1
|
Li Y, Li A, Teng Y, Ren T, Ma J, Chen W, Li J, Zhao Y, Shi K, Zong Y, Du R. Study on the effect of deer bone in improving rheumatoid arthritis based on the "drug-target-pathway" association network. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119684. [PMID: 40127831 DOI: 10.1016/j.jep.2025.119684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Deer bone is rich in proteins, free amino acids, chondroitin, organic calcium, phosphorus ions, and other active components. Deer bone had been used widely in antiquity and were first compiled in renowned ancient masterpiece 'Mingyi Bielu ()' written by Hongjing Tao. The deer bone is recorded as non-toxic and has the effects of replenishing bones, strengthening sinews, expelling wind-dampness from the body, promoting muscle growth, and healing wounds. Modern pharmacological research suggests that deer bone can help promote bone density and enhance bone strength, making it potentially valuable for the prevention and treatment of diseases such as rheumatoid arthritis and osteoporosis. However, current studies on the component analysis and pharmacological effects of deer bone against rheumatoid arthritis (RA) are incomplete, which to some extent hinders the development and clinical application of deer bone drugs. AIM OF THE STUDY The components of deer bone were elucidated by label-free proteomics, and the drug-target-pathway association network was established by network pharmacology. The in vitro validation of the pathway provides a theoretical basis for deer bone as a potential therapeutic drug for rheumatoid arthritis, and also lays a solid foundation for the subsequent clinical application of the in vitro experiments established through serum pharmacology. MATERIALS AND METHODS We performed extraction of deer bone using traditional water extraction methods and employed label-free proteomics technology to identify and conduct bioinformatics analysis on the proteins and peptides in the deer bone hot water extract (DBHE). These components were considered potential drug targets, and we constructed a "drug-target-pathway" association network. Analysis revealed that the HIF-1 signaling pathway may be pivotal in DBWE's effect on RA. Hypoxia influences the occurrence and development of ferroptosis through various mechanisms. Therefore, we hypothesized that DBWE might induce ferroptosis, promoting apoptosis in RA-FLS under hypoxic conditions, thereby alleviating RA. Therefore, we performed flow cytometry, ELISA, immunofluorescence, RT-qPCR, and western blotting based on molecular docking. Considering the overall effect of drug metabolism post-ingestion, we used serum pharmacology to prepare serum for cellular administration. RESULTS It showed that DBWE reduces inflammation and synovial proliferation by inhibiting HO-1, increasing ROS production, upregulating ACSL4 expression and inducing RA-FLS apoptosis in hypoxic conditions. This study reveals the potential mechanism by which DBWE modulates ferroptosis to attenuate synovial proliferation in a hypoxic microenvironment and improve RA. CONCLUSION These findings not only provide a theoretical basis for deer bone as a potential therapeutic agent for RA, but also lay a solid foundation for subsequent clinical application through in vitro experiments established by serum pharmacology.
Collapse
Affiliation(s)
- Yanlu Li
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Aoyun Li
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Yue Teng
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Ting Ren
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Junxia Ma
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, Jilin Province, 130118, China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Jianming Li
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, Jilin Province, 130118, China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, Jilin Province, 130118, China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Kun Shi
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, Jilin Province, 130118, China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, China
| | - Ying Zong
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, Jilin Province, 130118, China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, China.
| | - Rui Du
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun, Jilin Province, 130118, China; Laboratory of Production and Product Application of Sika Deer of Jilin Province, Jilin Agricultural University, Changchun, Jilin Province, 130118, China; Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin Province, 130118, China.
| |
Collapse
|
2
|
Chi ST, Wei PC, Chiu YJ, Lin TH, Lin CH, Chen CM, Yao CF, Lin W, Lee-Chen GJ, Chang KH. Indole and Coumarin Derivatives Targeting EEF2K in Aβ Folding Reporter Cells. J Neurochem 2025; 169:e16300. [PMID: 39754378 DOI: 10.1111/jnc.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025]
Abstract
Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production. Additionally, these compounds decreased acetylcholinesterase and caspase-3/-6 activities while promoting neurite outgrowth. NC009-1 increased active phosphorylation of extracellular-signal regulated kinase (ERK) (T202/Y204), leading to an increase in inactive eukaryotic elongation factor 2 kinase (EEF2K) phosphorylation (S366). LM-021 decreased the active phosphorylation of AMP-activated protein kinase (AMPK) (T172) and EEF2K (S398), while LM-036 exhibited dual effects, increasing inactive phosphorylation and decreasing active phosphorylation of EEF2K. These changes in EEF2K phosphorylation led to decreased EEF2K activity and a subsequent reduction in inactive phosphorylation of EEF2 (T56). This cascade further promoted the phosphorylation of transcription factor cAMP-response-element binding protein (CREB) (S133) and the expression of brain-derived neurotrophic factor (BDNF), and reduced BCL-2 associated X-protein (BAX)/B-cell lymphoma 2 (BCL2) ratio. Knockdown of EEF2 abolished the effects of NC009-1, LM-021, and LM-036 on CREB phosphorylation, BDNF expression, caspase-3 activity, and neurite outgrowth. These findings demonstrate that NC009-1, LM-021, and LM-036 exert their neuroprotective effects through modulation of EEF2K signaling, highlighting their potentials as therapeutic candidates for AD.
Collapse
Affiliation(s)
- Shun-Tzu Chi
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Cih Wei
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
3
|
Li Y, Ma J, Jiang Y, Xing Y, He Z, Chen W, Zhao Y, Geng J, Zong Y, Du R. Quantitative Analysis of Deer Bone Hydroethanolic Extract Using Label-Free Proteomics: Investigating Its Safety and Promoting Effect on Mouse Embryonic Osteoblastic Progenitor Cell Proliferation. Nutrients 2024; 16:3807. [PMID: 39599594 PMCID: PMC11597076 DOI: 10.3390/nu16223807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Deer bone is rich in proteins and free amino acids, offering high nutritional value and benefits such as strengthening bones and antioxidant properties. However, the development and utilization of deer bone resources are limited, and the safety evaluation of health foods is incomplete. METHODS We established a hydrogen ethanol extraction method for deer bone and analyzed the components of the deer bone hydroethanolic extract (DBHE) using liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS), and inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Using Label-free proteomics technology, we identified 69 proteins and 181 peptides. We also quantified 16 amino acids, 22 fatty acids, and 17 inorganic elements. Finally, we evaluated the safety of DBHE both in vitro and in vivo. The results indicated that DBHE did not exhibit any toxic effects at the doses we tested and can promote the proliferation of mouse embryonic osteoblastic progenitor cells (MC3T3-E1), demonstrating potential efficacy against osteoporosis and arthritis. CONCLUSIONS This study provides a theoretical basis for the quality control, processing, and resource development of deer bone.
Collapse
Affiliation(s)
- Yanlu Li
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (J.M.); (Y.J.); (Y.X.); (Z.H.); (W.C.); (Y.Z.); (J.G.)
| | - Junxia Ma
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (J.M.); (Y.J.); (Y.X.); (Z.H.); (W.C.); (Y.Z.); (J.G.)
| | - Yingshan Jiang
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (J.M.); (Y.J.); (Y.X.); (Z.H.); (W.C.); (Y.Z.); (J.G.)
| | - Yanchao Xing
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (J.M.); (Y.J.); (Y.X.); (Z.H.); (W.C.); (Y.Z.); (J.G.)
| | - Zhongmei He
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (J.M.); (Y.J.); (Y.X.); (Z.H.); (W.C.); (Y.Z.); (J.G.)
- Laboratory of Production and Product Application of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (J.M.); (Y.J.); (Y.X.); (Z.H.); (W.C.); (Y.Z.); (J.G.)
- Laboratory of Production and Product Application of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (J.M.); (Y.J.); (Y.X.); (Z.H.); (W.C.); (Y.Z.); (J.G.)
- Laboratory of Production and Product Application of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Jianan Geng
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (J.M.); (Y.J.); (Y.X.); (Z.H.); (W.C.); (Y.Z.); (J.G.)
- Laboratory of Production and Product Application of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (J.M.); (Y.J.); (Y.X.); (Z.H.); (W.C.); (Y.Z.); (J.G.)
- Laboratory of Production and Product Application of Sika Deer, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Material, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (J.M.); (Y.J.); (Y.X.); (Z.H.); (W.C.); (Y.Z.); (J.G.)
- Laboratory of Production and Product Application of Sika Deer, Jilin Agricultural University, Changchun 130118, China
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Smach MA, Hafsa J, Ben Abdallah J, Charfeddine B, Limem K. Neuroprotective and anti-amnesic effects of Laurus Nobilis essential oil against scopolamine-induced memory deficits in mice brain. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117151. [PMID: 37689325 DOI: 10.1016/j.jep.2023.117151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Laurus nobilis L. (Lauraceae family) has been widely used in traditional Tunisian medicine for the treatment of different health problems such as rheumatism and some neurological disorders. AIM In this study, the essential oil obtained from Laurus nobilis L. species from Tunisia (LEO) was studied for its chemical composition and anti-amnesic activities on memory impairment caused by scopolamine injection in mice. The major compounds of LEO oil, 1,8-cineole and, α-terpinyl acetate were docked with AChE (Acetylcholinesterase), using Autodock Vina and Discovery Studio visualizer software. MATERIALS AND METHODS The Morris water maze (MWM) tests and the Y maze were used to assess the anti-amnesic effects of LEO in mice with scopolamine-induced memory impairments. In brain tissues, the levels of biomarkers, enzyme activity, and protein expression related to the cholinergic system were measured. RESULTS Chronic administration of scopolamine led to a significant decline in cognitive performance in both the Morris Water Maze (MWM) and Y maze tests, accompanied by pronounced oxidative damage and a significant increase in acetylcholinesterase activity compared to the other groups. However, compared to the scopolamine group, treatment with LEO (100 mg/kg) significantly enhanced cognitive function and ameliorated the oxidative damage (p < 0.05 versus scopolamine) CONCLUSION: This study demonstrates the beneficial effect of LEO on scopolamine-induced dementia in mice, potentially achieved through the modulation of cholinergic activity and antioxidant properties. The docking analysis of the major compounds, 1,8-cineole and α-terpinyl acetate, further substantiates their potential as memory enhancers.
Collapse
Affiliation(s)
- Mohamed Ali Smach
- University of Sousse, Department of Biochemistry, Faculty of Medicine Sousse, 4002, Sousse, Tunisia.
| | - Jawhar Hafsa
- University of Sousse, Department of Biochemistry, Faculty of Medicine Sousse, 4002, Sousse, Tunisia
| | - Jihen Ben Abdallah
- University of Sousse, Department of Biochemistry, Faculty of Medicine Sousse, 4002, Sousse, Tunisia
| | - Bassem Charfeddine
- University of Sousse, Department of Biochemistry, Faculty of Medicine Sousse, 4002, Sousse, Tunisia
| | - Khalifa Limem
- University of Sousse, Department of Biochemistry, Faculty of Medicine Sousse, 4002, Sousse, Tunisia
| |
Collapse
|
5
|
Li H, Xu G, Zhu W, Yuan G. Editorial: Application of natural medicinal products in preventing and ameliorating aging-caused cognitive impairment. Front Pharmacol 2022; 13:1059398. [PMID: 36408250 PMCID: PMC9670168 DOI: 10.3389/fphar.2022.1059398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023] Open
Affiliation(s)
- Hongyu Li
- School of Pharmacy, Beihua University, Jilin, China
| | - Guangyu Xu
- School of Pharmacy, Beihua University, Jilin, China
| | - Wenhe Zhu
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Guangxin Yuan
- School of Pharmacy, Beihua University, Jilin, China,*Correspondence: Guangxin Yuan,
| |
Collapse
|
6
|
Synthetic Mono-Carbonyl Curcumin Analogues Attenuate Oxidative Stress in Mouse Models. Biomedicines 2022; 10:biomedicines10102597. [PMID: 36289859 PMCID: PMC9599840 DOI: 10.3390/biomedicines10102597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer’s disease is the commonest form of dementia associated with short-term memory loss and impaired cognition and, worldwide, it is a growing health issue. A number of therapeutic strategies have been studied to design and develop an effective anti-Alzheimer drug. Curcumin has a wide spectrum of biological properties. In this regard, the antioxidant potentials of mono-carbonyl curcumin analogues (h1−h5) were investigated using in vitro antioxidant assays and hippocampal-based in vivo mouse models such as light−dark box, hole board, and Y-maze tests. In the in vitro assay, mono-carbonyl curcumin analogues h2 and h3 with methoxy and chloro-substituents, respectively, showed promising 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2′-azinobis-3-ethylbenzothiazo-line-6-sulfonate (ABTS) free radical scavenging activities. In the in vivo studies, scopolamine administration significantly (p < 0.001) induced oxidative stress and memory impairment in mice, in comparison to the normal control group. The pretreatment with mono-carbonyl curcumin analogues, specifically h2 and h3, significantly decreased (123.71 ± 15.23 s (p < 0.001), n = 8; 156.53 ± 14.13 s (p < 0.001), n = 8) the duration of time spent in the light chamber and significantly enhanced (253.95 ± 19.05 s (p < 0.001), n = 8, and 239.57 ± 9.98 s (p < 0.001), n = 8) the time spent in the dark compartment in the light−dark box arena. The numbers of hole pokings were significantly (p < 0.001, n = 8) enhanced in the hole board test and substantially increased the percent spontaneous alternation performance (SAP %) in the Y-maze mouse models in comparison to the stress control group. In the biomarker analysis, the significant reduction in the lipid peroxidation (MDA) level and enhanced catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) activities in the brain hippocampus reveal their antioxidant and memory enhancing potentials. However, further research is needed to find out the appropriate mechanism of reducing oxidative stress in pathological models.
Collapse
|
7
|
Hussain H, Ahmad S, Shah SWA, Ullah A, Almehmadi M, Abdulaziz O, Allahyani M, Alsaiari AA, Halawi M, Alamer E. Investigation of Antistress and Antidepressant Activities of Synthetic Curcumin Analogues: Behavioral and Biomarker Approach. Biomedicines 2022; 10:2385. [PMID: 36289646 PMCID: PMC9598253 DOI: 10.3390/biomedicines10102385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a serious psychiatric disorder that affects millions of individuals all over the world, thus demanding special attention from researchers in order to investigate its effective remedies. Curcumin, along with its synthetic derivatives, is recognized for its incredible pharmacological activities. In this study, methyl, methoxy and chloro-substituent synthetic curcumin analogues C1-C3 were respectively tested for free radical-scavenging activity. Behavioral studies were performed using chemical-induced and swimming endurance tests as stress models, and forced swim tests (FSTs) and tail suspension tests (TSTs) as depression mice models. Biochemical examinations were performed after a scopolamine-induced stress model by decapitating the mice, and brain tissues were isolated for biochemical assessment of catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA). The curcumin analogue C2 exhibited higher DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis-3-ethylbenzothiazo-line-6-sulphonate) free radical-scavenging potential, having IC50 values of 45.18 µg/mL and 62.31 µg/mL, respectively, in comparison with reference curcumin and tocopherol. In the chemical-induced test, C2 (80.17%), C3 (72.79%) and C1 (51.85%) revealed higher antistress responses by significantly reducing the number of writhes, whereas the immobility time was significantly reduced by C2 and C3 in the swimming endurance test, indicating excellent antistress potential. Similarly, C2 and C3 significantly reduced the immobility times in FST and TST, demonstrating their antidepressant properties. The biomarkers study revealed that these compounds significantly enhanced hippocampus CAT, SOD and GSH, and reduced MDA levels in the scopolamine-induced stress mice model. These findings suggest the potential of curcumin analogues (C2 and C3) as antistress and antidepressant agents.
Collapse
Affiliation(s)
- Haya Hussain
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal Dir (Upper), Dir 18000, Pakhtunkhwa, Pakistan
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal Dir (Upper), Dir 18000, Pakhtunkhwa, Pakistan
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand Dir (Lower) at Chakdara, Chakdara 18800, Pakhtunkhwa, Pakistan
| | - Abid Ullah
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal Dir (Upper), Dir 18000, Pakhtunkhwa, Pakistan
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mustafa Halawi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Edrous Alamer
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Medical Research Center, Emerging and Epidemic Infectious Diseases Research Unit, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
8
|
Mostafa NM, Mostafa AM, Ashour ML, Elhady SS. Neuroprotective Effects of Black Pepper Cold-Pressed Oil on Scopolamine-Induced Oxidative Stress and Memory Impairment in Rats. Antioxidants (Basel) 2021; 10:1993. [PMID: 34943096 PMCID: PMC8698347 DOI: 10.3390/antiox10121993] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is usually associated with many neurodegenerative diseases. In this study, the gas chromatography-mass spectrometry (GC-MS) analysis of cold-pressed oil (CPO) from black pepper (Piper nigrum) fruits was performed and its neuroprotective effects were evaluated for the first time. The analysis of CPO revealed the presence of the lignan sesamin (39.78%), the alkaloid piperine (33.79%), the monoterpene hydrocarbons 3-carene (9.53%) and limonene (6.23%), and the sesquiterpene β-caryophyllene (10.67%). Black pepper hydrodistilled oil (HDO) was also comparatively analyzed by GC-MS to show the impact of oil isolation by two different methodologies on their components and class of compounds identified. HDO analysis revealed 35 compounds (99.64% of the total peak areas) mainly composed of monoterpene hydrocarbons (77.28%), such as limonene (26.50%), sabinene (21.36%), and β-pinene (15.53%), and sesquiterpene hydrocarbons (20.59%) represented mainly by β-caryophyllene (19.12%). Due to the low yield obtained for HDO (0.01% v/w), only CPO was chosen for the evaluation of its neuroprotective potential. Alzheimer-type dementia was induced in rats by scopolamine intraperitoneal injection (1.5 mg/kg/day) for seven days. CPO was administered orally (100 mg/kg) for a week before scopolamine administration and then concomitantly for another week. Donepezil (1 mg/kg, orally) was used as a reference drug. CPO administration significantly improved the rat behaviors as evaluated by the Morris water maze test, evident from prolongation in time spent in the platform quadrant (262.9%, compared to scopolamine) and increasing in the crossing time by 18.18% compared to the control group. The rat behavior tested by passive avoidance, showed prolongation in the step-through latency compared to control. Moreover, CPO significantly (p < 0.05) ameliorated the activities of antioxidant enzymes such as catalase, superoxide dismutase (SOD) and reduced malondialdehyde (MDA) equivalents by 22.48%, 45.41%, and 86.61%, respectively, compared to scopolamine. Furthermore, CPO administration decreased scopolamine-induced elevated acetylcholinesterase levels in rats' hippocampi by 51.30%. These results were supported by histopathological and in silico molecular docking studies. Black pepper oil may be a potential antioxidant and neuroprotective supplement.
Collapse
Affiliation(s)
- Nada M. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Ahmed M. Mostafa
- Department of Biochemistry, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt;
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
9
|
Yoo J, Lee J, Zhang M, Mun D, Kang M, Yun B, Kim YA, Kim S, Oh S. Enhanced γ-aminobutyric acid and sialic acid in fermented deer antler
velvet and immune promoting effects. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 64:166-182. [PMID: 35174351 PMCID: PMC8819328 DOI: 10.5187/jast.2021.e132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
Deer antler velvet is widely used in traditional medicine for its anti-aging,
antioxidant, and immunity-enhancing effects. However, few studies have reported
on the discovery of probiotic strains for deer antler fermentation to increase
functional ingredient absorption. This study evaluated the ability of probiotic
lactic acid bacteria to enhance the concentrations of bioactive molecules (e.g.,
sialic acid and gamma-aminobutyric acid [GABA]) in extracts of deer antler
velvet. Seventeen strains of Lactobacillus spp. that were
isolated from kimchi and infant feces, including L. sakei,
L. rhamnosus, L. brevis, and L.
plantarum, and those that improved the life span of
Caenorhabditis elegans were selected for evaluation. Of the
17 strains, 2 (L. rhamnosus LFR20-004 and L.
sakei LFR20-007) were selected based on data showing that these
strains increased both the sialic acid and GABA contents of deer antler extract
after fermentation for 2 d and significantly improved the life span of
C. elegans. Co-fermentation with both strains further
increased the concentrations of sialic acid, GABA, and metabolites such as
short-chain fatty acids and amino acids. We evaluated the biological effects of
the fermented antler velvet (FAV) on the antibacterial immune response in
C. elegans by assessing worm survival after pathogen
infection. The survival of the C. elegans conditioned with FAV
for 24 h was significantly higher compared with that of the control worm group
fed only normal feed (non-pathogenic E. coli OP50) exposed to
E. coli O157:H7, Salmonella typhi, and
Listeria monocytogenes. To evaluate the protective effects
of FAV on immune response, cyclophosphamide (Cy), an immune-suppressing agent
was treated to in vitro and in vivo. We found
that FAV significantly restored viability of mice splenocytes and immune
promoting-related cytokines (interleukin [IL]-6, IL-10, inducible nitric oxide
synthase [iNOS], interferon [IFN]-γ, and tumor necrosis factor
[TNF]-α) were activated compared to non-fermented deer antlers. This
finding indicated the protective effect of FAV against Cy-induced cell death and
immunosuppressed mice. Taken together, our study suggests that immune-promoting
antler velvet can be produced through fermentation using L.
rhamnosus LFR20-004 and L. sakei LFR20-007.
Collapse
Affiliation(s)
- Jiseon Yoo
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069 Korea
| | - Juyeon Lee
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069 Korea
| | - Ming Zhang
- Department of Environment Science &
Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Daye Mun
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Minkyoung Kang
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069 Korea
| | - Bohyun Yun
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069 Korea
| | - Yong-An Kim
- Department of Animal Science, Chonbuk
National University, Jeonju 54896, Korea
| | - Sooah Kim
- Department of Environment Science &
Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Sangnam Oh
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069 Korea
- Corresponding author: Sangnam Oh, Department of
Functional Food and Biotechnology, Jeonju University, Jeonju 55069 Korea. Tel:
+82-63-220-3109, E-mail:
| |
Collapse
|
10
|
Liao Z, Wei W, Yang M, Kuang X, Shi J. Academic Publication of Neurodegenerative Diseases From a Bibliographic Perspective: A Comparative Scientometric Analysis. Front Aging Neurosci 2021; 13:722944. [PMID: 34803653 PMCID: PMC8601281 DOI: 10.3389/fnagi.2021.722944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/17/2021] [Indexed: 12/04/2022] Open
Abstract
Background: For measuring the impact in clinical and scientific research, the citation count of the articles is used in the bibliometric analysis, although there is no comprehensive summary of neurodegenerative disease research. This study intends to provide the neuroscientists and investigators with a practical reference guide to appraise the most important and influential articles written on this subject through a macroscopic view of the research activities on neurodegenerative diseases. Materials and Methods: The Clarivate Analytics Web of Science was searched in July 2020. To ensure the breadth of the search scope, the search terms were confirmed as "multiple sclerosis" (MS) or "amyotrophic lateral sclerosis" (ALS) or "Parkinson's" or "Alzheimer's" or "Huntington's" or "neurodegenerative." After excluding completely unrelated articles, the top-cited articles were collected and evaluated from special characteristics. The data analysis was performed using SPSS 18.0. The articles were characterized by citation number, publication year, topic, study type, authorship, journal, country, and institute of responding author and foundation. Results: The query identified 593,050 articles. A total of 45% of the top-cited articles were published during 2000-2009, followed by 30 articles from 1990-1999. Diagnosis and pathology were the main research categories (n = 62). Alzheimer's disease (AD) was the main study topic (n = 43). Meanwhile, the United States confirmed the tremendous impact on the field of neurodegenerative diseases. Notably, 69 of 100 articles were studied in the United States, and the National Institutes of Health sponsored 49 articles. There were only 22 articles that can be divided by evidence level. No article was categorized as level 1 evidence. In the journal list with multiple articles, seven of 15 were general journals. The 58 authors, who contributed to more than one article, have been identified by VOSviewer, and the clusters of authors reveal the evolution of research focus in neurodegenerative diseases. Conclusions: This study analyzed the bibliometric characteristics and connections of 100 top-cited articles in the field of neurodegenerative diseases in the Web of Science. Their main outcomes were as follows: First, the pathology and diagnostic researches took a major role in top-cited articles while the therapy articles are relatively less. Second, the United States confirmed the tremendous impact on the field of neurodegenerative diseases. Third, researchers also submitted their researches to general journals, not just focused on specialty journals.
Collapse
Affiliation(s)
- Zhenxin Liao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- School of Public Health, Central South University, Changsha, China
| | - Wei Wei
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mengling Yang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, China
| | - Xuyuan Kuang
- Department of Hyperbaric Oxygen, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Shi
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Zhao Y, Dong Y, Ge Q, Cui P, Sun N, Lin S. Neuroprotective effects of NDEELNK from sea cucumber ovum against scopolamine-induced PC12 cell damage through enhancing energy metabolism and upregulation of the PKA/BDNF/NGF signaling pathway. Food Funct 2021; 12:7676-7687. [PMID: 34259275 DOI: 10.1039/d1fo00631b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of the study was to evaluate the neuroprotective function of sea cucumber ovum peptide-derived NDEELNK and explore the underlying molecular mechanisms. NDEELNK exerted the neuroprotective effect by improving the acetylcholine (ACh) level and reducing the acetylcholinesterase (AChE) activity in PC12 cells. By molecular docking, we confirmed that the NDEELNK backbone and AChE interacted through hydrophobic and hydrogen bonds in contact with the amino acid residues of the cavity wall. NDEELNK increased superoxide dismutase (SOD) activity and decreased reactive oxygen species (ROS) production, thereby reducing mitochondrial dysfunction and enhancing energy metabolism. Our results demonstrated that NDEELNK supplementation alleviated scopolamine-induced PC12 cell damage by improving the cholinergic system, increasing energy metabolism and upregulating the expression of phosphorylated protein kinase A (p-PKA), brain-derived neurotrophic factor (BNDF) and nerve growth factor (NGF) signaling proteins in in vitro experiments. These results demonstrated that the sea cucumber ovum peptide-derived NDEELNK might play a protective role in PC12 cells.
Collapse
Affiliation(s)
- Yue Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | | | | | | | | | | |
Collapse
|
12
|
Hong SH, Ku JM, Lim YS, Kim HI, Shin YC, Ko SG. Cervus nippon var. mantchuricus water extract treated with digestive enzymes (CE) modulates M1 macrophage polarization through TLR4/MAPK/NF-κB signaling pathways on murine macrophages. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to investigate the effects of Cervus nippon var. mantchuricus water extract treated with digestive enzymes (CE) on the promotion of M1 macrophage polarization in murine macrophages. Macrophages polarize either to one phenotype after stimulation with LPS or IFN-γ or to an alternatively activated phenotype that is induced by IL-4 or IL-13. Cell viability of RAW264.7 cells was determined by WST-1 assay. NO production was measured by Griess assay. IL-6, IL-12, TNF-α, and iNOS mRNA levels were measured by RT-PCR. IL-6, IL-12, and IL-10 cytokine levels were determined by ELISA. TLR4/MAPK/NF-κB signaling in RAW264.7 cells was evaluated by western blotting. The level of NF-κB was determined by immunoblotting. CE induced the differentiation of M1 macrophages. CE promoted M1 macrophages to elevate NO production and cytokine levels. CE-stimulated M1 macrophages had enhanced IL-6, IL-12, and TNF-α. CE promoted M1 macrophages to activate TLR4/MAPK/NF-κB phosphorylation. M2 markers were downregulated, while M1 markers were upregulated in murine macrophages by CE. Consequently, CE has immunomodulatory activity and can be used to promote M1 macrophage polarization through the TLR4/MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Se Hyang Hong
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jin Mo Ku
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ye Seul Lim
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo In Kim
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Cheol Shin
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Baek SY, Li FY, Kim JH, Ahn C, Kim HJ, Kim MR. Protein Hydrolysate of Silkworm Pupa Prevents Memory Impairment Induced by Oxidative Stress in Scopolamine-Induced Mice via Modulating the Cholinergic Nervous System and Antioxidant Defense System. Prev Nutr Food Sci 2020; 25:389-399. [PMID: 33505933 PMCID: PMC7813599 DOI: 10.3746/pnf.2020.25.4.389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Silkworm pupae (Bombyx mori) is an edible insect that has been reported to contain high-quality proteins, lipids, minerals, and vitamins, and to possess high antioxidant activity. However, there have been no studies on the neuroprotective effects of silkworm pupae. Therefore, we investigated a water extract of silkworm pupae with protease (WSP) as a functional and therapeutic candidate for neurodegenerative disorders. First, we evaluated the effect of WSP on oxidative stress-induced mouse hippocampal neuronal cells (HT-22 cells). Cell viability diminished by addition of glutamate but was significantly recovered by WSP treatment. Furthermore, WSP significantly decreased the release of lactate dehydrogenase and generation of intracellular reactive oxygen species in oxidative stress-induced cells. In addition, in scopolamine-treated mice, WSP attenuated memory impairment, as demonstrated in the Morris water maze and passive avoidance tests, indicating protection of neuronal cells against oxidative damage. Moreover, WSP prevented scopolamine-induced increases in acetylcholinesterase activity and decreases in choline-acetyltransferase activity. Finally, treatment with WSP enhanced the antioxidant defense system by regulating the activities of antioxidant enzymes. Overall, this study showed that WSP exerted antioxidant and memory enhancing action against oxidative stress.
Collapse
Affiliation(s)
- Seung Yeon Baek
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| | - Fu Yi Li
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| | - Jong Hoon Kim
- Department Health Food Development Team, R&D Center, Nongshim Co., Ltd., Seoul 07057, Kor
| | - Changwon Ahn
- Department Health Food Development Team, R&D Center, Nongshim Co., Ltd., Seoul 07057, Kor
| | - Hun Jung Kim
- Department Health Food Development Team, R&D Center, Nongshim Co., Ltd., Seoul 07057, Kor
| | - Mee Ree Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
14
|
Dual prophylactic/therapeutic potential of date seed, and nigella and olive oils-based nutraceutical formulation in rats with experimentally-induced Alzheimer's disease: A mechanistic insight. J Chem Neuroanat 2020; 110:101878. [PMID: 33144183 DOI: 10.1016/j.jchemneu.2020.101878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a multifactorial etiology and significantly increasing incidence during the last decade. Hence, developing an effective therapy is crucial for public health. The current study aimed to examine the dual prophylactic/therapeutic potential of a nutraceutical formula based on aqueous extract of roasted date seeds, and nigella and virgin-olive oils against experimentally-induced Alzheimer's disease in rats. Alzheimer's disease-like pathology was induced in male Wistar rats using oral CuSO4 (200 mg/Kg/day for two months). The nutraceutical formula was given orally to experimental animals (10 mL/kg/d) for 14 days before (as prophylaxis) and after Alzheimer's disease induction and its therapeutic effect in both cases is tested in comparison to donepezil (0.5 mg/kg/d). The nutraceutical formula was found to ameliorate the CuSO4-induced neuronal damage and regenerate the affected hippocampus tissue and significantly improvemed in learning ability. The formula was also effective in decreasing brain amyloid-β, tau protein, TNF-α level, iNOS level in hippocampus, oxidative stress level, and inhibiting acetylcholinesterase activity and expression in brain and hippocampus, respectively. Further, an increase in GSH levels, activities of SOD, and GST and levels of hippocampus ADAM 17 and brain phospholipids was observed. In conclusion, the studied nutraceutical formula is proved to be effective in ameliorating Alzheimer's neurodegenerative progression with added-prophylactic potential.
Collapse
|
15
|
Kim HJ, Baek SY, Sok DE, Lee KJ, Kim YJ, Kim MR. Neuroprotective Activity of Polyphenol-Rich Ribes diacanthum Pall against Oxidative Stress in Glutamate-Stimulated HT-22 Cells and a Scopolamine-Induced Amnesia Animal Model. Antioxidants (Basel) 2020; 9:antiox9090895. [PMID: 32967207 PMCID: PMC7555254 DOI: 10.3390/antiox9090895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Ribes diacanthum Pall, a native Mongolian medicinal plant, has been reported to show antioxidant activities due to its polyphenol and flavonoid content, and is especially rich in the ethyl acetate fraction from an 80% methanol extraction (RDP). We assessed the cytoprotective effect of RDP on glutamate-caused oxidative stress and apoptosis in mouse hippocampal neuronal cells (HT-22 cells). Cell viability was significantly recovered by RDP treatment. Also, RDP effectively decreased the glutamate-induced production of intracellular reactive oxygen species (ROS). In flow cytometric analysis, apoptotic cells and the mitochondrial membrane potential were suppressed by RDP. In the Western blotting analysis, we found that RDP not only decreased the release of apoptotic proteins but also recovered anti-apoptotic protein. Additionally, RDP enhanced the antioxidant defense system by regulating the expression of antioxidant enzymes. Furthermore, treatment with RDP activated the BDNF/TrkB pathway. In accordance with the in vitro results, RDP meliorated memory deficit by defending hippocampal neuronal cells against oxidative damage in scopolamine-injected mice. Taken together, our present study showed that RDP exerted antioxidant and neuroprotective actions against oxidative stress. Therefore, RDP might facilitate the development of candidates for functional health foods for neurodegenerative disorders.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; (H.J.K.); (S.Y.B.)
| | - Seung Yeon Baek
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; (H.J.K.); (S.Y.B.)
| | - Dai-Eun Sok
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Kun Jong Lee
- Department of Food and Nutrition, Soongeui Women’s College, Seoul 04628, Korea;
| | - Young-Jun Kim
- Department of Food Science and Technology, Seoul National University of Science and technology, Seoul 01811, Korea;
| | - Mee Ree Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Korea; (H.J.K.); (S.Y.B.)
- Correspondence: ; Tel.: +82-42-821-6837; Fax: +82-42-821-8887
| |
Collapse
|
16
|
Enteromorpha prolifera Extract Improves Memory in Scopolamine-Treated Mice via Downregulating Amyloid-β Expression and Upregulating BDNF/TrkB Pathway. Antioxidants (Basel) 2020; 9:antiox9070620. [PMID: 32679768 PMCID: PMC7402154 DOI: 10.3390/antiox9070620] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/25/2022] Open
Abstract
Enteromorpha prolifera, a green alga, has long been used in food diets as well as traditional remedies in East Asia. Our preliminary study demonstrated that an ethyl acetate extract of Enteromorpha prolifera (EAEP) exhibited the strongest antioxidant activity compared to ethanol or water extracts. Nonetheless, there has been no report on the effect of EAEP on memory impairment due to oxidative damage. This study investigated whether EAEP could attenuate memory deficits in an oxidative stress-induced mouse model. EAEP was orally administered (50 or 100 mg/kg body weight (b.w.)) to mice and then scopolamine was administered. The oral administration of EAEP at 100 mg/kg b.w. significantly restored memory impairments induced by scopolamine, as evaluated by the Morris water maze test, and the passive avoidance test. Further, EAEP upregulated the protein expression of BDNF, p-CREB, p-TrkB, and p-Akt. Moreover, EAEP downregulated the expression of amyloid-β, tau, and APP. The regulation of cholinergic marker enzyme activities and the protection of neuronal cells from oxidative stress-induced cell death in the brain of mice via the downregulation of amyloid-β and the upregulation of the BDNF/TrkB pathway by EAEP suggest its potential as a pharmaceutical candidate to prevent neurodegenerative diseases.
Collapse
|
17
|
Liao J, Nai Y, Feng L, Chen Y, Li M, Xu H. Walnut Oil Prevents Scopolamine-Induced Memory Dysfunction in a Mouse Model. Molecules 2020; 25:molecules25071630. [PMID: 32252285 PMCID: PMC7180932 DOI: 10.3390/molecules25071630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
For thousands of years, it has been widely believed that walnut is a kind of nut that has benefits for the human body. Walnut oil, accounting for about 70% of walnut, mainly consists of polyunsaturated fatty acids. To investigate the effect of walnut oil on memory impairment in mice, scopolamine (3 mg/kg body weight/d) was used to establish the animal model during Morris Water Maze (MWM) tests. Walnut oil was administrated orally at 10 mL/kg body weight/d for 8 consecutive weeks. The results showed that walnut oil treatment ameliorated the behavior of the memory-impaired mice in the MWM test. Additionally, walnut oil obviously inhibited acetylcholinesterase activity (1.26 ± 0.12 U/mg prot) (p = 0.013) and increased choline acetyltransferase activity (129.75 ± 6.76 U/mg tissue wet weight) in the brains of scopolamine-treated mice (p = 0.024), suggesting that walnut oil could prevent cholinergic function damage in mice brains. Furthermore, walnut oil remarkably prevented the decrease in total superoxide dismutase activity (93.30 ± 5.50 U/mg prot) (p = 0.006) and glutathione content (110.45 ± 17.70 mg/g prot) (p = 0.047) and the increase of malondialdehyde content (13.79 ± 0.96 nmol/mg prot) (p = 0.001) in the brain of scopolamine-treated mice, indicating that walnut oil could inhibit oxidative stress in the brain of mice. Furthermore, walnut oil prevented histological changes of neurons in hippocampal CA1 and CA3 regions induced by scopolamine. These findings indicate that walnut oil could prevent memory impairment in mice, which might be a potential way for the prevention of memory dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | - Mei Li
- Correspondence: (M.L.); (H.X.); Tel./Fax: +86-029-8709-2486 (M.L. & H.X.)
| | - Huaide Xu
- Correspondence: (M.L.); (H.X.); Tel./Fax: +86-029-8709-2486 (M.L. & H.X.)
| |
Collapse
|
18
|
Yang X, Guo AL, Pang YP, Cheng XJ, Xu T, Li XR, Liu J, Zhang YY, Liu Y. Astaxanthin Attenuates Environmental Tobacco Smoke-Induced Cognitive Deficits: A Critical Role of p38 MAPK. Mar Drugs 2019; 17:E24. [PMID: 30609815 PMCID: PMC6356379 DOI: 10.3390/md17010024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates that environmental tobacco smoke (ETS) impairs cognitive function and induces oxidative stress in the brain. Recently, astaxanthin (ATX), a marine bioactive compound, has been reported to ameliorate cognitive deficits. However, the underlying pathogenesis remains unclear. In this study, ATX administration (40 mg/kg and 80 mg/kg, oral gavage) and cigarette smoking were carried out once a day for 10 weeks to investigate whether the p38 MAPK is involved in cognitive function in response to ATX treatment in the cortex and hippocampus of ETS mice. Results indicated that ATX administration improved spatial learning and memory of ETS mice (p < 0.05 or p < 0.01). Furthermore, exposure to ATX prevented the increases in the protein levels of the p38mitogen-activated protein kinase (p38 MAPK; p < 0.05 or p < 0.01) and nuclear factor-kappa B (NF-κB p65; p < 0.05 or p < 0.01), reversed the decreases in the mRNA and protein levels of synapsin I (SYN) and postsynaptic density protein 95 (PSD-95) (all p < 0.05 or p < 0.01). Moreover, ATX significantly down-regulated the increased levels of pro-inflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) (all p < 0.05 or p < 0.01). Meanwhile, the increased level of malondialdehyde (MDA) and the decreased activities of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) were suppressed after exposure to ATX (all p < 0.05 or p < 0.01). Also, the results of the molecular docking study of ATX into the p38 MAPK binding site revealed that its mechanism was possibly similar to that of PH797804, a p38 MAPK inhibitor. Therefore, our results indicated that the ATX might be a critical agent in protecting the brain against neuroinflammation, synaptic plasticity impairment, and oxidative stress in the cortex and hippocampus of ETS mice.
Collapse
Affiliation(s)
- Xia Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - An-Lei Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yi-Peng Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xiao-Jing Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xin-Rui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yu-Yun Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
19
|
Melatonin Rescue Oxidative Stress-Mediated Neuroinflammation/ Neurodegeneration and Memory Impairment in Scopolamine-Induced Amnesia Mice Model. J Neuroimmune Pharmacol 2018; 14:278-294. [DOI: 10.1007/s11481-018-9824-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023]
|
20
|
Hong SH, Ku JM, Kim HI, Lee SJ, Lim YS, Seo HS, Shin YC, Ko SG. Oral administration of Cervus nippon mantchuricus extract suppresses 2,4-dinitrochlorobenzene-induced atopic dermatitis in BALB/c mice and inflammatory effects in mast cells. Int J Mol Med 2018; 42:2961-2971. [PMID: 30226556 DOI: 10.3892/ijmm.2018.3856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/30/2018] [Indexed: 11/06/2022] Open
Abstract
Cervus nippon mantchuricus extract, known as nok‑gol (NGE) in Korean, is useful for the treatment of various inflammatory diseases, including bone resorption and neutropenia. However, NGE has not been widely investigated, and its efficacy and safety remain to be fully elucidated. In the present study, histological analysis, blood analysis, reverse transcription‑semi-quantitative polymerase chain reaction analysis and enzyme‑linked immunosorbent assays were performed to verify the inhibitory effect of NGE on atopic dermatitis (AD) in BALB/c mice and on inflammatory effects in HMC‑1 human mast cells. NGE suppressed the development of AD in mice, and decreased the infiltration of inflammatory cells, mast cells and CD4+ T cells into AD skin lesions. NGE also decreased leukocyte levels induced by 2,4‑dinitrochlorobenzene (DNCB). NGE alleviated AD‑like inflammatory symptoms in mice by suppressing the production of CD4+ T cells. NGE downregulated the mRNA expression of inflammatory cytokines induced by DNCB. It also decreased the serum immunoglobulin E concentration and inflammatory cytokine levels in DNCB‑treated BALB/c mice. The in vitro experiments demonstrated that NGE reduced the phorbol 12‑myristate 13‑acetate + ionomycin‑induced expression of pro‑inflammatory cytokines interleukin (IL)‑4, IL‑13, tumor necrosis factor‑α, and IL‑6 in HMC‑1 cells. Taken together, the results of the present study indicated that NGE suppressed the progression of DNCB‑induced AD in BALB/c mice and reduced inflammatory effects in HMC‑1 cells. This suggests that NGE may be a useful drug for the treatment of AD.
Collapse
Affiliation(s)
- Se Hyang Hong
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Mo Ku
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyo In Kim
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sol Ji Lee
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ye Seul Lim
- Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hye Sook Seo
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Cheol Shin
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
21
|
Wu T, Yang L, Chen Y, Ni Y, Jiang J, Zhang W, Zhou Q, Zheng X, Wang Q, Fu Z, Li H. Pilose antler polypeptides ameliorates hypoxic-ischemic encephalopathy by activated neurotrophic factors and SDF1/CXCR4 axis in rats. Acta Biochim Biophys Sin (Shanghai) 2018; 50:254-262. [PMID: 29385398 DOI: 10.1093/abbs/gmy005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a complex condition which is associated with high mortality and morbidity. However, few promising treatments for HIE exist. In the present study, the central objective was to identify the therapeutic effect of pilose antler polypeptides (PAP) on HIE in rats. Sprague-Dawley (SD) rats (14 days old) were used and divided into three groups, including control group, hypoxic-ischemia (HI) group and PAP group. After 21 days of treatment, locomotor activity was improved in PAP-treated rats, brain atrophy was decreased and cerebral edema was mitigated to some extent. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis indicated that PAP administration decreased the expressions of inflammatory cytokines and apoptosis genes in hippocampus compared with HI group. Furthermore, the mRNA expressions of genes related to neurotrophic factors were significantly increased in the hippocampus. In addition, the expressions of oxidative stress markers were all down-regulated after PAP administration. Moreover, PAP up-regulated both the mRNA and protein levels of SDF1 and CXCR4, which may activate the SDF1/CXCR4 axis to moderate brain injury. These results suggest that PAP may be potentially used in the treatment of HIE.
Collapse
Affiliation(s)
- Tao Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Luna Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianguo Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wanjing Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qianchen Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaojun Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haifeng Li
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
22
|
The immune-enhancing activity of Cervus nippon mantchuricus extract (NGE) in RAW264.7 macrophage cells and immunosuppressed mice. Food Res Int 2017; 99:623-629. [PMID: 28784525 DOI: 10.1016/j.foodres.2017.06.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/20/2023]
Abstract
Chemotherapeutics are often used to inhibit the proliferation of cancer cells. However, they can also harm healthy cells and cause side effects such as immunosuppression. Especially traditional oriental medicines long used in Asia, may be beneficial candidates for the alleviation of immune diseases. Cervus nippon mantchuricus extract (NGE) is currently sold in the market as coffee and health drinks. However, NGE was not widely investigated and efficacy remain unclear and essentially nothing is known about their potential immune-regulatory properties. As a result, NGE induced the differentiation of RAW264.7 macrophage cells. NGE-stimulated RAW264.7 macrophage cells elevated cytokines levels and NO production. NGE-stimulated RAW264.7 macrophage cells activated MAPKs and NF-κB signaling pathways. NGE encouraged the immuno-enhancing effects in immunosuppressed short-term treated with NGE mice model. NGE or Red ginseng encouraged the immuno-enhancing effects in immunosuppressed long-term treated with NGE mice model. Our data clearly show that NGE contains immune-enhancing activity and can be used to treat immunodeficiency.
Collapse
|
23
|
Protein digestomic analysis reveals the bioactivity of deer antler velvet in simulated gastrointestinal digestion. Food Res Int 2017; 96:182-190. [PMID: 28528097 DOI: 10.1016/j.foodres.2017.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 12/19/2022]
Abstract
Proteins are the most prominent bioactive component in deer antler velvet. The aim of the present study was to track the fate of protein of antler velvet by protein digestomics. The peptide profile identified by LC-MS/MS and the in vitro bioactivity of antler velvet aqueous extract (AAE) were investigated in simulated gastrointestinal digestion. A total of 23, 387 and 417 peptides in AAE, gastric and pancreatic digests were identified using LC-MS/MS, respectively. Collagens, the predominant proteins, released 34 peptides in gastric digests and 146 peptides in pancreatic digests. The gastric and pancreatic digests presented dipeptidyl peptidase IV (DPP-IV) and prolyl endopeptidase (PEP) inhibition activities. Four peptides from digests were proved to be DPP-IV and PEP inhibitory peptides. The results showed that the peptides released from antler velvet protein contributed to the bioactivity of antler velvet during digestion.
Collapse
|
24
|
Choi HS, Im S, Park Y, Hong KB, Suh HJ. Deer Bone Oil Extract Suppresses Lipopolysaccharide-Induced Inflammatory Responses in RAW264.7 Cells. Biol Pharm Bull 2017; 39:593-600. [PMID: 27040632 DOI: 10.1248/bpb.b15-00952] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the effect of deer bone oil extract (DBOE) on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 cells. DBOE was fractionated by liquid-liquid extraction to obtain two fractions: methanol fraction (DBO-M) and hexane fraction (DBO-H). TLC showed that DBO-M had relatively more hydrophilic lipid complexes, including unsaturated fatty acids, than DBOE and DBO-H. The relative compositions of tetradecenoyl carnitine, α-linoleic acid, and palmitoleic acid increased in the DBO-M fraction by 61, 38, and 32%, respectively, compared with DBOE. The concentration of sugar moieties was 3-fold higher in the DBO-M fraction than DBOE and DBO-H. DBO-M significantly decreased LPS-induced nitric oxide (NO) production in RAW264.7 cells in a dose-dependent manner. This DBO-M-mediated decrease in NO production was due to downregulation of mRNA and protein levels of inducible nitric oxide synthase (iNOS). In addition, mRNA expression of pro-inflammatory mediators, such as cyclooxygenase (COX-2), interleukin (IL)-1β, and IL-12β, was suppressed by DBO-M. Our data showed that DBO-M, which has relatively higher sugar content than DBOE and DBO-H, could play an important role in suppressing inflammatory responses by controlling pro-inflammatory cytokines and mediators.
Collapse
Affiliation(s)
- Hyeon-Son Choi
- Department of Food Science and Technology, Seoul Women's University
| | | | | | | | | |
Collapse
|
25
|
Jeon Y, Kim B, Kim JE, Kim BR, Ban S, Jeong JH, Kwon O, Rhie SJ, Ahn CW, Kim JH, Jung SU, Park SH, Lyoo IK, Yoon S. Effects of Ganglioside on Working Memory and the Default Mode Network in Individuals with Subjective Cognitive Impairment: A Randomized Controlled Trial. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:489-514. [PMID: 27109158 DOI: 10.1142/s0192415x16500270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This randomized, double-blind, placebo-controlled trial examined whether the administration of ganglioside, an active ingredient of deer bone extract, can improve working memory performance by increasing gray matter volume and functional connectivity in the default mode network (DMN) in individuals with subjective cognitive impairment. Seventy-five individuals with subjective cognitive impairment were chosen to receive either ganglioside (330[Formula: see text][Formula: see text]g/day or 660[Formula: see text][Formula: see text]g/day) or a placebo for 8 weeks. Changes in working memory performance with treatment of either ganglioside or placebo were assessed as cognitive outcome measures. Using voxel-based morphometry and functional connectivity analyses, changes in gray matter volume and functional connectivity in the DMN were also assessed as brain outcome measures. Improvement in working memory performance was greater in the ganglioside group than in the placebo group. The ganglioside group, relative to the placebo group, showed greater increases in gray matter volume and functional connectivity in the DMN. A significant relationship between increased functional connectivity of the precuneus and improved working memory performance was observed in the ganglioside group. The current findings suggest that ganglioside has cognitive-enhancing effects in individuals with subjective cognitive impairment. Ganglioside-induced increases in gray matter volume and functional connectivity in the DMN may partly be responsible for the potential nootropic effects of ganglioside. The clinical trial was registered with ClinicalTrials.gov (identifier: NCT02379481).
Collapse
Affiliation(s)
| | | | - Jieun E Kim
- * Ewha Brain Institute, South Korea.,† Department of Brain and Cognitive Sciences, South Korea
| | - Bori R Kim
- * Ewha Brain Institute, South Korea.,† Department of Brain and Cognitive Sciences, South Korea
| | - Soonhyun Ban
- * Ewha Brain Institute, South Korea.,† Department of Brain and Cognitive Sciences, South Korea
| | - Jee Hyang Jeong
- ¶ Department of Neurology, Ewha Womans University School of Medicine, Seoul, South Korea
| | - Oran Kwon
- ‡ Department of Nutritional Science & Food Management, College of Health Sciences, South Korea
| | - Sandy Jeong Rhie
- § College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Chang-Won Ahn
- ∥ Research and Development Center, Nong Shim Co., Ltd., Seoul, South Korea
| | - Jong-Hoon Kim
- ∥ Research and Development Center, Nong Shim Co., Ltd., Seoul, South Korea
| | - Sung Ug Jung
- ∥ Research and Development Center, Nong Shim Co., Ltd., Seoul, South Korea
| | - Soo-Hyun Park
- ∥ Research and Development Center, Nong Shim Co., Ltd., Seoul, South Korea
| | - In Kyoon Lyoo
- * Ewha Brain Institute, South Korea.,† Department of Brain and Cognitive Sciences, South Korea.,§ College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- * Ewha Brain Institute, South Korea.,† Department of Brain and Cognitive Sciences, South Korea
| |
Collapse
|
26
|
Choi HS, Im S, Park JW, Suh HJ. Protective Effect of Deer Bone Oil on Cartilage Destruction in Rats with Monosodium Iodoacetate (MIA)-Induced Osteoarthritis. Biol Pharm Bull 2016; 39:2042-2051. [DOI: 10.1248/bpb.b16-00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hyeon-Son Choi
- Department of Food Science and Technology, Seoul Women’s University
| | | | - Je Won Park
- School of Biosystems and Biomedical Science, Korea University
| | - Hyung Joo Suh
- Department of Public Health Sciences, Graduate School,
Korea University
| |
Collapse
|