discussed the signaling pathways and the immunoregulatory roles of type I and type III IFNs. Next, we discussed the roles of these IFNs in the pathogenesis of autoimmune diseases, including SLE. In SLE, IFN-stimulated genes induced by IFN signaling contribute to a positive feedback loop of autoimmunity, resulting in perpetual autoimmune inflammation. Based on this, we discussed the use of several specific IFN blocking strategies using anti-IFN-α antibodies, anti-IFN-α receptor antibodies, and IFN-α-kinoid or downstream small molecules, which intervene in Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathways, in clinical trials for SLE patients. Hopefully, the development of novel regimens targeting IFN signaling pathways will shed light on promising future therapeutic applications for SLE patients.
Collapse
Affiliation(s)
- I-Tsu Chyuan
- Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Hong-Tai Tzeng
- Institute for translational research in biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33375, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 33375, Taiwan.
| |
Collapse
|
5
|
Kuuliala K, Penttilä AK, Kaukonen KM, Mustonen H, Kuuliala A, Oiva J, Hämäläinen M, Moilanen E, Pettilä V, Puolakkainen P, Kylänpää L, Repo H. Signalling Profiles of Blood Leucocytes in Sepsis and in Acute Pancreatitis in Relation to Disease Severity. Scand J Immunol 2017; 87:88-98. [DOI: 10.1111/sji.12630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/03/2017] [Indexed: 12/14/2022]
Affiliation(s)
- K. Kuuliala
- Department of Bacteriology and Immunology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - A. K. Penttilä
- Department of GI surgery; Abdominal Centre; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - K.-M. Kaukonen
- Department of Anesthesiology, Intensive Care and Pain Medicine; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - H. Mustonen
- Department of GI surgery; Abdominal Centre; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - A. Kuuliala
- Department of Bacteriology and Immunology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - J. Oiva
- Department of Surgery; Kuopio University Hospital; Kuopio Finland
| | - M. Hämäläinen
- The Immunopharmacology Research Group; Faculty of Medicine and Life Sciences; University of Tampere and Tampere University Hospital; Tampere Finland
| | - E. Moilanen
- The Immunopharmacology Research Group; Faculty of Medicine and Life Sciences; University of Tampere and Tampere University Hospital; Tampere Finland
| | - V. Pettilä
- Department of Anesthesiology, Intensive Care and Pain Medicine; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - P. Puolakkainen
- Department of GI surgery; Abdominal Centre; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - L. Kylänpää
- Department of GI surgery; Abdominal Centre; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - H. Repo
- Department of Bacteriology and Immunology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
6
|
|
7
|
Marino JH, Tan C, Taylor AA, Bentley C, Van De Wiele CJ, Ranne R, Paliotta M, Broughan TA, Teague TK. Differential IL-7 responses in developing human thymocytes. Hum Immunol 2010; 71:329-33. [PMID: 20074604 PMCID: PMC2896073 DOI: 10.1016/j.humimm.2010.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 12/23/2009] [Accepted: 01/07/2010] [Indexed: 01/17/2023]
Abstract
Interleukin (IL)-7 is a factor essential for mouse and human thymopoiesis. Mouse thymocytes have altered sensitivities to IL-7 at different developmental stages. CD4/CD8 double positive (DP) mouse thymocytes are shielded from the influence of IL-7 because of loss of CD127 (IL-7Ralpha). In this study, we assessed IL-7 receptor expression and IL-7 signaling in human thymocytes. We found human DP cells to be severely limited in their ability to phosphorylate STAT-5 in response to IL-7. The relative expression levels of the IL-7-inducible proteins Bcl-2 and Mcl-1 were also lower in human DP cells, consistent with a stage-specific decrease in IL-7 responsiveness. IL-7 responses were restored in a subset of cells that matured past the DP stage. Unlike the regulation of IL-7 signaling in mouse thymocytes, loss of IL-7 signaling in human DP cells was not due to absence of CD127, but instead correlated with downregulation of CD132 (common gamma chain).
Collapse
MESH Headings
- Animals
- CD4 Antigens/biosynthesis
- CD8 Antigens/biosynthesis
- Cell Differentiation
- Cells, Cultured
- Child, Preschool
- Humans
- Infant
- Infant, Newborn
- Interleukin Receptor Common gamma Subunit/genetics
- Interleukin Receptor Common gamma Subunit/immunology
- Interleukin Receptor Common gamma Subunit/metabolism
- Interleukin-7/immunology
- Interleukin-7/pharmacology
- Mice
- Precursor Cells, T-Lymphoid/cytology
- Precursor Cells, T-Lymphoid/drug effects
- Precursor Cells, T-Lymphoid/immunology
- Precursor Cells, T-Lymphoid/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/immunology
- Receptors, Interleukin-7/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Julie H Marino
- Department of Surgery, University of Oklahoma College of Medicine, Tulsa, OK, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Maldonado RA, Soriano MA, Perdomo LC, Sigrist K, Irvine DJ, Decker T, Glimcher LH. Control of T helper cell differentiation through cytokine receptor inclusion in the immunological synapse. J Exp Med 2009; 206:877-92. [PMID: 19349465 PMCID: PMC2715121 DOI: 10.1084/jem.20082900] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 03/06/2009] [Indexed: 01/14/2023] Open
Abstract
The antigen recognition interface formed by T helper precursors (Thps) and antigen-presenting cells (APCs), called the immunological synapse (IS), includes receptors and signaling molecules necessary for Thp activation and differentiation. We have recently shown that recruitment of the interferon-gamma receptor (IFNGR) into the IS correlates with the capacity of Thps to differentiate into Th1 effector cells, an event regulated by signaling through the functionally opposing receptor to interleukin-4 (IL4R). Here, we show that, similar to IFN-gamma ligation, TCR stimuli induce the translocation of signal transducer and activator of transcription 1 (STAT1) to IFNGR1-rich regions of the membrane. Unexpectedly, STAT1 is preferentially expressed, is constitutively serine (727) phosphorylated in Thp, and is recruited to the IS and the nucleus upon TCR signaling. IL4R engagement controls this process by interfering with both STAT1 recruitment and nuclear translocation. We also show that in cells with deficient Th1 or constitutive Th2 differentiation, the IL4R is recruited to the IS. This observation suggest that the IL4R is retained outside the IS, similar to the exclusion of IFNGR from the IS during IL4R signaling. This study provides new mechanistic cues for the regulation of lineage commitment by mutual immobilization of functionally antagonistic membrane receptors.
Collapse
Affiliation(s)
- Roberto A Maldonado
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Feng CG, Zheng L, Jankovic D, Báfica A, Cannons JL, Watford WT, Chaussabel D, Hieny S, Caspar P, Schwartzberg PL, Lenardo MJ, Sher A. The immunity-related GTPase Irgm1 promotes the expansion of activated CD4+ T cell populations by preventing interferon-gamma-induced cell death. Nat Immunol 2008; 9:1279-87. [PMID: 18806793 DOI: 10.1038/ni.1653] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 08/08/2008] [Indexed: 01/02/2023]
Abstract
Mice deficient in the interferon-gamma (IFN-gamma)-inducible, immunity-related GTPase Irgm1 have defective host resistance to a variety of intracellular pathogens. This greater susceptibility to infection is associated with impaired IFN-gamma-dependent macrophage microbicidal activity in vitro. Here we show that Irgm1 also regulated the survival of mature effector CD4(+) T lymphocytes by protecting them from IFN-gamma-induced autophagic cell death. Mice deficient in both IFN-gamma and Irgm1 were 'rescued' from the lymphocyte depletion and greater mortality that occurs in mice singly deficient in Irgm1 after mycobacterial infection. Our studies identify a feedback mechanism in the T helper type 1 response that limits the detrimental effects of IFN-gamma on effector T lymphocyte survival while promoting the antimicrobial functions of IFN-gamma.
Collapse
Affiliation(s)
- Carl G Feng
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shi M, Lin TH, Appell KC, Berg LJ. Janus-kinase-3-dependent signals induce chromatin remodeling at the Ifng locus during T helper 1 cell differentiation. Immunity 2008; 28:763-73. [PMID: 18549798 DOI: 10.1016/j.immuni.2008.04.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 01/06/2023]
Abstract
Differentiation of naive CD4+ T cells into T helper type 1 (Th1) effector cells requires both T cell receptor (TCR) signaling and cytokines such as interleukin-12 and interferon gamma (IFN-gamma). Here, we report that a third cytokine signal, mediated by the Janus family tyrosine kinase 3 (Jak3) and signal transducer and activator of transcription 5 (STAT5) pathway, is also required for Th1 cell differentiation. In the absence of Jak3-dependent signals, naive CD4+ T cells proliferate robustly but produce little IFN-gamma after Th1 cell polarization in vitro. This defect is not due to reduced activation of STAT1 or STAT4 or to impaired upregulation of the transcription factor T-bet. Instead, we find that T-bet binding to the Ifng promoter is greatly diminished in the absence of Jak3-dependent signals, correlating with a decrease in Ifng promoter accessibility and histone acetylation. These data indicate that Jak3 regulates epigenetic modification and chromatin remodeling of the Ifng locus during Th1 cell differentiation.
Collapse
Affiliation(s)
- Min Shi
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
11
|
Marino JH, Tan C, Davis B, Han ES, Hickey M, Naukam R, Taylor A, Miller KS, Van De Wiele CJ, Teague TK. Disruption of thymopoiesis in ST6Gal I-deficient mice. Glycobiology 2008; 18:719-26. [PMID: 18535087 DOI: 10.1093/glycob/cwn051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Thymocyte development is accompanied by sequential changes in cell surface glycosylation. For example, medullary thymocytes have increased levels of alpha2,3-linked sialic acid and a loss of asialo core 1 O-glycans as compared to cortical thymocytes. Some of these changes have been linked to fine tuning of the T cell receptor avidity. We analyzed ST6Gal I transcript abundance and levels of alpha2,6-linked sialic acid across thymocyte subsets. We found that ST6Gal I transcript levels increased following T cell receptor beta-selection suggesting that this sialyltransferase may influence the development of early thymocyte populations. Indeed, low levels of alpha2,6-linked sialic acid were found in the earliest T lineage cells, and then increased in T cell receptor beta-selected cells. To determine whether ST6Gal I influences T cell development, we analyzed ST6Gal I-deficient mice for disruptions in thymocyte populations. We found reduced thymic cellularity in the ST6Gal I-deficient mice starting in the early thymocyte compartments.
Collapse
Affiliation(s)
- Julie H Marino
- Department of Surgery, University of Oklahoma College of Medicine, Tulsa, OK 74135, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Impaired thymopoiesis in interleukin-7 receptor transgenic mice is not corrected by Bcl-2. Cell Immunol 2008; 250:31-9. [PMID: 18321477 DOI: 10.1016/j.cellimm.2008.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 12/14/2022]
Abstract
Murine thymocytes down-regulate IL-7 responsiveness following beta-selection and reacquire sensitivity after positive selection. To assess the potential consequences of IL-7 signaling during this phase of development, transgenic IL-7 receptor alpha (IL-7Ralpha) mice were evaluated for IL-7 responsiveness as gauged by STAT-5 phosphorylation. Transgenic IL-7Ralpha expression increased the percentage of thymocytes responsive to IL-7 yet resulted in a decrease in total thymic cellularity. Aberrant thymocyte development in transgenic mice was first manifested by a reduction of DN3 thymocytes that correlated with lower Bcl-2 expression. Surprisingly, transgenic restoration of Bcl-2 expression did not correct thymic hypocellularity induced by IL-7Ralpha overexpression. These findings demonstrate that failure to appropriately downregulate IL-7Ralpha expression interferes with thymocyte development past the pro-T stage resulting in significantly lower levels of mature thymocytes.
Collapse
|
13
|
Yoshimura T, Takeda A, Hamano S, Miyazaki Y, Kinjyo I, Ishibashi T, Yoshimura A, Yoshida H. Two-Sided Roles of IL-27: Induction of Th1 Differentiation on Naive CD4+T Cells versus Suppression of Proinflammatory Cytokine Production Including IL-23-Induced IL-17 on Activated CD4+T Cells Partially Through STAT3-Dependent Mechanism. THE JOURNAL OF IMMUNOLOGY 2006; 177:5377-85. [PMID: 17015723 DOI: 10.4049/jimmunol.177.8.5377] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent lines of evidence have demonstrated that IL-27, a newly identified IL-12-related cytokine, has two apparently conflicting roles in immune responses: one as an initiator of Th1 responses and the other as an attenuator of inflammatory cytokine production. Although the IL-27-mediated Th1 initiation mechanism has been elucidated, little is known about the molecular basis for the suppression of cytokine production. In the present study, we demonstrated that IL-27 suppressed the production of various proinflammatory cytokines by fully activated CD4+ T cells while it had no effect on the cytokine production by CD4+ T cells at early phases of activation. IL-27 also suppressed IL-17 production by activated CD4+ T cells, thereby counteracting IL-23, another IL-12-related cytokine with proinflammatory effects. In fully activated CD4+ T cells, STAT3 was preferentially activated by IL-27 stimulation, whereas both STAT1 and 3 were activated by IL-27 in early activated CD4+ T cells. Lack of STAT3 in fully activated cells impaired the suppressive effects of IL-27. These data indicated that the preferential activation of STAT3 in fully activated CD4+ T cells plays an important role in the cytokine suppression by IL-27/WSX-1.
Collapse
Affiliation(s)
- Takeru Yoshimura
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation and Department of Opthalmology, Graduate School of Medical Sciences; Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
van Boxel-Dezaire AHH, Rani MRS, Stark GR. Complex Modulation of Cell Type-Specific Signaling in Response to Type I Interferons. Immunity 2006; 25:361-72. [PMID: 16979568 DOI: 10.1016/j.immuni.2006.08.014] [Citation(s) in RCA: 406] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The type I interferons (IFNs) are pleiotropic cytokines that regulate many different cellular functions. The major signaling pathway activated by type I IFNs involves sequential phosphorylation of the tyrosine residues of the Janus kinase (JAK) and signal transducers and activators of transcription (STAT) proteins, providing the primary mechanism through which gene expression is induced. Recent work has shown that the responses are quite complex, as shown by different responses to specific subtypes of type I IFN, activation of kinases in addition to JAKs, patterns of activation of all seven STATs in different cells, and activation of transcription factors other than STATs. The type I IFNs use this complexity to regulate many different biological functions in different types of cells, by activating different specific signals and patterns of gene expression.
Collapse
Affiliation(s)
- Anette H H van Boxel-Dezaire
- Department of Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
15
|
Purcell MK, Nichols KM, Winton JR, Kurath G, Thorgaard GH, Wheeler P, Hansen JD, Herwig RP, Park LK. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus. Mol Immunol 2006; 43:2089-106. [PMID: 16426680 DOI: 10.1016/j.molimm.2005.12.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 12/08/2005] [Accepted: 12/08/2005] [Indexed: 11/23/2022]
Abstract
The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.
Collapse
Affiliation(s)
- Maureen K Purcell
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Haring JS, Corbin GA, Harty JT. Dynamic regulation of IFN-gamma signaling in antigen-specific CD8+ T cells responding to infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2005; 174:6791-802. [PMID: 15905520 DOI: 10.4049/jimmunol.174.11.6791] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IFN-gamma plays a critical role in the CD8(+) T cell response to infection, but when and if this cytokine directly signals CD8(+) T cells during an immune response is unknown. We show that naive Ag-specific CD8(+) T cells receive IFN-gamma signals within 12 h after in vivo infection with Listeria monocytogenes and then become unresponsive to IFN-gamma throughout the ensuing Ag-driven expansion phase. Ag-specific CD8(+) T cells regain partial IFN-gamma responsiveness throughout the contraction phase, whereas the memory pool exhibits uniform, but reduced, responsiveness that is also modulated during the secondary response. The responsiveness of Ag-specific CD8(+) T cells to IFN-gamma correlated with modulation in the expression of IFN-gammaR2, but not with IFN-gammaR1 or suppressor of cytokine signaling-1. This dynamic regulation suggests that early IFN-gamma signals participate in regulation of the primary CD8(+) T cell response program, but that evading or minimizing IFN-gamma signals during expansion and the memory phase may contribute to appropriate regulation of the CD8(+) T cell response.
Collapse
Affiliation(s)
- Jodie S Haring
- Department of Microbiology, University of Iowa, Iowa City, 52242, USA
| | | | | |
Collapse
|