1
|
Provan D, Newland AC. Investigational drugs for immune thrombocytopenia. Expert Opin Investig Drugs 2022; 31:715-727. [DOI: 10.1080/13543784.2022.2075340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Drew Provan
- Centre for Immunology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London UK
| | - Adrian C Newland
- Centre for Immunology, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London UK
| |
Collapse
|
2
|
Thrombopoietin Receptor Agonists. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Korde A, Jin L, Zhang JG, Ramaswamy A, Hu B, Kolahian S, Guardela BJ, Herazo-Maya J, Siegfried JM, Stabile L, Pisani MA, Herbst RS, Kaminski N, Elias JA, Puchalski JT, Takyar SS. Lung Endothelial MicroRNA-1 Regulates Tumor Growth and Angiogenesis. Am J Respir Crit Care Med 2017; 196:1443-1455. [PMID: 28853613 DOI: 10.1164/rccm.201610-2157oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Vascular endothelial growth factor down-regulates microRNA-1 (miR-1) in the lung endothelium, and endothelial cells play a critical role in tumor progression and angiogenesis. OBJECTIVES To examine the clinical significance of miR-1 in non-small cell lung cancer (NSCLC) and its specific role in tumor endothelium. METHODS miR-1 levels were measured by Taqman assay. Endothelial cells were isolated by magnetic sorting. We used vascular endothelial cadherin promoter to create a vascular-specific miR-1 lentiviral vector and an inducible transgenic mouse. KRASG12D mut/Trp53-/- (KP) mice, lung-specific vascular endothelial growth factor transgenic mice, Lewis lung carcinoma xenografts, and primary endothelial cells were used to test the effects of miR-1. MEASUREMENTS AND MAIN RESULTS In two cohorts of patients with NSCLC, miR-1 levels were lower in tumors than the cancer-free tissue. Tumor miR-1 levels correlated with the overall survival of patients with NSCLC. miR-1 levels were also lower in endothelial cells isolated from NSCLC tumors and tumor-bearing lungs of KP mouse model. We examined the significance of lower miR-1 levels by testing the effects of vascular-specific miR-1 overexpression. Vector-mediated delivery or transgenic overexpression of miR-1 in endothelial cells decreased tumor burden in KP mice, reduced the growth and vascularity of Lewis lung carcinoma xenografts, and decreased tracheal angiogenesis in vascular endothelial growth factor transgenic mice. In endothelial cells, miR-1 level was regulated through phosphoinositide 3-kinase and specifically controlled proliferation, de novo DNA synthesis, and ERK1/2 activation. Myeloproliferative leukemia oncogene was targeted by miR-1 in the lung endothelium and regulated tumor growth and angiogenesis. CONCLUSIONS Endothelial miR-1 is down-regulated in NSCLC tumors and controls tumor progression and angiogenesis.
Collapse
Affiliation(s)
- Asawari Korde
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and
| | - Lei Jin
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and.,2 Cleveland Clinic Cole Eye Institute and Lerner Research Institute, Cleveland, Ohio
| | - Jian-Ge Zhang
- 3 Department of Medicinal Chemistry, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Buqu Hu
- 1 Section of Pulmonary, Critical Care, and Sleep Medicine and
| | - Saeed Kolahian
- 4 Department of Pharmacology and Experimental Therapy, University of Tübingen, Tübingen, Germany
| | | | | | - Jill M Siegfried
- 5 Department of Pharmacology, Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Laura Stabile
- 6 Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania; and
| | | | - Roy S Herbst
- 7 Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | | | - Jack A Elias
- 8 Division of Biology and Medicine, Warren Alpert School of Medicine at Brown University, Providence, Rhode Island
| | | | | |
Collapse
|
4
|
Castillo GM, Nishimoto-Ashfield A, Jones CC, Kabirov KK, Zakharov A, Lyubimov AV. Protected graft copolymer-formulated fibroblast growth factors mitigate the lethality of partial body irradiation injury. PLoS One 2017; 12:e0171703. [PMID: 28207794 PMCID: PMC5313194 DOI: 10.1371/journal.pone.0171703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
We evaluated the mitigating effects of fibroblast growth factor 4 and 7 (FGF4 and FGF7, respectively) in comparison with long acting protected graft copolymer (PGC)-formulated FGF4 and 7 (PF4 and PF7, respectively) administered to C57BL/6J mice a day after exposure to LD50/30 (15.7 Gy) partial body irradiation (PBI) which targeted the gastrointestinal (GI) system. The PGC that we developed increased the bioavailability of FGF4 and FGF7 by 5- and 250-fold compared to without PGC, respectively, and also sustained a 24 hr presence in the blood after a single subcutaneous administration. The dose levels tested for mitigating effects on radiation injury were 3 mg/kg for the PF4 and PF7 and 1.5 mg each for their combination (PF4/7). Amifostine administered prior to PBI was used as a positive control. The PF4, PF7, or PF4/7 mitigated the radiation lethality in mice. The mitigating effect of PF4 and PF7 was similar to the positive control and PF7 was better than other mitigators tested. The plasma citrulline levels and hematology parameters were early markers of recovery and survival. GI permeability function appeared to be a late or full recovery indicator. The villus length and crypt number correlated with plasma citrulline level, indicating that it can act as a surrogate marker for these histology evaluations. The IL-18 concentrations in jejunum as early as day 4 and TPO levels in colon on day 10 following PBI showed statistically significant changes in irradiated versus non-irradiated mice which makes them potential biomarkers of radiation exposure. Other colon and jejunum cytokine levels are potentially useful but require larger numbers of samples than in the present study before their full utility can be realized.
Collapse
Affiliation(s)
| | | | | | - Kasim K. Kabirov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Alexander Zakharov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Alexander V. Lyubimov
- Toxicology Research Laboratory, Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
5
|
Thrombopoietin Signaling Pathway Regulates Hepatocyte Activation in Rat Liver Regeneration. Biochem Genet 2015; 53:244-59. [DOI: 10.1007/s10528-015-9685-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 06/18/2015] [Indexed: 01/23/2023]
|
6
|
Mansell H, Elmoselhi H, Shoker A. Association between circulating thrombopoietin levels and cardiovascular risk prediction scores in renal transplant recipients. Am J Nephrol 2015; 41:147-55. [PMID: 25824430 DOI: 10.1159/000377641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/29/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIMS The 7-year Major Adverse Cardiovascular Events Calculator (CRCRTR-MACE) predicts cardiovascular events (CVE) in renal transplant recipients (RTR), and thrombopoietin (TPO) is a humoral inflammatory factor implicated in cardiovascular disease (CVD). The aim of the study was to determine if circulating TPO levels in stable RTR are positively associated with variable(s) in the CRCRTR-MACE score. METHODS CRCRTR-MACE scores were calculated in 95 stable RTR. TPO levels were measured by multiplexed fluorescent bead-based immunoassay in all patients and 48 controls. Multivariate analysis (MVA) was performed between TPO and CV risk variables and patient demographics. Stepwise regression with backward elimination of insignificant variables estimated the impact of risk variables on TPO levels. Significance was defined at p < 0.05. Normalized data were presented as mean ± SD and non-normalized data as median (maximum to minimum). RESULTS The risk of a CVE within 7 years as predicted by the median was 9.97% (range 1.93-84.2). The percentage of patients who were above 20% risk for a CVE was 28.4%. Control TPO level of 170.41 (4.4-995.9) pg/ml was significantly lower than that of 237.90 (32.77-1,386.79) pg/ml in RTR (p = 0.010). TPO level correlated significantly with the total CRCRTR-MACE score (R = 0.310, p = 0.004), smoking (p = 0.009) and eGFR (R = -0.275, p = 0.012) but not with age, diabetes, LDL level or history of CVE. Only the total CRCRTR-MACE score (p = 0.013) and smoking (p = 0.009) remained significant in the MVA. Stepwise regression estimated that smoking increased TPO levels by 206.28 pg/ml and each 10% increase in CRCRTR-MACE score increased TPO levels by an additional 44.4 pg/ml. CONCLUSION TPO levels are increased in RTR with high CRCRTR-MACE, particularly in smokers with diminished eGFR. Circulating TPO may serve as a biomarker and treatment target for CVD in RTR.
Collapse
Affiliation(s)
- Holly Mansell
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatchewan, Canada
| | | | | |
Collapse
|
7
|
Kuter DJ. The biology of thrombopoietin and thrombopoietin receptor agonists. Int J Hematol 2013; 98:10-23. [PMID: 23821332 DOI: 10.1007/s12185-013-1382-0] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 12/30/2022]
Abstract
Thrombopoietin (TPO) is the major physiological regulator of platelet production. TPO binds the TPO receptor, activates JAK and STAT pathways, thus stimulating megakaryocyte growth and platelet production. There is no "sensor" of the platelet count; rather TPO is produced in the liver at a constant rate and cleared by TPO receptors on platelets. TPO levels are inversely proportional to the rate of platelet production. Early recombinant TPO molecules were potent stimulators of platelet production and increased platelets in patients with immune thrombocytopenia, chemotherapy-induced thrombocytopenia, myelodysplastic syndromes and platelet apheresis donors. Neutralizing antibodies formed against one recombinant protein and ended their development. A second generation of TPO receptor agonists, romiplostim and eltrombopag, has been developed. Romiplostim is an IgG heavy chain into which four TPO agonist peptides have been inserted. Eltrombopag is an oral small molecule. These activate the TPO receptor by different mechanisms to increase megakaryocyte growth and platelet production. After administration of either to healthy volunteers, there is a delay of 5 days before the platelet count rises and subsequently reaches a peak after 12-14 days. Both have been highly effective in treating ITP and hepatitis C thrombocytopenia. Studies in a wide variety of other thrombocytopenic conditions are underway.
Collapse
|
8
|
|
9
|
Combes V, Guillemin GJ, Chan-Ling T, Hunt NH, Grau GER. The crossroads of neuroinflammation in infectious diseases: endothelial cells and astrocytes. Trends Parasitol 2012; 28:311-9. [PMID: 22727810 DOI: 10.1016/j.pt.2012.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 01/06/2023]
Abstract
Homeostasis implies constant operational defence mechanisms, against both external and internal threats. Infectious agents are prominent among such threats. During infection, the host elicits the release of a vast array of molecules and numerous cell-cell interactions are triggered. These pleiomorphic mediators and cellular effects are of prime importance in the defence of the host, both in the systemic circulation and at sites of tissue injury, for example, the blood-brain barrier (BBB). Here, we focus on the interactions between the endothelium, astrocytes, and the molecules they release. Our review addresses these interactions during infectious neurological diseases of various origins, especially cerebral malaria (CM). Two novel elements of the interplay between endothelium and astrocytes, microparticles and the kynurenine pathway, will also be discussed.
Collapse
Affiliation(s)
- Valéry Combes
- Vascular Immunology Unit, Sydney Medical School and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
10
|
Thrombopoietin as biomarker and mediator of cardiovascular damage in critical diseases. Mediators Inflamm 2012; 2012:390892. [PMID: 22577249 PMCID: PMC3337636 DOI: 10.1155/2012/390892] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/01/2012] [Indexed: 02/07/2023] Open
Abstract
Thrombopoietin (TPO) is a humoral growth factor originally identified for its ability to stimulate the proliferation and differentiation of megakaryocytes. In addition to its actions on thrombopoiesis, TPO directly modulates the homeostatic potential of mature platelets by influencing their response to several stimuli. In particular, TPO does not induce platelet aggregation per se but is able to enhance platelet aggregation in response to different agonists (“priming effect”). Our research group was actively involved, in the last years, in characterizing the effects of TPO in several human critical diseases. In particular, we found that TPO enhances platelet activation and monocyte-platelet interaction in patients with unstable angina, chronic cigarette smokers, and patients with burn injury and burn injury complicated with sepsis. Moreover, we showed that TPO negatively modulates myocardial contractility by stimulating its receptor c-Mpl on cardiomyocytes and the subsequent production of NO, and it mediates the cardiodepressant activity exerted in vitro by serum of septic shock patients by cooperating with TNF-α and IL-1β.
This paper will summarize the most recent results obtained by our research group on the pathogenic role of elevated TPO levels in these diseases and discuss them together with other recently published important studies on this topic.
Collapse
|
11
|
G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood 2011; 117:4349-57. [PMID: 21224471 DOI: 10.1182/blood-2010-09-308387] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Emergency mobilization of neutrophil granulocytes (neutrophils) from the bone marrow (BM) is a key event of early cellular immunity. The hematopoietic cytokine granulocyte-colony stimulating factor (G-CSF) stimulates this process, but it is unknown how individual neutrophils respond in situ. We show by intravital 2-photon microscopy that a systemic dose of human clinical-grade G-CSF rapidly induces the motility and entry of neutrophils into blood vessels within the tibial BM of mice. Simultaneously, the neutrophil-attracting chemokine KC (Cxcl1) spikes in the blood. In mice lacking the KC receptor Cxcr2, G-CSF fails to mobilize neutrophils and antibody blockade of Cxcr2 inhibits the mobilization and induction of neutrophil motility in the BM. KC is expressed by megakaryocytes and endothelial cells in situ and is released in vitro by megakaryocytes isolated directly from BM. This production of KC is strongly increased by thrombopoietin (TPO). Systemic G-CSF rapidly induces the increased production of TPO in BM. Accordingly, a single injection of TPO mobilizes neutrophils with kinetics similar to G-CSF, and mice lacking the TPO receptor show impaired neutrophil mobilization after short-term G-CSF administration. Thus, a network of signaling molecules, chemokines, and cells controls neutrophil release from the BM, and their mobilization involves rapidly induced Cxcr2-mediated motility controlled by TPO as a pacemaker.
Collapse
|
12
|
Thrombopoietin contributes to neuronal damage in experimental bacterial meningitis. Infect Immun 2010; 79:928-36. [PMID: 21149592 DOI: 10.1128/iai.00782-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombopoietin (Tpo), which primarily regulates megakaryopoiesis, and its receptor (c-Mpl) are expressed in the brain, where Tpo exhibits proapototic effects on neurons. In the present study, we investigated the implication of Tpo in experimental pneumococcal meningitis. Following intrathecal infection with the encapsulated Streptococcus pneumoniae strain D39, we observed upregulation of Tpo mRNA expression at 12 h and 24 h in brain homogenates of wild-type C57BL/6 mice. c-Mpl mRNA expression was upregulated at 12 h and returned to baseline at 24 h. Compared to wild-type mice, mutants with homozygous Tpo receptor ablation (c-Mpl(-/-)) displayed reduced microglial activation and neuronal apoptosis in the dentate gyrus. Concentrations of bacteria in blood or cerebrospinal fluid (CSF), as well as CSF pleocytosis, were not significantly different between wild-type and c-Mpl(-/-) mice. In human postmortem brain, Tpo protein was colocalized to macrophages during encephalitis. In murine primary microglia and RAW264.7 macrophages, upregulation of Tpo mRNA was induced by D39-conditioned medium but not by bacterial lipopeptide or by medium conditioned by pneumococcal mutants defective in hydrogen peroxide formation (ΔspxB) or pneumolysin (Δpln). We conclude that Tpo acts as a mediator of neuronal damage in bacterial meningitis.
Collapse
|
13
|
Ivanova A, Wuerfel J, Zhang J, Hoffmann O, Ballmaier M, Dame C. Expression pattern of the thrombopoietin receptor (Mpl) in the murine central nervous system. BMC DEVELOPMENTAL BIOLOGY 2010; 10:77. [PMID: 20667107 PMCID: PMC2921376 DOI: 10.1186/1471-213x-10-77] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 07/28/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Thrombopoietin (Thpo) and its receptor (Mpl), which regulate megakaryopoiesis, are expressed in the central nervous system (CNS), where Thpo is thought to exert pro-apoptotic effects on newly generated neurons. Mpl expression has been analysed in brain tissue on transcript level and in cultured primary rat neurons and astrocytes on protein level. Herein, we analysed Mpl expression in the developing and adult murine CNS by immunohistochemistry and investigated the brain of mice with homozygous Mpl deficiency (Mpl-/-) by MRI. RESULTS Mpl was not detectable at developmental stages E12 to E15 in any resident cells of the CNS. From E18 onwards, robust Mpl expression was found in various brain areas, including cerebral cortex, olfactory bulb, thalamus, hypothalamus, medulla, pons, and the grey matter of spinal cord. However, major developmental changes became obvious: In the subventricular zone of the cerebral cortex Mpl expression occurred only during late gestation, while in the hippocampus Mpl expression was detectable for first time at stage P4. In the white matter of the cerebellum Mpl expression was restricted to the perinatal period. In the adult cerebellum, Mpl expression switched to Purkinje cell. The majority of other Mpl-positive cells were NeuN-positive neurons. None of the cells could be double-labelled with astrocyte marker GFAP. Mpl-/- mice showed no gross abnormalities of the brain. CONCLUSIONS Our data locate Mpl expression to neurons at different subdivisions of the spinal cord, rhombencephalon, midbrain and prosencephalon. Besides neuronal cells Mpl protein is also expressed in Purkinje cells of the adult cerebellum.
Collapse
Affiliation(s)
- Anna Ivanova
- Department of Neonatology, Charité - Universitätsmedizin, Germany
| | | | | | | | | | | |
Collapse
|