1
|
Ren J, Antony F, Rouse BT, Suryawanshi A. Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis. Pathogens 2023; 12:437. [PMID: 36986359 PMCID: PMC10058014 DOI: 10.3390/pathogens12030437] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host's life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host's innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses.
Collapse
Affiliation(s)
- Jiayi Ren
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 240B Greene Hall, Auburn, AL 36849, USA
| |
Collapse
|
2
|
Pujantell M, Altfeld M. Consequences of sex differences in Type I IFN responses for the regulation of antiviral immunity. Front Immunol 2022; 13:986840. [PMID: 36189206 PMCID: PMC9522975 DOI: 10.3389/fimmu.2022.986840] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
The immune system protects us from pathogens, such as viruses. Antiviral immune mechanisms aim to limit viral replication, and must maintain immunological homeostasis to avoid excessive inflammation and damage to the host. Sex differences in the manifestation and progression of immune-mediated disease point to sex-specific factors modulating antiviral immunity. The exact mechanisms regulating these immunological differences between females and males are still insufficiently understood. Females are known to display stronger Type I IFN responses and are less susceptible to viral infections compared to males, indicating that Type I IFN responses might contribute to the sexual dimorphisms observed in antiviral responses. Here, we review the impact of sex hormones and X chromosome-encoded genes on differences in Type I IFN responses between females and males; and discuss the consequences of sex differences in Type I IFN responses for the regulation of antiviral immune responses.
Collapse
Affiliation(s)
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Nakasuji-Togi M, Togi S, Saeki K, Kojima Y, Ozato K. Herbal extracts that induce type I interferons through Toll-like receptor 4 signaling. Food Nutr Res 2022; 66:5524. [PMID: 35173566 PMCID: PMC8809074 DOI: 10.29219/fnr.v66.5524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/29/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background A mixture of five herbal extracts called internatural (INT), which is prepared from pumpkin seeds, purple turmeric, pearl barley, corn pistil, and cinnamon, is widely used by people in Japan and elsewhere for its immunity-enhancing effects and general health. Although anecdotal evidence indicates its efficacy, the mechanisms by which INT boosts immunity have remained unknown. Objective The aim of this study was to investigate whether INT induces type I interferons (IFNs) in murine bone marrow-derived macrophages (BMDMs) and by what mechanism. Design We measured induction of type I IFNs (IFNβ and IFNα) in BMDMs treated with INT or other Toll-like receptor ligands: bacterial lipopolysaccharides (LPS), dsRNA, poly(I:C), and CpG oligonucleotides. To investigate whether INT signals through Toll-like receptor 4 (TLR4), we tested TLR4-specific inhibitor. We also tested if INT utilizes TLR4 adaptors, toll/IL-1 receptor (TIR) domain-containing adaptor (TRIF), or myeloid differentiation factor 88 (MyD88), we examined INT induction of IFNβ in TRIF-KO and MyD88-KO BMDMs. We then investigated whether INT provides an antiviral effect upon fibroblasts either directly or indirectly using the encephalomyocarditis virus (EMCV) model. Results We first observed that INT, when added to BMDMs, potently induces type I IFNs (IFNβ and IFNα) within 2 h. INT induction of IFN expression was mediated by TLR4, which signaled through the TRIF/MyD88 adaptors, similar to LPS. A high-molecular-weight fraction (MW > 10,000) of INT extracts contained IFN-inducing activity. Supernatants from INT-treated BMDMs protected untreated fibroblast from EMCV infection as reduced viral titers. Conclusions INT induced type I IFN mRNA and proteins in BMDMs and other cell types. This induction was mediated by TLR4, which transduces signals using the TRIF/MyD88 pathway. The high-MW component of INT contained type I IFN inducing activity. The supernatants from INT-treated cells displayed antiviral activity and protected cells from EMCV infection. These findings indicate that INT is a novel natural IFN inducer that strengthens host’s innate immunity.
Collapse
Affiliation(s)
- Misa Nakasuji-Togi
- Division of Developmental Biology, Eunice Kennedy Institute of Child Health and Human Development, National Institutes of Health, MD, USA
- Department of Regenerative Medicine, School of Medicine, Kanazawa Medical University, Ishikawa, Japan
- Center for Regenerative Medicine, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Sumihito Togi
- Division of Developmental Biology, Eunice Kennedy Institute of Child Health and Human Development, National Institutes of Health, MD, USA
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
- Center for Clinical Genomics, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Keita Saeki
- Division of Developmental Biology, Eunice Kennedy Institute of Child Health and Human Development, National Institutes of Health, MD, USA
| | | | - Keiko Ozato
- Division of Developmental Biology, Eunice Kennedy Institute of Child Health and Human Development, National Institutes of Health, MD, USA
- Keiko Ozato, Division of Developmental Biology, Eunice Kennedy Institute of Child Health and Human Development, National Institutes of Health Bethesda MD 20892 USA.
| |
Collapse
|
4
|
Contribution of endoplasmic reticulum stress, MAPK and PI3K/Akt pathways to the apoptotic death induced by a penicillin derivative in melanoma cells. Apoptosis 2021; 27:34-48. [PMID: 34773171 DOI: 10.1007/s10495-021-01697-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
We have previously examined the in vitro and in vivo antitumor action of TAP7f, a synthetic triazolylpeptidyl penicillin, on murine melanoma cells. In this work, we explored the signal transduction pathways modulated by TAP7f in murine B16-F0 and human A375 melanoma cells, and the contribution of some intracellular signals to the apoptotic cell death. TAP7f decreased ERK1/2 phosphorylation and increased phospho-p38, phospho-JNK and phospho-Akt levels. ERK1/2 blockage suppressed cell growth, while inhibition of p38, JNK and PI3K-I pathways reduced the antitumor effect of TAP7f. Pharmacological inhibition of p38 and JNK, or blockage of PI3K-I/Akt cascade with a dominant negative PI3K-I mutant diminished Bax expression levels and PARP-1 cleavage, indicating the involvement of these pathways in apoptosis. PI3K-I/Akt inhibition also favored an autophagic response, as evidenced by the higher expression levels of Beclin-1 and LC3-II detected in transfected cells exposed to TAP7f. However, although PI3K-I/Akt blockage promoted an autophagic survival response, this mechanism appears not to be critical for TAP7f antitumor action. It was also shown that TAP7f induced ER stress by enhancing the expression of ER stress-related genes and proteins. Downregulation of CHOP protein with specific siRNA increased cell growth and decreased cleavage of PARP-1, supporting its role in apoptosis. Furthermore, it was found that activation of p38, JNK and Akt occurred downstream ER perturbation. In summary, our results showed that TAP7f triggers an apoptotic cell death in melanoma cells through induction of ER stress and activation of p38, JNK and PI3K-I/Akt pathways.
Collapse
|
5
|
Haibe Y, El Husseini Z, El Sayed R, Shamseddine A. Resisting Resistance to Immune Checkpoint Therapy: A Systematic Review. Int J Mol Sci 2020; 21:E6176. [PMID: 32867025 PMCID: PMC7504220 DOI: 10.3390/ijms21176176] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment landscape in oncology has witnessed a major revolution with the introduction of checkpoint inhibitors: anti-PD1, anti-PDL1 and anti-CTLA-4. These agents enhance the immune response towards cancer cells instead of targeting the tumor itself, contrary to standard chemotherapy. Although long-lasting durable responses have been observed with immune checkpoints inhibitors, the response rate remains relatively low in many cases. Some patients respond in the beginning but then eventually develop acquired resistance to treatment and progress. Other patients having primary resistance never respond. Multiple studies have been conducted to further elucidate these variations in response in different tumor types and different individuals. This paper provides an overview of the mechanisms of resistance to immune checkpoint inhibitors and highlights the possible therapeutic approaches under investigation aiming to overcome such resistance in order to improve the clinical outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | | | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut 11-0236, Lebanon; (Y.H.); (Z.E.H.); (R.E.S.)
| |
Collapse
|
6
|
Martin-Hijano L, Sainz B. The Interactions Between Cancer Stem Cells and the Innate Interferon Signaling Pathway. Front Immunol 2020; 11:526. [PMID: 32296435 PMCID: PMC7136464 DOI: 10.3389/fimmu.2020.00526] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) form a family of cytokines with pleiotropic effects that modulate the immune response against multiple challenges like viral infections, autoimmune diseases, and cancer. While numerous anti-tumor activities have been described for IFNs, IFNs have also been associated with tumor growth and progression. The effect of IFNs on apoptosis, angiogenesis, tumor cell immunogenicity, and modulation of immune cells have been largely studied; however, less is known about their specific effects on cancer stem cells (CSCs). CSCs constitute a subpopulation of tumor cells endowed with stem-like properties including self-renewal, chemoresistance, tumorigenic capacity, and quiescence. This rare and unique subpopulation of cells is believed to be responsible for tumor maintenance, metastatic spread, and relapse. Thus, this review aims to summarize and discuss the current knowledge of the anti- and pro-CSCs effects of IFNs and also to highlight the need for further research on the interplay between IFNs and CSCs. Importantly, understanding this interplay will surely help to exploit the anti-tumor effects of IFNs, specifically those that target CSCs.
Collapse
Affiliation(s)
- Laura Martin-Hijano
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Chronic Diseases and Cancer—Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Bruno Sainz
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Chronic Diseases and Cancer—Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
7
|
The Different Effects of IFN- β and IFN- γ on the Tumor-Suppressive Activity of Human Amniotic Fluid-Derived Mesenchymal Stem Cells. Stem Cells Int 2019; 2019:4592701. [PMID: 31149015 PMCID: PMC6501177 DOI: 10.1155/2019/4592701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/25/2018] [Accepted: 01/23/2019] [Indexed: 01/01/2023] Open
Abstract
Current studies have shown that type I or II interferon-modified mesenchymal stem cells have great potential for the application of tumor-targeted therapy, but the underlying mechanism remains largely elusive. Here, we compared the different effects of IFN-β and IFN-γ on the antitumor activity of human amniotic fluid-derived mesenchymal stem cells (AFMSCs) and revealed the potential mechanism. In detail, AFMSCs primed with IFN-β or IFN-β plus IFN-γ, not IFN-γ, inhibited the proliferation of cancer cells in an immunocompetent mouse H460 subcutaneous model, although they all inhibited the proliferation of cancer cells in an immunocompromised mouse H460 subcutaneous model. TRAIL expressed by IFN-β- or IFN-γ-primed AFMSCs specifically exerted the antitumor effect of AFMSCs. AFMSCs primed with IFN-γ highly expressed immunosuppressive molecule IDO1, but IFN-β counteracted the IFN-γ-initiated IDO1 expression. 1-MT (IDO1 inhibitor) decreased TRAIL, but increased IDO1 expression in AFMSCs primed with interferon. As a result, AFMSCs primed with IFN-β or IFN-γ had the antitumor activity, and 1-MT failed to enhance the antitumor effect of IFN-γ-primed AFMSC in vitro and in the immunocompromised mouse H460 subcutaneous model. Furthermore, the expression of TRAIL in AFMSCs was upregulated by apoptotic cancer cells and this positive feedback intensified the antitumor effects of IFNs-primed AFMSCs. The different target gene expression profiles of AFMSCs regulated by IFN-β and IFN-γ determined the different antitumor effects of IFN-β- and IFN-γ-primed AFMSCs on tumor cells. Our finding may help to explore a clinical strategy for cancer intervention by understanding the antitumor mechanisms of MSCs and interferon.
Collapse
|
8
|
Stanifer ML, Pervolaraki K, Boulant S. Differential Regulation of Type I and Type III Interferon Signaling. Int J Mol Sci 2019; 20:E1445. [PMID: 30901970 PMCID: PMC6471306 DOI: 10.3390/ijms20061445] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) are very powerful cytokines, which play a key role in combatting pathogen infections by controlling inflammation and immune response by directly inducing anti-pathogen molecular countermeasures. There are three classes of IFNs: type I, type II and type III. While type II IFN is specific for immune cells, type I and III IFNs are expressed by both immune and tissue specific cells. Unlike type I IFNs, type III IFNs have a unique tropism where their signaling and functions are mostly restricted to epithelial cells. As such, this class of IFN has recently emerged as a key player in mucosal immunity. Since the discovery of type III IFNs, the last 15 years of research in the IFN field has focused on understanding whether the induction, the signaling and the function of these powerful cytokines are regulated differently compared to type I IFN-mediated immune response. This review will cover the current state of the knowledge of the similarities and differences in the signaling pathways emanating from type I and type III IFN stimulation.
Collapse
Affiliation(s)
- Megan L Stanifer
- Schaller research group at CellNetworks, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Kalliopi Pervolaraki
- Schaller research group at CellNetworks, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Steeve Boulant
- Schaller research group at CellNetworks, Department of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- Research Group "Cellular polarity and viral infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Front Cell Infect Microbiol 2019; 9:42. [PMID: 30886834 PMCID: PMC6409310 DOI: 10.3389/fcimb.2019.00042] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses and intracellular bacterial pathogens (IBPs) have in common the need of suitable host cells for efficient replication and proliferation during infection. In human infections, the cell types which both groups of pathogens are using as hosts are indeed quite similar and include phagocytic immune cells, especially monocytes/macrophages (MOs/MPs) and dendritic cells (DCs), as well as nonprofessional phagocytes, like epithelial cells, fibroblasts and endothelial cells. These terminally differentiated cells are normally in a metabolically quiescent state when they are encountered by these pathogens during infection. This metabolic state of the host cells does not meet the extensive need for nutrients required for efficient intracellular replication of viruses and especially IBPs which, in contrast to the viral pathogens, have to perform their own specific intracellular metabolism to survive and efficiently replicate in their host cell niches. For this goal, viruses and IBPs have to reprogram the host cell metabolism in a pathogen-specific manner to increase the supply of nutrients, energy, and metabolites which have to be provided to the pathogen to allow its replication. In viral infections, this appears to be often achieved by the interaction of specific viral factors with central metabolic regulators, including oncogenes and tumor suppressors, or by the introduction of virus-specific oncogenes. Less is so far known on the mechanisms leading to metabolic reprogramming of the host cell by IBPs. However, the still scant data suggest that similar mechanisms may also determine the reprogramming of the host cell metabolism in IBP infections. In this review, we summarize and compare the present knowledge on this important, yet still poorly understood aspect of pathogenesis of human viral and especially IBP infections.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Chair of Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
10
|
Loch C, Haeger JD, Pfarrer C. IFNτ mediates chemotaxis, motility, metabolism and CK18 downregulation in bovine trophoblast cells in vitro via STAT1 and MAPK42/44 signaling. Placenta 2018; 64:17-26. [DOI: 10.1016/j.placenta.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 10/18/2022]
|
11
|
The Effector TepP Mediates Recruitment and Activation of Phosphoinositide 3-Kinase on Early Chlamydia trachomatis Vacuoles. mSphere 2017; 2:mSphere00207-17. [PMID: 28744480 PMCID: PMC5518268 DOI: 10.1128/msphere.00207-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/27/2017] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis delivers multiple type 3 secreted effector proteins to host epithelial cells to manipulate cytoskeletal functions, membrane dynamics, and signaling pathways. TepP is the most abundant effector protein secreted early in infection, but its molecular function is poorly understood. In this report, we provide evidence that TepP is important for bacterial replication in cervical epithelial cells, activation of type I IFN genes, and recruitment of class I phosphoinositide 3-kinases (PI3K) and signaling adaptor protein CrkL to nascent pathogen-containing vacuoles (inclusions). We also show that TepP is a target of tyrosine phosphorylation by Src kinases but that these modifications do not appear to influence the recruitment of PI3K or CrkL. The translocation of TepP correlated with an increase in the intracellular pools of phosphoinositide-(3,4,5)-triphosphate but not the activation of the prosurvival kinase Akt, suggesting that TepP-mediated activation of PI3K is spatially restricted to early inclusions. Furthermore, we linked PI3K activity to the dampening of transcription of type I interferon (IFN)-induced genes early in infection. Overall, these findings indicate that TepP can modulate cell signaling and, potentially, membrane trafficking events by spatially restricted activation of PI3K. IMPORTANCE This article shows that Chlamydia recruits PI3K, an enzyme important for host cell survival and internal membrane functions, to the pathogens inside cells by secreting a scaffolding protein called TepP. TepP enhances Chlamydia replication and dampens the activation of immune responses.
Collapse
|
12
|
Neuronal IFN-beta-induced PI3K/Akt-FoxA1 signalling is essential for generation of FoxA1 +T reg cells. Nat Commun 2017; 8:14709. [PMID: 28436428 PMCID: PMC5413980 DOI: 10.1038/ncomms14709] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/25/2017] [Indexed: 01/09/2023] Open
Abstract
Neurons reprogramme encephalitogenic T cells (Tenc) to regulatory T cells (Tregs), either FoxP3+Tregs or FoxA1+Tregs. We reported previously that neuronal ability to generate FoxA1+Tregs was central to preventing neuroinflammation in experimental autoimmune encephalomyelitis (EAE). Mice lacking interferon (IFN)-β were defective in generating FoxA1+Tregs in the brain. Here we show that lack of neuronal IFNβ signalling is associated with the absence of programme death ligand-1 (PDL1), which prevents their ability to reprogramme Tenc cells to FoxA1+Tregs. Passive transfer-EAE via IFNβ-competent Tenc cells to mice lacking IFNβ and active induced-EAE in mice lacking its receptor, IFNAR, in the brain (NesCre:Ifnarfl/fl) result in defective FoxA1+Tregs generation and aggravated neuroinflammation. IFNβ activates neuronal PI3K/Akt signalling and Akt binds to transcription factor FoxA1 that translocates to the nucleus and induces PDL1. Conversely, inhibition of PI3K/Akt, FoxA1 and PDL1 blocked neuronal ability to generate FoxA1+Tregs. We characterize molecular factors central for neuronal ability to reprogramme pathogenic T cells to FoxA1+Tregs preventing neuroinflammation.
Collapse
|
13
|
Biological or pharmacological activation of protein kinase C alpha constrains hepatitis E virus replication. Antiviral Res 2017; 140:1-12. [DOI: 10.1016/j.antiviral.2017.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
|
14
|
Mann JE, Hoesli R, Michmerhuizen NL, Devenport SN, Ludwig ML, Vandenberg TR, Matovina C, Jawad N, Mierzwa M, Shuman AG, Spector ME, Brenner JC. Surveilling the Potential for Precision Medicine-driven PD-1/PD-L1-targeted Therapy in HNSCC. J Cancer 2017; 8:332-344. [PMID: 28261333 PMCID: PMC5332883 DOI: 10.7150/jca.17547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy is becoming an accepted treatment modality for many patients with cancer and is now approved for use in platinum-refractory recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). Despite these successes, a minority of patients with HNSCC receiving immunotherapy respond to treatment, and few undergo a complete response. Thus, there is a critical need to identify mechanisms regulating immune checkpoints in HNSCC such that one can predict who will benefit, and so novel combination strategies can be developed for non-responders. Here, we review the immunotherapy and molecular genetics literature to describe what is known about immune checkpoints in common genetic subsets of HNSCC. We highlight several highly recurrent genetic lesions that may serve as biomarkers or targets for combination immunotherapy in HNSCC.
Collapse
Affiliation(s)
- J E Mann
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI
| | - R Hoesli
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - N L Michmerhuizen
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | - S N Devenport
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - M L Ludwig
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI
| | - T R Vandenberg
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - C Matovina
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - N Jawad
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - M Mierzwa
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - A G Shuman
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - M E Spector
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | - J C Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI.; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
15
|
Lasfar A, Gogas H, Zloza A, Kaufman HL, Kirkwood JM. IFN-λ cancer immunotherapy: new kid on the block. Immunotherapy 2016; 8:877-88. [PMID: 27381684 PMCID: PMC5619162 DOI: 10.2217/imt-2015-0021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/21/2016] [Indexed: 02/08/2023] Open
Abstract
Interferon-lambda (IFN-λ) is a new IFN type, related to IFN-α, that is commonly used in the clinic. However, significant side effects accompanying IFN-α treatment limit enthusiasm for IFN-α. In this review, we discuss the current landscape of IFN-α use in oncology and describe the biologic characteristics of IFN-λ. IFN-λ offers unique advantages, including a more tumor cell selective targeting, lower off-target binding and an ability to generate both innate and adaptive immune responses. IFN-λ has also demonstrated therapeutic benefit in murine cancer models. IFN-λ may be used in clinic as a single agent or in combination with other immunotherapy agents, such as immune checkpoint inhibitors. Further clinical trials will be needed to fully elucidate the potential of this novel agent in oncology.
Collapse
Affiliation(s)
- Ahmed Lasfar
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Helen Gogas
- First Department of Medicine, Medical School, University of Athens, Athens, Greece
| | - Andrew Zloza
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Howard L Kaufman
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - John M Kirkwood
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Medical Center, PA, USA
| |
Collapse
|
16
|
Vasuthasawat A, Yoo EM, Trinh KR, Lichtenstein A, Timmerman JM, Morrison SL. Targeted immunotherapy using anti-CD138-interferon α fusion proteins and bortezomib results in synergistic protection against multiple myeloma. MAbs 2016; 8:1386-1397. [PMID: 27362935 DOI: 10.1080/19420862.2016.1207030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although recent advances have substantially improved the management of multiple myeloma, it remains an incurable malignancy. We now demonstrate that anti-CD138 molecules genetically fused to type I interferons (IFN) synergize with the approved therapeutic bortezomib in arresting the proliferation of human multiple myeloma cell lines both in vitro and in vivo. The anti-CD138-IFNα14 fusion protein was active in inducing increased expression of signal transducer and activator of transcription 1 (STAT1) and its phosphorylation while the cell death pathway induced by bortezomib included generation of reactive oxygen species. Interferon regulatory factor 4 (IRF4), an important survival factor for myeloma cells, was down regulated following combination treatment. Induction of cell death appeared to be caspase-independent because treatment with inhibitors of caspase activation did not decrease the level of cell death. The observed caspase-independent synergistic cell death involved mitochondrial membrane depolarization, and poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, and resulted in enhanced induction of apoptosis. Importantly, using 2 different in vivo xenograft models, we found that combination therapy of anti-CD138-IFNα14 and bortezomib was able to cure animals with established tumors (7 of 8 using OCI-My5 or 8 of 8 using NCI-H929). Thus, the combination of anti-CD138-IFNα with bortezomib shows great promise as a novel therapeutic approach for the treatment of multiple myeloma, a malignancy for which there are currently no cures.
Collapse
Affiliation(s)
- Alex Vasuthasawat
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA.,b Molecular Biology Institute, UCLA , Los Angeles , CA , USA
| | - Esther M Yoo
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA.,b Molecular Biology Institute, UCLA , Los Angeles , CA , USA
| | - Kham R Trinh
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA.,b Molecular Biology Institute, UCLA , Los Angeles , CA , USA
| | - Alan Lichtenstein
- c Greater Los Angeles Veterans Administration Healthcare Center , Los Angeles , CA , USA.,d Jonsson Comprehensive Cancer Center , Los Angeles , CA , USA.,e Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, UCLA , Los Angeles , CA , USA
| | - John M Timmerman
- d Jonsson Comprehensive Cancer Center , Los Angeles , CA , USA.,e Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, UCLA , Los Angeles , CA , USA
| | - Sherie L Morrison
- a Department of Microbiology, Immunology and Molecular Genetics , University of California Los Angeles , Los Angeles , CA , USA.,b Molecular Biology Institute, UCLA , Los Angeles , CA , USA
| |
Collapse
|
17
|
Heise R, Amann PM, Ensslen S, Marquardt Y, Czaja K, Joussen S, Beer D, Abele R, Plewnia G, Tampé R, Merk HF, Hermanns HM, Baron JM. Interferon Alpha Signalling and Its Relevance for the Upregulatory Effect of Transporter Proteins Associated with Antigen Processing (TAP) in Patients with Malignant Melanoma. PLoS One 2016; 11:e0146325. [PMID: 26735690 PMCID: PMC4703378 DOI: 10.1371/journal.pone.0146325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 12/16/2015] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Interferon alpha (IFNα) is routinely used in the clinical practice for adjuvant systemic melanoma therapy. Understanding the molecular mechanism of IFNα effects and prediction of response in the IFNα therapy regime allows initiation and continuation of IFNα treatment for responder and exclusion of non-responder to avoid therapy inefficacy and side-effects. The transporter protein associated with antigen processing-1 (TAP1) is part of the MHC class I peptide-loading complex, and important for antigen presentation in tumor and antigen presenting cells. In the context of personalized medicine, we address this potential biomarker TAP1 as a target of IFNα signalling. RESULTS We could show that IFNα upregulates TAP1 expression in peripheral blood mononuclear cells (PBMCs) of patients with malignant melanoma receiving adjuvant high-dose immunotherapy. IFNα also induced expression of TAP1 in mouse blood and tumor tissue and suppressed the formation of melanoma metastasis in an in vivo B16 tumor model. Besides its expression, TAP binding affinity and transport activity is induced by IFNα in human monocytic THP1 cells. Furthermore, our data revealed that IFNα clearly activates phosphorylation of STAT1 and STAT3 in THP1 and A375 melanoma cells. Inhibition of Janus kinases abrogates the IFNα-induced TAP1 expression. These results suggest that the JAK/STAT pathway is a crucial mediator for TAP1 expression elicited by IFNα treatment. CONCLUSION We suppose that silencing of TAP1 expression provides tumor cells with a mechanism to escape cytotoxic T-lymphocyte recognition. The observed benefit of IFNα treatment could be mediated by the shown dual effect of TAP1 upregulation in antigen presenting cells on the one hand, and of TAP1 upregulation in 'silent' metastatic melanoma cells on the other hand. In conclusion, this work contributes to a better understanding of the mode of action of IFNα which is essential to identify markers to predict, assess and monitor therapeutic response of IFNα treatment in the future.
Collapse
Affiliation(s)
- Ruth Heise
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany
| | - Philipp M. Amann
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany
| | | | - Yvonne Marquardt
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany
| | - Katharina Czaja
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany
| | - Sylvia Joussen
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany
| | - Daniel Beer
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany
| | - Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Gabriele Plewnia
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Hans F. Merk
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany
| | - Heike M. Hermanns
- Medical Clinic and Policlinic II, Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Jens M. Baron
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|
18
|
Fekete T, Koncz G, Szabo B, Gregus A, Rajnavölgyi E. Interferon gamma boosts the nucleotide oligomerization domain 2-mediated signaling pathway in human dendritic cells in an X-linked inhibitor of apoptosis protein and mammalian target of rapamycin-dependent manner. Cell Mol Immunol 2015; 14:380-391. [PMID: 26521691 DOI: 10.1038/cmi.2015.90] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 11/09/2022] Open
Abstract
The cytoplasmic nucleotide oligomerization domain 2 (NOD2) receptor recognizes the bacterial cell wall component muramyl dipeptide (MDP). NOD2 ligation initiates the nuclear factor kappa B and the mitogen-activated protein kinase cascades. However, administering MDP alone is insufficient to elicit strong cytokine responses in various immune cells, including dendritic cells (DCs). Because the simultaneous presence of various microbial products and cytokines in inflamed tissues modulates DC function, we initiated this study to examine how interferon gamma (IFNγ), a central modulator of inflammation, affects the NOD2-mediated signaling pathway in human conventional DCs (cDCs). Synergistic stimulation of DCs with MDP and IFNγ increased the expression of CD40, CD80, CD83, CD86, and human leukocyte antigen DQ proteins and significantly elevated the production of pro-inflammatory cytokines IL-1β, IL-6, IL-12, and tumour necrosis factor (TNF), as well as anti-inflammatory cytokine IL-10. Furthermore, the simultaneous presence of MDP and IFNγ was necessary to decrease IkBα protein levels. By investigating various mechanisms implicated in MDP- and IFNγ-mediated signaling pathways, we revealed that the increased production of pro-inflammatory cytokines is highly dependent on the X-linked inhibitor of apoptosis protein (XIAP) but not on cellular IAP1 and IAP2. We also found that the NOD2 signaling pathway is regulated by the mammalian target of rapamycin (mTOR) but is not affected by phosphatidylinositol-3 kinase or signal transducer and activator of transcription 1 inhibition. Our results demonstrate, for the first time, that IFNγ positively affects NOD2-mediated signaling in human cDCs, in a manner considerably dependent on XIAP and partially dependent on mTOR.
Collapse
Affiliation(s)
- Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca, Romania
| | - Brigitta Szabo
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Gregus
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Rajnavölgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Bioengineering, Sapientia Hungarian University of Transylvania, Cluj-Napoca, Romania
| |
Collapse
|
19
|
Xue G, Zippelius A, Wicki A, Mandala M, Tang F, Massi D, Hemmings BA. Integrated Akt/PKB Signaling in Immunomodulation and Its Potential Role in Cancer Immunotherapy. J Natl Cancer Inst 2015; 107:djv171. [DOI: 10.1093/jnci/djv171] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/22/2015] [Indexed: 12/17/2022] Open
|
20
|
Lasfar A, Cook JR, Cohen Solal KA, Reuhl K, Kotenko SV, Langer JA, Laskin DL. Critical role of the endogenous interferon ligand-receptors in type I and type II interferons response. Immunology 2014; 142:442-52. [PMID: 24597649 DOI: 10.1111/imm.12273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 01/12/2023] Open
Abstract
Separate ligand-receptor paradigms are commonly used for each type of interferon (IFN). However, accumulating evidence suggests that type I and type II IFNs may not be restricted to independent pathways. Using different cell types deficient in IFNAR1, IFNAR2, IFNGR1, IFNGR2 and IFN-γ, we evaluated the contribution of each element of the IFN system to the activity of type I and type II IFNs. We show that deficiency in IFNAR1 or IFNAR2 is associated with impairment of type II IFN activity. This impairment, presumably resulting from the disruption of the ligand-receptor complex, is obtained in all cell types tested. However, deficiency of IFNGR1, IFNGR2 or IFN-γ was associated with an impairment of type I IFN activity in spleen cells only, correlating with the constitutive expression of type II IFN (IFN-γ) observed on those cells. Therefore, in vitro the constitutive expression of both the receptors and the ligands of type I or type II IFN is critical for the enhancement of the IFN activity. Any IFN deficiency can totally or partially impair IFN activity, suggesting the importance of type I and type II IFN interactions. Taken together, our results suggest that type I and type II IFNs may regulate biological activities through distinct as well as common IFN receptor complexes.
Collapse
Affiliation(s)
- Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Carbone CJ, Fuchs SY. Eliminative signaling by Janus kinases: role in the downregulation of associated receptors. J Cell Biochem 2014; 115:8-16. [PMID: 23959845 DOI: 10.1002/jcb.24647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022]
Abstract
Activation of cytokine receptor-associated Janus kinases (JAKs) mediates most, if not all, of the cellular responses to peptide hormones and cytokines. Consequently, JAKs play a paramount role in homeostasis and immunity. Members of this family of tyrosine kinases control the cytokine/hormone-induced alterations in cell gene expression program. This function is largely mediated through an ability to signal toward activation of the signal transducer and activator of transcription proteins (STAT), as well as toward some other pathways. Importantly, JAKs are also instrumental in tightly controlling the expression of associated cytokine and hormone receptors, and, accordingly, in regulating the cell sensitivity to these cytokines and hormones. This review highlights the enzymatic and non-enzymatic mechanisms of this regulation and discusses the importance of the ambidextrous nature of JAK as a key signaling node that integrates the combining functions of forward signaling and eliminative signaling. Attention to the latter aspect of JAK function may contribute to emancipating our approaches to the pharmacological modulation of JAKs.
Collapse
Affiliation(s)
- Christopher J Carbone
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | | |
Collapse
|
22
|
Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, Sofikitis N, Arvanitis D, Galani V. Cytokine effects on cell viability and death of prostate carcinoma cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:536049. [PMID: 24982891 PMCID: PMC4058150 DOI: 10.1155/2014/536049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/09/2014] [Accepted: 05/06/2014] [Indexed: 01/01/2023]
Abstract
We analyzed the effects of IL-13, IFN- γ , and IL-1 β on cell viability and death of LNCaP and PC-3 cells and major signaling pathways involved in these effects. Significant increase of LNCaP cell death (apoptotic and necrotic) and increased levels of active caspase 3 were observed in cells treated with inhibitors of ERK 1/2 (UO126) and p38 (SB203580) prior to IL-1 β treatment in comparison to cells treated with UO126, SB203580, or IL-1 β alone. Significant increase of LNCaP but not PC-3 cell death was detected after treatment with LY-294002 (inhibitor of phosphatidylinositol 3-kinase). No significant increase of LNCaP and PC-3 cell death was observed after treatment with SP600125 (inhibitor of JNK), SB203580 (inhibitor of p38), UO126 (inhibitor of ERK 1/2), or BAY 11-7082 (inhibitor of NF- κ B). Reduced c-FLIPL expression was observed in LNCaP cells treated with LY-294002. The significant potentiation of LNCaP cell death by inhibition of ERK 1/2, p38, and PI3-K pathways may provide a rationale for therapeutic approach in androgen-dependent prostate cancer.
Collapse
Affiliation(s)
- Georgios Chondrogiannis
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Michalis Kastamoulas
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | | | - Maria Bai
- Department of Pathology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | | | - Nikolaos Sofikitis
- Department of Urology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Arvanitis
- Department of Anatomy, Medical School, University of Thessaly, 44110 Larisa, Greece
| | - Vasiliki Galani
- Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
23
|
Elia A, Powley IR, MacFarlane M, Clemens MJ. Modulation of the sensitivity of Jurkat T-cells to inhibition of protein synthesis by tumor necrosis factor α-related apoptosis-inducing ligand. J Interferon Cytokine Res 2014; 34:769-77. [PMID: 24731196 DOI: 10.1089/jir.2013.0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor α-related apoptosis-inducing ligand (TRAIL) is a potent inducer of apoptosis in Jurkat T lymphoma cells. One of the characteristics of the phase preceding overt apoptosis is the marked downregulation of protein synthesis. We have investigated factors that can influence this response and have explored some of the signaling pathways involved. We show that interferon-α (IFNα) pretreatment desensitizes Jurkat cells to TRAIL-induced inhibition of protein synthesis, such that the concentration of TRAIL required for 50% inhibition is increased by 10-fold. The inhibition of translation is characterized by dephosphorylation of the eIF4E-binding protein 4E-BP1 and IFNα desensitizes Jurkat cells to this effect. IFNα also inhibits TRAIL-mediated dephosphorylation of the growth-promoting protein kinase B (Akt). Since Jurkat cells are defective for phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and therefore have constitutive phosphoinositide 3-kinase (PI3K) activity, we investigated the consequences for protein synthesis of inhibiting PI3K using LY294002. Inhibition of PI3K partially inhibits translation, but also enhances the effect of a suboptimal concentration of TRAIL. However, LY294002 does not block the ability of IFNα to protect protein synthesis from TRAIL-induced inhibition. Data are presented suggesting that IFNα impairs the process of activation of caspase-8 within the TRAIL death-inducing signaling complex.
Collapse
Affiliation(s)
- Androulla Elia
- 1 Translational Control Group, Molecular Cell Sciences Research Centre, St George's, University of London , London, United Kingdom
| | | | | | | |
Collapse
|
24
|
Pisonero-Vaquero S, García-Mediavilla MV, Jorquera F, Majano PL, Benet M, Jover R, González-Gallego J, Sánchez-Campos S. Modulation of PI3K-LXRα-dependent lipogenesis mediated by oxidative/nitrosative stress contributes to inhibition of HCV replication by quercetin. J Transl Med 2014; 94:262-74. [PMID: 24492281 DOI: 10.1038/labinvest.2013.156] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/28/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023] Open
Abstract
There is experimental evidence that some antioxidant flavonoids show therapeutic potential in the treatment of hepatitis C through inhibition of hepatitis C virus (HCV) replication. We examined the effect of treatment with the flavonols quercetin and kaempferol, the flavanone taxifolin and the flavone apigenin on HCV replication efficiency in an in vitro model. While all flavonoids studied were able to reduce viral replication at very low concentrations (ranging from 0.1 to 5 μM), quercetin appeared to be the most effective inhibitor of HCV replication, showing a marked anti-HCV activity in replicon-containing cells when combined with interferon (IFN)α. The contribution of oxidative/nitrosative stress and lipogenesis modulation to inhibition of HCV replication by quercetin was also examined. As expected, quercetin decreased HCV-induced reactive oxygen and nitrogen species (ROS/RNS) generation and lipoperoxidation in replicating cells. Quercetin also inhibited liver X receptor (LXR)α-induced lipid accumulation in LXRα-overexpressing and replicon-containing Huh7 cells. The mechanism underlying the LXRα-dependent lipogenesis modulatory effect of quercetin in HCV-replicating cells seems to involve phosphatidylinositol 3-kinase (PI3K)/AKT pathway inactivation. Thus, inhibition of the PI3K pathway by LY294002 attenuated LXRα upregulation and HCV replication mediated by lipid accumulation, showing an additive effect when combined with quercetin. Inactivation of the PI3K pathway by quercetin may contribute to the repression of LXRα-dependent lipogenesis and to the inhibition of viral replication induced by the flavonol. Combined, our data suggest that oxidative/nitrosative stress blockage and subsequent modulation of PI3K-LXRα-mediated lipogenesis might contribute to the inhibitory effect of quercetin on HCV replication.
Collapse
Affiliation(s)
| | - María V García-Mediavilla
- 1] Institute of Biomedicine (IBIOMED), University of León, León, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Jorquera
- 1] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain [2] Department of Gastroenterology, Complejo Asistencial Universitario de León, León, Spain
| | - Pedro L Majano
- 1] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain [2] Molecular Biology Unit, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Marta Benet
- 1] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain [2] Experimental Hepatology Unit, IIS Hospital La Fe, Valencia, Spain
| | - Ramiro Jover
- 1] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain [2] Experimental Hepatology Unit, IIS Hospital La Fe, Valencia, Spain [3] Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Javier González-Gallego
- 1] Institute of Biomedicine (IBIOMED), University of León, León, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Sonia Sánchez-Campos
- 1] Institute of Biomedicine (IBIOMED), University of León, León, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Activation of ERα signaling differentially modulates IFN-γ induced HLA-class II expression in breast cancer cells. PLoS One 2014; 9:e87377. [PMID: 24475282 PMCID: PMC3903652 DOI: 10.1371/journal.pone.0087377] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/23/2013] [Indexed: 11/24/2022] Open
Abstract
The coordinate regulation of HLA class II (HLA-II) is controlled by the class II transactivator, CIITA, and is crucial for the development of anti-tumor immunity. HLA-II in breast carcinoma is associated with increased IFN-γ levels, reduced expression of the estrogen receptor (ER) and reduced age at diagnosis. Here, we tested the hypothesis that estradiol (E2) and ERα signaling contribute to the regulation of IFN-γ inducible HLA-II in breast cancer cells. Using a panel of established ER− and ER+ breast cancer cell lines, we showed that E2 attenuated HLA-DR in two ER+ lines (MCF-7 and BT-474), but not in T47D, while it augmented expression in ER− lines, SK-BR-3 and MDA-MB-231. To further study the mechanism(s), we used paired transfectants: ERα+ MC2 (MDA-MB-231 c10A transfected with the wild type ERα gene) and ERα− VC5 (MDA-MB-231 c10A transfected with the empty vector), treated or not with E2 and IFN-γ. HLA-II and CIITA were severely reduced in MC2 compared to VC5 and were further exacerbated by E2 treatment. Reduced expression occurred at the level of the IFN-γ inducible CIITA promoter IV. The anti-estrogen ICI 182,780 and gene silencing with ESR1 siRNA reversed the E2 inhibitory effects, signifying an antagonistic role for activated ERα on CIITA pIV activity. Moreover, STAT1 signaling, necessary for CIITA pIV activation, and selected STAT1 regulated genes were variably downregulated by E2 in transfected and endogenous ERα positive breast cancer cells, whereas STAT1 signaling was noticeably augmented in ERα− breast cancer cells. Collectively, these results imply immune escape mechanisms in ERα+ breast cancer may be facilitated through an ERα suppressive mechanism on IFN-γ signaling.
Collapse
|
26
|
Jossart C, Mulumba M, Granata R, Gallo D, Ghigo E, Marleau S, Servant MJ, Ong H. Pyroglutamylated RF-amide peptide (QRFP) gene is regulated by metabolic endotoxemia. Mol Endocrinol 2014; 28:65-79. [PMID: 24284825 PMCID: PMC5426650 DOI: 10.1210/me.2013-1027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 11/15/2013] [Indexed: 01/22/2023] Open
Abstract
Pyroglutamylated RF-amide peptide (QRFP) is involved in the regulation of food intake, thermogenesis, adipogenesis, and lipolysis. The expression of QRFP in adipose tissue is reduced in diet-induced obesity, a mouse model in which plasma concentrations of endotoxins are slightly elevated. The present study investigated the role of metabolic endotoxemia (ME) on QRFP gene regulation. Our results uncovered the expression of QRFP in murine macrophages and cell lines. This expression has been found to be decreased in mice with ME. Low doses of lipopolysaccharide (LPS) transiently down-regulated QRFP by 59% in RAW264.7 macrophages but not in 3T3-L1 adipocytes. The effect of LPS on QRFP expression in macrophages was dependent on the inhibitor of kB kinase and TIR-domain-containing adapter-inducing interferon (IFN)-β (TRIF) but not myeloid differentiation primary response gene 88. IFN-β was induced by ME in macrophages. IFN-β sustainably reduced QRFP expression in macrophages (64%) and adipocytes (49%). IFN-γ down-regulated QRFP (74%) in macrophages only. Both IFNs inhibited QRFP secretion from macrophages. LPS-stimulated macrophage-conditioned medium reduced QRFP expression in adipocytes, an effect blocked by IFN-β neutralizing antibody. The effect of IFN-β on QRFP expression was dependent on phosphoinositide 3-kinase, p38 MAPK, and histone deacetylases. The effect of IFN-γ was dependent on MAPK/ERK kinase 1/2 and histone deacetylases. Macrophage-conditioned medium containing increased amounts of QRFP preserved adipogenesis in adipocytes. In conclusion, LPS induces IFN-β release from macrophages, which reduces QRFP expression in both macrophages and adipocytes in an autocrine/paracrine-dependent manner, suggesting QRFP as a potential biomarker in ME.
Collapse
Affiliation(s)
- Christian Jossart
- Faculty of Pharmacy (C.J., M.M., S.M., M.J.S., H.O.), Université de Montréal C.P. 6128, Succursale Centre-Ville, Québec, Canada, H3C 3J7; and Laboratory of Molecular and Cellular Endocrinology (R.G., D.G., E.G.), Department of Internal Medicine, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mavrommatis E, Fish EN, Platanias LC. The schlafen family of proteins and their regulation by interferons. J Interferon Cytokine Res 2013; 33:206-10. [PMID: 23570387 DOI: 10.1089/jir.2012.0133] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Schlafen (SLFN) family of proteins includes several mouse and human members. There is emerging evidence that members of this family of proteins are involved in important functions, such as the control of cell proliferation, induction of immune responses, and the regulation of viral replication. These proteins span across all species with great diversity, with 10 murine and 5 human isoforms. Recent work has established that mouse and human SLFN proteins are regulated by interferons (IFNs). Several Slfn genes were shown to be induced as classical interferon-stimulated genes, and emerging evidence suggests that these proteins play important roles in the growth inhibitory and antineoplastic effects of IFNs. In the current review, the known properties of mouse and human SLFNs are reviewed, and the implications of their emerging functions are discussed.
Collapse
Affiliation(s)
- Evangelos Mavrommatis
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
28
|
Gao B, Xu W, Wang Y, Zhong L, Xiong S. Induction of TRIM22 by IFN-γ Involves JAK and PC-PLC/PKC, but Not MAPKs and pI3K/Akt/mTOR Pathways. J Interferon Cytokine Res 2013; 33:578-87. [PMID: 23659673 DOI: 10.1089/jir.2012.0170] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tripartite motif (TRIM) 22 plays an important role in interferons (IFNs)-mediated antiviral activity. We previously demonstrated that interferon regulatory factor-1 (IRF-1) played a central role in IFN-γ-induced TRIM22 expression via binding to a special cis-element named 5' extended IFN-stimulating response element (5'eISRE). In this study, we sought to identify the signaling pathways involved in TRIM22 induction by IFN-γ. By using various pharmacological inhibitors, it was found that the activity of tyrosine kinase and phosphatidylcholine-phospholipase C (PC-PLC), but not phosphatidylinositol-phospholipase C (PI-PLC) and phospholipase D (PLD), was required for IFN-γ-induced TRIM22 expression in HepG2 cells. Tyrosine kinase Janus kinase (JAK), not SRC and PYK2, played an indispensable role in TRIM22 induction. Inhibition of protein kinase C (PKC) activity also significantly attenuated IFN-γ induction of TRIM22. Although treatment with IFN-γ resulted in the stimulation of mitogen-activated protein kinases (MAPKs) (p38, ERK, and JNK) and pI3K/Akt/mTOR pathways in HepG2 cells, the inhibition of their activity did not affect IFN-γ-stimulated TRIM22 expression. Further studies showed that overexpression of JAK1 and PKCα activated TRIM22 promoter activity in a 5'eISRE-dependent manner, and inhibition of not only JAK but also PC-PLC/PKC pathways significantly attenuated IFN-γ-induced IRF-1 expression in HepG2 cells. Taken together, these data indicated that IFN-γ induced TRIM22 expression via activation of JAK and PC-PLC/PKC signaling pathways, which involved the cis-element 5'eISRE and the transactivator IRF-1.
Collapse
Affiliation(s)
- Bo Gao
- 1 Department of Immunology, Institute for Immunobiology, Shanghai Medical College of Fudan University , Shanghai, P.R. China
| | | | | | | | | |
Collapse
|
29
|
A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase. Exp Cell Res 2013; 319:1471-81. [PMID: 23562842 DOI: 10.1016/j.yexcr.2013.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 12/18/2022]
Abstract
We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells.
Collapse
|
30
|
Bayardo M, Punzi F, Bondar C, Chopita N, Chirdo F. Transglutaminase 2 expression is enhanced synergistically by interferon-γ and tumour necrosis factor-α in human small intestine. Clin Exp Immunol 2012; 168:95-104. [PMID: 22385244 DOI: 10.1111/j.1365-2249.2011.04545.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transglutaminase 2 (TG2) is expressed ubiquitously, has multiple physiological functions and has also been associated with inflammatory diseases, neurodegenerative disorders, autoimmunity and cancer. In particular, TG2 is expressed in small intestine mucosa where it is up-regulated in active coeliac disease (CD). The aim of this work was to investigate the induction of TG2 expression by proinflammatory cytokines [interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, interferon (IFN)-γ and IL-15] and the signalling pathways involved, in human epithelial and monocytic cells and in intestinal tissue from controls and untreated CD patients. Here we report that IFN-γ was the most potent inducer of TG2 expression in the small intestinal mucosa and in four [Caco-2, HT-29, Calu-6 and human acute monocytic leukaemia cell line (THP-1)] of five cell lines tested. The combination of TNF-α and IFN-γ produced a strong synergistic effect. The use of selective inhibitors of signalling pathways revealed that induction of TG2 by IFN-γ was mediated by phosphoinositide 3-kinase (PI3K), while c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were required for TNF-α activation. Quantitative polymerase chain reaction (PCR), flow cytometry and Western blot analysis showed that TG2 expression was blocked completely when stimulation by either TNF-α or IFN-γ was performed in the presence of nuclear factor (NF)-κB inhibitors (sulphasalazine and BAY-117082). TG2 was up-regulated substantially by TNF-α and IFN-γ in intestinal mucosa in untreated CD compared with controls. This study shows that IFN-γ, a dominant cytokine in intestinal mucosa in active CD, is the most potent inducer of TG2, and synergism with TNF-α may contribute to exacerbate the pathogenic mechanism of CD. Selective inhibition of signalling pathways may be of therapeutic benefit.
Collapse
Affiliation(s)
- M Bayardo
- Laboratorio de Investigación en el Sistema Inmune, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata Servicio de Gastroenterología, Hospital Interzonal de Agudos José de San Martin, La Plata, Argentina
| | | | | | | | | |
Collapse
|
31
|
Regulatory effects of mTORC2 complexes in type I IFN signaling and in the generation of IFN responses. Proc Natl Acad Sci U S A 2012; 109:7723-8. [PMID: 22550181 DOI: 10.1073/pnas.1118122109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
IFNs transduce signals by binding to cell surface receptors and activating cellular pathways and regulatory networks that control transcription of IFN-stimulated genes (ISGs) and mRNA translation, leading to generation of protein products that mediate biological responses. Previous studies have shown that type I IFN receptor-engaged pathways downstream of AKT and mammalian target of rapamycin complex (mTORC) 1 play important roles in mRNA translation of ISGs and the generation of IFN responses, but the roles of mTORC2 complexes in IFN signaling are unknown. We provide evidence that mTORC2 complexes control IFN-induced phosphorylation of AKT on serine 473 and their function is ultimately required for IFN-dependent gene transcription via interferon-stimulated response elements. We also demonstrate that such complexes exhibit regulatory effects on other IFN-dependent mammalian target of rapamycin-mediated signaling events, likely via engagement of the AKT/mTORC1 axis, including IFN-induced phosphorylation of S6 kinase and its effector rpS6, as well as phosphorylation of the translational repressor 4E-binding protein 1. We also show that induction of ISG protein expression and the generation of antiviral responses are defective in Rictor and mLST8-KO cells. Together, our data provide evidence for unique functions of mTORC2 complexes in the induction of type I IFN responses and suggest a critical role for mTORC2-mediated signals in IFN signaling.
Collapse
|
32
|
Pulit-Penaloza JA, Scherbik SV, Brinton MA. Type 1 IFN-independent activation of a subset of interferon stimulated genes in West Nile virus Eg101-infected mouse cells. Virology 2012; 425:82-94. [PMID: 22305622 PMCID: PMC3288888 DOI: 10.1016/j.virol.2012.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/10/2011] [Accepted: 01/09/2012] [Indexed: 12/24/2022]
Abstract
Although infection of mouse embryofibroblasts (MEFs) with WNV Eg101 induced interferon (IFN) beta production and STAT1 and STAT2 phosphorylation, these transcription factors (TFs) were not detected in the nucleus or on the promoters of four IRF-3-independent interferon stimulated genes (ISGs): Oas1a and Irf7 (previously characterized as IFN/ISGF3-dependent), Oas1b and Irf1. These ISGs were upregulated in WNV Eg101-infected STAT1-/-, STAT2-/-, and IFN alpha/beta receptor-/- MEFs. Although either IRF-3 or IRF-7 could amplify/sustain Oas1a and Oas1b upregulation at later times after infection, these factors were not required for the initial gene activation. The lack of upregulation of these ISGs in WNV Eg101-infected IRF-3/9-/- MEFs suggested the involvement of IRF-9. Activation of Irf1 in infected MEFs did not depend on any of these IRFs. The data indicate that additional alternative activation mechanisms exist for subsets of ISGs when a virus infection has blocked ISG activation by the canonical IFN-mediated pathway.
Collapse
Affiliation(s)
| | | | - Margo A. Brinton
- Department of Biology, Georgia State University, Atlanta, Georgia 30302
| |
Collapse
|
33
|
Pulit-Penaloza JA, Scherbik SV, Brinton MA. Activation of Oas1a gene expression by type I IFN requires both STAT1 and STAT2 while only STAT2 is required for Oas1b activation. Virology 2012; 425:71-81. [PMID: 22305621 DOI: 10.1016/j.virol.2011.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 09/15/2011] [Accepted: 11/29/2011] [Indexed: 12/24/2022]
Abstract
The murine 2'-5' oligoadenylate synthetase 1a (Oas1a) and Oas1b genes are type 1 IFN responsive genes. Oas1a is an active synthetase with broad antiviral activity mediated through RNase L. Oas1b is inactive but can inhibit Oas1a synthetase activity and mediate a flavivirus-specific antiviral activity through an unknown RNase L-independent mechanism. Analysis of promoter elements regulating gene transcription confirmed that an IFN-stimulated response element (ISRE) is required for IFN beta-activation but neither the overlapping IRF binding site present in both promoters nor the adjacent Oas1b NF-kappa B site is required. Mutation of the overlapping STAT site negatively affected IFN beta-induction of Oas1a but not of Oas1b. Also, IFN beta induction of Oas1a was STAT1- and STAT2-dependent, while induction of Oas1b was STAT1-independent but STAT2-dependent. The two promoters differ at a single nucleotide in the STAT site. The data indicate that these two duplicated genes can be differentially regulated by IFN beta.
Collapse
|
34
|
Zhao H, Lin W, Kumthip K, Cheng D, Fusco DN, Hofmann O, Jilg N, Tai AW, Goto K, Zhang L, Hide W, Jang JY, Peng LF, Chung RT. A functional genomic screen reveals novel host genes that mediate interferon-alpha's effects against hepatitis C virus. J Hepatol 2012; 56:326-33. [PMID: 21888876 PMCID: PMC3261326 DOI: 10.1016/j.jhep.2011.07.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 06/28/2011] [Accepted: 07/12/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS The precise mechanisms by which IFN exerts its antiviral effect against HCV have not yet been elucidated. We sought to identify host genes that mediate the antiviral effect of IFN-α by conducting a whole-genome siRNA library screen. METHODS High throughput screening was performed using an HCV genotype 1b replicon, pRep-Feo. Those pools with replicate robust Z scores ≥2.0 entered secondary validation in full-length OR6 replicon cells. Huh7.5.1 cells infected with JFH1 were then used to validate the rescue efficacy of selected genes for HCV replication under IFN-α treatment. RESULTS We identified and confirmed 93 human genes involved in the IFN-α anti-HCV effect using a whole-genome siRNA library. Gene ontology analysis revealed that mRNA processing (23 genes, p=2.756e-22), translation initiation (nine genes, p=2.42e-6), and IFN signaling (five genes, p=1.00e-3) were the most enriched functional groups. Nine genes were components of U4/U6.U5 tri-snRNP. We confirmed that silencing squamous cell carcinoma antigen recognized by T cells (SART1), a specific factor of tri-snRNP, abrogates IFN-α's suppressive effects against HCV in both replicon cells and JFH1 infectious cells. We further found that SART1 was not IFN-α inducible, and its anti-HCV effector in the JFH1 infectious model was through regulation of interferon stimulated genes (ISGs) with or without IFN-α. CONCLUSIONS We identified 93 genes that mediate the anti-HCV effect of IFN-α through genome-wide siRNA screening; 23 and nine genes were involved in mRNA processing and translation initiation, respectively. These findings reveal an unexpected role for mRNA processing in generation of the antiviral state, and suggest a new avenue for therapeutic development in HCV.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Infectious Diseases, Peking University First Hospital, Beijing, 100034, China, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Wenyu Lin
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Kattareeya Kumthip
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Du Cheng
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Dahlene N Fusco
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Oliver Hofmann
- Bioinformatics Core, Harvard School of Public Health, Boston, MA 02115
| | - Nikolaus Jilg
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Andrew W. Tai
- Department of Medicine, Gastroenterology, University of Michigan Health System Ann Arbor, MI 48105
| | - Kaku Goto
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Leiliang Zhang
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Winston Hide
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115
| | - Jae Young Jang
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Lee F Peng
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Raymond T Chung
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114,Corresponding author: Raymond T. Chung, M.D. GI Unit, Warren 1007 Massachusetts General Hospital Boston, MA 02114 Phone: (617) 724-7562 Fax: (617) 643-0446
| |
Collapse
|
35
|
Altman JK, Sassano A, Platanias LC. Targeting mTOR for the treatment of AML. New agents and new directions. Oncotarget 2011; 2:510-7. [PMID: 21680954 PMCID: PMC3248202 DOI: 10.18632/oncotarget.290] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite recent advances in the field, the treatment of patients with acute myeloid leukemia (AML) remains challenging and difficult. Although chemotherapeutic agents induce remissions in a large number of patients, many of them eventually relapse and die. A major goal for the development of new approaches for the treatment of AML is to enhance the antileukemic effects of standard chemotherapeutics and to design effective combinations targeting non-overlapping cellular pathways. The PI3K/Akt/mTOR signaling pathway plays a critical role in survival and growth of malignant cells and its targeting has been the focus of extensive work and research efforts over the last two decades. It now appears possible that a major limitation of the first generation of mTOR inhibitors can be overcome by a new class of catalytic inhibitors of mTOR. There is emerging evidence that such compounds target both TORC1 and TORC2 and elicit much more potent responses against early leukemic precursors in vitro. In addition, recent studies have shown that combinations of such agents with cytarabine result in enhanced antileukemic responses in vitro, raising the prospect and potential of use of these agents in combination regimens for the treatment of AML.
Collapse
Affiliation(s)
- Jessica K Altman
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, IL, USA
| | | | | |
Collapse
|
36
|
Franceschini L, Realdon S, Marcolongo M, Mirandola S, Bortoletto G, Alberti A. Reciprocal interference between insulin and interferon-alpha signaling in hepatic cells: a vicious circle of clinical significance? Hepatology 2011; 54:484-94. [PMID: 21538438 DOI: 10.1002/hep.24394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 04/17/2011] [Indexed: 02/06/2023]
Abstract
UNLABELLED Insulin resistance (IR) is common in chronic hepatitis C (CHC) and associates with reduced virological response to pegylated-interferon (PEG-IFN)/ribavirin therapy, but the underlying mechanisms are still unclear. We have previously shown that, in CHC patients, insulin plasma levels are inversely related to antiviral effect induced by PEG-IFN. Therefore, we investigated the in vitro effect of insulin on interferon alpha (IFN-α) intracellular signaling as well as that of IFN-α on insulin signaling. HepG2 cells, preincubated with or without insulin, were stimulated with IFN-α2b and messenger RNA (mRNA) and protein expression of IFN-stimulated genes (ISGs) were measured at different timepoints. The role of intracellular suppressors of cytokine signaling 3 (SOCS3) was evaluated with the small interfering RNA (siRNA) strategy. To assess the effect of IFN-α on insulin signaling, HepG2 were preincubated with or without IFN before addition of insulin and cells were then analyzed for IRS-1 and for Akt/PKB Ser473 phosphorylation. Insulin (100 and 1000 nM) significantly reduced in a dose-dependent fashion IFN-induced gene expression of PKR (P=0.017 and P=0.0017, respectively), MxA (P=0.0103 and P=0.00186), and 2'-5' oligoadenylatesynthetase 1 (OAS-1) (P=0.002 and P=0.006). Insulin also reduced IFN-α-induced PKR protein expression. Although insulin was confirmed to increase SOCS3 expression, siRNA SOCS3 did not restore ISG expression after insulin treatment. IFN-α was found to reduce, in a dose-dependent fashion, IRS-1 gene expression as well as Akt/PKB Ser473 phosphorylation induced by insulin. CONCLUSION These results provide evidence of reciprocal interference between insulin and IFN-α signaling in liver cells. These findings may contribute to understand the role of insulin in CHC: IR might be favored by endogenous cytokines including IFN-α, and the resulting hyperinsulinemia then reduces the antiviral response to exogenous IFN in a vicious circle of clinical significance.
Collapse
|
37
|
Seo Y, Kim M, Choi M, Kim S, Park K, Oh I, Chung S, Suh H, Hong S, Park S. Possible role of phosphoinositide-3-kinase in Mx1 protein translation and antiviral activity of interferon-omega-stimulated HeLa cells. Pharmacology 2011; 87:224-31. [PMID: 21430412 DOI: 10.1159/000324536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 01/21/2011] [Indexed: 12/25/2022]
Abstract
Interferon ω (IFN-ω), a cytokine released during innate immune activation, is well known for promoting direct antiviral responses; however, the possible signal pathways that are initiated by IFN-ω binding to the type I IFN receptors have not been fully studied. Here, we provide evidence that activation of phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) signaling plays a pivotal role in the generation of IFN-ω-mediated biological responses. We found that LY294002 (PI3K inhibitor)-attenuated antiviral activities are induced by IFN-ω treatment. Although such effects of LY294002 are unrelated to regulatory activities on IFN-ω-dependent Mx1 (myxovirus resistance 1) or Mx2 gene transcriptional regulation, translation of Mx1 protein, which was known as a key mediator of cell-autonomous antiviral resistance, was significantly reduced by PI3K inhibition. Further studies showed that PI3K inhibition using LY294002 leads to a decrease in PI3K substrate Akt and mitogen-activated protein kinase extracellular signal-regulated kinase and p38 phosphorylation/activation. In addition, although LY294002 was not able to reduce STAT1 activation, we found that the mammalian target of rapamycin (mTOR)/p70 S6 kinase pathway was significantly attenuated by inhibition of the PI3K/Akt signaling pathway. These results indicate that the PI3K/Akt pathway is a common and central integrator for antiviral responses in IFN-ω signaling via its regulatory effects on mTOR that are required for initiation of mRNA translation of Mx genes.
Collapse
Affiliation(s)
- Youngjun Seo
- Advanced Therapy Products Research Division, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, Chungcheongbuk-do, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Beaurepaire C, Smyth D, McKay DM. Interferon-gamma regulation of intestinal epithelial permeability. J Interferon Cytokine Res 2010; 29:133-44. [PMID: 19196071 DOI: 10.1089/jir.2008.0057] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The maintenance and regulation of the barrier function of the epithelial lining of the intestine are important homeostatic events, serving to allow selective absorption from the gut lumen while simultaneously limiting the access of bacteria into the mucosa. Interferon-gamma is a pleiotrophic cytokine produced predominantly by natural kill cells and CD4+ T cells that under normal circumstances, and particularly during infection or inflammation, will be a component of the intestinal milieu. Use of colon-derived epithelial cell lines and, to a less extent, murine in vivo analyses, have revealed that interferon-gamma (IFN-gamma) can increase epithelial permeability as gauged by markers of paracellular permeability and bacterial transcytosis, with at least a portion of the bacteria using the transcellular permeation pathway. In this review, we describe the main characteristics of epithelial permeability and then focus on the ability of IFN-gamma to increase epithelial permeability, and the mechanism(s) thereof.
Collapse
Affiliation(s)
- Cécile Beaurepaire
- Gastrointestinal Research Group, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
39
|
Goncharova EA, Lim PN, Chisolm A, Fogle HW, Taylor JH, Goncharov DA, Eszterhas A, Panettieri RA, Krymskaya VP. Interferons modulate mitogen-induced protein synthesis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2010; 299:L25-35. [PMID: 20382746 PMCID: PMC2904093 DOI: 10.1152/ajplung.00228.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 04/06/2010] [Indexed: 01/10/2023] Open
Abstract
Severe asthma is characterized by increased airway smooth muscle (ASM) mass due, in part, to ASM cell growth and contractile protein expression associated with increased protein synthesis. Little is known regarding the combined effects of mitogens and interferons on ASM cytosolic protein synthesis. We demonstrate that human ASM mitogens including PDGF, EGF, and thrombin stimulate protein synthesis. Surprisingly, pleiotropic cytokines IFN-beta and IFN-gamma, which inhibit ASM proliferation, also increased cytosolic protein content in ASM cells. Thus IFN-beta alone significantly increased protein synthesis by 1.62 +/- 0.09-fold that was further enhanced by EGF to 2.52 +/- 0.17-fold. IFN-gamma alone also stimulated protein synthesis by 1.91 +/- 0.15-fold; treatment of cells with PDGF, EGF, and thrombin in the presence of IFN-gamma stimulated protein synthesis by 2.24 +/- 0.3-, 1.25 +/- 0.17-, and 2.67 +/- 0.34-fold, respectively, compared with growth factors alone. The mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) inhibition with rapamycin inhibited IFN- and EGF-induced protein synthesis, suggesting that IFN-induced protein synthesis is modulated by mTOR/S6K1 activation. Furthermore, overexpression of tumor suppressor protein tuberous sclerosis complex 2 (TSC2), which is an upstream negative regulator of mTOR/S6K1 signaling, also inhibited mitogen-induced protein synthesis in ASM cells. IFN-beta and IFN-gamma stimulated miR143/145 microRNA expression and increased SM alpha-actin accumulation but had little effect on ASM cell size. In contrast, EGF increased ASM cell size but had little effect on miR143/145 expression. Our data demonstrate that both IFNs and mitogens stimulate protein synthesis but have differential effects on cell size and contractile protein expression and suggest that combined effects of IFNs and mitogens may contribute to ASM cell growth, contractile protein expression, and ASM remodeling in asthma.
Collapse
Affiliation(s)
- Elena A Goncharova
- Pulmonary, Allergy, and Critical Care Division, Airway Biology Initiative, Department of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bekisz J, Baron S, Balinsky C, Morrow A, Zoon KC. Antiproliferative Properties of Type I and Type II Interferon. Pharmaceuticals (Basel) 2010; 3:994-1015. [PMID: 20664817 PMCID: PMC2907165 DOI: 10.3390/ph3040994] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/15/2010] [Accepted: 03/29/2010] [Indexed: 01/22/2023] Open
Abstract
The clinical possibilities of interferon (IFN) became apparent with early studies demonstrating that it was capable of inhibiting tumor cells in culture and in vivo using animal models. IFN gained the distinction of being the first recombinant cytokine to be licensed in the USA for the treatment of a malignancy in 1986, with the approval of IFN-α2a (Hoffman-La Roche) and IFN-α2b (Schering-Plough) for the treatment of Hairy Cell Leukemia. In addition to this application, other approved antitumor applications for IFN-α2a are AIDS-related Kaposi's Sarcoma and Chronic Myelogenous Leukemia (CML) and other approved antitumor applications for IFN-α2b are Malignant Melanoma, Follicular Lymphoma, and AIDS-related Kapoisi's Sarcoma. In the ensuing years, a considerable number of studies have been conducted to establish the mechanisms of the induction and action of IFN's anti-tumor activity. These include identifying the role of Interferon Regulatory Factor 9 (IRF9) as a key factor in eliciting the antiproliferative effects of IFN-α as well as identifying genes induced by IFN that are involved in recognition of tumor cells. Recent studies also show that IFN-activated human monocytes can be used to achieve >95% eradication of select tumor cells. The signaling pathways by which IFN induces apoptosis can vary. IFN treatment induces the tumor suppressor gene p53, which plays a role in apoptosis for some tumors, but it is not essential for the apoptotic response. IFN-α also activates phosphatidylinositol 3-kinase (PI3K), which is associated with cell survival. Downstream of PI3K is the mammalian target of rapamycin (mTOR) which, in conjunction with PI3K, may act in signaling induced by growth factors after IFN treatment. This paper will explore the mechanisms by which IFN acts to elicit its antiproliferative effects and more closely examine the clinical applications for the anti-tumor potential of IFN.
Collapse
Affiliation(s)
- Joseph Bekisz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
41
|
Katsoulidis E, Kaur S, Platanias LC. Deregulation of Interferon Signaling in Malignant Cells. Pharmaceuticals (Basel) 2010; 3:406-418. [PMID: 27713259 PMCID: PMC4033917 DOI: 10.3390/ph3020406] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 12/24/2022] Open
Abstract
Interferons (IFNs) are a family of cytokines with potent antiproliferative, antiviral, and immunomodulatory properties. Much has been learned about IFNs and IFN-activated signaling cascades over the last 50 years. Due to their potent antitumor effects in vitro and in vivo, recombinant IFNs have been used extensively over the years, alone or in combination with other drugs, for the treatment of various malignancies. This review summarizes the current knowledge on IFN signaling components and pathways that are deregulated in human malignancies. The relevance of deregulation of IFN signaling pathways in defective innate immune surveillance and tumorigenesis are discussed.
Collapse
Affiliation(s)
- Efstratios Katsoulidis
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60611, USA
| | - Surinder Kaur
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60611, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60611, USA.
| |
Collapse
|
42
|
Song GH, Han JY, Spencer TE, Bazer FW. Interferon Tau in the Ovine Uterus. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2009. [DOI: 10.5187/jast.2009.51.6.471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Matsumoto A, Ichikawa T, Nakao K, Miyaaki H, Hirano K, Fujimito M, Akiyama M, Miuma S, Ozawa E, Shibata H, Takeshita S, Yamasaki H, Ikeda M, Kato N, Eguchi K. Interferon-alpha-induced mTOR activation is an anti-hepatitis C virus signal via the phosphatidylinositol 3-kinase-Akt-independent pathway. J Gastroenterol 2009; 44:856-63. [PMID: 19436942 DOI: 10.1007/s00535-009-0075-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 04/14/2009] [Indexed: 02/04/2023]
Abstract
OBJECT The interferon-induced Jak-STAT signal alone is not sufficient to explain all the biological effects of IFN. The PI3-K pathways have emerged as a critical additional component of IFN-induced signaling. This study attempted to clarify that relationship between IFN-induced PI3-K-Akt-mTOR activity and anti-viral action. RESULT When the human normal hepatocyte derived cell line was treated with rapamycin (rapa) before accretion of IFN-alpha, tyrosine phosphorylation of STAT-1 was diminished. Pretreatment of rapa had an inhibitory effect on the IFN-alpha-induced expression of PKR and p48 in a dose dependent manner. Rapa inhibited the IFN-alpha inducible IFN-stimulated regulatory element luciferase activity in a dose-dependent manner. However, wortmannin, LY294002 and Akt inhibitor did not influence IFN-alpha inducible luciferase activity. To examine the effect of PI3-K-Akt-mTOR on the anti-HCV action of IFN-alpha, the full-length HCV replication system, OR6 cells were used. The pretreatment of rapa attenuated its anti-HCV replication effect in comparison to IFN-alpha alone, whereas the pretreatment with PI3-K inhibitors, wortmannin and LY294002 and Akt inhibitor did not influence IFN-induced anti-HCV replication. CONCLUSION IFN-induced mTOR activity, independent of PI3K and Akt, is the critical factor for its anti-HCV activity. Jak independent mTOR activity involved STAT-1 phosphorylation and nuclear location, and then PKR is expressed in hepatocytes.
Collapse
Affiliation(s)
- Azusa Matsumoto
- Department of Clinical Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kim SJ, Kim JH, Sun JM, Kim MG, Oh JW. Suppression of hepatitis C virus replication by protein kinase C-related kinase 2 inhibitors that block phosphorylation of viral RNA polymerase. J Viral Hepat 2009; 16:697-704. [PMID: 19243496 DOI: 10.1111/j.1365-2893.2009.01108.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis C virus (HCV) infection is a serious threat to human health worldwide. In spite of the continued search for specific and effective anti-HCV therapies, the rapid emergence of drug-resistance variants has been hampering the development of anti-HCV drugs designed to target viral enzymes. Targeting host factors has therefore emerged as an alternative strategy offering the potential to circumvent the ever-present complication of drug resistance. We previously identified protein kinase C-related kinase 2 (PRK2) as a cellular kinase that phosphorylates the HCV RNA-dependent RNA polymerase (RdRp). Here, we report the anti-HCV activity of HA1077, also known as fasudil, and Y27632, which blocks HCV RdRp phosphorylation by suppressing PRK2 activation. Treatment of a Huh7 cell line, stably expressing a genotype 1b HCV subgenomic replicon RNA, with 20 microm each of HA1077 and Y27632 reduced the HCV RNA level by 55% and 30%, respectively. A combination of the inhibitors with 100 IU/mL interferon alpha (IFN-alpha) significantly potentiated the anti-HCV drug activities resulting in approximately a 2-log(10) viral RNA reduction. We also found that IFN-alpha does not activate PRK2 as well as its upstream kinase PDK1 in HCV-replicating cells. Furthermore, treatment of HCV-infected cells with 20 microm each of HA1077 and Y27632 reduced the levels of intracellular viral RNA by 70% and 92%, respectively. Taken together, the results identify PRK2 inhibitors as potential antiviral drugs that act by suppressing HCV replication via inhibition of viral RNA polymerase phosphorylation.
Collapse
Affiliation(s)
- S-J Kim
- Department of Biotechnology, Yonsei University, Seoul, Korea
| | | | | | | | | |
Collapse
|
45
|
Petta S, Cammà C, Di Marco V, Cabibi D, Ciminnisi S, Caldarella R, Licata A, Massenti MF, Marchesini G, Craxì A. Time course of insulin resistance during antiviral therapy in non-diabetic, non-cirrhotic patients with genotype 1 HCV infection. Antivir Ther 2009. [DOI: 10.1177/135965350901400501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Genotype 1 (G1) hepatitis C virus (HCV) is associated with insulin resistance (IR) and its clearance seems to improve insulin sensitivity. We aimed to evaluate the time course of IR in response to antiviral therapy in non-diabetic, non-cirrhotic G1 HCV patients and to assess the effect of metabolic factors on sustained virological response (SVR). Methods A total of 83 consecutive treatment-naive G1 chronic hepatitis C (CHC) patients were evaluated by anthropometric and metabolic measurements, including IR using the homeostasis model assessment (HOMA). Patients were considered to have IR if HOMA was >2.7. All cases had a liver biopsy scored for staging, grading and steatosis. Anthropometric parameters and HOMA were re-evaluated at the end of antiviral therapy and at follow-up. Results SVR was achieved in 46 (55.4%) patients. By logistic regression, female gender (odds ratio [OR] 0.132, 95% confidence interval [CI] 0.33–0.529), γ-glutamyltransferase >50 IU (OR 0.217, 95% CI 0.066–0.720) and presence of steatosis (OR 0.134, 95% CI 0.028–0.654) were independent negative predictors of SVR, whereas low-density lipoprotein cholesterol >107 IU (OR 6.671, 95% CI 1.164–11.577) was a positive predictor of SVR. The proportion of patients with IR significantly decreased ( P=0.02) during antiviral therapy and at follow-up in patients achieving SVR. A similar trend, even if not significant, was observed in relapsers and non-responders. Conclusions In non-diabetic G1 HCV patients undergoing antiviral therapy, IR improved in all patients, independently of virological outcome. HCV viral clearance was an additional factor in IR improvement. Female gender, hepatic steatosis and other metabolic parameters, but not IR, were identified as negative predictors of SVR in this study.
Collapse
Affiliation(s)
- Salvatore Petta
- Cattedra ed Unità Operativa di Gastroenterologia, Università di Palermo, Palermo, Italy
| | - Calogero Cammà
- Cattedra ed Unità Operativa di Gastroenterologia, Università di Palermo, Palermo, Italy
- IBIM, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Vito Di Marco
- Cattedra ed Unità Operativa di Gastroenterologia, Università di Palermo, Palermo, Italy
| | - Daniela Cabibi
- Cattedra di Anatomia Patologica, Università di Palermo, Palermo, Italy
| | - Stefania Ciminnisi
- Cattedra ed Unità Operativa di Gastroenterologia, Università di Palermo, Palermo, Italy
| | - Rosalia Caldarella
- Dipartimento di Igiene e Microbiologia–Sezione Igiene, Università di Palermo, Palermo, Italy
| | - Anna Licata
- Cattedra ed Unità Operativa di Gastroenterologia, Università di Palermo, Palermo, Italy
| | - Maria Fatima Massenti
- Dipartimento di Igiene e Microbiologia–Sezione Igiene, Università di Palermo, Palermo, Italy
| | - Giulio Marchesini
- Dipartimento di Medicina e Gastroenterologia, ‘Alma Mater Studiorum’, Università di Bologna, Bologna, Italy
| | - Antonio Craxì
- Cattedra ed Unità Operativa di Gastroenterologia, Università di Palermo, Palermo, Italy
| |
Collapse
|
46
|
Interferon-dependent engagement of eukaryotic initiation factor 4B via S6 kinase (S6K)- and ribosomal protein S6K-mediated signals. Mol Cell Biol 2009; 29:2865-75. [PMID: 19289497 DOI: 10.1128/mcb.01537-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the roles of Jak-Stat pathways in type I and II interferon (IFN)-dependent transcriptional regulation are well established, the precise mechanisms of mRNA translation for IFN-sensitive genes remain to be defined. We examined the effects of IFNs on the phosphorylation/activation of eukaryotic translation initiation factor 4B (eIF4B). Our data show that eIF4B is phosphorylated on Ser422 during treatment of sensitive cells with alpha IFN (IFN-alpha) or IFN-gamma. Such phosphorylation is regulated, in a cell type-specific manner, by either the p70 S6 kinase (S6K) or the p90 ribosomal protein S6K (RSK) and results in enhanced interaction of the protein with eIF3A (p170/eIF3A) and increased associated ATPase activity. Our data also demonstrate that IFN-inducible eIF4B activity and IFN-stimulated gene 15 protein (ISG15) or IFN-gamma-inducible chemokine CXCL-10 protein expression are diminished in S6k1/S6k2 double-knockout mouse embryonic fibroblasts. In addition, IFN-alpha-inducible ISG15 protein expression is blocked by eIF4B or eIF3A knockdown, establishing a requirement for these proteins in mRNA translation/protein expression by IFNs. Importantly, the generation of IFN-dependent growth inhibitory effects on primitive leukemic progenitors is dependent on activation of the S6K/eIF4B or RSK/eIF4B pathway. Taken together, our findings establish critical roles for S6K and RSK in the induction of IFN-dependent biological effects and define a key regulatory role for eIF4B as a common mediator and integrator of IFN-generated signals from these kinases.
Collapse
|
47
|
Boivin MA, Roy PK, Bradley A, Kennedy JC, Rihani T, Ma TY. Mechanism of interferon-gamma-induced increase in T84 intestinal epithelial tight junction. J Interferon Cytokine Res 2009; 29:45-54. [PMID: 19128033 DOI: 10.1089/jir.2008.0128] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Interferon-gamma (IFN-gamma) is an important proinflammatory cytokine that plays a central role in the intestinal inflammatory process of inflammatory bowel disease. IFN-gamma induced disturbance of the intestinal epithelial tight junction (TJ) barrier has been postulated to be an important mechanism contributing to intestinal inflammation. The intracellular mechanisms that mediate the IFN-gamma induced increase in intestinal TJ permeability remain unclear. The aim of this study was to examine the role of the phosphatidylinositol 3-kinase (PI3-K) pathway in the regulation of the IFN-gamma induced increase in intestinal TJ permeability using the T84 intestinal epithelial cell line. IFN-gamma caused an increase in T84 intestinal epithelial TJ permeability and depletion of TJ protein, occludin. The IFN-gamma induced increase in TJ permeability and alteration in occludin protein was associated with rapid activation of PI3-K; and inhibition of PI3-K activation prevented the IFN-gamma induced effects. IFN-gamma also caused a delayed but more prolonged activation of nuclear factor-kappaB (NF-kappaB); inhibition of NF-kappaB also prevented the increase in T84 TJ permeability and alteration in occludin expression. The IFN-gamma induced activation of NF-kappaB was mediated by a cross-talk with PI3-K pathway. In conclusion, the IFN-gamma induced increase in T84 TJ permeability and alteration in occludin protein expression were mediated by the PI3-K pathway. These results show for the first time that the IFN-gamma modulation of TJ protein and TJ barrier function is regulated by a cross-talk between PI3-K and NF-kappaB pathways.
Collapse
Affiliation(s)
- Michel A Boivin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131-5271, USA
| | | | | | | | | | | |
Collapse
|
48
|
Hardy PO, Diallo TO, Matte C, Descoteaux A. Roles of phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase in the regulation of protein kinase C-alpha activation in interferon-gamma-stimulated macrophages. Immunology 2009; 128:e652-60. [PMID: 19740326 DOI: 10.1111/j.1365-2567.2009.03055.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Members of the protein kinase C (PKC) family are activated by interferon-gamma (IFN-gamma) and modulate IFN-gamma-induced cellular responses by regulating the activity of transcription factors. We previously reported that PKC-alpha enhances the ability of IFN regulatory factor-1 to transactivate the class II transactivator (CIITA) promoter IV in IFN-gamma-stimulated macrophages. In addition, we showed that IFN-gamma induces the nuclear translocation of PKC-alpha but the mechanisms for this remain to be elucidated. In this study, we sought to identify signalling pathways involved in IFN-gamma-induced activation of PKC-alpha and to characterize their potential roles in modulating IFN-gamma-induced responses in macrophages. IFN-gamma-mediated nuclear translocation of PKC-alpha was a Janus activated kinase 2 (JAK2)-independent process, which required phosphatidylinositol 3-kinase (PI3K) and p38 mitogen-activated protein kinase (MAPK). However, PKC-alpha phosphorylation was independent of PI3K and p38 MAPK, indicating that IFN-gamma-induced phosphorylation and nuclear translocation of PKC-alpha are mediated by distinct mechanisms. In addition, inhibition of PI3K, but not of p38 MAPK, strongly impaired IFN-gamma-induced CIITA and MHC II gene expression. Finally, PKC-alpha associated with signal transducer and activator of transcription 1 (STAT1) and was required for the phosphorylation of STAT1 on serine 727 in IFN-gamma-stimulated macrophages. Taken together, our data indicate that PI3K and p38 MAPK modulate IFN-gamma-stimulated PKC-alpha nuclear translocation independently of JAK2 activity and that both PI3K and PKC-alpha are required for type IV CIITA and MHC II gene expression in IFN-gamma-stimulated macrophages.
Collapse
|
49
|
Abstract
Interferons represent a protein family with pleiotropic functions including immunomodulatory, cytostatic, and cytotoxic activities. Based on these effects, interferons are involved in innate as well as adaptive immunity, thereby shaping the tumor host immune responses. These cytokines, alone or in combination, have been successfully implemented for the treatment of some malignancies. However, it has been recently demonstrated that tumor cells could be resistant to interferon treatment, which may be associated with an escape of tumor cells from immune surveillance. Therefore, the aim of this chapter is to summarize the frequency of impaired interferon signal transduction, their underlying molecular mechanisms, and their clinical relevance.
Collapse
Affiliation(s)
- Barbara Seliger
- Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Halle, Germany
| | | | | |
Collapse
|
50
|
Interferon alpha increases metalloproteinase-13 gene expression through a polyomavirus enhancer activator 3-dependent pathway in hepatic stellate cells. J Hepatol 2009; 50:128-39. [PMID: 19014879 DOI: 10.1016/j.jhep.2008.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Accepted: 07/21/2008] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIMS To determine the effects of IFNalpha on MMP-13 gene expression in primary culture of hepatic stellate cells. METHODS We measured MMP-13 mRNA, MMP-13 protein, MMP-13 luciferase activity, binding of AP1 and PEA3 to DNA, and binding of PEA3 to Jak1 and Stat1. RESULTS IFNalpha increased MMP-13 mRNA, MMP-13 protein, and luciferase activity in cells transfected either with a luciferase plasmid driven by the MMP-13 promoter or with the same plasmid in which the AP1 binding site has been mutated. IFNalpha induced the binding of nuclear proteins to a radiolabeled PEA3 probe, but not to a AP1 probe. Supershift assays demonstrated that PEA3 and Stat1 are implicated in the formation of this complex. Immunoprecipitation assays showed that PEA3 interacts physically with Stat1 and that IFNalpha treatment increases this interaction. Downregulation of PEA3 or JAK1 with appropriated siRNAs or mutation of the PEA3 binding site in the MMP-13 promoter abrogated the effects of IFNalpha on MMP-13 gene expression. Finally, IFNalpha induced the binding of PEA3 to JAK1, as well as PEA3 tyrosine and serine phosphorylation. CONCLUSIONS IFNalpha determines the binding of PEA3 to JAK1 and its tyrosine phosphorylation. Activated PEA3 binds to MMP-13 promoter and activates its expression.
Collapse
|