1
|
Garcia EM, Lenz JD, Schaub RE, Hackett KT, Salgado-Pabón W, Dillard JP. IL-17C is a driver of damaging inflammation during Neisseria gonorrhoeae infection of human Fallopian tube. Nat Commun 2024; 15:3756. [PMID: 38704381 PMCID: PMC11069574 DOI: 10.1038/s41467-024-48141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/19/2024] [Indexed: 05/06/2024] Open
Abstract
The human pathogen Neisseria gonorrhoeae ascends into the upper female reproductive tract to cause damaging inflammation within the Fallopian tubes and pelvic inflammatory disease (PID), increasing the risk of infertility and ectopic pregnancy. The loss of ciliated cells from the epithelium is thought to be both a consequence of inflammation and a cause of adverse sequelae. However, the links between infection, inflammation, and ciliated cell extrusion remain unresolved. With the use of ex vivo cultures of human Fallopian tube paired with RNA sequencing we defined the tissue response to gonococcal challenge, identifying cytokine, chemokine, cell adhesion, and apoptosis related transcripts not previously recognized as potentiators of gonococcal PID. Unexpectedly, IL-17C was one of the most highly induced genes. Yet, this cytokine has no previous association with gonococcal infection nor pelvic inflammatory disease and thus it was selected for further characterization. We show that human Fallopian tubes express the IL-17C receptor on the epithelial surface and that treatment with purified IL-17C induces pro-inflammatory cytokine secretion in addition to sloughing of the epithelium and generalized tissue damage. These results demonstrate a previously unrecognized but critical role of IL-17C in the damaging inflammation induced by gonococci in a human explant model of PID.
Collapse
Affiliation(s)
- Erin M Garcia
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan E Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathleen T Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Wilmara Salgado-Pabón
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Liu Y, Ouyang Y, You W, Liu W, Cheng Y, Mai X, Shen Z. Physiological roles of human interleukin-17 family. Exp Dermatol 2024; 33:e14964. [PMID: 37905720 DOI: 10.1111/exd.14964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Interleukin-17 s (IL-17s) are well-known proinflammatory cytokines, and their antagonists perform excellently in the treatment of inflammatory skin diseases such as psoriasis. However, their physiological functions have not been given sufficient attention by clinicians. IL-17s can protect the host from extracellular pathogens, maintain epithelial integrity, regulate cognitive processes and modulate adipocyte activity through distinct mechanisms. Here, we present a systematic review concerning the physiological functions of IL-17s. Our goal is not to negate the therapeutic effect of IL-17 antagonists, but to ensure their safe use and reasonably explain the possible adverse events that may occur in their application.
Collapse
Affiliation(s)
- Yucong Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ye Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wanchun You
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenqi Liu
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yufan Cheng
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinming Mai
- Medical School, Shenzhen University, Shenzhen, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Song L, Xiong D, Wen Y, Tan R, Kang X, Jiao X, Pan Z. Transcriptome Sequencing Reveals Salmonella Flagellin Activation of Interferon-β-Related Immune Responses in Macrophages. Curr Issues Mol Biol 2023; 45:2798-2816. [PMID: 37185707 PMCID: PMC10136974 DOI: 10.3390/cimb45040183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The flagellin (FliC) of Salmonella typhimurium is a potential vaccine adjuvant as it can activate innate immunity and promote acquired immune responses. Macrophages are an important component of the innate immune system. The mechanism of flagellin’s adjuvant activity has been shown to be related to its ability to activate macrophages. However, few studies have comprehensively investigated the effects of Salmonella flagellin in macrophages using transcriptome sequencing. In this study, RNA-Seq was used to analyze the expression patterns of RAW264.7 macrophages induced by FliC to identify novel transcriptomic signatures in macrophages. A total of 2204 differentially expressed genes were found in the FliC-treated group compared with the control. Gene ontology and KEGG pathway analyses identified the top significantly regulated functional classification and canonical pathways, which were mainly related to immune responses and regulation. Inflammatory cytokines (IL-6, IL-1β, TNF-α, etc.) and chemokines (CXCL2, CXCL10, CCL2, etc.) were highly expressed in RAW264.7 cells following stimulation. Notably, flagellin significantly increased the expression of interferon (IFN)-β. In addition, previously unidentified IFN regulatory factors (IRFs) and IFN-stimulated genes (ISGs) were also significantly upregulated. The results of RNA-Seq were verified, and furthermore, we demonstrated that flagellin increased the expression of IFN-β and IFN-related genes (IRFs and ISGs) in bone marrow-derived dendritic cells and macrophages. These results suggested that Salmonella flagellin can activate IFN-β-related immune responses in macrophages, which provides new insight into the immune mechanisms of flagellin adjuvant.
Collapse
|
4
|
Swedik SM, Madola A, Cruz MA, Llorens-Bonilla BJ, Levine AD. Th17-Derived Cytokines Synergistically Enhance IL-17C Production by the Colonic Epithelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1768-1777. [PMID: 36130829 PMCID: PMC9588696 DOI: 10.4049/jimmunol.2200125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Tightly regulated communication between the gastrointestinal epithelium and immune cells in the underlying lamina propria is critical for immune homeostasis and inflammation. IL-17C, produced by epithelial cells after exposure to inflammatory stimuli, facilitates cell-to-cell communication by promoting inflammatory responses in Th17 cells. In this study, we demonstrate that Th17-derived cytokines TNF-α, IL-17A, and IL-22 synergistically enhance IL-17C expression in both human-transformed colonic epithelial cell lines and primary non-inflammatory bowel disease colonic epithelial spheroids. This synergistic expression requires activation of the transcription factor NF-κB downstream of the TNF-α stimulus, evidenced by the reduction of IL-17C expression in the presence of an IκBα inhibitor. IL-17A and IL-22 enhance IL-17C expression through the activation of the transcription factor AP-1 in a p38 MAPK-dependent manner. Colonic spheroids derived from uninvolved epithelial of ulcerative colitis patients stimulated with TNF-α, IL-17A, and IL-22 show muted responses compared with non-inflammatory bowel disease spheroids, and inflamed spheroids yielded more IL-17C expression in the presence of TNF-α, and no response to IL-22 stimulation. Altogether, a role for IL-17C in activating Th17 cells combined with our findings of Th17-derived cytokine-driven synergy in the expression of IL-17C identifies a novel inflammatory amplification loop in the gastrointestinal tract between epithelial cells and Th17 cells.
Collapse
Affiliation(s)
- Stephanie M Swedik
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH
| | - Abson Madola
- Department of Biology, Case Western Reserve University, Cleveland, OH
| | - Michelle A Cruz
- Department of Pathology, Case Western Reserve University, Cleveland, OH
| | | | - Alan D Levine
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH;
- Department of Pathology, Case Western Reserve University, Cleveland, OH
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
- Department of Medicine, Case Western Reserve University, Cleveland, OH; and
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
5
|
Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes (Basel) 2022; 13:genes13091643. [PMID: 36140808 PMCID: PMC9498678 DOI: 10.3390/genes13091643] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interleukin-17 (IL-17) family cytokines are potent drivers of inflammatory responses. Although IL-17 was originally identified as a cytokine that induces protective effects against bacterial and fungal infections, IL-17 can also promote chronic inflammation in a number of autoimmune diseases. Research in the last decade has also elucidated critical roles of IL-17 during cancer development and treatment. Intriguingly, IL-17 seems to play a role in the risk of cancers that are associated with metabolic disorders. In this review, we summarize our current knowledge on the biochemical basis of IL-17 signaling, IL-17′s involvement in cancers and metabolic disorders, and postulate how IL-17 family cytokines may serve as a bridge between these two types of diseases.
Collapse
|
6
|
Țiburcă L, Bembea M, Zaha DC, Jurca AD, Vesa CM, Rațiu IA, Jurca CM. The Treatment with Interleukin 17 Inhibitors and Immune-Mediated Inflammatory Diseases. Curr Issues Mol Biol 2022; 44:1851-1866. [PMID: 35678656 PMCID: PMC9164043 DOI: 10.3390/cimb44050127] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/29/2022] Open
Abstract
IL-17 inhibitors (IL-17i) are medicines used to treat dermatological and rheumatic diseases They belong to a class of medicines called biological disease-modifying anti-rheumatic drugs (bDMARDs). This class of drugs has had a major impact on the therapy of autoimmune diseases, being much safer and more effective than treatment with small molecules. At the same time, they have highly beneficial effects on skin and joint changes, and their efficacy has been extensively monitored and demonstrated in numerous clinical trials. More and more such drugs are still being discovered today to ensure the best possible treatment of these patients, but more frequently and relatively constantly three agents are used. Two of them (Secukinumab and Ixekizumab) inhibit IL-17A directly, and the third, Brodamulab, inhibits the IL-17A receptor. Although they are extremely effective in the treatment of these diseases, sometimes their administration has been associated with paradoxical effects, i.e., there is an exacerbation of the inflammatory process. Tough, clinical trials of IL-17i have described cases of exacerbation or even onset of inflammatory bowel disease (IBD), such as Crohn's disease and ulcerative colitis, after administration of these drugs in patients previously diagnosed with psoriasis (PS), psoriatic arthritis (PsA), or ankylosing spondylitis (AS). The pathophysiological mechanism of action is not well understood at present. One explanation would be that this hyperreactive inflammatory process would be triggered by Interferon 1 derived from dendritic plasma cells. Even though there are many reports in the recent literature about the role of IL17i in the onset of IBD, conclusions of studies do not converge. Some of them show an increased incidence of IBD in patients treated with IL17i, while some others affirm their safety of them. In the near future we will surely have more data emerging from ongoing meta-analyses regarding safety of use IL17i in patients who are at risk of developing IBD. Clinical and paraclinical evaluation (inflammatory intestinal markers) are carefully advised before recommending treatment with IL-17i and after initiation of treatment, and prospective surveillance by clinical and biomarkers of patients treated with IL-17i is absolutely essential to capture the onset of IBD.
Collapse
Affiliation(s)
- Laura Țiburcă
- Faculty of Medicine and Pharmacy, University of Oradea, 1 December 10 Square, 410087 Oradea, Romania; (L.Ț.); (C.M.V.); (I.A.R.); (C.M.J.)
- “Dr. Gavril Curteanu” Clinical Hospital Regional Center of Medical Genetics Bihor, 410469 Oradea, Romania;
| | - Marius Bembea
- “Dr. Gavril Curteanu” Clinical Hospital Regional Center of Medical Genetics Bihor, 410469 Oradea, Romania;
| | - Dana Carmen Zaha
- Faculty of Medicine and Pharmacy, University of Oradea, 1 December 10 Square, 410087 Oradea, Romania; (L.Ț.); (C.M.V.); (I.A.R.); (C.M.J.)
| | - Alexandru Daniel Jurca
- Faculty of Medicine and Pharmacy, University of Oradea, 1 December 10 Square, 410087 Oradea, Romania; (L.Ț.); (C.M.V.); (I.A.R.); (C.M.J.)
| | - Cosmin Mihai Vesa
- Faculty of Medicine and Pharmacy, University of Oradea, 1 December 10 Square, 410087 Oradea, Romania; (L.Ț.); (C.M.V.); (I.A.R.); (C.M.J.)
| | - Ioana Adela Rațiu
- Faculty of Medicine and Pharmacy, University of Oradea, 1 December 10 Square, 410087 Oradea, Romania; (L.Ț.); (C.M.V.); (I.A.R.); (C.M.J.)
| | - Claudia Maria Jurca
- Faculty of Medicine and Pharmacy, University of Oradea, 1 December 10 Square, 410087 Oradea, Romania; (L.Ț.); (C.M.V.); (I.A.R.); (C.M.J.)
- “Dr. Gavril Curteanu” Clinical Hospital Regional Center of Medical Genetics Bihor, 410469 Oradea, Romania;
| |
Collapse
|
7
|
Wu Q, Cui D, Chao X, Chen P, Liu J, Wang Y, Su T, Li M, Xu R, Zhu Y, Zhang Y. Transcriptome Analysis Identifies Strategies Targeting Immune Response-Related Pathways to Control Enterotoxigenic Escherichia coli Infection in Porcine Intestinal Epithelial Cells. Front Vet Sci 2021; 8:677897. [PMID: 34447800 PMCID: PMC8383179 DOI: 10.3389/fvets.2021.677897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of post-weaning diarrhea (PWD) worldwide, resulting in huge economic losses to the swine industry worldwide. In this study, to understand the pathogenesis, the transcriptomic analysis was performed to explore the biological processes (BP) in porcine intestinal epithelial J2 cells infected with an emerging ETEC strain isolated from weaned pigs with diarrhea. Under the criteria of |fold change| (FC) ≥ 2 and P < 0.05 with false discovery rate < 0.05, a total of 131 referenced and 19 novel differentially expressed genes (DEGs) were identified after ETEC infection, including 96 upregulated DEGs and 54 downregulated DEGs. The Gene Ontology (GO) analysis of DEGs showed that ETEC evoked BP specifically involved in response to lipopolysaccharide (LPS) and negative regulation of intracellular signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that immune response-related pathways were mainly enriched in J2 cells after ETEC infection, in which tumor necrosis factor (TNF), interleukin 17, and mitogen-activated protein kinase (MAPK) signaling pathways possessed the highest rich factor, followed by nucleotide-binding and oligomerization domain-like receptor (NLRs), C-type lectin receptor (CLR), cytokine–cytokine receptor interaction, and Toll-like receptor (TLR), and nuclear factor kappa-B (NF-κB) signaling pathways. Furthermore, 30 of 131 referenced DEGs, especially the nuclear transcription factor AP-1 and NF-κB, participate in the immune response to infection through an integral signal cascade and can be target molecules for prevention and control of enteric ETEC infection by probiotic Lactobacillus reuteri. Our data provide a comprehensive insight into the immune response of porcine intestinal epithelial cells (IECs) to ETEC infection and advance the identification of targets for prevention and control of ETEC-related PWD.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Defeng Cui
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Xinyu Chao
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Peng Chen
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiaxuan Liu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yiding Wang
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tongjian Su
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Meng Li
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ruyu Xu
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yaohong Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yonghong Zhang
- Department of Animal Medicine, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.,Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
8
|
Swedik S, Madola A, Levine A. IL-17C in human mucosal immunity: More than just a middle child. Cytokine 2021; 146:155641. [PMID: 34293699 DOI: 10.1016/j.cyto.2021.155641] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Interleukin-17C (IL-17C) is an understudied member of the IL-17 family of cytokines. Its synthesis is induced by both cytokines and pathogenic stimuli in a variety of cell types, most often expressed at mucosal and barrier surfaces. IL-17C expression is dysregulated in a variety of autoinflammatory and autoimmune diseases including inflammatory bowel disease, psoriasis, and atopic dermatitis, yet it is protective against bacterial infections of the gut, skin, and lungs. In this review we highlight studies on IL-17C regulation and its function at human mucosal surfaces. Understanding the relationship between IL-17C and autoinflammatory and autoimmune diseases of the mucosa and defining the beneficial and pathogenic functions of the cytokine in inflammatory responses are the first steps in determining the potential for IL-17C as a therapeutic target.
Collapse
Affiliation(s)
- Stephanie Swedik
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States
| | - Abson Madola
- Department of Biology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States
| | - Alan Levine
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States; Departments of Pathology, Pharmacology, Medicine, and Pediatrics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States.
| |
Collapse
|
9
|
Noviello D, Mager R, Roda G, Borroni RG, Fiorino G, Vetrano S. The IL23-IL17 Immune Axis in the Treatment of Ulcerative Colitis: Successes, Defeats, and Ongoing Challenges. Front Immunol 2021; 12:611256. [PMID: 34079536 PMCID: PMC8165319 DOI: 10.3389/fimmu.2021.611256] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing disorder of the colonic tract, characterized by a dysregulated innate and adaptive immune response to gut microbiota that contributes to the perpetuation of intestinal inflammatory processes. The Interleukin (IL) 23/IL17 axis has been reported to play a key role in UC pathogenesis promoting Th17 cells and cytokines-related immune response. Recently, the blockade of IL23/IL17 pathways has been raised enormous interest in the treatment o several chronic inflammatory disorders. In this review, we summarize the emerging results from clinical trials that evoked both promise and discouragement in IL23/IL17 axis in the treatment of UC. Targeting IL23 p40 through Ustekinumab results safe and effective to induce and maintain clinical remission, low inflammatory indexes, mucosal healing, and a better quality of life. Studies targeting IL23 p19 through Mirikizumab, Risankizumab, Brazikumab and Guselkumab are still ongoing. To date, no clinical studies targeting IL17 pathway are ongoing in UC. IL-17 targeting is thought to have a context-dependent biological effect, based on whether cytokine is selectively targeted or if its function is dampened by the upstream block of IL23.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Colitis, Ulcerative/diagnosis
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/metabolism
- Disease Management
- Disease Susceptibility
- Gastrointestinal Microbiome/drug effects
- Gastrointestinal Microbiome/immunology
- Humans
- Immunomodulation/drug effects
- Interleukin-17/metabolism
- Interleukin-23/metabolism
- Molecular Targeted Therapy
- Signal Transduction/drug effects
- Treatment Outcome
- Ustekinumab/pharmacology
- Ustekinumab/therapeutic use
Collapse
Affiliation(s)
- Daniele Noviello
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Riccardo Mager
- Inflammatory Bowel Disease (IBD) Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Giulia Roda
- Inflammatory Bowel Disease (IBD) Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Inflammatory Bowel Disease (IBD) Center, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Riccardo G. Borroni
- Inflammatory Bowel Disease (IBD) Center, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Dermatology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Gionata Fiorino
- Inflammatory Bowel Disease (IBD) Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Inflammatory Bowel Disease (IBD) Center, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Stefania Vetrano
- Inflammatory Bowel Disease (IBD) Center, Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| |
Collapse
|
10
|
Grasberger H, Magis AT, Sheng E, Conomos MP, Zhang M, Garzotto LS, Hou G, Bishu S, Nagao-Kitamoto H, El-Zaatari M, Kitamoto S, Kamada N, Stidham RW, Akiba Y, Kaunitz J, Haberman Y, Kugathasan S, Denson LA, Omenn GS, Kao JY. DUOX2 variants associate with preclinical disturbances in microbiota-immune homeostasis and increased inflammatory bowel disease risk. J Clin Invest 2021; 131:141676. [PMID: 33651715 DOI: 10.1172/jci141676] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
A primordial gut-epithelial innate defense response is the release of hydrogen peroxide by dual NADPH oxidase (DUOX). In inflammatory bowel disease (IBD), a condition characterized by an imbalanced gut microbiota-immune homeostasis, DUOX2 isoenzyme is the highest induced gene. Performing multiomic analyses using 2872 human participants of a wellness program, we detected a substantial burden of rare protein-altering DUOX2 gene variants of unknown physiologic significance. We identified a significant association between these rare loss-of-function variants and increased plasma levels of interleukin-17C, which is induced also in mucosal biopsies of patients with IBD. DUOX2-deficient mice replicated increased IL-17C induction in the intestine, with outlier high Il17c expression linked to the mucosal expansion of specific Proteobacteria pathobionts. Integrated microbiota/host gene expression analyses in patients with IBD corroborated IL-17C as a marker for epithelial activation by gram-negative bacteria. Finally, the impact of DUOX2 variants on IL-17C induction provided a rationale for variant stratification in case control studies that substantiated DUOX2 as an IBD risk gene. Thus, our study identifies an association of deleterious DUOX2 variants with a preclinical hallmark of disturbed microbiota-immune homeostasis that appears to precede the manifestation of IBD.
Collapse
Affiliation(s)
- Helmut Grasberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew T Magis
- Institute for Systems Biology, Seattle, Washington, USA.,Arivale Inc., Seattle, Washington, USA
| | | | - Matthew P Conomos
- Arivale Inc., Seattle, Washington, USA.,Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Min Zhang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lea S Garzotto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Guoqing Hou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Shrinivas Bishu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Hiroko Nagao-Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohamad El-Zaatari
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sho Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ryan W Stidham
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yasutada Akiba
- West Los Angeles VA Medical Center and Departments of Medicine and Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jonathan Kaunitz
- West Los Angeles VA Medical Center and Departments of Medicine and Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yael Haberman
- Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Subra Kugathasan
- Departments of Pediatrics and Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lee A Denson
- Cincinnati Children's Hospital Medical Center, and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - John Y Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Ponterio E, Mariotti S, Tabolacci C, Ruggeri FM, Nisini R. Virus like particles of GII.4 norovirus bind Toll Like Receptors 2 and 5. Immunol Lett 2019; 215:40-44. [DOI: 10.1016/j.imlet.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/12/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
|
12
|
Luo Y, Xu J, Zhang C, Jiang C, Ma Y, He H, Wu Y, Devriendt B, Cox E, Zhang H. Toll-like receptor 5-mediated IL-17C expression in intestinal epithelial cells enhances epithelial host defense against F4 + ETEC infection. Vet Res 2019; 50:48. [PMID: 31221216 PMCID: PMC6584996 DOI: 10.1186/s13567-019-0665-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. The IL-17 cytokine family is well known to play important roles in the host defense against bacterial infections at the mucosa. Previously, we reported the potential role of IL-17A in clearing an ETEC infection in piglets. IL-17C, another member of the IL-17 family, is highly expressed in the intestinal epithelium, however, its role during an ETEC infection is still unclear. In this study, we demonstrate that F4+ ETEC induce IL-17C mRNA and protein expression in intestinal tissues as well as in porcine intestinal epithelial cells (IPEC-J2). This IL-17C production is largely dependent on TLR5 signaling in IPEC-J2 cells. Both F4+ ETEC infection and exogenous IL-17C increased the expression of antimicrobial peptides and tight junction proteins, such as porcine beta-defensin (pBD)-2, claudin-1, claudin-2 and occludin in IPEC-J2 cells. Taken together, our data demonstrate that TLR5-mediated IL-17C expression in intestinal epithelial cells enhances mucosal host defense responses in a unique autocrine/paracrine manner in the intestinal epithelium against ETEC infection.
Collapse
Affiliation(s)
- Yu Luo
- Animal Medical Testing Center, Department of Animal Production, Faculty of Agricultural & Biological Engineering, Jinhua Polytechnic, Jinhua, China.
| | - Jia Xu
- Animal Medical Testing Center, Department of Animal Production, Faculty of Agricultural & Biological Engineering, Jinhua Polytechnic, Jinhua, China
| | - Chaoying Zhang
- Animal Medical Testing Center, Department of Animal Production, Faculty of Agricultural & Biological Engineering, Jinhua Polytechnic, Jinhua, China
| | - Chunyan Jiang
- Animal Medical Testing Center, Department of Animal Production, Faculty of Agricultural & Biological Engineering, Jinhua Polytechnic, Jinhua, China
| | - Yanfeng Ma
- Animal Medical Testing Center, Department of Animal Production, Faculty of Agricultural & Biological Engineering, Jinhua Polytechnic, Jinhua, China
| | - Haijian He
- Animal Medical Testing Center, Department of Animal Production, Faculty of Agricultural & Biological Engineering, Jinhua Polytechnic, Jinhua, China
| | - Yuan Wu
- Animal Medical Testing Center, Department of Animal Production, Faculty of Agricultural & Biological Engineering, Jinhua Polytechnic, Jinhua, China
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Hongbin Zhang
- Animal Medical Testing Center, Department of Animal Production, Faculty of Agricultural & Biological Engineering, Jinhua Polytechnic, Jinhua, China
| |
Collapse
|
13
|
Jamieson KC, Traves SL, Kooi C, Wiehler S, Dumonceaux CJ, Maciejewski BA, Arnason JW, Michi AN, Leigh R, Proud D. Rhinovirus and Bacteria Synergistically Induce IL-17C Release from Human Airway Epithelial Cells To Promote Neutrophil Recruitment. THE JOURNAL OF IMMUNOLOGY 2018; 202:160-170. [PMID: 30504421 DOI: 10.4049/jimmunol.1800547] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/30/2018] [Indexed: 11/19/2022]
Abstract
Virus-bacteria coinfections are associated with more severe exacerbations and increased risk of hospital readmission in patients with chronic obstructive pulmonary disease (COPD). The airway epithelium responds to such infections by releasing proinflammatory and antimicrobial cytokines, including IL-17C. However, the regulation and role of IL-17C is not well understood. In this study, we examine the mechanisms regulating IL-17C production and its potential role in COPD exacerbations. Human bronchial epithelial cells (HBE) obtained from normal, nontransplanted lungs or from brushings of nonsmokers, healthy smokers, or COPD patients were exposed to bacteria and/or human rhinovirus (HRV). RNA and protein were collected for analysis, and signaling pathways were assessed with pharmacological agonists, inhibitors, or small interfering RNAs. HBE were also stimulated with IL-17C to assess function. HRV-bacterial coinfections synergistically induced IL-17C expression. This induction was dependent on HRV replication and required NF-κB-mediated signaling. Synergy was lost in the presence of an inhibitor of the p38 MAP kinase pathway. HBE exposed to IL-17C show increased gene expression of CXCL1, CXCL2, NFKBIZ, and TFRC, and release CXCL1 protein, a neutrophil chemoattractant. Knockdown of IL-17C significantly reduced induction of CXCL1 in response to HRV-bacterial coinfection as well as neutrophil chemotaxis. HBE from healthy smokers release less IL-17C than cells from nonsmokers, but cells from COPD patients release significantly more IL-17C compared with either nonsmokers or healthy smokers. These data suggest that IL-17C may contribute to microbial-induced COPD exacerbations by promoting neutrophil recruitment.
Collapse
Affiliation(s)
- Kyla C Jamieson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Suzanne L Traves
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Cora Kooi
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Shahina Wiehler
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Curtis J Dumonceaux
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Barbara A Maciejewski
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Jason W Arnason
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Aubrey N Michi
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| | - Richard Leigh
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and.,Department of Medicine, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - David Proud
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada; and
| |
Collapse
|
14
|
The roles of IL-17C in T cell-dependent and -independent inflammatory diseases. Sci Rep 2018; 8:15750. [PMID: 30356086 PMCID: PMC6200819 DOI: 10.1038/s41598-018-34054-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
IL-17C, which is a member of the IL-17 family of cytokines, is preferentially produced by epithelial cells in the lung, skin and colon, suggesting that IL-17C may be involved in not only host defense but also inflammatory diseases in those tissues. In support of that, IL-17C was demonstrated to contribute to development of T cell-dependent imiquimod-induced psoriatic dermatitis and T cell-independent dextran sodium sulfate-induced acute colitis using mice deficient in IL-17C and/or IL-17RE, which is a component of the receptor for IL-17C. However, the roles of IL-17C in other inflammatory diseases remain poorly understood. Therefore, we investigated the contributions of IL-17C to development of certain disease models using Il17c−/− mice, which we newly generated. Those mice showed normal development of T cell-dependent inflammatory diseases such as FITC- and DNFB-induced contact dermatitis/contact hypersensitivity (CHS) and concanavalin A-induced hepatitis, and T cell-independent inflammatory diseases such as bleomycin-induced pulmonary fibrosis, papain-induced airway eosinophilia and LPS-induced airway neutrophilia. On the other hand, those mice were highly resistant to LPS-induced endotoxin shock, indicating that IL-17C is crucial for protection against that immunological reaction. Therefore, IL-17C neutralization may represent a novel therapeutic approach for sepsis, in addition to psoriasis and acute colitis.
Collapse
|
15
|
Wang L, Yu K, Zhang X, Yu S. Dual functional roles of the MyD88 signaling in colorectal cancer development. Biomed Pharmacother 2018; 107:177-184. [PMID: 30086464 DOI: 10.1016/j.biopha.2018.07.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
The myeloid differentiation factor 88 (MyD88), an adaptor protein in regulation of the innate immunity, functions to regulate immune responses against viral and bacterial infections in the human body. Toll-like receptors (TLRs) and interleukin 1 receptors (IL-1R) can recognize microbes or endogenous ligands and then recruit MyD88 to activate the MyD88-dependent pathway, while MyD88 mutation associated with lymphoma development and altered MyD88 signaling also involved in cancer-associated cell intrinsic and extrinsic inflammation progression and carcinogenesis. Detection of MyD88 expression was to predict prognosis of various human cancers, e.g., lymphoid, liver, and colorectal cancers. In human cancers, MyD88 protein acts as a bridge between the inflammatory signaling from the TLR/IL-1R and Ras oncogenic signaling pathway. However, the MyD88 signaling played dual functional roles in colorectal cancer, i.e., the tumor-promoting role that enhances cancer inflammation and intestinal flora imbalance to induce tumor invasion and tumor cell self-renewal, and the anti-tumor role that helps to maintain the host-microbiota homeostasis to induce tumor cell cycle arrest and immune responses against cancer cells. This review precisely discusses the up to date literature for these contrasting effects of MyD88 signaling on colorectal cancer development and progression.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Kewei Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiang Zhang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shuwen Yu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
16
|
Brembilla NC, Senra L, Boehncke WH. The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond. Front Immunol 2018; 9:1682. [PMID: 30127781 PMCID: PMC6088173 DOI: 10.3389/fimmu.2018.01682] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is a frequent chronic inflammatory skin disease, nowadays considered a major global health problem. Several new drugs, targeting the IL-23/IL-17A pathway, have been recently licensed or are in clinical development. These therapies represent a major improvement of the way in which psoriasis is managed, since they show an unprecedented efficacy on skin symptoms of psoriasis. This has been made possible, thanks to an increasingly more accurate pathogenic view of psoriasis. Today, the belief that Th17 cells mediate psoriasis is moving to the concept of psoriasis as an IL-17A-driven disease. New questions arise at the horizon, given that IL-17A is part of a newly described family of cytokines, which has five distinct homologous: IL-17B, IL-17C, IL-17D, IL-17E, also known as IL-25 and IL-17F. IL-17 family cytokines elicit similar effects in target cells, but simultaneously trigger different and sometimes opposite functions in a tissue-specific manner. This is complicated by the fact that IL-17 cytokines show a high capacity of synergisms with other inflammatory stimuli. In this review, we will summarize the current knowledge around the cytokines belonging to the IL-17 family in relation to skin inflammation in general and psoriasis in particular, and discuss possible clinical implications. A comprehensive understanding of the different roles played by the IL-17 cytokines is crucial to appreciate current and developing therapies and to allow an effective pathogenesis- and mechanisms-driven drug design.
Collapse
Affiliation(s)
| | - Luisa Senra
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
17
|
Interleukin-17C in Human Helicobacter pylori Gastritis. Infect Immun 2017; 85:IAI.00389-17. [PMID: 28739826 DOI: 10.1128/iai.00389-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022] Open
Abstract
The interleukin-17 (IL-17) family of cytokines (IL-17A to IL-17F) is involved in many inflammatory diseases. Although IL-17A is recognized as being involved in the pathophysiology of Helicobacter pylori-associated diseases, the role of other IL-17 cytokine family members remains unclear. Microarray analysis of IL-17 family cytokines was performed in H. pylori-infected and uninfected gastric biopsy specimens. IL-17C mRNA was upregulated approximately 4.5-fold in H. pylori-infected gastric biopsy specimens. This was confirmed by quantitative reverse transcriptase PCR in infected and uninfected gastric mucosa obtained from Bhutan and from the Dominican Republic. Immunohistochemical analysis showed that IL-17C expression in H. pylori-infected gastric biopsy specimens was predominantly localized to epithelial and chromogranin A-positive endocrine cells. IL-17C mRNA levels were also significantly greater among cagA-positive than cagA-negative H. pylori infections (P = 0.012). In vitro studies confirmed an increase in IL-17C mRNA and protein levels in cells infected with cagA-positive infections compared to cells infected with either cagA-negative or cag pathogenicity island (PAI) mutant. Chemical inhibition of IκB kinase (IKK), mitogen-activated protein extracellular signal-regulated kinase (MEK), and Jun N-terminal kinase (JNK) inhibited induction of IL-17C proteins in infected cells, whereas p38 inhibition had no effect on IL-17C protein secretion. In conclusion, H. pylori infection was associated with a significant increase in IL-17C expression in human gastric mucosa. The role of IL-17C in the pathogenesis of H. pylori-induced diseases remains to be determined.
Collapse
|
18
|
Abstract
Toll-like receptor 4 (TLR4) recognizes lipopolysaccharide (LPS), produces pro-inflammatory cytokines and type I interferons, and associates with a trigger of endotoxin shock. TLR4 is interacted with a TIR domain-containing adaptor molecule-2 (TICAM-2)/TRAM [TRIF (TIR domain-containing adaptor-inducing interferon-β)-related adaptor molecule] via its Toll–interleukin-1 receptor homology (TIR) domain. TICAM-2 acts as a scaffold protein and activates TIR domain-containing adaptor molecule-1 (TICAM-1)/TRIF. According to the structural analysis by NMR, TICAM-2 interacts with TICAM-1 by the acidic amino acids motif, E87/D88/D89. The TIR domain of TICAM-2 couples with the dimer of TIR domain of TLR4 beneath the membrane, and TICAM-2 itself also forms dimer and constitutes a binding site with TICAM-1. Endosomal localization of TICAM-2 is essential for TLR4-mediated type I interferon-inducing signal from the endosome. N-terminal myristoylation allows TICAM-2 to anchor to the endosomal membrane. Additionally, we have identified two acidic amino acids, D91/E92, as a functional motif that cooperatively determines endosomal localization of TICAM-2. This structural information of TICAM-2 suggests that the specific structure is indispensable for the endosomal localization and type I interferon production of TICAM-2. Taken together with the knowledge on cytoplasmic sensors for LPS, TICAM-2/TICAM-1 may conform to a signal network on TLR4 to facilitate induction of cytokine disorders.
Collapse
|
19
|
Graves CL, Li J, LaPato M, Shapiro MR, Glover SC, Wallet MA, Wallet SM. Intestinal Epithelial Cell Regulation of Adaptive Immune Dysfunction in Human Type 1 Diabetes. Front Immunol 2017; 7:679. [PMID: 28119693 PMCID: PMC5222791 DOI: 10.3389/fimmu.2016.00679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/21/2016] [Indexed: 01/29/2023] Open
Abstract
Environmental factors contribute to the initiation, progression, and maintenance of type 1 diabetes (T1D), although a single environmental trigger for disease has not been identified. Studies have documented the contribution of immunity within the gastrointestinal tract (GI) to the expression of autoimmunity at distal sites. Intestinal epithelial cells (IECs) regulate local and systemic immunologic homeostasis through physical and biochemical interactions with innate and adaptive immune populations. We hypothesize that a loss in the tolerance-inducing nature of the GI tract occurs within T1D and is due to altered IECs' innate immune function. As a first step in addressing this hypothesis, we contrasted the global immune microenvironment within the GI tract of individuals with T1D as well as evaluated the IEC-specific effects on adaptive immune cell phenotypes. The soluble and cellular immune microenvironment within the duodenum, the soluble mediator profile of primary IECs derived from the same duodenal tissues, and the effect of the primary IECs' soluble mediator profile on T-cell expansion and polarization were evaluated. Higher levels of IL-17C and beta-defensin 2 (BD-2) mRNA in the T1D-duodenum were observed. Higher frequencies of type 1 innate lymphoid cells (ILC1) and CD8+CXCR3+ T-cells (Tc1) were also observed in T1D-duodenal tissues, concomitant with lower frequencies of type 3 ILC (ILC3) and CD8+CCR6+ T-cells (Tc17). Higher levels of proinflammatory mediators (IL-17C and BD-2) in the absence of similar changes in mediators associated with homeostasis (interleukin 10 and thymic stromal lymphopoietin) were also observed in T1D-derived primary IEC cultures. T1D-derived IEC culture supernatants induced more robust CD8+ T-cell proliferation along with enhanced polarization of Tc1 populations, at the expense of Tc17 polarization, as well as the expansion of CXCR3+CCR6+/- Tregs, indicative of a Th1-like and less regulatory phenotype. These data demonstrate a proinflammatory microenvironment of the T1D-duodenum, whereby IECs have the potential to contribute to the expansion and polarization of innate and adaptive immune cells. Although these data do not discern whether these observations are not simply a consequence of T1D, the data indicate that the T1D-GI tract has the capacity to foster a permissive environment under which autoreactive T-cells could be expanded and polarized.
Collapse
Affiliation(s)
- Christina L. Graves
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - Jian Li
- Department of Gastroenterology, Hepatology, and Nutrition, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Melissa LaPato
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - Melanie R. Shapiro
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - Sarah C. Glover
- Department of Gastroenterology, Hepatology, and Nutrition, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| |
Collapse
|
20
|
The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol 2016; 13:418-31. [PMID: 27018218 DOI: 10.1038/cmi.2015.105] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/21/2015] [Accepted: 11/21/2015] [Indexed: 01/12/2023] Open
Abstract
The mucosal immune system serves as our front-line defense against pathogens. It also tightly maintains immune tolerance to self-symbiotic bacteria, which are usually called commensals. Sensing both types of microorganisms is modulated by signalling primarily through various pattern-recognition receptors (PRRs) on barrier epithelial cells or immune cells. After sensing, proinflammatory molecules such as cytokines are released by these cells to mediate either defensive or tolerant responses. The interleukin-17 (IL-17) family members belong to a newly characterized cytokine subset that is critical for the maintenance of mucosal homeostasis. In this review, we will summarize recent progress on the diverse functions and signals of this family of cytokines at different mucosal edges.
Collapse
|
21
|
Intestinal neuroendocrine cells and goblet cells are mediators of IL-17A-amplified epithelial IL-17C production in human inflammatory bowel disease. Mucosal Immunol 2015; 8:943-58. [PMID: 25492478 DOI: 10.1038/mi.2014.124] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/30/2014] [Indexed: 02/04/2023]
Abstract
Interleukin (IL)-17C is a novel member of the IL-17 cytokine family. Its function in human inflammatory bowel disease (IBD) remains elusive as its role in colonic inflammation is entirely derived from murine models. We aimed to analyze the role of IL-17C in human IBD, focusing on T helper type 17 (Th17) cell- and intestinal epithelial cell (IEC)-dependent mechanisms. IL-17C mRNA (P=0.005), serum levels (P=0.008), and colonic staining intensity (P=0.004) is increased in active IBD. Serum IL-17C levels are modified by IL23R genotypes and IL-17C mRNA correlates (r>0.5, P<0.001) with IL-17A, tumor necrosis factor (TNF)-α, C-C motif chemokine ligand 20 (CCL20) and IL-23 mRNA in the inflamed colon of IBD patients. In the inflamed colon, IL-17C is produced by enteroendocrine and goblet cells, with contrary polar cytosolic localization of IL-17C within the cellular axis. In these two cell types, IL-17A strongly amplifies TNF-α-induced IL-17C production. On the molecular level, IL-17C production in IECs is dependent on TNF-α-activated nuclear factor-κB, extracellular signal-regulated kinase-1/2 and p38, and IL-17A-activated Akt, monocyte chemotactic protein-induced protein 1, and C/EBPδ. IL-17C upregulates the Th17 chemoattractant CCL20 in IECs. In summary, our findings support the involvement of IL-17A-amplified IL-17C production by enteroendocrine and goblet cells in the pathogenesis of active IBD, revealing an interaction between the neuroendocrine system and the Th17 pathway in human IBD.
Collapse
|
22
|
Kanemaru K, Matsuyuki A, Nakamura Y, Fukami K. Obesity exacerbates imiquimod-induced psoriasis-like epidermal hyperplasia and interleukin-17 and interleukin-22 production in mice. Exp Dermatol 2015; 24:436-42. [PMID: 25777289 DOI: 10.1111/exd.12691] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2015] [Indexed: 12/19/2022]
Abstract
Psoriasis is a chronic inflammatory skin disorder that is accompanied by an imbalance between the proliferation and differentiation of keratinocytes. A number of studies have suggested an association between obesity and severe psoriasis; however, it remains to be clarified whether obesity exacerbates psoriasis. To address this unsolved question, we induced psoriasiform dermatitis in mouse models for obesity. We found that obesity exaggerated the severity of psoriasiform dermatitis induced by topical application of the Toll-like receptor (TLR) 7 agonist, imiquimod. Ear swelling and epidermal hyperplasia were more prominent in the obese mice than in the control mice. When compared to imiquimod-treated control mice, imiquimod-treated obese mice expressed higher levels of psoriasis mediators, interleukin-17A (IL-17A) and IL-22 in the skin. Food intake restriction partially abrogated enhanced ear swelling and cytokine overproduction in obese mice. Furthermore, the obesity environment and imiquimod treatment synergistically induced an IL-17A downstream molecule, regenerating islet-derived 3γ (Reg3γ), which is a critical molecule for psoriatic epidermal hyperplasia. Palmitic acid, one of the fatty acids released by subcutaneous adipocytes, increased the expression of REG3A (a human homologue of mouse Reg3γ) in both the HaCaT keratinocyte cell line and normal human keratinocytes. Taken together, these results strongly suggest that obesity exacerbates psoriasiform dermatitis in mice by upregulating IL-17A, IL-22 and Reg3γ.
Collapse
Affiliation(s)
- Kaori Kanemaru
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- CREST-JST, Saitama, Japan
| | - Ayano Matsuyuki
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshikazu Nakamura
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- CREST-JST, Saitama, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignals, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
- CREST-JST, Saitama, Japan
| |
Collapse
|
23
|
Alcarraz-Vizán G, Sánchez-Tena S, Moyer MP, Cascante M. Validation of NCM460 cell model as control in antitumor strategies targeting colon adenocarcinoma metabolic reprogramming: Trichostatin A as a case study. Biochim Biophys Acta Gen Subj 2014; 1840:1634-9. [DOI: 10.1016/j.bbagen.2013.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/18/2013] [Accepted: 12/17/2013] [Indexed: 12/22/2022]
|
24
|
Kusagaya H, Fujisawa T, Yamanaka K, Mori K, Hashimoto D, Enomoto N, Inui N, Nakamura Y, Wu R, Maekawa M, Suda T, Chida K. Toll-like receptor-mediated airway IL-17C enhances epithelial host defense in an autocrine/paracrine manner. Am J Respir Cell Mol Biol 2014; 50:30-9. [PMID: 23944933 DOI: 10.1165/rcmb.2013-0130oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IL-17A, IL-17F, and IL-25 belong to the IL-17 family of cytokines, and are well known to play important roles in the host defense against infection and inflammatory diseases. IL-17C, also a member of the IL-17 family, is highly expressed in the epithelium; however, the function and regulatory mechanism of IL-17C in airway epithelium remain poorly understood. In this study, we demonstrate that polyinosinic-polycytidylic acid (polyI:C), the ligand to Toll-like receptor 3, is a potent inducer of IL-17C mRNA and protein expression in primary normal human bronchial epithelial (NHBE) cells. IL-17C induction by polyI:C was both time dependent and dose dependent, and was attenuated by inhibitors of the Toll-IL-1 receptor domain-containing adaptor-inducing INF-β (TRIF)-NF-κB pathway, Pepinh-TRIF, BAY11, NF-κB inhibitor III, and NF-κB p65 small interfering RNA, suggesting that IL-17C expression is induced by polyI:C via the Toll-like receptor 3-TRIF-NF-κB pathway. Both IL-17C and polyI:C increased the expression of antimicrobial peptides and proinflammatory cytokines, such as human β-defensin (hBD) 2, colony-stimulating factor 3 (CSF3), and S100A12 in NHBE cells. Knockdown of IL-17 receptor (IL-17R) E, the specific receptor for IL-17C, using IL-17RE small interfering RNA, attenuated polyI:C-induced hBD2, CSF3, and S100A12 expression, without any reduction of polyI:C-induced IL-17C expression, which suggest that IL-17C enhances hBD2, CSF, and S100A12 expression in an autocrine/paracrine manner in NHBE cells. Knockdown of IL-17C also decreased polyI:C-induced hBD2, CSF3, and S100A12 expression. Thus, our data demonstrate that IL-17C is an essential epithelial cell-derived cytokine that enhances mucosal host defense responses in a unique autocrine/paracrine manner in the airway epithelium.
Collapse
|
25
|
Chalubinski M, Wojdan K, Gorzelak P, Borowiec M, Broncel M. The effect of oxidized cholesterol on barrier functions and IL-10 mRNA expression in human intestinal epithelium co-cultured with dendritic cells in the transwell system. Food Chem Toxicol 2014; 69:289-93. [PMID: 24727230 DOI: 10.1016/j.fct.2014.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/28/2014] [Accepted: 04/03/2014] [Indexed: 11/30/2022]
Abstract
The intestinal epithelium is exposed to oxygenated cholesterol products present in foodstuffs. In vitro studies demonstrate the effect of oxysterols on cytokine release by intestinal cells cultured alone. However, physiologically, the response of the intestinal epithelium to external agents occurs in the presence of dendritic cells (DCs). The aim of the study was to analyze the effect of 7-ketocholesterol on the barrier functions and IL-10 mRNA expression of Caco-2 cells in the presence of DCs, and secondly, on IL-10 mRNA expression in DCs. Caco-2 cells were co-cultured with monocyte-derived dendritic cells and induced with 7-ketocholesterol in a transwell system. DCs did not affect the transepithelial electrical resistance (TER) of the Caco-2 cell monolayer, but increased IL-10 mRNA expression in Caco-2 cells. 7-ketocholesterol decreased the TER of Caco-2 cells co-cultured with DCs and diminished IL-10 mRNA expression in Caco-2 cells induced by the presence of DCs. IL-10 mRNA expression fell in DCs co-cultured with Caco-2 cells after treatment with 7-ketocholesterol. Oxidized cholesterols present in gut mucosa may contribute to the decrease of epithelial barrier functions and the inappropriate development of an inflammatory response to food compounds.
Collapse
Affiliation(s)
- Maciej Chalubinski
- Dept. of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland.
| | - Katarzyna Wojdan
- Dept. of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Paulina Gorzelak
- Dept. of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| | - Maciej Borowiec
- Immunopathology and Genetics Laboratory, Department of Pediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Sporna 36/50, 91-738 Lodz, Poland; Department of Clinical Genetics, Medical University of Lodz, Sterlinga 1/3, 90-425 Lodz, Poland
| | - Marlena Broncel
- Dept. of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland
| |
Collapse
|
26
|
Abstract
Intestinal epithelial cells were once thought to be inert, non-responsive cells that simply acted as a physical barrier that prevents the contents of the intestinal lumen from accessing the underlying tissue. However, it is now clear that these cells express a full repertoire of Toll- and Nod-like receptors, and that their activation by components of the microbiota is vital for the development of a functional epithelium, maintenance of barrier integrity, and defense against pathogenic organisms. Additionally, mounting evidence suggests that epithelial sensing of bacteria plays a significant role in the management of the numbers and types of microbes present in the gut microbiota via the production of antimicrobial peptides and other microbe-modulatory products. This is a critical process, as it is now becoming apparent that alterations in the composition of the microbiota can predispose an individual to a wide variety of chronic diseases. In this review, we will discuss the bacterial pattern recognition receptors that are known to be expressed by the intestinal epithelium, and how each of them individually contributes to these vital protective functions. Moreover, we will review what is known about the communication between epithelial cells and various classes of underlying leukocytes, and discuss how they interact with the microbiota to form a three-part relationship that maintains homeostasis in the gut.
Collapse
|
27
|
IL-17C expression in nasal epithelial cells of chronic rhinosinusitis with nasal polyposis. Eur Arch Otorhinolaryngol 2013; 271:1097-105. [PMID: 24013453 DOI: 10.1007/s00405-013-2683-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/23/2013] [Indexed: 12/30/2022]
Abstract
Interleukin 17C (IL-17C) is a functionally distinct member of the IL-17 family that is selectively induced in epithelia by bacterial challenge and inflammatory stimuli. The goal of this study was to explore the expression of IL-17C in nasal epithelial cells and their role in the pathogenesis of chronic rhinosinusitis with nasal polyposis (CRSwNPs). IL-17C expression was detected using immunohistochemistry (IHC) of the epithelial cell layers and using the western blot assay on whole tissue homogenates from control subjects (n = 10) and CRSwNP patients [10 non-eosinophilic polyps and 10 eosinophilic polyps (EPs)]. Expression of IL-17C and P47-phox were evaluated in the human nasal epithelial cells (RPMI-2650 cells) after treatment with staphylococcal enterotoxin B (SEB) and pretreatment with reactive oxygen species (ROS) scavenger, N-acetyl L-cysteine (NAC). Finally, IL-17C expression was demonstrated in eosinophilic rhinosinusitis murine model using IHC. Epithelial expression of IL-17C was higher in nasal polyps (especially in EPs) compared to control mucosa. SEB increased the expression of IL-17C and P47-phox in RPMI-2650 cells. SEB-induced expressions of both IL-17C and P47-phox were significantly decreased in NAC-pretreated cells. Epithelial expression of IL-17C was significantly higher in experimental mice compared to control mice. SEB-induced IL-17C expression in nasal epithelial cells is mediated by ROS production. This pathway may be associated with the pathogenesis of CRSwNP, especially eosinophilic nasal polyps.
Collapse
|
28
|
Song X, Qian Y. IL-17 family cytokines mediated signaling in the pathogenesis of inflammatory diseases. Cell Signal 2013; 25:2335-47. [PMID: 23917206 DOI: 10.1016/j.cellsig.2013.07.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/26/2013] [Indexed: 12/26/2022]
Abstract
Inflammation is the immediate protective response of the body to pathogen invasions, allergen challenges, chemical exposures or physical injuries. Acute inflammation usually accompanies with transient infiltration of leukocytes, removal of danger signals and eventually tissue repair, while persistent and uncontrolled inflammation becomes a major stimulator in the progression of many chronic diseases in human, including autoimmune diseases, metabolic disorders and cancer. Interleukin (IL)-17 family is a recent classified subset of cytokines, playing critical roles in both acute and chronic inflammatory responses. In this review, we will summarize recent progresses on the signalings of this family cytokines and their impacts on the inflammatory responses or disorders.
Collapse
Affiliation(s)
- Xinyang Song
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | |
Collapse
|
29
|
Abstract
Several experimental approaches have been utilized, in order to critically examine the roles of IL-17 family members in intestinal inflammation. These approaches have included: (1) the use of IL-17A and IL-17F-deficient mice, (2) specific antibodies directed against IL-17, (3) an IL-17 vaccine, (4) methods to block the IL-17 receptor and (5) small-molecule inhibitors of IL-17. Previous studies found somewhat conflicting results in preclinical models of Inflammatory Bowel Disease (IBD), using specific strains of IL-17-deficient mice. This paper will review the preclinical results using various pharmacological approaches [specific IL-17 antibodies, an IL-17 receptor fusion protein, IL-12/IL-23 p40 subunit and IL-17 vaccine approaches, as well as a small molecule inhibitor (Vidofludimus)] to inhibit IL-17 in animal models of IBD. Recent clinical results in patients with IBD will also be discussed for Secukinumab (an IL-17A antibody), Brodalumab (an IL-17 receptor antibody) and two small-molecule drugs (Vidofludimus and Tofacitinib), which inhibit IL-17 as part of their overall pharmacological profiles. This review paper will also discuss some pharmacological lessons learned from the preclinical and clinical studies with anti-IL-17 drugs, as related to drug pharmacodynamics, IL-17 receptor subtypes and other pertinent factors. Finally, future pharmacological approaches of interest will be discussed, such as: (1) Retinoic acid receptor-related orphan nuclear receptor gamma t (Rorγt) antagonists, (2) Retinoic acid receptor alpha (RARα) antagonists, (3) Pim-1 kinase inhibitors and (4) Dual small-molecule inhibitors of NF-κB and STAT3, like synthetic triterpenoids.
Collapse
Affiliation(s)
- Leo R Fitzpatrick
- Department of Pharmacology, Penn State College of Medicine , Hummelstown, Pennsylvania , USA
| |
Collapse
|
30
|
Johnston A, Fritz Y, Dawes SM, Diaconu D, Al-Attar PM, Guzman AM, Chen CS, Fu W, Gudjonsson JE, McCormick TS, Ward NL. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 190:2252-62. [PMID: 23359500 DOI: 10.4049/jimmunol.1201505] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IL-17C is a functionally distinct member of the IL-17 family that binds IL-17 receptor E/A to promote innate defense in epithelial cells and regulate Th17 cell differentiation. We demonstrate that IL-17C (not IL-17A) is the most abundant IL-17 isoform in lesional psoriasis skin (1058 versus 8 pg/ml; p < 0.006) and localizes to keratinocytes (KCs), endothelial cells (ECs), and leukocytes. ECs stimulated with IL-17C produce increased TNF-α and KCs stimulated with IL-17C/TNF-α produce similar inflammatory gene response patterns as those elicited by IL-17A/TNF-α, including increases in IL-17C, TNF-α, IL-8, IL-1α/β, IL-1F5, IL-1F9, IL-6, IL-19, CCL20, S100A7/A8/A9, DEFB4, lipocalin 2, and peptidase inhibitor 3 (p < 0.05), indicating a positive proinflammatory feedback loop between the epidermis and ECs. Psoriasis patients treated with etanercept rapidly decrease cutaneous IL-17C levels, suggesting IL-17C/TNF-α-mediated inflammatory signaling is critical for psoriasis pathogenesis. Mice genetically engineered to overexpress IL-17C in KCs develop well-demarcated areas of erythematous, flakey involved skin adjacent to areas of normal-appearing uninvolved skin despite increased IL-17C expression in both areas (p < 0.05). Uninvolved skin displays increased angiogenesis and elevated S100A8/A9 expression (p < 0.05) but no epidermal hyperplasia, whereas involved skin exhibits robust epidermal hyperplasia, increased angiogenesis and leukocyte infiltration, and upregulated TNF-α, IL-1α/β, IL-17A/F, IL-23p19, vascular endothelial growth factor, IL-6, and CCL20 (p < 0.05), suggesting that IL-17C, when coupled with other proinflammatory signals, initiates the development of psoriasiform dermatitis. This skin phenotype was significantly improved following 8 wk of TNF-α inhibition. These findings identify a role for IL-17C in skin inflammation and suggest a pathogenic function for the elevated IL-17C observed in lesional psoriasis skin.
Collapse
Affiliation(s)
- Andrew Johnston
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|