1
|
Silva Ortíz YL, de Sousa TC, Kruklis NE, Galeano García P, Brango-Vanegas J, Soller Ramada MH, Franco OL. The Role of Amphibian AMPs Against Oxidative Stress and Related Diseases. Antibiotics (Basel) 2025; 14:126. [PMID: 40001370 PMCID: PMC11851847 DOI: 10.3390/antibiotics14020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
Amphibians use their skin as an effective defense mechanism against predators and microorganisms. Specialized glands produce antimicrobial peptides (AMPs) that possess antioxidant properties, effectively reducing reactive oxygen species (ROS) levels. These peptides are promising candidates for treating diseases associated with oxidative stress (OS) and redox imbalance, including neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), as well as age-related conditions, like cardiovascular diseases and cancer. This review highlights the multifaceted roles of AMPs and antioxidant peptides (AOPs) in amphibians, emphasizing their protective capabilities against oxidative damage. They scavenge ROS, activate antioxidant enzyme systems, and inhibit cellular damage. AOPs often share structural characteristics with AMPs, suggesting a potential evolutionary connection and similar biosynthetic pathways. Peptides such as brevinin-1FL and Cath-KP demonstrate neuroprotective effects, indicating their therapeutic potential in managing oxidative stress-related diseases. The antioxidant properties of amphibian-derived peptides pave the way for novel therapeutic developments. However, a deeper understanding of the molecular mechanisms underlying these peptides and their interactions with oxidative stress is essential to addressing ROS-related diseases and advancing therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Yudy Lorena Silva Ortíz
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Caquetá, Colombia; (Y.L.S.O.); (P.G.G.)
| | - Thaís Campos de Sousa
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-160, DF, Brazil; (T.C.d.S.); (N.E.K.); (M.H.S.R.)
| | - Natália Elisabeth Kruklis
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-160, DF, Brazil; (T.C.d.S.); (N.E.K.); (M.H.S.R.)
| | - Paula Galeano García
- Grupo de Investigación en Productos Naturales Amazónicos (GIPRONAZ), Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180001, Caquetá, Colombia; (Y.L.S.O.); (P.G.G.)
| | - José Brango-Vanegas
- Center for Proteomic and Biochemical Analyses, Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 70790-160, DF, Brazil;
- S-Inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande 79117-900, MS, Brazil
| | - Marcelo Henrique Soller Ramada
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 71966-160, DF, Brazil; (T.C.d.S.); (N.E.K.); (M.H.S.R.)
- Graduate Program in Gerontology, Catholic University of Brasília, Brasília 71966-700, DF, Brazil
| | - Octávio Luiz Franco
- Center for Proteomic and Biochemical Analyses, Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 70790-160, DF, Brazil;
- S-Inova Biotech, Graduate Program in Biotechnology, Dom Bosco Catholic University, Campo Grande 79117-900, MS, Brazil
| |
Collapse
|
2
|
Li G, Yu X, Zhan J, Wu C, Wu Y, Wan Y, Wan W, Hu Y, Yang W. A review: Interactions between protein from blue foods and functional components in delivery systems: Function exertion and transmembrane transport by in vitro digestion/cells model. Int J Biol Macromol 2024; 276:133839. [PMID: 39004248 DOI: 10.1016/j.ijbiomac.2024.133839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Functional compounds (FCs) had some functions, which are affected easily by digestion and transmembrane transport leading to low absorption rates, such as lutein, quercetin, xylo-oligosaccharide. Protein from blue foods is a potential bioactive compound, which had higher bioavailability, especially for bioactive peptides (BBPs). The BBPs has great limitations, especially the variability under pepsin digestion. However, the limitation of single FCs and BBPs in bioavailability might can be complemented by mixture of different bioactive compounds. Therefore, this review provides an in-depth study on the function and mechanism of different FCs/BBPs and their mixtures. Specifically, digestion effect of mixtures on function and transmembrane transport mechanisms of different bioactive compounds were exhibited to elaborate interactions between BBPs and FCs in delivery systems (function and bioavailability). Combination of FCs/BBPs could enhance bioactive compounds function by mutual complement of function mechanisms, as well as improving the function after digestion by regulating digestion process. Moreover, transmembrane absorption and transport of FCs/BBPs also could be facilitated by mixtures due to complement of transmembrane mechanism (endocytosis, protein channels, cell bypass way). This manuscript lays a foundation for the development of active ingredient bioavailability in functional food processing.
Collapse
Affiliation(s)
- Gaoshang Li
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China
| | - Xuemei Yu
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China
| | - Junqi Zhan
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310000, Zhejiang, China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yiduo Wu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Yue Wan
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Wubo Wan
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China.
| | - Wenge Yang
- School of Food Science and Engineering, Ningbo University, Ningbo 315800, Zhejiang, China.
| |
Collapse
|
3
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Martí-Quijal FJ, Castagnini JM, Ruiz MJ, Barba FJ. Sea Bass Side Streams Extracts Obtained by Pulsed Electric Fields: Nutritional Characterization and Effect on SH-SY5Y Cells. Foods 2023; 12:2717. [PMID: 37509809 PMCID: PMC10378982 DOI: 10.3390/foods12142717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Fish side streams are an environmental and economic problem. In this work, pulsed electric fields (PEF) extraction was optimized and used as a new method for their valorization. Sea bass head, skin, viscera, and backbone were used. PEF technology (123-300 kJ/kg, 1-3 kV/cm) improved the extraction of proteins and antioxidant compounds from head and skin, but was not successful for viscera. SDS-PAGE showed that the protein molecular weight distribution was affected by the extraction process, revealing differences between the control and PEF extraction conditions. In addition, the extraction of macro-minerals and micro-minerals were also evaluated. The effect of PEF differed according to the matrix and the mineral studied. Heavy metals were also taken into account, studying the presence of As, Cd, Hg, and Pb in the extracts. PEF pre-treatment reduced the presence of As in skin, viscera, and backbone, ranging from 18.25 to 28.48% according to the matrix evaluated. The analysis of potential antioxidant bioactive peptides showed that the treatment of the sample directly influenced their variety. Additionally, the extracts obtained from the head were found to increase cell viability when tested on SH-SY5Y cells. In conclusion, PEF extraction can be a useful tool for the valorization of fish side streams.
Collapse
Affiliation(s)
- Francisco J Martí-Quijal
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
- Research Group in Alternative Methods for Determining TOXICS Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Juan Manuel Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - María-José Ruiz
- Research Group in Alternative Methods for Determining TOXICS Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Francisco J Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| |
Collapse
|
5
|
Zhan J, Li G, Dang Y, Pan D. Identification of a novel hypotensive peptide from porcine plasma hydrolysate by in vitro digestion and rat model. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100101. [PMID: 35769399 PMCID: PMC9235047 DOI: 10.1016/j.fochms.2022.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 11/25/2022]
Abstract
Porcine plasma was enzymatically hydrolyzed with different times. The hydrolysate with high hydrolysis degree was isolated and purified by G-15 gel chromatography and HPLC. The ace inhibition rates of different purified compounds were determined. The sequence of the polypeptide with best ace inhibition (IFPPKPKDTL) was determined by Q exactive LC-MS / MS. The hypotensive function of synthetic peptide IFPPKPKDTL was also determined in spontaneously hypertensive rat.
We separated a novel functional peptide IFPPKPKDTL from porcine plasma hydrolysate by chromatography, HPLC, and identified by Q Exactive LC-MS/MS. Results showed that IFPPKPKDTL had a significant ability of ACE inhibition (76.6%) likely due to the presence of hydrophobic, aromatic, and acidic amino acids that can inactivate ACE by binding Zn2+, providing a hydrogen atom to maintain the link between ACE and the peptide. Furthermore, the ACE inhibition of synthetic IFPPKPKDTL was improved by 15.6% after in vitro digestion. Additionally, the systolic blood pressure and diastolic blood pressure of spontaneously hypertensive rats gavaged by the peptide (30 mg/kg). Thereby, ACE inhibitory peptide IFPPKPKDTL from porcine plasma was stable and has potential functional value.
Collapse
Affiliation(s)
- Junqi Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Gaoshang Li
- Institute of Food Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo 315211, China.,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
6
|
Li G, Zhan J, Hu L, Yuan C, Takaki K, Ying X, Hu Y. Identification of a new antioxidant peptide from porcine plasma by in vitro digestion and its cytoprotective effect on H2O2 induced HepG2 model. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Li G, Hu L, Hu Z, Li Y, Yuan C, Takaki K, Hu Y. Nutrition and protein function, properties (structure, rheology, thermal stability) analysis of Nepture volute based on proteomics and in vitro digestion/cells model. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Li G, Zhan J, Hu L, Yuan C, Ying X, Hu Y. Identification of novel antioxidant peptide from porcine plasma hydrolysate and its effect in in vitro digestion/HepG2 cells model. J Food Biochem 2021; 46:e13853. [PMID: 34240447 DOI: 10.1111/jfbc.13853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
A novel antioxidant peptide EDEQKFWGK from porcine plasma hydrolysate (PPH) was separated by chromatography, HPLC, and identified by LC-MS/MS. Results showed that EDEQKFWGK had better antioxidant ability (Hydroxyl RAS 32.19%, ABTS RAS 92.93% and DPPH RAS 26.76%) compared with glutathione (30.11%, 82.01%, 26.44%) due to the presence of hydrophobic, aromatic acids (F, W) and acidic amino acids (E, D), decreasing ROS by providing hydrogen atom and chelating metal ions. Furthermore, the antioxidant properties of synthetic EDEQKFWGK still significant despite in vitro digestion because of the production of smaller active peptide. Additionally, it could increase SOD, CAT, GSH-Px to resist oxidative damage in HepG2 cells by inhibiting ROS (O2 - , OH·), forming complexes to prevent OH· from destroying DNA and binding to ARE to promote antioxidase expression. Thereby, the novel peptide EDEQKFWGK from porcine plasma had much stable antioxidant properties and hade great potential in formulating functional foods. PRACTICAL APPLICATIONS: This research isolated a novel antioxidant peptide. Moreover, the antioxidant effects of peptide were confirmed under the in vitro digestion model and oxidative damage HepG2 cells model. The results showed the antioxidant peptide could play better effect after digestion and protect the cells from oxidative damage. These data could expand the sequence data of antioxidant peptides and promote the high-value utilization of PPH.
Collapse
Affiliation(s)
- Gaoshang Li
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
| | - Junqi Zhan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Lingping Hu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
| | - Chunhong Yuan
- Department of Food Production and Environmental Management, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Xiaoguo Ying
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yaqin Hu
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
9
|
Liscano Y, Medina L, Oñate-Garzón J, Gúzman F, Pickholz M, Delgado JP. In Silico Selection and Evaluation of Pugnins with Antibacterial and Anticancer Activity Using Skin Transcriptome of Treefrog ( Boana pugnax). Pharmaceutics 2021; 13:578. [PMID: 33919639 PMCID: PMC8074116 DOI: 10.3390/pharmaceutics13040578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/10/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
In order to combat bacterial and cancer resistance, we identified peptides (pugnins) with dual antibacterial l-anticancer activity from the Boana pugnax (B. pugnax) skin transcriptome through in silico analysis. Pugnins A and B were selected owing to their high similarity to the DS4.3 peptide, which served as a template for their alignment to the B. pugnax transcriptome, as well as their function as part of a voltage-dependent potassium channel protein. The secondary peptide structure stability in aqueous medium was evaluated as well, and after interaction with the Escherichia coli (E. coli) membrane model using molecular dynamics. These pugnins were synthesized via solid-phase synthesis strategy and verified by Reverse phase high-performance liquid chromatography (RP-HPLC) and mass spectrometry. Subsequently, their alpha-helix structure was determined by circular dichroism, after which antibacterial tests were then performed to evaluate their antimicrobial activity. Cytotoxicity tests against cancer cells also showed selectivity of pugnin A toward breast cancer (MFC7) cells, and pugnin B toward prostate cancer (PC3) cells. Alternatively, flow cytometry revealed necrotic cell damage with a major cytotoxic effect on human keratinocytes (HaCaT) control cells. Therefore, the pugnins found in the transcriptome of B. pugnax present dual antibacterial-anticancer activity with reduced selectivity to normal eukaryotic cells.
Collapse
Affiliation(s)
- Yamil Liscano
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 N° 62-00, Cali 760035, Colombia;
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Laura Medina
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 N° 62-00, Cali 760035, Colombia;
| | - Fanny Gúzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, 2374631 Av. Universidad, Curauma 330, Chile;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET-UBA, Ciudad Universitaria, Pabellón 1, Buenos Aires 1428, Argentina;
| | - Jean Paul Delgado
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
10
|
Wang L, Li X, Liu W, Jia X, Wang S, Qiao X, Cheng X. Antioxidant activity of pickled sauced meat before and after cooking and in vitro gastrointestinal digestion. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Le Wang
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| | - Xiang Li
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| | - Wenying Liu
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| | - Xiaoyun Jia
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| | - Shouwei Wang
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| | - Xiaoling Qiao
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| | - Xiaoyu Cheng
- China Meat Research Centre Beijing China
- Beijing Key Laboratory of Meat Processing Technology Beijing China
| |
Collapse
|
11
|
Zou X, He J, Zhao D, Zhang M, Xie Y, Dai C, Wang C, Li C. Structural Changes and Evolution of Peptides During Chill Storage of Pork. Front Nutr 2020; 7:151. [PMID: 33072793 PMCID: PMC7536345 DOI: 10.3389/fnut.2020.00151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
In this work, we investigated changes in protein structures in vacuum-packed pork during chill storage and its impact on the in vitro protein digestion. Longissimus dorsi muscles were vacuum packed and stored at 4°C for 3 days. Samples were subjected to Raman spectroscopy, in vitro digestion and nano LC-MS/MS. The 3 d samples had lower α-helix content, but higher β-sheet, β-turn, and random coil contents than the 0 d samples (P < 0.05). SDS-PAGE revealed significant protein degradation in the 3 d samples and the differences in digested products across the storage time. Proteome analysis indicated that the 3 d samples had the higher susceptibility to digestion. Increasing protein digestibility was mainly attributed to the degradation of myofibrillar proteins. Thus, exposure of more enzymatic sites in loose protein structure during chill storage could increase protein degradation in meat.
Collapse
Affiliation(s)
- Xiaoyu Zou
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Jing He
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Min Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Yunting Xie
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Chong Wang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.,Joint International Research Laboratory of Animal Health and Food Safety, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Zheng J, Tian X, Xu B, Yuan F, Gong J, Yang Z. Collagen Peptides from Swim Bladders of Giant Croaker ( Nibea japonica) and Their Protective Effects against H 2O 2-Induced Oxidative Damage toward Human Umbilical Vein Endothelial Cells. Mar Drugs 2020; 18:E430. [PMID: 32824671 PMCID: PMC7460321 DOI: 10.3390/md18080430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/26/2022] Open
Abstract
Five different proteases were used to hydrolyze the swim bladders of Nibea japonica and the hydrolysate treated by neutrase (collagen peptide named SNNHs) showed the highest DPPH radical scavenging activity. The extraction process of SNNHs was optimized by response surface methodology, and the optimal conditions were as follows: a temperature of 47.2 °C, a pH of 7.3 and an enzyme concentration of 1100 U/g, which resulted in the maximum DPPH clearance rate of 95.44%. Peptides with a Mw of less than 1 kDa (SNNH-1) were obtained by ultrafiltration, and exhibited good scavenging activity for hydroxyl radicals, ABTS radicals and superoxide anion radicals. Furthermore, SNNH-1 significantly promoted the proliferation of HUVECs, and the protective effect of SNNH-1 against oxidative damage of H2O2-induced HUVECs was investigated. The results indicated that all groups receiving SNNH-1 pretreatment showed an increase in GSH-Px, SOD, and CAT activities compared with the model group. In addition, SNNH-1 pretreatment reduced the levels of ROS and MDA in HUVECs with H2O2-induced oxidative damage. These results indicate that collagen peptides from swim bladders of Nibea japonica can significantly reduce the oxidative stress damage caused by H2O2 in HUVECs and provides a basis for the application of collagen peptides in the food industry, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Jiawen Zheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Xiaoxiao Tian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Baogui Xu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Falei Yuan
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| | - Jianfang Gong
- Donghai Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Zuisu Yang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.Z.); (X.T.); (B.X.); (F.Y.)
| |
Collapse
|
13
|
Wu Y, Wang J, Li L, Yang X, Wang J, Hu X. Purification and identification of an antioxidant peptide from Pinctada fucata muscle. CYTA - JOURNAL OF FOOD 2017. [DOI: 10.1080/19476337.2017.1332099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yanyan Wu
- Key Lab of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P.R. China
| | - Jing Wang
- Key Lab of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P.R. China
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, P. R. China
| | - Laihao Li
- Key Lab of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P.R. China
| | - Xianqing Yang
- Key Lab of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P.R. China
| | - Jinxu Wang
- Key Lab of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P.R. China
| | - Xiao Hu
- Key Lab of Aquatic Product Processing, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, P.R. China
| |
Collapse
|
14
|
Jemil I, Abdelhedi O, Nasri R, Mora L, Jridi M, Aristoy MC, Toldrá F, Nasri M. Novel bioactive peptides from enzymatic hydrolysate of Sardinelle (Sardinella aurita) muscle proteins hydrolysed by Bacillus subtilis A26 proteases. Food Res Int 2017; 100:121-133. [PMID: 28873670 DOI: 10.1016/j.foodres.2017.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 01/18/2023]
Abstract
Sardinelle protein hydrolysate (SPH), prepared by treatment with Bacillus subtilis A26 proteases, was found to exhibit antibacterial, antioxidant and ACE-inhibitory activities. SPH, with a degree of hydrolysis of 4%, was fractionated by size exclusion chromatography on a Sephadex G-25 into five major fractions (F1-F5). F2, which exhibited the highest antibacterial and ACE-inhibitory activities, and F4, which exhibited the highest antibacterial and antioxidant activities, were further fractionated by reverse phase-high performance liquid chromatography (RP-HPLC) and then analysed using nano-ESI-LC-MS/MS to identify the sequences of peptides. Eight peptides were identified in the sub-fraction F2-A, nine peptides in the sub-fraction F4-B, and 45 peptides in F4-C. Identified peptides were found to share sequences with previously described bioactive peptides based on Biopep database. The results of this study suggest that SPH is a good source of natural bioactive peptides. Hence, it can be used as a potential ingredient in nutraceutical field.
Collapse
Affiliation(s)
- Ines Jemil
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, B.P. 1173-3038, Sfax, Tunisia.
| | - Ola Abdelhedi
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, B.P. 1173-3038, Sfax, Tunisia
| | - Rim Nasri
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, B.P. 1173-3038, Sfax, Tunisia
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Mourad Jridi
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, B.P. 1173-3038, Sfax, Tunisia
| | - Maria-Concepción Aristoy
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Moncef Nasri
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, B.P. 1173-3038, Sfax, Tunisia
| |
Collapse
|
15
|
Mora L, Bolumar T, Heres A, Toldrá F. Effect of cooking and simulated gastrointestinal digestion on the activity of generated bioactive peptides in aged beef meat. Food Funct 2017; 8:4347-4355. [DOI: 10.1039/c7fo01148b] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ageing is widely used in the meat industry to improve tenderness mainly as a result of the breakdown of muscular proteins through the action of endopeptidases during storage time.
Collapse
Affiliation(s)
- Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC)
- Paterna
- Spain
| | | | - Alejandro Heres
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC)
- Paterna
- Spain
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC)
- Paterna
- Spain
| |
Collapse
|
16
|
Xu X, Lai R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 2015; 115:1760-846. [PMID: 25594509 DOI: 10.1021/cr4006704] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xueqing Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology , Kunming 650223, Yunnan, China
| | | |
Collapse
|
17
|
Li X, Shen S, Deng J, Li T, Ding C. Antioxidant activities and functional properties of tea seed protein hydrolysates (Camellia oleifera Abel.) influenced by the degree of enzymatic hydrolysis. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0282-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Capriotti AL, Cavaliere C, Foglia P, Piovesana S, Samperi R, Zenezini Chiozzi R, Laganà A. Development of an analytical strategy for the identification of potential bioactive peptides generated by in vitro tryptic digestion of fish muscle proteins. Anal Bioanal Chem 2014; 407:845-54. [PMID: 25168116 DOI: 10.1007/s00216-014-8094-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/28/2014] [Accepted: 08/06/2014] [Indexed: 11/28/2022]
Abstract
In the last years, food proteins and peptides are attracting great attention because of the emergence of a new field, that of food-derived bioactive peptides. This paper presents a comparison and evaluation of four different experiments for the identification of sarcoplasmic and myofibrillar fish peptides. This study is aimed at the development of a simple and fast method for the identification of peptides that could arise from fish meat if trypsin was the only digestive enzyme acting on fish meat proteins. In particular, we tested the use of ultrafiltration membranes with a molecular weight cutoff of 3,000 Da. Data analysis has shown that the experiment in which there is neither precipitation nor an ultrafiltration step performed better and allowed the identification of a larger number of peptides and potential antimicrobial peptides (AMPs); this workflow provided 473 and 398 total identified peptides and 44 and 18 AMPs for sarcoplasmic and myofibrillar extracts, respectively. This protocol is found to be faster and more straightforward than the other three tested workflows. The developed strategy could be also useful for other food matrices and could provide information about food quality and safety control.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy,
| | | | | | | | | | | | | |
Collapse
|
19
|
Gu M, Ren J, Sun W, You L, Yang B, Zhao M. Isolation and identification of antioxidative peptides from frog (Hylarana guentheri) protein hydrolysate by consecutive chromatography and electrospray ionization mass spectrometry. Appl Biochem Biotechnol 2014; 173:1169-1182. [PMID: 24777758 DOI: 10.1007/s12010-014-0793-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/10/2014] [Indexed: 11/26/2022]
Abstract
Frog (Hylarana guentheri) proteins were hydrolyzed by papain and Flavourzyme to obtain antioxidative peptides. The antioxidant activities of the frog protein hydrolysates (FPHs) were measured, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (IC50=9.94±0.13 mg/mL), reducing power (0.39±0.01 at 5.0 mg/mL), and oxygen radical absorbance capacity (ORAC) value (789.15±75.10 μmol Trolox equivalents/g). The hydrolysates were purified by ultrafiltration, ion exchange chromatography, gel filtration chromatography, and reverse-phase high-performance liquid chromatography (RP-HPLC). Through analysis of ESI-MS/MS, two dipeptides were identified as Leu/Ile-Lys (259.1607 Da) and Phe-Lys (293.1446 Da), respectively.
Collapse
Affiliation(s)
- Min Gu
- College of Light Industry and Food Science, South China University of Technology, Guangzhou, 510641, China
| | | | | | | | | | | |
Collapse
|
20
|
Zhang Y, Liu J, Lu X, Zhang H, Wang L, Guo X, Qi X, Qian H. Isolation And Identification Of An Antioxidant Peptide Prepared From Fermented Peanut Meal UsingBacillus SubtilisFermentation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2014. [DOI: 10.1080/10942912.2012.675605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Tsai TY, Chen LY, Pan TM. Effect of probiotic-fermented, genetically modified soy milk on hypercholesterolemia in hamsters. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 47:1-8. [PMID: 22749666 DOI: 10.1016/j.jmii.2012.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/20/2012] [Accepted: 05/14/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND/PURPOSE The rapid progress of biotechnology and molecular biology has led to genetically modified (GM) crops becoming a part of agricultural production. There are concerns that the issues of the functional ingredients in GM products have not been addressed, such as the bioactivities of soy proteins and isoflavones. This study aimed to investigate the effects of probiotic-fermented GM soy milk on hypercholesterolemia, and atherosclerotic risks in hamsters. METHODS One hundred and twelve male Golden Syrian hamsters (Mesocricetus auratus) were randomly assigned into 14 groups of 8 animals each. Normal- and high-cholesterol experimental diets were supplemented with GM or non-GM soy milk with or without probiotic-fermentation for 8 weeks. Serum and fecal lipid levels were measured. Moreover, aortic plaque in artery were stained, and thiobarbituric acid reactive substance content, super oxide dismutase activity and caralase activity were determined. RESULTS GM or non-GM soy milk with or without probiotic-fermentation significantly decreased (p < 0.05) serum TC levels, compared with a high-cholesterol diet group. TC levels in hamsters fed GM soy milk were not significantly different from TC levels in the non-GM soy milk group (p > 0.05). GM soy milk groups can reduce risk of developing atherosclerosis through lowered oxidative stress and reduced atherosclerotic plaque formation in the aorta, and are thus at least equivalent to non-GM soy milk. CONCLUSION GM soy milk with or without probiotic-fermentation can improve hypercholesterolemia and reduce the risk of atherosclerosis, and is considered substantially equivalent to non-GM soy milk in terms of these bioactive functions.
Collapse
Affiliation(s)
- Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, Taipei, Taiwan
| | - Li-Ying Chen
- Department of Food Science, Fu Jen Catholic University, Taipei, Taiwan
| | - Tzu-Ming Pan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
22
|
Research on the preparation of antioxidant peptides derived from egg white with assisting of high-intensity pulsed electric field. Food Chem 2013; 139:300-6. [DOI: 10.1016/j.foodchem.2013.01.048] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 06/07/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
|
23
|
Optimization of hydrolysis conditions, isolation, and identification of neuroprotective peptides derived from seahorse Hippocampus trimaculatus. Amino Acids 2013; 45:369-81. [PMID: 23700270 DOI: 10.1007/s00726-013-1510-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/07/2013] [Indexed: 01/15/2023]
Abstract
Hippocampus trimaculatus is one of the most heavily traded seahorse species for traditional medicine purposes in many countries. In the present study, we showed neuroprotective effects of peptide derived from H. trimaculatus against amyloid-β42 (Aβ42) toxicity which are central to the pathogenesis of Alzheimer's diseases (AD). Firstly, H. trimaculatus was separately hydrolyzed by four different enzymes and tested for their protective effect on Aβ42-induced neurotoxicity in differentiated PC12 cells. Pronase E hydrolysate exerted highest protection with cell viability value of 88.33 ± 3.33 %. Furthermore, we used response surface methodology to optimize pronase E hydrolysis conditions and found that temperature at 36.69 °C with the hydrolysis time 20.01 h, enzyme to substrate (E/S) ratio of 2.02 % and pH 7.34 were the most optimum conditions. Following several purification steps, H. trimaculatus-derived neuroprotective peptides (HTP-1) sequence was identified as Gly-Thr-Glu-Asp-Glu-Leu-Asp-Lys (906.4 Da). HTP-1 protected PC12 cells from Aβ42-induced neuronal death with the cell viability value of 85.52 ± 2.22 % and up-regulated pro-survival gene (Bcl-2) expressions. These results suggest that HTP-1 has the potential to be used in treatment of neurodegenerative diseases, particularly AD. Identification, characterization, and synthesis of bioactive components derived from H. trimaculatus have the potential to replace or at least complement the use of seahorse as traditional medicine, which further may become an approach to minimize seahorse exploitation in traditional medicine.
Collapse
|
24
|
Baratzadeh MH, Asoodeh A, Chamani J. Antioxidant peptides obtained from goose egg white proteins by enzymatic hydrolysis. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Jamshidkhan Chamani
- Department of Biology; Faculty of Sciences; Mashhad Branch; Islamic Azad University; Mashhad; Iran
| |
Collapse
|
25
|
Zhang Y, Lu X, Zhang H, Wang L, Guo X, Qi X, Qian H. Antioxidant and Free Radical Scavenging Potential of Peanut Meal Hydrolysate Prepared Using Bacillus SubtilisFermentation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2011.614988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Chen YM, Shih TW, Chiu CP, Pan TM, Tsai TY. Effects of lactic acid bacteria-fermented soy milk on melanogenesis in B16F0 melanocytes. J Funct Foods 2013. [DOI: 10.1016/j.jff.2012.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
27
|
Li YW, Li B, He J, Qian P. Quantitative structure–activity relationship study of antioxidative peptide by using different sets of amino acids descriptors. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Li YW, Li B, He J, Qian P. Structure-activity relationship study of antioxidative peptides by QSAR modeling: the amino acid next to C
-terminus affects the activity. J Pept Sci 2011; 17:454-62. [DOI: 10.1002/psc.1345] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/30/2010] [Accepted: 11/22/2010] [Indexed: 11/06/2022]
|
29
|
Influence of the degree of hydrolysis (DH) on antioxidant properties and radical-scavenging activities of peanut peptides prepared from fermented peanut meal. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1466-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Jongberg S, Carlsen CU, Skibsted LH. Peptides as antioxidants and carbonyl quenchers in biological model systems. Free Radic Res 2009; 43:932-42. [DOI: 10.1080/10715760903137101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Kim SK, Ravichandran YD, Khan SB, Kim YT. Prospective of the cosmeceuticals derived from marine organisms. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0113-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|